
Coercion-Resistant Blockchain-Based E-Voting
Protocol

Chiara Spadafora1, Riccardo Longo2, and Massimiliano Sala3

1 c.spadaf@libero.it
2 riccardolongomath@gmail.com

3 maxsalacodes@gmail.com
Department of Mathematics, University Of Trento, 38123 Povo, Trento, Italy

Abstract. Coercion resistance is one of the most important features of a
secure voting procedure. Because of the properties such as transparency,
decentralization, and non-repudiation, blockchain is a fundamental tech-
nology of great interest in its own right, and it also has large potential
when integrated into many other areas. Here we propose a decentral-
ized e-voting protocol that is coercion-resistant and vote-selling resistant,
while being also completely transparent and not receipt-free. We prove
the security of the protocol under the standard DDH assumption.

1 Introduction

An election is a significant event in many democratic countries, however, tra-
ditional voting systems may be inefficient given the large number of areas and
population involved in modern elections. Since the advent of Internet there has
been interest in developing remote voting or e-voting [8], but with the develop-
ment of blockchain technologies there has been a significant boost in this field,
exploiting some nice properties of these constructions, such as transparency and
non-repudiation [16]. Usually e-voting protocols are requested provide two prop-
erties: ballot casting assurance, where each voter gains personal assurance that
their vote was correctly cast, and universal verifiability, where any observer
can verify that all cast votes were properly tallied. A voting scheme is also re-
quested to be robust and resistant to both coercion and vote-selling. A protocol
is coercion-resistant if voters can cast their ballots as they want, even if some-
one tries to actively force them to vote for a specific candidate. A protocol is
vote-selling resistant if it does not give a proof of vote that can be understood
by everyone.

In this paper we propose an e-voting protocol, which aims at providing re-
sistance versus coercion and vote-selling, while giving ballot casting assurance
(thanks to a receipt) to every voter. To the best of our knowledge the presence
of both the receipt of the vote and the described resistance to malicious entities,
all deployed on a blockchain infrastructure, is an innovative proposal.

Related Work. The research in the field of e-voting is constantly growing, with
a lot of protocols proposed. Civitas [6] deals with coercion allowing voters to



2 C. Spadafora et al.

generate, with their designated private key, fake credentials and then erasing
all the votes submitted through them. Caveat Coercitor [9] is a unique voting
system that, instead of preventing coercion, allows it, while recording unforgeable
evidence of voter-coercions. Indeed Caveat Coercitor outputs the evidence of the
amount of suspicious voter-coercions that occurred in the elections. Observers
can decide whether or not the outcome is valid based on the number of suspicious
ballots. Bingo Voting [4] is a e-voting protocol that relies on a trusted random-
number generator. Every voter receives a receipt for all the candidates, even
for those it did not vote for. Fake votes are generated for every candidate and
eliminated in tallying.

A more comprehensive comparison of voting protocols can be found in [10].

2 Preliminaries

In this section we recall some basic definitions that we will use later on in our
presentation.

2.1 Decisional Diffie-Hellman Assumption

We use the definition of the decisional Diffie–Hellman (DDH) problem and the
relative hardness assumption given in [12].

Let a, b, ξ ∈ Z∗p be chosen at random and g be a generator of the cyclic group
G. The DDH problem consists in contructing an algorithm

B
(
g,A = ga, B = gb, T

)
→ {0, 1} (1)

to efficiently distinguish between the tuples
(
g,A,B, gab

)
and

(
g,A,B, gξ

)
out-

putting respectively 1 and 0. The advantage of B in this case is clearly written
as:

AdvB =
∣∣Pr [B (g,A,B, gab) = 1

]
− Pr

[
B
(
g,A,B, gξ

)
= 1
]∣∣ , (2)

where the probability is taken over the random choice of the generator g, of a, b,
ξ ∈ Z∗p, and the random bits possibly consumed by B to compute the response.
Definition 1 (DDH Assumption). The decisional Diffie-Hellman assump-
tion holds if no probabilistic polynomial-time algorithm B has a non-negligible
advantage in solving the decisional DH problem.

2.2 Zero Knowledge Proofs

Zero-knowledge proofs were first conceived in 1989 by Shafi Goldwasser, Silvio
Micali, and Charles Rackoff [3] introducing the first zero-knowledge proof for a
concrete problem: deciding quadratic non-residues modulo an integer. Together
with the work of Laszlo Babai and Shlomo Moran [2], those two papers invented
the interactive proof system, for which all five authors won the first Gödel Prize
in 1993.

A zero-knowledge proof (ZKP) is a cryptographic proof which allows one
party (the prover) to prove to another party (the verifier) the veracity of some
statement, without revealing anything else to the verifier.



Coercion-Resistant Blockchain-Based E-Voting Protocol 3

Equality of discrete logarithms One of the simplest proof of knowledge is
due to Schnorr [14]: the proof of knowledge of a discrete logarithm. Here we
present a variation of the Schnorr interactive protocol, similar to [15], that will
be used in the proof of security described in section 4.

