
Blockchain with Varying Number of Players

T-H. Hubert Chan∗ Naomi Ephraim† Antonio Marcedone† Andrew Morgan†

Rafael Pass‡ Elaine Shi†

Abstract

Nakamoto’s famous blockchain protocol enables achieving consensus in a so-called permis-
sionless setting–anyone can join (or leave) the protocol execution, and the protocol instructions
do not depend on the identities of the players. His ingenious protocol prevents “sybil attacks”
(where an adversary spawns any number of new players) by relying on computational puzzles
(a.k.a. “moderately hard functions”) introduced by Dwork and Naor (Crypto’92). Recent work
by Garay et al (EuroCrypt’15) and Pass et al. (EuroCrypt’17) demonstrate that this protocol
provably achieves consistency and liveness assuming a) honest players control a majority of the
computational power in the network, b) the puzzle-difficulty is appropriately set as a function
of the maximum network message delay and the total computational power of the network, and
c) the computational puzzle is modeled as a random oracle.

These works, however, leave open the question of how to set the puzzle difficulty in a set-
ting where the computational power in the network is changing. Nakamoto’s protocol indeed
also includes a description of a difficutly update procedure. A recent work by Garay et al.
(Crypto’17) indeed shows a variant of this difficulty adjustment procedure can be used to get a
sound protocol as long as the computational power does not change too fast — however, under
two restrictions: 1) their analysis assumes that the attacker cannot delays network messages,
and 2) the changes in computational power in the network changes are statically set (i.e., cannot
be adaptively selected by the adversary). In this work, we show the same result but without
these two restrictions, demonstrating the soundness of a (slightly different) difficulty update
procedure, assuming only that the computational power in the network does not change too
fast (as a function of the maximum network message delays); as an additional contribution, our
analysis yields a tight bound on the “chain quality” of the protocol.

∗The University of Hong Kong. hubert@cs.hku.hk
†Cornell University. nhe22@cornell.edu, {a.marcedone, asmmathematics, runting}@gmail.com
‡Cornell Tech. rafael@cs.cornell.edu

1

1 Introduction

Distributed systems have been historically analyzed in a closed setting—a.k.a. the permissioned
setting—in which the number of participants in the system, as well as their identities, are com-
mon knowledge. In 2008, Nakamoto [Nak08] proposed his celebrated “blockchain protocol” which
attempts to achieve consensus in a permissionless setting: anyone can join (or leave) the protocol
execution (without getting permission from a centralized or distributed authority), and the pro-
tocol instructions do not depend on the identities of the players. The core blockchain protocol
(a.k.a. “Nakamoto consensus”, or the “Bare-bones blockchain protocol”), roughly speaking, is a
method for maintaining a public, immutable and ordered ledger of records (for instance, in the
Bitcoin application, these records are simply transactions); that is, records can be added to the end
of the ledger at any time (but only to the end of it); additionally, we are guaranteed that records
previously added cannot be removed or reordered and that all honest users have a consistent view
of the ledger—we refer to this as consistency. Additionally, the protocol should satisfy a liveness
property: transactions submitted by an honest user get incorporated into the ledger sufficiently
fast.

The key challenge with the permissionless setting is that an attacker can trivially mount a so-
called “sybil attack”—it simply spawns lots of players (that it controls) and can thus easily ensure
that it controls a majority of all the players. Indeed, Barak et al [BCL+05] proved that this is a
fundamental problem with the permissionless model. Nakamoto blockchain protocol overcomes this
issue by relying on “computational puzzles”—a.k.a. moderately hard functions or proofs of work—
put forth by Dwork and Naor [DN92]: roughly speaking, the participants are required to solve the
computational puzzle of some well-defined difficulty in order to confirm “blocks” of transactions—
this is referred to as mining ; More precisely, each participant (i.e., miner) maintains its own local
“chain” of “blocks” of records/messages, called the blockchain, and attempts to extend it with new
blocks by trying to solve a computational puzzle which is a function of the current chain and the
new block of transactions.

Next, rather than attempting to provide robustness whenever the majority of the participants
are honest (since participants can be easily spawned in the permissionless setting), Nakamoto’s goal
was to provide robustness of the protocol under the assumption that a majority of the computing
power is held by honest participants. Indeed, recent works by Garay et al. [GKL15] and Pass
et al. [PSS17] formally proved that Nakamoto’s blockchain protocol satisfies the above-mentioned
consistency and liveness under different network assumptions, as long as the puzzle difficulty—
referred to as the mining hardness—is appropriately set as a function of the maximum delay in the
network, and the total computing power in the network; additionally, it is assumed that the total
computing power in the network remains unchanged.

Setting the hardness mining: But how do we ensure that the mining difficulty is appropriately
set? As shown in [PS17b], unless there is an upper-bound on the network delay, we cannot hope
to get security in the permissionless setting, so the first asssumption (of known network delay)
in the result of [PSS17] is needed. The knowledge of computing power assumption, however,
may not be. Indeed, Nakamoto’s blockchain protocol also provides an estimation and hardness
update mechanism based on how fast the chain grows in order to deal with a variable number of
participating player (or, more specifically, a varying amount of computing power in the network).
This leaves open the question of whether Nakamoto’s protocol, or any other protocol remains secure

2

in a setting with a varying number of players:

Does Nakamoto’s protocol satisfy consistency and liveness when the total computing
power in the network can vary, assuming just an upper-bound on the maximum network
delay?

An elegant recent work by Garay et al [GKL17] provides a first step towards addressing this
question; they prove security assuming a) the computing power changes are sufficiently “smooth”
(i.e,. the number of miners are not growing too fast or too slow), b) the changes in computing
power are independent of the execution (and in particular, are not adversarially selected), and c)
assuming no network delays (i.e., in the fully synchronous setting). Additionally, as we discuss in
the related work section, the concrete parameters obtained, and in particular the “chain quality”
obtained in their analysis are not optimal.

We first observe that condition a) is necessary for Nakamoto’s blockchain: if changes in com-
puting power are too fast, the mining hardness is not appropriately calibrated and the attack
from [PSS17] directly applies. Conditions b) and c), however, are quite severe restrictions from a
practical point of view.

Our main result shows how to overcome both these issues, proving security of Nakamoto’s
protocol assuming only a) the initial mining hardness is not too small relative to the maximum
network delay and the initial number of players; and b) the change in computing power change is
not too fast (as a function of the maximum network delay). Our parameters match the parameters
of earlier blockchain analyses in the fixed mining power setting [GKL15,PSS17]:

Theorem 1.1 (Informal). Assume a proof-of-work random oracle. There exists a permissionless
blockchain protocol that retains security as long as 1) at any time, the adversary controls only a
minority coalition; 2) the number of players in the system does not increase too abruptly; and 3)
the protocol is initialized with a mining hardness that is not too easy with respect to the maximum
network delay and the initial mining power.

In summary, our results further our understanding of the feasibility of consensus in a truly
permissionless environment with a varying number of players.

1.1 Related Work

Analysis of Nakamoto’s blockchain under a fixed number of players. Several earlier works
analyzed the security of Nakamoto’s blockchain protocol under the assumption that the adversary
controls only minority of the total mining power. An elegant work by Sompolinsky and Zohar
shows that Nakamoto’s blockchain retains consistency against certain restricted attacks [SZ15].
Garay, Kiayas and Leonardos [GKL15] were the first to show that Nakamoto’s blockchain retains
consistency against an arbitrarily malicious adversary that controls, as long as the adversary must
deliver messages immediately. Pass et al. were the first to prove the security of Nakamoto’s
blockchain when the adversary can reorder and delay messages arbitrarily, as long as any message
sent by honest nodes is delivered with a maximum of ∆ rounds. Subsequently, Garay et al. also
extended their earlier analysis the same bounded delay model [GKL15].

To the best of our knowledge, all these works assume that the number of nodes n is a-priori
known and fixed over the entire duration of the protocol.

3

Most closely related work. In a recent elegant work, Garay, Kiayias, and Leonardos [GKL17]
were the first to analyze the security of the Nakamoto blockchain under a varying number of players.
They proved that a variant of Nakamoto’s protocol with difficulty adjustment satisfies consistency,
chain quality, and chain growth. Their analysis employed several elegant ideas: for example, they
employ a Martingale analysis to bound the stochastic process induced by mining. Further, their
idea of expressing chain growth (and other random variables) in terms of work rather than the
absolute number of blocks also inspired some techniques adopted in our work.