Protocol 1. Let G be a cyclic group of prime order p, let u, ū be generators of
G, and finally let z, z̄ ∈ G, ω ∈ Zp. The prover knows ω and wants to convince
the verifier that:

uω = z and ūω = z̄, (3)

without disclosing ω. The values of u, z, ū and z̄ are publicly known.

1. The prover generates a random r and computes t = ur and t̄ = ūr, then
sends (t, t̄) to the verifier.

2. The verifier computes a random c ∈ {0, 1} and sends it to the prover.
3. The prover creates a response s = r + c · ω and sends s to the verifier.
4. The verifier checks that us = zc · t, ūs = z̄c · t̄. If the check fails the proof

fails and the protocols aborts.
5. The previous steps are repeated t times, where t is polynomial in the length

of p (that is the security parameter).

Security considerations We now prove that Protocol 1 satisfies the following
properties, under the DDH assumption.

– Completeness. To show that this protocol is correct, (namely that an hon-
est prover can indeed convince a verifier to accept a true statement simply
by following the prescribed protocol) it suffices to verify that the equations
of steps 3 and 4 hold when s is computed correctly.

– Soundness. To show soundness (namely that even an arbitrarily malicious
prover cannot convince the verifier to accept a false statement with more
than negligible probability) first note that the prover can guess all t values
of the challenges c only with probability 2−t which is negligible. Therefore
if the prover manages to complete a proof with more than negligible proba-
bility then, in at least one protocol repetition, the prover does not fail even
when guessing wrong, i.e. it can answer both possible challenges correctly.
This means that the prover can compute both r + ω and r, and therefore
compute ω, but we were assuming that the prover did not know ω, hence
the contradiction.

– Zero-knowledge. This is the property that the verifier cannot gain even a
single bit of extra information other that the prover knows ω. To show that,
we use a simulator S that takes in input (u, z, ū, z̄) and can interact with
a (possibly malicious) verifier V producing a view that is indistinguishable
from a real one, as follows:
1. S initialises the verifier V with u, z, ū, z̄ and i = 0;
2. S selects c′ ∈ {0, 1} at random;
3. S selects s ∈ Zp at random and sets t = us · z−c′ , t̄ = ūs · z̄−c′ ;
4. S gives (t, t̄) and gets the challenge c;



4 C. Spadafora et al.

5. If c 6= c′ S rewinds V and goes back to step 2 with the same i, otherwise
it proceeds;

6. S gives s to V , since the check succeeds, if i = t the proof successfully
completes, otherwise S sets i = i + 1 and proceeds with the simulation
repeating from step 2.

Note that this simulator runs in expected polynomial time since for every
repetition the probability of guessing the correct c′ is 1

2 , so the expected
number of repetition needed to complete is 2t which is polynomial. Now let us
suppose that there exists a V that can distinguish this simulation from a real
protocol interaction. Note that this is equivalent to distinguishing whether
the input tuple (u, z, ū, z̄) satisfies Equation (3) for some ω ∈ Zp, in fact when
such ω exists then the view produced by S has the exact same distribution of
a real protocol interaction. To complete our proof we use this distinguishing
verifier V to solve the decisional Diffie-Hellman problem: given a challenge
(g,A,B, T ) we pass it as input of S with u = g, z = A, ū = B, z̄ = T , that
corresponds to implicitly setting ω = a if T = gab. In this case S perfectly
simulates the real protocol, otherwise if T = gr then the verifier could detect
that it is a simulation and we can break DDH assumption.

2.3 Commitment Scheme

A commitment scheme [5] is composed by two algorithms:

– Commit(m, r): takes the message m to commit with some random value r as
input and outputs the commitment c and a decommitment value d.

– Verify(c,m, d): takes the commitment c, the message m and the decommit-
ment value d and outputs true if the verification succeeds, false otherwise.

A commitment scheme must have the following two properties:

– Binding: it is infeasible to find m′ 6= m and d, d′ such that
Verify(c,m, d) = Verify(c,m′, d′) = true.

– Hiding: Let [c1, d1] = Commit(m1, r1) and [c2, d2] = Commit(m2, r2) with
m1 6= m2, then it is infeasible for an attacker having only c1, c2, m1 and m2

to distinguish which ci corresponds to which mi.

In our construction we use commitments to enhance the privacy of the voters dur-
ing the election even towards authorities, and to prevent some malicious choice
of parameters. However in our analysis we assume the honesty of the authori-
ties, so commitments are only marginally involved in the proof. For this reason
we do not specify the meaning of infeasibility in the aforementioned security
properties, noting that a commitment scheme can achieve perfect (information
theoretic) security in only one of the two properties, while the other is at most
computationally secure.