The analysis by Garay et al. [GKL17] is a first step towards understanding the feasibility of
reaching consensus in a truly permissionless setting where the number of players can vary over
time. They give a partial answer to this question, leaving several important questions open: 1)
Garay et al. [GKL17] works only when the adversary is forced to deliver messages immediately,
and they phrase it as an open question how to prove security when the adversary is allowed to
delay messages; 2) Garay et al. [GKL17]’s analysis is applicable only when the adversary cannot
adaptively choose the number of nodes in each round — in other words, the adversary must commit
to how many nodes per round upfront prior to the protocol execution, thus leaving it open how
to reason about security when the adversary can adaptively choose the number of players; and 3)
Garay et al. [GKL17]’s chain quality analysis is not tight: for example, they prove roughly 1

4 -chain
quality when the adversary controls up to 1

3 of the mining power. Our chain quality proof is tight
and matches the chain quality of earlier fixed-n analyses [PSS17, GKL15]. For example, for the
aforementioned case of 1

3 corruption, we prove 1
2 -chain quality.

2 Technical Roadmap

2.1 Nakamoto’s Varying Difficulty Blockchain

At this moment, we informally describe a simplified version of Nakamoto’s blockchain and explain
their difficulty adjustment scheme [Nak08]. Later in Section 4, we will formally specify a variant
of a Nakamoto-like blockchain protocol (with difficulty adjustment), and our proofs apply to this
formally specified Nakamoto variant.

Nakamoto’s blockchain relies on a proof-of-work random oracle henceforth denoted H. Without
loss of generality, we assume that any node can query H at most once. In Nakamoto’s blockchain,
each node maintains an internal blockchain chain at any point of time. Each chain[i] is referred to
as a (mined) block and is of the format

chain[i] := (h−1, η, txs, p, t, h)

containing the hash of the previous block denoted h−1, a nonce η, a record txs, a difficulty parameter
p, a timestamp t, and a hash h 1. Let chain := extract(chain) be the sequence of records contained
in the sequence of blocks chain. chain is the version that honest nodes output to the environment.

Blockchain validity. Let chain[i] = (h−1, η, txs, p, t, h) and let chain[: i−1] = (h′−1, η
′, txs′, p′, t′, h′).

The block chain[i] is only valid with respect to the predecessor chain chain[: i− 1] if the following
conditions hold:

1In reality (as well as in the description in the introduction), h is not included in the block (as it can be easily
determined from the remaining elements); we include it to ensure that we can verify validity of a block using only
H.ver.

4

1. h−1 = h′;

2. h = H(h−1, η, txs, p, t), and h < Dp; and

3. the timestamp t and the difficulty parameter p respect certain constraints w.r.t. to the prefix
chain[: i− 1], and we shall explain these constraints later.

Note that the second condition requires that η be a “difficult enough” solution for a proof-of-work
puzzle solution for the puzzle payload (h−1, txs, p, t), where “difficult enough” is specified by the
condition that the random oracle query H(h−1, η, txs, p, t) outputs a “hash” value h < Dp, and Dp

is chosen such that the probability that any fresh output from the random oracle is less than Dp

with probability only p.
Finally, a blockchain is valid if each block refers to the previous block’s hash and moreover if

each block is valid with respect to its predecessor chain.

Chain preference: most-work chain. In the Nakamoto protocol, all nodes are initialized with
a canonical genesis block. Then, in every round, every node receives all valid blockchains from the
network — and if any of the blockchains received has more work than the node’s local chain, the
node changes its local chain to the most-work chain. Suppose that in a valid blockchain chain,
each block chain[i] is denoted as chain[i] = (, , , pi, ,), then the “work-length” of this blockchain,
henceforth denoted ‖chain[i]‖, is defined as

‖chain[i]‖ =

|chain|∑
i=1

1

pi

Throughout the paper, we use ‖chain[i]‖ to denote the work length, i.e., the total work contained in
the blockchain, and we use |chain| to denote the length of chain in terms of the number of blocks.

Mining. In every round, let chain be a node’s local chain, and let t be the current time (i.e., round
counter). Now the node selects a random puzzle solution η, a set of transactions it wishes to confirm
denoted txs, and queries the proof-of-work oracle with the puzzle payload (chain[−1].h, η, txs, p, t)
where t is the current round counter and p is a difficulty parameter to be specified later. If the
outcome is less than Dp, the node extends the blockchain with the next block, and it will then
announce the new blockchain to the rest of the network.

Difficulty adjustment. Nakamoto’s original blockchain [Nak08] hardcodes an initial difficulty
parameter henceforth denoted p0. Every Lepoch number of blocks, the difficulty parameter is recal-
culated based on chain whose length is assumed to be a multiple of Lepoch.

Roughly speaking, the difficulty calculation function chain inspects the recent Lepoch blocks in
chain, and estimates how long it took for the chain to grow by Lepoch number of blocks in the
most recent past. The goal of Nakamoto’s blockchain is to maintain an expected block interval
of roughly 10 minutes, even when the number of players can change over time. Thus, if the past
Lepoch blocks took more than 10Lepoch minutes, then the difficulty should reduce (i.e., p becomes
larger); otherwise, the difficulty should increase (i.e., p becomes smaller).

Although this idea appears simple, there are two important things to note that are critical to
security.

5

• Obtaining somewhat accurate timestamps. Purported timestamps in blocks are not guar-
anteed to be accurate. While honest nodes always report time truthfully, corrupt nodes can put
in arbitrary timestamps. Nakamoto’s blockchain relies on the following ideas to obtain somewhat
accurate timestamps.

1. Honest nodes reject blockchains that carry timestamps 2 hours or more in the future;

2. In a valid blockchain, a block’s timestamp cannot be smaller than the median of the past 11
blocks.

The idea here is that as long as the adversary controls only minority of the mining power, every
honest node’s blockchain has positive chain quality [PSS17], and thus every now and then there
will be an honest block. Since honest blocks have truthful timestamps, the above rules in effect
allow the adversary to skew the timestamps by a maximum of 2 hours or so. Our provably
secure variant later (Section 4) is inspired by these ideas but we use a variant of these rules.

• Bounded difficulty change. Another important defense mechanism is that the difficulty
change must be bounded. In the Nakamoto blockchain, the maximum amount of change in the
difficulty parameter is bounded from both sides by a factor of 4. As we will explain later, this
bounded change condition is important to maintaining the protocol’s security. Without it, there
will be an attack that breaks consistency with inverse polynomial probability.

2.2 Challenges of Analyzing a Varying Difficulty Blockchain

With the exception of the recent work by Garay et al. [GKL17], all previous analyses of the
blockchain protocol [PSS17, GKL15] assume a fixed difficulty parameter p and a fixed number of
players n in every round. In a permissionless setting, anyone can join and leave the protocol at any
time. Thus understanding a blockchain with difficulty adjustment is an important next step for us
to understand the feasibilities and infeasibilities of reaching consensus in a permissionless setting,
where the number of players may not be known a-priori and can change over time.

As it turns out, extending previous analyses that assume fixed n and p [PSS17,GKL15] to the
case of varying n and p is highly non-trivial! For example, Garay et al. [GKL17] also attempted to
do this but their analysis and results has several limitations as we explained in Section 1.1.

Core random variables in previous blockchain analyses. To understand the challenges, let
us turn to the core of earlier analyses [PSS17,GKL15]. Both Garay et al. and Pass et al.’s analysis
eventually boil down to bounding two important random variables associated with the stochastic
process induced by the mining protocol:

1. Total number of adversarial blocks within a time window. We would like to prove that since
an adversary does not have too much mining power, it cannot inject too many blocks into a
blockchain during a given time window.

2. Number of convergence opportunities within a time window. A convergence opportunity is a
good pattern where in some round, a single honest node mines a block and in the ∆ adjacent
rounds before and after, no honest node mines a block. Convergence opportunities are “good”
in two senses: i) obviously by definition every convergence opportunity allows honest chains to
grow; and ii) the adjacent ∆ rounds of silence on both sides also help with consistency as shown
in earlier works [GKL15,PSS17].