Coercion-Resistant Blockchain-Based E-Voting Protocol 5

2.4 Blockchain

The e-voting protocol we propose exploits the accountability and immutability
properties of an underlying blockchain. With blockchain we mean a decentralised
data structure with the following properties:

– public: the contents of the blockchain is publicly readable and examinable
by anyone, in particular we assume that an attacker is not able to efficiently
and indefinitely negate access to the blockchain or pass off a counterfeit
(tampered) copy as the original one;

– append-only: the contents of the blockchain are immutable once published,
but new data can be added afterwards, more specifically an attacker is not
able to modify the blockchain so that the original status is not a prefix of
the alteration.

Users send their proposals of new data to be included in the blockchain to the
miners, a special subset of users that actively maintain the blockchain reaching
a consensus (e.g. [13]) on what to append and publishing the updated status.

In our protocol the main users are the voters, while the miners are roughly
equivalent to election officers, the data registered on the blockchain is how the
ballots are cast (with suitable obfuscation to preserve privacy), in the form of
transactions that transfer voting tokens to special accounts that represent the
candidates.

Not every user of the blockchain is allowed to participate in the election,
however we do not take in consideration how users are identified. We follow
their actions only once they become "voters", that is, the protocols knows which
blockchain addresses correspond to possible voters. To restrict the participation
only to identified blockchain users, there are at least two possible ways:

– to use a permissioned blockchain4 (so the internal PKI will guarantee the
identification)

– to use a permissionless blockchain5 with either a smart contract and/or an
external oracle.

Finally we need that miners enforce some consistency rules:

– transactions are properly authorised by the user who owns the token, i.e. a
user’s tokens cannot be spent by anybody else;

– only valid votes are accepted and registered on the blockchain, i.e. users must
spend both of their tokens together, and send them to different candidates
(see Section 3);

– each token can be spent only once.

4 We are implementing a prototype with HyperLedger Fabric [1].
5 We are also implementing a prototype with Quadrans [7].



6 C. Spadafora et al.

3 Protocol Description

This section presents our proposal for a remote e-voting protocol in an election
with two candidates, based on blockchain technology.

The basic idea is that every voter owns two voting tokens (v-tokens): one
is real, the other is fake. When voting, every voter expresses their preference
assigning the real v-token to the chosen candidate and the fake one to the other.
On the vote receipt both transactions will be displayed, but only for the voter
this receipt will be understandable since no one else knows which v-token is real
and which is fake. In the final tally the fake v-tokens are erased and the whole
process is publicly auditable.

The aim of this voting system is to be fully verifiable, prevent coercion and
vote selling while being almost completely transparent and giving to the voter
both ballot casting assurance and a receipt of the vote which is meaningful only
for the direct recipient. The protocol is divided into five phases:

– Setup. The authorities generate the values needed by the creation of both
the v-tokens and the masks associated to the candidates. They also create
the v-tokens as well as a list containing the eligible voters.

– Registrar. A wallet is associated to every eligible voter, so that no one else
has access to it. In this wallet there are two indistinguishable v-tokens, one
real and one fake. Upon registration the voter receives also the information
on which token is real and which is fake. This is obviously a very delicate
phase, therefore it takes place in a safe and controlled environment (e.g.
police station) forcing users to identify themselves. The information on which
v-token is real and which is fake is given without a receipt so the voter cannot
officially prove the validity of a v-token.

– Voting Phase. Both v-tokens must be spent together to have a valid trans-
action and they have to go to different candidates. After the v-tokens have
been spent, a receipt is given to the voter. Here we assume that both can-
didates receive at least one legitimate vote (with a valid v-token), otherwise
it is trivial to discern valid tokens from the election results.

– Tallying. The number of real and fake votes received by each candidate is
published.

– Correctness Check. The authorities publish a set of values that permits to
check that there have been no manipulations of the ballots. Every voter can
check, by examining the history of transactions received by the candidate’s
node that their v-token has been cast correctly.

Finally each voter can request a series of ZKP to assure that their v-tokens have
not been manipulated during the voting phase. These proofs are executed in a
safe and authenticated environment so that no coercer can exploit them to assess
how someone has voted.

3.1 General properties

– Vote selling and coercion resistance. The voting protocol presented here
provides coercion-resistance and vote selling resistance even if the receipt of



Coercion-Resistant Blockchain-Based E-Voting Protocol 7

the vote is given. In fact when voters casts their ballot, they receive a receipt
with written on it to whom the v-tokens have been sent to. Since they are
indistinguishable, the coercer/vote buyer cannot be sure that the voter voted
with the valid v-token for the chosen candidate.

– Correctness. Every voter can prove that they voted just one time per can-
didate through their vote receipt, or browsing the blockchain ledger.

– Prevent double-voting. The protocol delegates to the underlying blockchain
the control against double voting, exploiting consensus rules against double
spending of tokens.

– Privacy. The privacy of the voter is preserved through pseudonymous wal-
lets and the multiple v-tokens that hide the preferences.

– Fairness. Fairness of the system is assured by the nature of the blockchain.
It allows every voter to see the number of transactions received by both
candidates and count the votes received, just after the voting phase ends.
This can also be used by voters to check that their v-tokens went to the
chosen candidates.

– Transparency. Since the mathematical background of the whole process is
public, everyone can audit it. Moreover the checking phase allows everyone
to do a consistency check of the computations performed.

3.2 Protocol Description

The key components involved in the protocol are:

1. A finite set of voters V = {v1, . . . , vN} with N ∈ N the number of eligible
voters.

2. Two distinct candidates named Alpha and Beta.
3. Two different trusted authorities6 A1 and A2

4. One ballot bi comprising two v-tokens for i ∈ {1 . . . N}, i.e. one for each
eligible voter.

Let us now present the details of the protocol phase by phase.

Setup

1. A1 sets up the public ledger, then A1 chooses a group G of prime order p,
along with a generator g ∈ G. Then it publishes G, g, p.

2. A1 chooses uniformly at random, for every voter vi, a value xi ∈ Z∗p with
xi 6= xj for all i 6= j ∈ {1 . . . N}. Then A1 chooses two random values k and
λ in Z∗p. It is important that all the xis, k and λ remain private. A1 knows
that the v-tokens computed using k are valid, while the ones computed using
λ are fake, but this information is kept secret.

3. For both candidates A1 chooses at random a value in Z∗p: α′ and β′ respec-
tively, with α′ 6= β′. Those will be the first half of the masks for the votes.

6 We use a weak concept of trust here, since the conduct of these authorities can be
checked by voters.



8 C. Spadafora et al.

4. A1 chooses a random value r ∈ Z∗p and commits (see Section 2.3) to the
values gr, gk, gλ, gα

′
, gβ

′
, gα

′k, gβ
′k, gα

′λ, gβ
′λ.

5. For both candidates, A2 chooses at random a value in Z∗p: α′′ and β′′ re-
spectively, with α′′ 6= β′′. Those will be the second half of the masks for the
votes. Then it commits to the values gα

′′
, gβ

′′
.

6. A1 chooses uniformly at random for every voter vi a value y′i ∈ Z∗p, with
y′i 6= y′j for all i 6= j ∈ {1 . . . N}. Then for every i ∈ {1 . . . N} it commits to
the pairs (vi, g

rxi), (vi, g
y′i), (vi, g

xiy
′
i).

7. For every voter vi, A1 chooses uniformly at random πi ∈ {1, 2} and creates
the preliminary ballot

b̄i = (b̄i,1, b̄i,2) =
(
gy

′
i(xi+σi,1), gy

′
i(xi+σi,2)

)
(4)

where:

σi,l :=

{
k ⇐⇒ πi = l i.e. b̄i,l is real
λ otherwise, i.e. b̄i,l is fake

(5)

In this notation, i represents the voter while l = 1, 2 is the v-token position
in the pair.

8. A1 creates a list of all the eligible voters and associates to everyone a wallet
in which the v-tokens will be stored. Eventually it sends to A2: the list of
the ballots b̄i, the list of wallet addresses, and their association.

9. Once A2 has the address-ballots list, it associates to every voter a random
value y′′i ∈ Z∗p, with y′′i 6= y′′j for all i 6= j ∈ {1 . . . N}. In this way A2 creates
the final ballot for every voter vi:

bi =
(
b̄
y′′i
i,1, b̄

y′′i
i,2

)
=
(
gyi(xi+σi,1), gyi(xi+σi,2)

)
, with yi := y′i · y′′i . (6)

Finally for every i ∈ {1 . . . N} A2 commits to the pair (vi, g
y′′i ).

Voting Phase

1. A2 sends to every voter its associated ballot, a pair bi.
2. For every 1 ≤ i ≤ N the voting phase proceeds in the same way, as we

elaborate below. Since the v-tokens can be reordered, the voter orders them
so that the first v-token is meant for Alpha and the second for Beta. It
sends its reordered pair bi off-chain to A1

7. The first authority records that
vi has voted, checking also that the same voter has not voted yet. A1 then
computes the preliminary vote:

b̄iα =b
α′
y′
i
i,1 =

(
gyi(xi+σi,1)

)α′
y′
i =

(
gα

′·y′′i (xi+σi,1)
)
, (7)

b̄iβ =b

β′
y′
i
i,2 =

(
gyi(xi+σi,2)

) β′
y′
i =

(
gβ

′·y′′i (xi+σi,2)
)
, (8)

7 The authority A1 gains no information from this since the two v-tokens are indis-
tinguishable thanks to the mask y′′i .



Coercion-Resistant Blockchain-Based E-Voting Protocol 9

and sends off-chain the pair b̄iαβ = (b̄iα , b̄iβ ) to A2
8. A2 then computes the

final vote (let α := α′ · α′′ and β := β′ · β′′):

biα =b̄
α′′
y′′
i
iα

=
(
gα

′·y′′i (xi+σi,1)
)α′′
y′′
i =

(
gα(xi+σi,1)

)
, (9)

biβ =b̄

β′′
y′′
i
iβ

=
(
gβ

′·y′′i (xi+σi,2)
) β′′
y′′
i =

(
gβ(xi+σi,2)

)
, (10)

and sends off-chain the pair biαβ = (biα , biβ ) back to the voter. Also A2

records that vi has voted and assures that no one tries to vote more than
once.