6

If one can prove sharp concentration bounds for the above two core random variables, then
proving chain quality and consistency is not too difficult [PSS17,GKL15] (we focus on chain quality
and consistency here since chain growth is easier to prove in comparison): essentially, both chain
quality and consistency proofs boil down to showing that in every Θ(κ) blocks of time, there must
be more convergence opportunities than adversarial blocks except with negl(κ) probability.

Challenge of varying difficulty: adaptive choice of p and n creates dependence. Take the
easier task of upper bounding adversarial blocks as an example (bounding convergence opportunities
is more complicated). In the case of fixed p, upper bounding adversarial blocks is relatively easy:
one can imagine that honest or corrupt nodes make queries to a proof-of-work oracle. For each
query, the oracle will flip a random coin of a fixed probability p, and if the outcome is heads, a block
is mined. Thus given any fixed time window of length t, the oracle can receive at most ρnt queries
from corrupt nodes where ρ denotes the maximum corrupt fraction. Therefore, upper bounding
adversarial total blocks during this window is simply a matter of applying the standard Chernoff
bound.

Unfortunately this approach fails in the case of varying p and varying n. More specifically,
the adversary has influence over the choice of p and n for every round, and such choices can be
made adaptively based on having observed the entire previous of the execution. The ability for an
adversary to adaptively choose n and p over time creates a dependence in the underlying stochastic
process, making standard Chernoff bound approach fail. The earlier work by Garay et al. [GKL17]
adopted a Martingale analysis but even their approach only partially deals with such dependence —
they allow the adversary to adaptively choose p over time but not n. In other words, their analysis
is applicable in a model where the adversary must commit to the number of nodes in each round
upfront prior to the protocol execution.

2.3 Our Approach

We now give an overview of our approach. Before proceeding, we note that our approach departs
from earlier analysis in three respects:

1. We view the block-mining stochastic process “coin by coin” rather than “round by round” where
the latter was taken by all previous analyses [PSS17, GKL15, GKL17] — this is a core reason
why our analysis can deal with adaptive choice of n over time while the earlier approach by
Garay et al. [GKL17] could not. In other words, our ideal-world analysis is oblivious to how
many rounds have elapsed, and only cares about how many coin flips have taken place.

2. Like Garay et al. [GKL17], in an ideal-world analysis, we bound random variables in terms
of “total work” rather than the absolute number of blocks, since now coins can have varying
difficulty parameters, and the work received upon each successful coin flip is weighted by the
difficulty parameter.

We then show that since the real-world protocol only changes the difficulty every Θ(κ) blocks,
statements in the ideal world that bounds total work can be converted back to bounds on
absolute number of blocks in the real-world.

3. Finally, we employ the method of moment generating functions [MR95] for proving measure
concentration bounds. We carefully deal with the dependence in the “world of moment gener-
ating functions”, and effectively show that as long as nodes adopt difficulty parameters p that

7

have bounded difference in any medium sized duration, then the adversary is limited in its abil-
ity to blow up the moment generating functions of core random variables, depite its ability to
adaptively select p and n.

We now present an intuitive roadmap for our analysis and this should help the reader navigate
our subsequent formal proofs.

2.3.1 A Core Randomized Experiment

First, we capture the core stochastic process of a varying difficulty blockchain protocol in a simple
randomized experiment (Section 6). This randomized experiment captures what happens in any
medium sized duration in the blockchain protocol (where “medium sized” is a technical condition
to be specified later in Definition 2.1).

In this simple randomized experiment, an arbitrary, possibly computationally unbounded adver-
sary interacts with an oracle. The adversary adaptively specifies a sequence of difficulty parameters
p1, p2, . . . , pT , and each time the oracle flips a coin that comes up heads with probability pi specified
by the adversary where i ∈ [T]. If the i-th coin flip comes up heads, the adversary receives work
1/pi. We stress that the adversary’s choice of pi can depend on the outcomes of the first i− 1 coin
flips.

We specify an important bounded change condition on this randomized experiment: all prob-
abilities submitted by the adversary must be at most a multiplicative factor γ apart from each
other. The implication of this constraint is that in the blockchain protocol, we require that over
any medium sized duration, all nodes must be mining at difficulties not too far apart from each
other — as we explain later, this bounded change condition is necessary for a Nakamoto-like varying
difficulty blockchain to be secure.

Bounding adversarial total work. It is not hard to see that no matter how the adversary
adaptively chooses the p values, in expectation the adversary receives T amount of total work. We
wish to prove that no matter how the adversary manipulates the choice of p, it cannot increase its
work received by too much. Let W[1 : i] be a random variable denoting the total work received by
the first i coin flips. We employ the method of moment generating functions, and let E[t exp(W[1 :
i])] denote the moment generating function of W[1 : i]. To cause deviation from the mean, the
adversary wants to blow up the moment generating function E[t exp(W[1 : T])]. The core of our
proof boils down to showing that to maximize E[t exp(W[1 : T])], the adversary’s best strategy
is to always stick to the smallest p value. Informally, no matter what the choice of p is, the
expected contribution to the total work of every coin flip is 1. However, the smaller each p is,
the higher the variance which helps to create deviation. To prove this formally, though, requires a
somewhat involved induction proof that considers the moment generating function of the random
variable Zi+1 := W[1 : i+ 1]−W[1 : i] (i.e., the contribution of the (i+ 1)-st coin to total work).
Effectively, we need to show that the moment generating function of the Zi+1 conditioning on any
prefix of the execution is maximized when the adversary just chooses the smallest p possible for
the (i + 1)-st coin. Finally, had the adversary stuck to the same p value throughout, then we can
reduce the task of proving measure concentration to a standard Chernoff bound.

Bounding convergence opportunities. Next, we wish to lower bound the work received by
“convergence opportunities” in the aforementioned randomized experiment. A coin flip i is con-

8

sidered a convergence opportunity if it is the only successful coin in the adjacent neighborhood of
2m+ 1 coin flips, i.e., coins in the range [i−m, i+m]. By definition, the outcome of each coin flip
will now affect whether coins in its immediate neighborhood are convergence opportunities. Earlier
in Section 2.2, we briefly explained why convergence opportunity is a good pattern that helps with
chain quality and consistency.

Bounding the work received by convergence opportunities turns out to be much trickier than
the task of bounding adversarial total work. When bounding adversarial total work, there was a
single source of dependence: the adversary’s ability to choose p. Now we have two different sources
of dependence: the adversary’s ability to choose p, as well as each coin flip’s influence over its
immediate neighborhood.

To cope with this issue, we divide the coin flips into three portions (whose technical definition
will be presented in Section 6). Each “portion” is crafted such that within the portion, we only have
to deal with dependence resulting from adversarial choice of p — every other dependence within
a portion acts in our favor (i.e., the correlation would be negative had the adversary stuck to the
same p). Now we bound the moment generating function of each portion using a similar method
we adopted for bounding adversarial work — but now with a more involved argument, because it is
in the adversary’s interest to use a small p value to cause variance in the work received, but on the
other hand, it is in the adversary’s interest to use a large p to “deny” more coins from becoming
convergence opportunities.

Finally, although arbitrary dependence is possible among the 3 portions, since the number of
portions is small, it is not difficult to sharply upper bound the moment generating function of all 3
portions even when the dependence among the portions can act in a fashion that maximally hurts
measure concentration (formally this relies on the convexity of the moment generating function).

2.3.2 Ideal-World Blockchain with Varying Difficulty

Having proved sharp measure concentration bounds on core random variables, we now turn our at-
tention to an ideal-world blockchain protocol denoted Πideal (see Section 7 for a formal description),
and we would like to understand quantities such as work growth, work quality, and consistency in
this ideal-world protocol. We first briefly describe the ideal-world protocol and then explain the
quantities we care about.

In our ideal-world blockchain protocol, all nodes mine blocks by interacting with an ideal func-
tionality Ftree that keeps track of all valid blockchains seen so far. To conduct a mining attempt,
each node specifies to Ftree the chain to extend from, a difficulty parameter p, and additional
block payload which we do not care about in the ideal-world protocol. Ftree now flips a coin of
corresponding probability to decide if the next block is mined. The difficulty parameters of all
(honest and corrupt) queries are determined by the adversary in an arbitrary fashion, as long as
an important bounded change condition is satisfied.

Definition 2.1 (Bounded difficulty change in medium sized duration). Among any window of
Θ(κ/p) consecutive Ftree-coin flips where p is the probability of the initial coin in this window, the
difficulty parameters of all Ftree-queries must be bounded apart by a constant factor γ.

This bounded change condition turns out to be necessary for a Nakamoto-like varying difficulty
blockchain to be secure: otherwise, if adjacent blocks are allowed to have difficulty parameters
that are polynomially apart, there is a non-negligible probability that the adversary can mine a

9

particularly difficult block containing a large amount of work — such a block can overwrite more
than Θ(κ) trailing blocks and thus break consistency.

Besides bounded change in difficulty, we require that the total mining rate be bounded. More
specifically, we require that at any point of time, the “expected” block interval is larger than the
maximum network delay ∆ by an appropriate constant factor (that is dependent on the corruption
threshold) — this technical condition was necessary in earlier analysis [PSS17] of the blockchain
with fixed n and p. As Pass et al. argue [PSS17], even in the case of fixed n and p, violating this
condition can lead to breaking consistency.

We wish to prove the following statements about the ideal-world protocol Πideal. Henceforth,
let view be an execution trace of the ideal protocol Πideal. If some honest node’s output is chain
in some round in view, we say that chain is an honest chain in view. Note also that for ease-of-
understanding, our explanations below are slightly informal; and we defer the formal definitions of
work quality, consistency, and work growth to Section 7.

• Work growth. Work growth lower bound says that in almost all views (i.e., all but a negligible
fraction), if during some time-frame [t0, t1] honest nodes have made T = Θ(κ) queries to Ftree,
then any honest chain at t1 must contain at least (1− ε)T more work than any honest chain at
t0 where ε is an arbitrarily small constant; In other words, honest chains do not grow too slowly
in terms of work-length.

• Work quality. Work quality says that in almost all views, in any honest chain, any sequence
of roughly Θ(κ) blocks must contain a sufficient fraction of honest work. In particular, a block
counts towards honest work if it is mined by an honest node.

• Consistency. Informally, consistency requires that in almost all views, all honest chains are
prefixes of each other except for the trailing Θ(κ) blocks.

• Work growth upper bound. Work growth upper bound is similarly defined as work growth lower
bound, but for the other direction, i.e., honest chains do not grow too quickly.

Here we take consistency as an example and explain at a very high-level how we prove con-
sistency. We defer the discussions of how to prove the remainder of the properties to Section 7.
Consistency can be proven by making the following observation: for each convergence opportunity
in view, suppose the block mined by this convergence opportunity (henceforth denoted B∗) is at
work-length [w,w+W], then the adversary must have work covering the range [w,w+W], or else
the block in every honest chain at work-length [w,w +W] must be the block B∗. The consistency
proof then follows, roughly, by showing that there must be more work earned by convergence op-
portunities than total adversarial work in every Θ(κ) blocks of time. To bound the work earned
by convergence opportunities and total adversarial work in this time window, we would turn to
the analysis of our earlier core randomized experiment, and observe that this core randomized ex-
periment captures the nature of the stochastic process of our ideal protocol. The actual proof for
consistency contains additional technicalities which we defer to Section 7.

2.3.3 Analyzing a Nakamoto-Like Varying Difficulty Blockchain

Finally, we present a provably secure version of a Nakamoto-like varying difficulty blockchain (re-
ferred to as the real-world protocol and denoted Πreal). In comparison with the original Nakamoto’s

10

protocol [Nak08], our provably secure variant uses a slightly different strategy to ensure the rel-
ative accuracy of purported timestamps in blockchains. We require that 1) all timestamps in a
valid blockchain must strictly increase; and 2) honest nodes reject chains carrying timestamps of
the future (c.f. earlier in Section 2.1, we described the corresponding rules for Nakamoto).

Our variant has the following advantage which can easily be formalized: assuming chain quality,
for every arbitrarily small constant ε, there must be an honest block every εκ blocks. Thus our
blockchain timestamp constraints effectively stipulate that any adversarial block’s timestamp is
sandwiched between two close-by honest blocks (or genesis/end-of-chain). Thus even adversarial
blocks’ timestamps cannot deviate too much from the truthful time.

Like Nakamoto, our real-world protocol also sticks to the same difficulty parameter every
Lepoch = Θ(κ) blocks — a constraint that any valid blockchain must respect. Further, just like in
Nakamoto, difficulty change is performed by measuring how long it took to mine roughly Lepoch

blocks in the recent past. Importantly, the difficulty change between adjacent epochs are bounded
above and below by a constant factor denoted γ. As explained earlier, this bounded change condi-
tion is indeed necessary for a Nakamoto-like blockchain to be secure.

Our analysis of Πreal proves the following informal statements where technical conditions such
as “safe”, “calibrated”, “bounded change in n” are to be stated precisely in Section 4 — in all these
statements we implicitly assume that the adversary controls a minority coalition at any time:

• We prove that the real-world protocol Πreal retains consistency and chain quality, as long as 1)
the protocol starts in a safe parameter regime, and 2) the number of players n does not increase
too suddenly.

• Should the number of players drop suddenly, however, for a while the chain growth can be slow,
but consistency and chain quality are nonetheless retained. Similarly, if the initial difficulty
parameter is set too pessimistically, consistency and chain quality are retained but initial chain
growth can be slow for a while.

• Provided that the protocol starts off with a calibrated difficulty parameter that somewhat accu-
rately reflects the initial number of nodes, and further, provided that the number of players does
not increase or decrease abruptly, then not only do we obtain consistency and chain quality, we
also guarantee that at any time during the execution, the chain growth rate is a constant factor
times the maximum network delay ∆ (time per block).

Since the real-world protocol sticks to the same difficulty parameter every epoch, we can easily
translate “work growth” and “work quality” to the more standard notions of “chain growth” and
“chain quality”. Since the notion of work no longer appears in our final theorem statements,
effectively our varying difficulty blockchain exposes (almost) identical abstraction as a blockchain
with fixed difficulty [PSS17, GKL15], and applications building on top need not be aware of the
difficulty parameter.

Reasoning about the real-world protocol through an inductive argument. Proving the
real-world protocol secure involves reasoning that the real-world protocol emulates the ideal world.
The bulk of the proof is an inductive argument of the following nature:

• A safe epoch leads to a next safe epoch. If in the present epoch, the difficulty parameter is in
a safe region that ensures consistency, then the next epoch will also end up with a difficulty
parameter that falls within a safe region that ensures consistency. Note that having a more

11

difficult puzzle is always good for consistency, but can potentially cause the chain to grow very
slowly. On the other hand, having a puzzle that is too easy can break consistency.

• A calibrated epoch leads to a next calibrated epoch. Additionally, if the present epoch’s difficulty
parameter is in a calibrated region such that the actual block interval is off by only a constant
factor relative to a targeted block interval ∆tgt, then the next epoch will have a difficulty
parameter such that the actual block interval also approximates the targeted block interval
∆tgt up to a constant factor. For consistency to hold, the targeted block interval must be an
appropriate constant factor larger than the maximum network delay ∆.

3 Protocol Execution in a Permissionless Model

3.1 Execution in a Permissionless Model

We will adopt a permissionless execution model that was used in several recent works [PSS17,
GKL15,PS17a]. Notably, in this model, there is no a-priori common knowledge of the set of players
who will participate in a protocol; nodes can join and leave at any time; and the network does not
authenticate the sender’s identity.

Interactive Turing Machines and round-based execution. A protocol refers to an algorithm
for a set of interactive Turing Machines (also called nodes) to interact with each other. The
execution of a protocol Π is directed by an environment Z(1κ) (where κ is a security parameter),
which activates a number of nodes that are either honest or corrupt. Honest nodes faithfully follow
the protocol’s prescription, whereas corrupt nodes are controlled by an adversary A which reads
all their inputs/messages and sets their outputs/messages to be sent.