3. The two masked v-tokens are sent with a transaction on the blockchain to
the respective candidates. The voter receives the receipt of the vote which
basically is the insertion of the transaction in the blockchain.

Tallying Once the voting phase is over, the tallying can start. This phase is
symmetrical for Alpha and Beta, and it is sufficient to count the votes only for
one candidate, so we will describe it just for Alpha.

Suppose that T ≤ N participants voted. Without loss of generality, we can
assume that only the participants with index 1 ≤ i ≤ T voted, while the remain-
ing N − T abstained from voting9.

1. A1 publishes the decommitments for gα
′
, gβ

′
, gα

′k, gβ
′k, gα

′λ, gβ
′λ. A2 pub-

lishes gαk, gβk, gαλ, gβλ, gα, gβ (which A2 can compute after seeing those
decommitments, e.g. gαk = (gα

′k)α
′′
), and the decommitments for gα

′′
, gβ

′′

(now A1 can check these computations).
2. Knowing which participants voted, A1 computes sum =

∑T
s=1 xs, then it

publishes gα·sum, gβ·sum, gr·sum. For public verifiability A1 publishes the de-
commitment of (vi, g

rxi) for i ∈ {1, . . . , T}, and can prove in ZK that sum is
the same in every exponent (see Section 3.2).

3. A1 and A2 decommit the other values (previously committed), excluding the
pairs (vi, g

y′i), (vi, g
xiy

′
i), (vi, g

y′′i ) ∀i.
4. Multiplying all v-tokens in Alpha’s wallet and dividing by gα·sum anyone can

compute:

(gα·sum)
−1

T∏
i=1

gα(xi+σi,l) =
(
gαk
)validα (

gαλ
)fakeα (11)

where l = 1 or 2 depending on the v-token used and
(a) validα is the number of valid votes received by Alpha,
(b) fakeα is the number of fake votes received by Alpha.

8 The authority A2 also gains no information from this since the two v-tokens are
indistinguishable.

9 Note that the voting addresses can be seen by everyone in the blockchain.



10 C. Spadafora et al.

Note that fakeα and validα (that correspond respectively to fakeβ and validβ)
can be easily computed by brute force, in fact given an integer T ∈ N it is
possible to represent it in T + 1 ways as a sum of two non-negative integers, and
the number of valid and fake votes must sum up to the number of actual voters
T , so the effort is linear in the number of actual votes.

Comparing the number of valid votes for each candidate, the winner of the
election is found.

ZKP for integrity checks Firstly, a ZKP is needed to assure that votes have
been masked correctly. In other words, that the authorities computed

gyi(xi+k) → gα(xi+k) (12)

without messing with the exponents. Note that the same argument holds for λ
and β instead of k and α respectively, in any combination. The voter vi knows gα
and the value of the v-tokens, before and after the voting mask has been applied.
In a safe and authenticated environment A1 and A2 decommit to vi the values
of (vi, g

y′i) and (vi, g
y′′i ) respectively. Then A1 computes gyi and proves that the

result is correct with the Schnorr ZKP presented in Section 2.2 and using:

ω = y′i, u = g, z = gy
′
i , ū = gy

′′
i , z̄ = gyi . (13)

Then A1 can prove the correctness of the mask setting:

ω = (xi + k), u = gyi , z = gyi(xi+k), ū = gα, z̄ = gα(xi+k). (14)

Adapting the proof of gy
′
i , gy

′′
i → gyi , A1 can also prove the correct computation

of gα
′
, gα

′′ → gα, gα
′k, gα

′′ → gαk and similarly for β and λ.
Any voter10 could ask also for a proof of the exponentiation gkα (and similarly
for λ and β). The voter knows gα, gk, g, so A1 can prove it by setting:

ω = k, u = g, z = gk, ū = gα, z̄ = gk·α. (15)

Any voter could ask for a proof that sum =
∑T
i=1 xi. The voter knows g

α, gα·sum,
gr, and gr

∑T
i=1 xi (computed observing the votes on chain and using the pairs

(vi, g
rxi) previously decommitted), so A1 can prove it by setting:

ω = sum, u = gr, z = gr
∑T
i=1 xi , ū = gα, z̄ = gα·sum. (16)

3.3 On the honesty of A1

Finally, a voter vi can ask (always in a safe and authenticated environment) for
a proof that in the registration phase the authority A1 correctly computed and

10 Actually anyone observing the protocol execution.



Coercion-Resistant Blockchain-Based E-Voting Protocol 11

identified the v-tokens, i.e. that the v-token identified as valid by A1 was the
one containing k.

Recall that a v-token is:

bi,l = gyi(xi+σi,l) = gyi·xi · gyi·σi,l , with σi,l ∈ {k, λ}. (17)

A1 starts by decommitting (vi, g
y′ixi) to the voter, then computes gyixi from

gy
′′
i setting:

ω = y′ixi, u = g, z = gy
′
ixi , ū = gy

′′
i , z̄ = gyi·xi . (18)

Then the voter knows g, gyi , gk, gλ, gr·xi and gr. Now A1 can prove the validity
of the factor gyi·xi by setting:

ω = xi, u = gr, z = gr·xi , ū = gyi , z̄ = gyi·xi . (19)

To conclude its proof, A1 can prove than the valid coin contains k while the
fake contains λ by setting:

ω = k, u = g, z = gk, ū = gyi , z̄ = gyi·k, (20)

and:
ω = λ, u = g, z = gλ, ū = gyi , z̄ = gyi·λ, (21)

where the values of z̄ can be deduced by the voter dividing the v-tokens by gyi·xi ,
which has been proved correct in the previous step.

4 Proof of security

For the sake of clarity and to simplify the notation in this section we omit the
random ordering of the v-tokens, so we write either k or λ instead of σi,l, without
loss of generality.

The goal is to prove that an adversary cannot distinguish between real and
fake v-tokens and guess how voters cast their preference. Since election results
are obviously public we have to avoid some trivial cases in which the adversary
can deduce the votes simply observing the results. Therefore we assume that
the adversary controls all but two voters an that these two voters select distinct
candidates. The adversary wins the security game if it guesses correctly for which
candidate each of the two voted.

4.1 Security Model

The security of the protocol will be proven in terms of vote indistinguishability
(VI), as detailed in Definition 3.

The security of the protocol will be proved in terms of two authorities, A1

that is honest and A2 that is honest but leaky, i.e. the second authority leaks
information to the adversary, specifically the values of y′′i for all i, α′′ and β′′.



12 C. Spadafora et al.

Definition 2 (Security Game). The security game for a two-candidates pro-
tocol proceeds as follows:

– Init. The adversary E chooses N − 2 users that it will control and therefore
the adversary knows which are the real and fake v-tokens of these users. The
remaining two are called free voters.

– Setup. The Challenger takes the role of both authorities and constructs all
v-tokens.

– Phase 0. The adversary may request to see the v-tokens of any voter, in-
cluding the free voters.

– Phase 1. The adversary may request to vote with some or all of the voters
it controls.

– Challenge. The Challenger votes with the v-tokens of the free voters flip-
ping a random coin and gives to the adversary the receipt of the vote.

– Phase 2. The adversary can vote with some or all of the voters it controls
which did not vote in Phase 1.

– Phase 3. The voting phase ends and the values committed by the authorities
are decommitted. The votes are counted and the adversary can request some
ZKP of the correctness of the results on behalf of the voters it controls.

– Guess. The adversary chooses one free voter and outputs a guess on which
candidate it voted for 11.

Definition 3 (Vote Indistiguishability). A Two-Candidates Protocol with
security parameter ξ is VI-secure if for all probabilistic polynomial-time adver-
saries E there exists a negligible function φ such that:

P[E wins] ≤ 1

2
+ φ(ξ). (22)

In the following theorem we prove our voting protocol VI-secure under the
DDH assumption (Definition 1) in the security game defined above and under the
assumption that the commitment scheme is perfectly hiding and computationally
binding.

Theorem 1. Suppose that the commitment scheme is perfectly hiding and com-
putationally binding. If an adaptive distinguisher adversary can break the scheme,
then a simulator can be constructed to play the DDH game with non-negligible
advantage.

Proof. Suppose there exists a polynomial time adversary E , that can attack the
scheme with advantage ε. We claim that a simulator S can be built to play the
decisional DH game with advantage ε

2 . The simulation proceeds as follows.

– Init The adversary chooses the N − 2 users to control.
11 Therefore the adversary implicitly guesses also the vote of the other free voter. In

other words, for each of the four v-tokens outside its control, the adversary guesses
if the v-token is valid or not.



Coercion-Resistant Blockchain-Based E-Voting Protocol 13

The simulator takes in a DDH challenge:

(g,A = ga, B = gb, T ), (23)

with T = gab or T = R = gξ.
– Setup Without loss of generality we may assume that the two uncontrolled

voters are v1 and v2. The simulator chooses uniformly at random the values
d, e, ȳ1, ȳ2, k̄, λ̄, α

′, α′′, β′, β′′, r ∈ Z∗p. Then it chooses uniformly at random
y′i, xi for 3 ≤ i ≤ N , y′′j for 1 ≤ j ≤ N . Finally S implicitly sets:

y′1 =
ȳ1

a
, y′2 =

ȳ2

a
, k = k̄ · a, λ = λ̄ · a. (24)