The environment Z is a catch-all term that encompasses everything that lives outside the “box”
defined by the protocol. For example, as mentioned later, part of the environment Z’s job is to
provide inputs to honest nodes and receive outputs from them. This models the fact that the
inputs to the protocol may originate from external applications and the protocol’s outputs can be
consumed by external applications where any external application or other protocols running in
the system are viewed as part of Z.

A protocol’s execution proceeds in rounds that model atomic time steps. At the beginning of
every round, honest nodes receive inputs from an environment Z; at the end of every round, honest
nodes send outputs to the environment Z.

Nodes joining, leaving, and adaptive corruption. We consider the following model for
spawning and corrupting nodes:

• The environment Z can spawn new nodes at the beginning of any round; newly spawned nodes
are either honest or corrupt.

• At any point, Z can corrupt an honest party j which means that A gets access to its local state
and subsequently, A controls party j.

• At any point, Z can uncorrupt a corrupted player j, which means that A no longer controls j. A
player that becomes uncorrupt is treated in the same way as a newly spawning player, i.e., the
player’s internal state is re-initialized and then the player starts executing the honest protocol

12

no longer controlled by A. A node that has become uncorrupt would run whatever initialization
procedure the honest protocol stipulates.

Importantly, the number of nodes can vary over the duration of protocol execution, and Z can
decide the number of players in a round adaptively based on the prefix of the execution.

Communication model. A is responsible for delivering all messages sent by parties (honest or
corrupted) to all other parties. A cannot modify the content of messages broadcast by honest
players, but it may delay or reorder the delivery of messages as long as it respects a ∆-bounded
delivery constraint stated below:

If an honest node sends a message in round r, then, in any round t ≥ r + ∆, any node that is
honest in round t will have received the message at the beginning of the round, including nodes
that may have just spawned or become uncorrupt in round t.

The identity of the sender is not known to the recipient.2

Henceforth in our paper, we assume that the blockchain protocol has a-priori knowledge of the
maximum network delay ∆. In a recent work, Pass and Shi [PS17b] have shown that without
knowledge of ∆, consensus is impossible in a permissionless network where the exact number of
players is not known in advance (and the lower bound holds even when assuming a proof-of-work
oracle).

3.2 Notations

Notations for randomized execution. A protocol’s execution is randomized, where the ran-
domness comes from honest players as well as the adversary denoted A that controls all corrupt
nodes, and the environment Z that sends inputs to honest nodes during the protocol execution.
We use the notation view←$EXECΠ(κ,A,Z) to denote a randomly sampled execution trace, and
|view| denotes the number of rounds in the execution trace view. More specifically, view is a random
variable denoting the joint view of all parties (i.e., all their inputs, random coins and messages
received, including those from the random oracle) in the above execution; note that this joint view
fully determines the execution.

Variable conventions. Unless otherwise noted, we assume that all variables are polynomially-
bounded function of the security parameter κ. For two variables that by default are functions of
κ, we say that var1 < var2 iff for every κ ∈ N, var1(κ) < var2(κ). If any variable is not a function of
κ, we shall explicitly note that the variable is a constant. Variables may also be functions of each
other as defined later by relations that (A,Z) must additionally satisfy for our blockchain protocol
to be secure.

Negligible functions. In this paper, whenever we use the term “negligible function”, we always
exclusively refer to a strongly negligible function. A function negl(κ) is said to be strongly negligible
iff there exists some constant c > 0, and some κ0 ∈ N, such that negl(κ) < exp(−cκ) for every
κ ≥ κ0.

2We could also consider a seemingly weaker model where messages sent by corrupted parties need not be delivered
to all honest players. We can easily convert the weaker model to the stronger model by having honest parties “gossip”
all messages they receive.

13

3.3 Syntax of a Blockchain Protocol

Inputs and outputs. In each time step, the environment Z inputs payload (e.g., a set of trans-
actions) denoted txs to a node. A node outputs an abstract blockchain denoted chain to the envi-
ronment Z, where chain is an ordered sequence of blocks each containing a block payload denoted
txsi:

chain := {txsi}i∈[|chain|]

Blockchains with a proof-of-work random oracle. A proof-of-work blockchain as represented
by Nakamoto’s original proposal [Nak08, PSS17, GKL15] relies on a proof-of-work random oracle.
Let H : {0, 1}∗ → {0, 1}κ denote a random function. Nodes are allowed to query two functions H
and H.ver. H(x) simply outputs the outcome of the random function H(x), and H.ver(x, y) outputs
1 iff H(x) = y, else it outputs 0. In any round, any node is allowed to make an arbitrary number
of queries to H.ver but at most one query to H. If the adversary A controls q corrupt nodes, we
allow A to make q sequential queries to H. We emphasize that the environment Z cannot access
the random oracle.

3.4 Security Definitions for a Blockchain Protocol

Terminology. Whenever we say that

“Except with negligible probability over the choice of view, some event ev(view) is satisfied”,

we formally mean that for any p.p.t. (A,Z) compliant w.r.t. to protocol Π, there exists a negligible
function negl(·) such that for all κ ∈ N,

Pr[view←$EXECΠ(κ,A,Z) : ev(view) is violated] ≤ negl(κ)

When the context is clear, we often omit writing the protocol explicitly.
Below we define the security properties satisfied by a blockchain protocol, including chain

growth, chain quality, and consistency. Henceforth, whenever we say ”an honest chain in view”,
we mean some honest node’s output chain to the environment Z in some round in view. We use
the notation chainti(view) to denote node i’s chain in round t in view — since the context is clear,
we often omit writing the view explicitly in the above notation.

Chain growth. Intuitively, chain growth stipulates that honest nodes’ chains grow at a relatively
steady pace, neither too fast nor too slow. More formally, we say that a blockchain protocol
Πblockchain satisfies (K, g0, g1)-chain growth, iff except with negligible probability over the choice of
view, the following properties hold:

• Consistent length. For any t and r ≥ t+∆, any node i honest in round r, and any node j honest
in round r, it holds that |chainrj | ≥ |chainti|; here, the notation chainti means the chain of node i
in round t.

• Growth lower bound. For any honest chain chaint in round t, and any honest chain chainr in
round r such that g0(r − t) ≥ K, it must hold that

|chr| − |cht| > g0 · (r − t)

14

• Growth upper bound. For any honest chain chaint in round t, and any honest chain chainr in
round r ≥ t, it must hold that

|chr| − |cht| < max (g1 · (r − t),K)

Chain quality. Intuitively, chain quality stipulates that any sufficiently long window of consec-
utive blocks in any honest chain must have sufficiently many blocks that were “mined” by honest
nodes. More formally, we say that a blockchain protocol Πblockchain satisfies (K,µ0)-chain quality,
iff except with negligible probability over the choice of view, the following properties hold:

• For any honest chain chain in view, any K ′ ≥ K consecutive blocks denoted chain[`+ 1 : `+K ′]
must have more than µ0 fraction mined by honest nodes.

In the above, we say that a block chain[`] is mined by honest nodes in view iff the environment
Z input the contents contained in chain[`] to some honest node when its output chain to Z is
chain[: `− 1]. If a block is not mined by honest nodes, we often say that the block is corrupt.

Consistency. Intuitively, consistency requires that all honest chains in view agree with each other
except for the trailing few blocks. More formally, we say that a blockchain protocol Πblockchain

satisfies K-consistency, iff except with negligible probability over the choice of view, the following
holds:

• For any node i honest in round t, and any node j honest in round r ≥ t where j may be the
same as or different from i, it holds that

chainti[: −K] ≺ chainrj

where ≺ denotes “is a prefix of”. By convention, we say that for any list x, x ≺ x, i.e., any list
is considered a prefix of itself.

Note that when i = j, the above definition implies consistency with one’s future self.

4 A Nakamoto-Like Varying Difficulty Blockchain

In this section, we formally specify a variant of Nakamoto’s varying difficulty blockchain for which
we can prove security. The main difference from Nakamoto’s varying difficulty blockchain is in the
way we constrain timestamps in blocks which we will elaborate in this section.

Regarding our assumptions. Our provably secure variant adopts the same clock synchrony
assumptions as the original Nakamoto with varying difficulty. We stress that although we describe
the protocol assuming that nodes have perfectly synchronized clocks, our results also extend to a
model where nodes have clocks that are weakly synchronized — as Pass and Shi [PS17c] point out,
clock offsets can be charged to the network delay.

4.1 Valid Blocks and Blockchain

We first state basic validity rules for blocks and blockchains.

15

Valid blocks. Each block B is of the format

B := (h−1, txs, η, time, p, h)

where h−1 ∈ {0, 1}κ is the hash of the chain that the block extends from, txs ∈ {0, 1}∗ denotes
a set of transactions to be confirmed (or any payload), η ∈ {0, 1}κ denotes a puzzle solution,
time ∈ {0, 1}∗ denotes the purported time at which this block was mined, p denotes the difficulty
parameter of this block, and h ∈ {0, 1}κ denotes the hash of the present block. A block is said to
be valid iff the following holds:

• H.ver((h−1, txs, η, time, p), h) = 1; and

• h < Dp, where Dp is chosen such that a random string from {0, 1}κ is less than Dp with
probability p.

Valid blockchain. A blockchain in the real-world protocol, henceforth denoted chain, is a chain
of blocks chain := (genesis, B1, B2, . . . , B`) for some ` ∈ N, where

genesis := (⊥,⊥,⊥, t = 0, p =∞,⊥)

is a special block said to be the genesis block.
We say that a blockchain chain := (genesis, B1, B2, . . . , B`) is valid iff the following hold:

• All of B1, . . . , B` are valid blocks;

• For each i ∈ [`], it holds that Bi.h−1 = Bi−1.h — by convention we let B0 := genesis. In other
words, each block in the chain must extend the previous block;

• For each i ∈ [`], it holds that Bi.time > Bi−1.time, i.e., all timestamps in the blockchain must
strictly increase;

• For each i ∈ [`], it holds that Bi.p = getdiff(chain[: i− 1]) where getdiff is a subroutine defined
in Figure 1.

Let chain denote a blockchain, for convenience we define chain.time := chain[−1].time, i.e., a
chain’s timestamp is its last block’s timestamp.

4.2 A Provable Variant of Nakamoto’s Varying Difficulty Blockchain

We now present the entire protocol (henceforth referred to as the real-world protocol, whereas
our proof will begin by analyzing a simpler, ideal-world protocol that captures the essence of the
real-world protocol).

We begin by defining the chain preference rule, i.e., what it means for a blockchain to have the
most work.

Longest chain in terms of total work. We use the notation |chain| to denote the actual
length of chain (i.e., number of blocks). We use the notation ‖chain‖ to denote the “total work”
accumulated in chain — more specifically,

‖chain‖ :=

|chain|∑
i=1

1

chain[i].p

16

Protocol Πreal(p0, Lepoch,∆tgt, κ0, γ)

On input init() from Z: chain := genesis, p := p0

On receive chain ′:

assert ‖chain ′‖ > ‖chain‖ and chain ′ is valid, and chain ′.time ≤ current time

chain := chain ′ and gossip chain

Every time step:

• receive input transactions(txs) from Z
• let p = getdiff(chain) let t be the current time, let η←${0, 1}κ

• if h := H(chain[−1].h, txs, η, t, p) < Dp:

let B := (chain[−1].h, txs, η, t, p, h), let chain := chain||B and gossip chain

• output extract(chain) to Z where extract(chain) is the function which when given chain
where each chain[i] is of the form chain[i] := (, txsi, , ti, pi,), outputs an ordered sequence
(pi, txsi, ti)i∈|chain|.

Subroutine getdiff(chain):

If |chain| < Lepoch, return p0. Else proceed with the following.

• let ` ≤ |chain| be the largest index that is a multiple of Lepoch

• let T := chain[`−κ0].time− chain[`−Lepoch +κ0].time, let ∆′ := T
Lepoch−2κ0

, p := chain[−1].p

• let p′ =

γp if ∆′ > γ∆tgt
p
γ if ∆′ < γ∆tgt

∆′

∆tgt
· p o.w.

; and return p′

Figure 1: Real-world blockchain protocol with difficulty adjustment.

Real-world protocol. Figure 1 describes the protocol with difficulty adjustment. At a high-level,
the protocol measures roughly how many nodes there have been in the recent past, and adjusts the
difficulty parameter such that the expected block interval approximates a parameter ∆tgt, which, as
noted later, should be set to be an appropriate constant fraction larger than the maximum network
delay ∆. In Nakamoto’s blockchain, the difficulty adjustment is performed every epoch containing
Lepoch = Θ(κ) blocks. Recall that our ideal-world analyis requires that for roughly Θ(κ) blocks of
time, all difficulty parameters must be bounded apart by a constant γ. Thus, in our protocol, we
use the constant γ to restrict how much the difficulty parameter can change in each epoch.

More concretely, to estimate how many nodes there have been in the recent past, the idea is
to measure how long it took for the blockchain to grow roughly Lepoch = Θ(κ) blocks. Achieving
this requires that nodes place timestamps in blocks. While honest nodes always faithfully report
timestamps in blocks, corrupt nodes can put in arbitrary timestamps. To ensure the safety of the
protocol, we need to enforce the relative accuracy of timestamps in blocks, since otherwise these
timestamps cannot be used to accurately measure the recent number of nodes. Thus, we require
that the timestamps contained in blocks be strictly increasing, and that honest nodes always reject

17

timestamps that are in the future. Due to chain quality, every corrupt block must be sandwiched
between two honest blocks that are close by (or genesis/end-of-chain). Therefore our blockchain
timestamp rule ensures that adversarial blocks contain timestamps that are at most an ε factor off
from the truthful time, where ε is an arbitrarily small constant.

Remark 4.1 (Regarding the timestamping rule). We note that Nakamoto’s blockchain [Nak08]
has a similar blockchain timestamping rule as ours (and as explained above, a rule of this kind is
necessary to deal with adversarially injected timestamps). Further, Garay et al [GKL17]’s earlier
varying difficulty blockchain analysis also adopted a similar timestamping rule as ours (but with
some small modifications).

Notations. We define the following notations.

• Let mt(view) and nt(view) denote the number of honest and corrupt nodes at time t in view
respectively;

• Let p0 denote the initial difficulty parameter hardcoded in the blockchain protocol,

• Let ∆tgt be the targeted block interval (which must be set appropriately based on the maximum
network delay ∆ as explained later).

• Let γ be the bounded difficulty change parameter determined by Πreal;

• Let χ be a constant related to how fast the mining power can change;

• Let φ be a constant related to the margin of honest fraction over corrupt fraction;

• Let ν be a constant related to how easy the puzzle can be relative to the total mining power
and the maximum network delay ∆.

4.3 Compliant Executions

To prove the aforementioned Nakamoto variant secure, we will need to impose some mild constraints
on the execution environment. At a very high level, we require that 1) the number of players do not
change too abruptly; and 2) the initial difficulty is not too easy relative to the maximum network
delay and the initial mining power. Further, as all earlier analyses for the fixed-mining-power
setting, we assume that the maximum network delay ∆ is known to the protocol, and further, in
any round, the adversary controls only a minority of the total mining power. We now state these
intuitive constraints precisely.

Let ∆tgt be a function in κ, let φ, ν, χ, γ denote any positive constants. We say that a p.p.t. pair
(A,Z) is Πreal-compliant w.r.t. parameters (φ, ν, χ, p0, Lepoch,∆tgt, κ0, γ) iff for any κ, any view in
the support of EXECΠreal(κ,A,Z), the following hold:

• Bounded change in mining power. For any t0 and t1 := t0 +W where W := 4χ2γLepoch∆tgt, it
holds that3

maxt1t=t0 m
t(view)

mint1t=t0 m
t(view)

≤ χ

3In comparison, the original blockchain analysis works by Garay et al. [GKL15] and Pass et al. [PSS17] assumed
fixed computing power throughout.

18

• Majority honest. The number of honest nodes must exceed corrupt ones by a constant margin
in every round of view:

for any round t ≤ |view|, mt(view)

nt(view)
>

1 + φ

1− ν

• Safe start. At the start of the execution, the honest mining rate must not be too high. More
formally, let m1(view) denote the number of honest nodes in the first round of view, it must hold
that

p0m
1(view) <

6χ

∆tgt

Remark 4.2 (Regarding bounded change on number of nodes). In the above, we require that the
mining power does not increase or decrease abruptly. However, we note that the proofs in this paper
actually show that consistency and chain quality hold as long as the mining power does not increase
too abruptly (and other relevant conditions are respected). Our proof later shows that should the
mining power decrease suddenly, consistency and chain quality are nonetheless retained — only
that the chain growth can be slow for a while should mining power drop suddenly. In the above,
we stated a stronger condition where the mining power change must be bounded from both sides —
since if so, we can state a stronger bound on chain growth, i.e., the chain grows at a rate such that
the expected block interval at any time is a constant factor larger than the maximum network delay.