Since authority A2 is leaky, its parameters are given to the adversary.
The v-tokens of the free voters are constructed in this way:

b1 =
(
gy

′′
1 ȳ1(d+k̄−λ̄) ·By

′′
1 ȳ1 , By

′′
1 ȳ1 · gy

′′
1 ȳ1d

)
, (25)

b2 =
(
B−y

′′
2 ȳ2 · gy

′′
2 ȳ2e, gy

′′
2 ȳ2(e−k̄+λ̄) ·B−y

′′
2 ȳ2
)
, (26)

implicitly setting:

x1 + k = (d+ k̄ − λ̄)a+ ab, (27)
x1 + λ = ab+ da, (28)
x2 + k = −ab+ ea, (29)
x2 + λ = (e− k̄ + λ̄)a− ab. (30)

so that the DDH challenge appears only in the votes.
For every other voter vi with 3 ≤ i ≤ N the ballots are computed as:

bi =
(
gyi(xi+k̄a), gyi(xi+λ̄a)

)
=
(
gyixi ·Ak̄, gyixi ·Aλ̄

)
, (31)

where yi := y′i · y′′i .
The simulator can compute every value it has to commit and then decommit
to the adversary as:

gr, gα
′
, gβ

′
, gα

′′
, gβ

′′
, gα, gβ , (32)

grxi , gy
′
i , gy

′′
i , gxiy

′
i , gyi , gxiyi , gyik = Ayik̄, gyiλ = Ayiλ̄ 3 ≤ i ≤ N, (33)

grx1 = T rAr(d−λ̄), grx2 = T−rAr(e−k̄), (34)

gα
′k = Aα

′k̄, gβ
′k = Aβ

′k̄, gα
′λ = Aα

′λ̄, gβ
′λ = A

¯β′λ, (35)

gαk = Aαk̄, gβk = Aβk̄, gαλ = Aαλ̄, gβλ = Aβλ̄, (36)

gk = Ak̄, gλ = Aλ̄, (37)

gα(
∑N
s=1 xs) = A(d+e−λ̄−k̄)α · gα(

∑N
s=3 xs), (38)

gβ(
∑N
s=1 xs) = A(d+e−λ̄−k̄)β · gβ(

∑N
s=3 xs), (39)

gr(
∑N
s=1 xs) = A(d+e−λ̄−k̄)r · gr(

∑N
s=3 xs), (40)



14 C. Spadafora et al.

and therefore it can actually compute these commitments. S however does
not know the values that should be decommitted privately to v1 or v2, but it
can commit random values instead and still simulate the protocol correctly
(since the commitment scheme is perfectly hiding).

– Phase 0 The values of the ballots are given to the adversary.
– Phase 1 The adversary chooses some voters i, 3 ≤ i ≤ N and decides how

they vote. Without loss of generality let us suppose that vi votes for Alpha,
then the voting tokens are computed as follows:

Vi =
(
gα(xi+k), gβ(xi+λ)

)
=
(
gαxi ·Ak̄α, gβxi ·Aλ̄β

)
. (41)

– Challenge The Challenger flips a coin and decides which voter votes for
Alpha with the real v-token and which for Beta. For simplicity, suppose
that v1 votes with the real v-token for Alpha and with the fake one for Beta
while v2 does exactly the opposite. The votes are constructed as:

V1 =
(
Tα ·A(d+k̄−λ̄)α, T β ·Aβ·d

)
, (42)

V2 =
(
T−β ·Aβ·e, T−α ·Aα(e−k̄+λ̄)

)
. (43)

Note that:

V1,α · V2,α ·
N∏
i=3

Vi,α = A(d+e)α ·
N∏
i=3

Vi,α, (44)

V1,β · V2,β ·
N∏
i=3

Vi,β = A(d+e)β ·
N∏
i=3

Vi,β , (45)

so the product of all the votes received by both of the candidates does not
contain the value of the challenge T .

– Phase 2 During this phase the simulator acts exactly as in Phase 1.
– Phase 3 The voting phase ends and the previously committed values are

decommitted (excluding the values reserved for v1 and v2). In addition the
adversary could request the Zero-Knowledge Proofs of the correct compu-
tations of the votes. Since the simulator has many implicit parameters (i.e.
in many cases does not know the actual value of ω to use in the proof),
then some simulations of the Schnorr protocol are requested, as presented
in Section 2.2. Further discussion on Zero-Knowledge proofs and simulations
can be found in [11].

– Guess After watching both the initial ballots bi and the computed votes Vi,
the adversary will eventually output a guess of the real and fake v-tokens of
v1 and v2. The simulator then outputs 0 to guess that T = gab if the guess
of E was correct, otherwise it outputs 1 to indicate that T is a random group
element in G. In fact when T is not random the simulator S gives a perfect
simulation:

V1 =
(
Tα ·A(d+k̄−λ̄)α, T β ·Aβ·d

)
=
(
gα(x1+k), gβ(x1+λ)

)
, (46)

V2 =
(
T−β ·Aβ·e, T−α ·Aα(e−k̄+λ̄)

)
=
(
gβ(x2+k), gα(x2+λ)

)
. (47)



Coercion-Resistant Blockchain-Based E-Voting Protocol 15

This means that the advantage is preserved and so it holds that:

P[S(g,A,B, T = gab) = 0] =
1

2
+ ε. (48)

On the contrary when T is a random element R ∈ G the votes are completely
random values from the adversary point of view, so:

P[S(g,A,B, T = R) = 0] =
1

2
. (49)

Therefore, S can play the DDH game with non-negligible advantage ε
2 .