Admissible parameters. Henceforth we say that Γreal(φ, ν, χ, p0, Lepoch,∆tgt, κ0, γ) = 1 iff the
following hold:

• φ, ν, χ, γ are positive constants independent of κ and the remaining parameters are polynomially
bounded functions in κ;

• Lepoch > 8κ0 ≥ κ

• χ < γ

• ν < 1
4

• ∆ <
∆tgtν
12χ , i.e., the targeted block interval must be an apppropriate constant factor larger than

the maximum network delay ∆.

Intuitive explanations for admissibility. We now explain intuitively why we impose the afore-
mentioned constraints on the parameters.

• Lepoch > 8κ0 ≥ κ: First, epoch length being sufficiently long is needed for the ideal-world (and
hybrid-world) analysis to work. The adversary can manipulate epoch boundaries in various
ways to increase its advantage, e.g., choose the easier difficulty level to mine. The requirement
for each epoch to be long enough bounds such adversarial advantage to an aribitrarily small
constant amount.

Second, κ0 needs to be Ω(κ) long but relatively short in comparison to the epoch length. When
recalculating difficulty, we chop off κ0 trailing blocks of the previous epoch for consistency —
this explains why κ0 must be sufficiently long. On the other hand, obviously κ0 needs to be

19

smaller than the epoch’s length, and further, we wish to have sufficiently many blocks left for
recalculating difficulty, even after removing the κ0 trailing blocks of an epoch. Our protocol
additionally removes the beginning κ0 blocks of an epoch during difficulty recalculation — this
avoids the need to deal with epoch boundary in the analysis of difficulty recalculation.

• χ < γ: χ bounds the rate of change in mining power over any fixed window, while γ is the
maximum difficulty change per epoch defined by Πreal. This requirement is needed for the
protocol’s difficulty adjustment to be fast enough to track the change in mining power.

• ν < 1
4 : recall that ν := 2αmax(∆ + 1). Therefore, roughly speaking, this constraint on the

constant ν determines how much larger the block interval must be in relation to the network
delay. As Pass et al. [PSS17], the blockchain protocol is unsafe if the expected block interval is
too small (i.e., the difficulty of mining is too small in relation to the network delay).

5 Main Theorems

In practice, when we run blockchain protocols, we choose an initial difficulty parameter p0 based
on our estimate of how many nodes there will be initially. If we happen to over-estimate, then
the protocol will have a “safe start”. If our estimate happens to be somewhat accurate, then the
protocol will have a “calibrated start”. We can prove the following statements about Πreal under
either a safe or calibrated start:

1. Under a safe start and appropriate choice of parameters, the protocol Πreal achieves consistency
and chain quality, and further, after a polynomially bounded warmup time, the protocol’s chain
growth approximates the targeted block interval ∆tgt up to a constant factor.

2. Further, if the starting mining power is not just upper bounded by a safe threshold, but in fact
is “calibrated” — more specifically, suppose that (A,Z) respects the following for every view of
non-zero support:

[Calibrated start:]
1

2χγ∆tgt
< p0m

1(view) <
6χ

∆tgt

Then, the warmup time can be 0, i.e., start from the very beginning and throughout the execu-
tion, the chain growth always approximates ∆tgt up to a constant factor.

The above intuition is summarized in the following theorem statement.

Theorem 5.1 (Πreal realizes a blockchain). For any admissible parameters such that

Γreal(φ, ν, χ, p0, Lepoch,∆tgt, κ0, γ) = 1

for any constants ε, ε′ > 0, and any T0 > ε′κ, it holds that Πreal(p0, Lepoch,∆tgt, κ0, γ) satisfies the
following properties against any p.p.t. (A,Z) that is Πreal-compliant w.r.t. these parameters:

• (T0, g0, g1, twarm)-chain growth, where g0 := 1
3χ2∆tgt

, g1 := 7χ2

∆tgt
, and twarm is some polynomially

bounded function in κ.

• (T0, µ)-chain quality where µ := 1− 1+ε
1+φ ;

20

• T0-consistency.

Further, if (A,Z) additionally respects the following “calibrated start” condition 1
2χγ∆tgt

< p0m
1(view) <

6χ
∆tgt

, then twarm = 0.

The remainder of the paper will mostly focus on proving the above theorem.

6 Analysis of a Core Randomized Experiment

Proving the above main theorem will involve multiple technical steps as we explained earlier in the
technical roadmap.

The most mathematical part of the argument centers around a core randomized experiment
that captures the essense of the nature of the stochastic process induced by the Nakamoto-like
blockchain. In comparison with the full blockchain protocol, the core randomized experiment has
a very clean definition as we present later in this section. However, proving sharp measure con-
centration bounds for this core randomized experiment requires somewhat sophisticated techniques
relying on reasoning about moment generating functions of important random variables, and often
conditioned on prefixes of the execution.

6.1 Core Randomized Experiment and Intuition

Randomized experiment. Consider the following simple randomized experiment. There is a
mining oracle. An adversary A adaptively specifies m queries p1, p2, . . . pT to the oracle — in
particular, each query can depend on the outcomes of all previous queries. Upon receiving a query
with the parameter p, the oracle flips a random coin that comes up with heads with probability p.
If the coin comes up heads, A earns 1

p amount of work.
We say that A is (p1, γ)-admissible iff 1) the first query submitted by A is p1, and 2) in every

possible execution trace of non-zero support, it holds that 1
γ ≤

pi
pj
≤ γ.

Intuition: relation between this randomized experiment and our blockchain protocol.
In this section, we will present sharp measure concentration bounds for certain random variables
defined over the above randomized experiment. In particular, the above randomized experiment
captures the core stochastic nature of our blockchain protocol over every “Θ(κ) blocks of time”.
At 30,000 feet, the reader may think of each coin as an honest or corrupt node’s mining attempt
in a blockchain protocol, and each mining attempt can be parametrized by a difficulty parameter
pi chosen by the adversary A — note that in our later blockchain protocol, even honest nodes’
mining difficulty parameters can be influenced by the adversary. The more difficult a puzzle is, the
proportionally more reward (i.e., work) is given out should the mining attempt be successful. In
our later blockchain protocol, we require that over every “Θ(κ) blocks of time”, all nodes’ difficulty
parameters are at most a constant factor apart from each other — this explains why we require
that the probability parameters in the above experiment have bounded difference. It turns out that
this bounded difference condition is necessary for the blockchain protocol to be secure: if difficulty
parameters can be an arbitrary polynomial factor apart, then there will can be an attack in which
the adversary is lucky and mines a very difficult block with inverse-polynomial probability — and
this very difficult block can allow the adversary to reverse Θ(κ) recent blocks in the blockchain,
thus breaking consistency.

21

We will analyze two random variables related to the above randomized experiment:

• Total work received (Section 6.2). Later in the blockchain protocol, honest node always favors
the most-work chain. Thus the total work received by A in the above experiment will later
be used in our blockchain analysis to bound important variables such as adversarial successful
work, i.e., how much work corrupt nodes can contribute to the blockchain over a duration of
time — and adversarial successful work is a crucial variable in proving both chain quality and
consistency.

• Convergence opportunities (Section 6.3). We will define a notion of “convergence opportunities”
for our simple randomized experiment. This notion directly corresponds to the notion of a
convergence opportunity for our blockchain protocol, analogous to the way Pass et al. [PSS17]
defined a convergence opportunity. At a very high level, a convergence opportunity is a good
pattern where in ∆ rounds, no honest nodes mine a block; then in one round, a single honest
node mines a block; followed by another ∆ rounds of silence in which no honest nodes mine a
block. Later in our blockchain analysis, we will show that whenever this pattern happens, the
adversary is forced to expense a certain amount of work to prevent convergence, and thus we
can prove consistency by showing that the adversary cannot earn too much successful work (i.e.,
adversarial successful work upper bound as mentioned above).