5 Conclusions and future works

In the protocol proposed here, an underlying blockchain infrastructure and a sys-
tem of ZKP ensure transparency and auditability of the whole process, achieving
extensive security, including coercion and vote-selling resistance, while retaining
receipts. Indeed our approach disguises real and fake votes, which remain indis-
tinguishable even after tallying.

This work considers two authorities for the sake of exposition clarity. In a
real case scenario, the work of these two authorities can be divided into more
independent authorities, each two of them managing a restricted pool of voters
(like a voting district). These authorities do not need to share anything: all of
them can compute the result of the elections in their own way and then share
just the number of valid votes received in that district. This approach limits the
knowledge that an authority can gain. In fact, after the election, A1 can compute
how every voter cast their ballot since it knows gαxi for every i. However the
second authority has been introduced so that nothing can be discovered about
the votes until the election is over, therefore preventing possible interferences
and tampering from the first authority.

A generalization of this protocol to multiple candidates is under active in-
vestigation.

References

1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a
distributed operating system for permissioned blockchains. In: Proceedings of the
Thirteenth EuroSys Conference. pp. 1–15. ACM (2018)

2. Babai, L., Moran, S.: Arthur-Merlin Games: A Randomized Proof System, and a
Hierarchy of Complexity Class. Journal of Computer and System Sciences 36(2),
254–276 (1988). https://doi.org/10.1016/0022-0000(88)90028-1, https://doi.org/
10.1016/0022-0000(88)90028-1

https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1


16 C. Spadafora et al.

3. Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Its Appli-
cations. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing. pp. 103–112. STOC, ACM (1988)

4. Bohli, J.M., Müller-Quade, J., Röhrich, S.: Bingo voting: Secure and coercion-free
voting using a trusted random number generator. In: Proceedings of International
Conference on E-Voting and Identity. pp. 111–124. Springer (2007)

5. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
Journal of computer and system sciences 37(2), 156–189 (1988)

6. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy. pp. 354–368.
SP, IEEE Computer Society (2008). https://doi.org/10.1109/SP.2008.32, https:
//doi.org/10.1109/SP.2008.32

7. Costa, D., Fiori, F., Milan, P., Sala, M., Vitale, A., Vitale, M.: Quadrans whitepa-
per (2019), https://quadrans.io/content/files/quadrans-white-paper-rev01.pdf

8. Fouard, L., Duclos, M., Lafourcade, P.: Survey on electronic voting schemes (2007)
9. Grewal, G., Ryan, M., Bursuc, S., Ryan, P.: Caveat Coercitor: Coercion-Evidence

in Electronic Voting. In: Proceedings - IEEE Symposium on Security and Privacy.
pp. 367–381. IEEE (2013). https://doi.org/10.1109/SP.2013.32

10. Li, H., Kankanala, A., Zou, X.: A taxonomy and comparison of re-
mote voting schemes. In: Proceedings - International Conference on Com-
puter Communications and Networks, ICCCN. pp. 1–8. IEEE (08 2014).
https://doi.org/10.1109/ICCCN.2014.6911807

11. Lindell, Y.: Tutorials on the Foundations of Cryptography, chap. How to Simulate
It – A Tutorial on the Simulation Proof Technique, pp. 277–346. Springer (2017).
https://doi.org/10.1007/978-3-319-57048-8_6

12. Longo, R.: Formal Proofs of Security for Privacy-Preserving Blockchains and other
Cryptographic Protocols. Ph.D. thesis, University Of Trento, Department of Math-
ematics (2018)

13. Meneghetti, A., Sala, M., Taufer, D.: A Survey on PoW-based Consensus. Annals
of Emerging Technologies in Computing (AETiC) 4(1) (2020)

14. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology
4, 161–174 (1991). https://doi.org/10.1007/BF00196725

15. Victor Shoup, J.A.: Σ-Protocols Continued and Introduction to Zero Knowledge
(2007), https://cs.nyu.edu/courses/spring07/G22.3220-001/lec3.pdf

16. Xiao, S., Wang, X.A., Wang, W., Wang, H.: Survey on blockchain-based electronic
voting. In: Barolli, L., Nishino, H., Miwa, H. (eds.) Advances in Intelligent Net-
working and Collaborative Systems. pp. 559–567. Springer (2020)

https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1109/SP.2008.32
https://quadrans.io/content/files/quadrans-white-paper-rev01.pdf
https://doi.org/10.1109/SP.2013.32
https://doi.org/10.1109/ICCCN.2014.6911807
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/BF00196725
https://cs.nyu.edu/courses/spring07/G22.3220-001/lec3.pdf

	Coercion-Resistant Blockchain-Based E-Voting Protocol