As Garay et al. [GKL15] and Pass et al. [PSS17], these above random variables are core to
reasoning about the security of a blockchain protocol. In a fixed-mining-power setting as in earlier
works [GKL15,PSS17], bounding the total work equates to bounding the number of blocks, and the
analyses were much easier since the adversary could not adaptively choose the difficulty parameter
p. In our analyses below, we focus on bounding total work rather than the absolute number of
blocks, and we address the challenges that arise due to the adversary’s ability to adaptively choose
p.

6.2 Total Work Received

Let WA be a random variable representing the total amount of work received by A in this ran-
domized experiment; let W(p) denote the total work received if the same parameter p is chosen for
all queries.

Claim 6.1. For any real t, the function p 7→ p(e
t
p − 1) is monotonically decreasing in p ∈ [0, 1].

Lemma 6.2 (Dominating Moment Generating Functions). Suppose A is (p1, γ)-admissible. Then,

for any real t, we have E[exp(tWA)] ≤ E[exp(tW
(
p1
γ

)
)].

Proof. Fixing real t, we write ϕ(p) := p(e
t
p − 1) + 1, which is monotonically decreasing in p ∈ [0, 1]

by Claim 6.1.
Consider the filtration {Fi : i ∈ [T]} of sigma-algebras, where Fi corresponds to all the ran-

domness generated up to (and including) the ith query.
For i ∈ [T], we use [1 : i] to denote the prefix of the first i queries. Then, it suffices to prove

that for all i ∈ [T], E[exp(tWA[1 : i])] ≤ E[exp(tW
(
p1
γ

)
[1 : i])].

We prove by induction on i. For the base case i = 1, we have E[exp(tWA[1 : 1])] = p1e
t
p1 +

(1− p1)e0 = ϕ(p1) ≤ ϕ(p1γ) = E[exp(tW
(
p1
γ

)
[1 : 1])], where the inequality follows from Claim 6.1.

22

We next consider the inductive step, and assume that the inequality holds for some 1 ≤ i < T .
Conditioning on Fi, the contribution to the total work from queries up to step i is determined. Let
Zi+1 denote the work received by A in the i+1st query. Hence, we have the following inequality on
the random variable E[exp(tWA[1 : i+ 1])|Fi] = exp(tWA[1 : i]) ·E[exp(tZi+1)|Fi] = exp(tWA[1 :
i]) · E[ϕ(pi+1)|Fi] ≤ exp(tWA[1 : i]) · ϕ(p1γ), where the inequality comes from pi+1 ≥ p1

γ and
Claim 6.1. Taking expectation on the above inequality, we have

E[exp(tWA[1 : i+ 1]) ≤ E[exp(tWA[1 : i])] · ϕ(
p1

γ
)

≤E[exp(tW
(
p1
γ

)
[1 : i])] · ϕ(

p1

γ
) = E[exp(tW

(
p1
γ

)
[1 : i+ 1])]

where the second inequality comes from the induction hypothesis. This finishes the inductive step
and the proof.

Lemma 6.3 (Total work credited is concentrated around mean). Suppose A is (p1, γ)-admissible
for some 0 < p1 < 1 and γ ≥ 1. Then, we have the following.

(a) For any ε > 0, Pr[WA ≥ (1 + ε)T] ≤ exp(− ε2

2+ε ·
p1
γ · T).

(b) For any 0 < ε ≤ 1, Pr[WA ≤ (1− ε)T] ≤ exp(− ε2

2 ·
p1
γ · T).

Proof. Lemma 6.2 states that the moment generating function of WA is dominated by that of

W
(
p1
γ

)
. Observing that E[W

(
p1
γ

)
] = T , the standard proof of the Chernoff bound using moment

generating function gives the required result.

6.3 Convergence Opportunities

Henceforth assume that T > 2m+ 1. We say that a sequence of consecutive 2m+ 1 coins centered
around m < i ≤ T −m forms an m-convergence opportunity iff

• coin flips i−m to i− 1 all come up tails;

• i-th coin flip comes up heads; and

• coin flips i+ 1 to i+m all come up tails.

In this case, sometimes we also say that i is a convergence opportunity for short. The work received
by a convergence opportunity i is a random variable defined as 1

pi
.

Lemma 6.4 (Moment Generating Function for Convergence Opportunity). Suppose A is (p1, γ)-
admissible for some 0 < p1 < 1 and γ ≥ 1. Suppose further that m < i ≤ T − m, and Zi
is the contribution of query i towards CA. Let F be the sub-sigma-algebra corresponding to the
randomness up to (and including) some query i′ ≤ i−m− 1.

Then, for t < 0, Pr[exp(tZi)|F] ≤ ρp1
γ (e

tγ
p1 − 1) + 1, where ρ := (1− γp1)2m.

Proof. Let Ei to be the event that i is a convergence opportunity. Let p := (pi−m, . . . , pi, . . . , pi+m)
be the parameters chosen from query i−m to i+m.
Equivalent experiment. We describe an equivalent experiment to determine whether each query
in [i −m : i + m] will return heads. For each j ∈ [i −m : i + m], let Xj be sampled uniformly at
random from [0, 1] independently. Then, for each query j starting from i−m to i+m, the outcome
is sampled as follows:

23

1. The parameter pj is chosen according to the outcomes in steps prior to query j; in particular,
this can depend on F , p`’s and X`’s for ` < j. The assumption on (p1, γ)-admissibility
guarantees that p1

γ ≤ pj ≤ γp1 holds with probability 1.
2. If Xj ≤ pj , the jth query will return heads; otherwise, it will return tails.
Define A to be the event that all queries in [i −m : i − 1] return tails, and B to be the event

that all queries in [i + 1; i + m] returns tails. Let Â be the event that for all j ∈ [i −m : i − 1],
Xj > γp1, and B̂ be the event that for all j ∈ [i+ 1 : i+m], Xj > γp1.

Define α := Pr[A|F]. Observe that since the event Â is independent of F , α ≥ Pr[Â|F] =
Pr[Â] = (1− γp1)m. Define β := Pr[B|F , A, query i is heads]. Similarly, we have β ≥ (1 − γp1)m.
Hence, for t < 0, we have

E[exp(tZi)|F] = α ·E[exp(tZi)|F , A] + (1− α) (1)

= α ·E[piβ · e
t
pi + 1− piβ|F , A] + (1− α) (2)

= α ·E[βpi · (e
t
pi − 1)|F , A] + 1 (3)

≤ α ·E[
βp1

γ
· (e

tγ
p1 − 1)|F , A] + 1 (4)

≤ (1− γp1)2m · p1

γ
· (e

tγ
p1 − 1) + 1, (5)

where (4) follows from Claim 6.1 and (5) holds because αβ ≥ (1− γp1)2m and t < 0.

Partitioning Indices According to Positive/Negative Correlation. Observe that for indices
i and j such that |i− j| ≤ m, then at most one of them can be a convergence opportunity, i.e., the
convergence opportunity events at the two indices are negatively correlated. On the other hand,
for m < |i− j| < 2m, the corresponding opportunity events are positively correlated, because tails
outcomes for queries strictly between i and j will make both convergence opportunity events at i
and j more likely.

For 1 ≤ ` ≤ 3 and j ≥ 1, define an epoch of indices as I
(`)
j := [`m+ 3(j − 1)m+ 1 : `m+ 3(j −

1)m + m]. It suffices to consider the intervals such that I
(`)
j ∩ [m + 1 : T −m] is non-empty. For

1 ≤ ` ≤ 3, define the portion I(`) := (∪j≥1I
(`)
j) ∩ [m + 1 : T −m]. For simplicity of notation, we

assume that T − 2m is divisible by 3m such that each I(`) contains the same number of complete
epochs.

We need the following result on negative associativity [DR98] and for completeness we present
its proof in the supplemental materials.

Lemma 6.5 (Negative Association for Competing Random Variables). Let X := {Xi : i ∈ [n]} be
a collection of non-negative random variables such that with probability 1, at most one of the Xi’s
is non-zero. Then, the collection X of variables are negatively associated.

Lemma 6.6 (Moment Generating Function of a Portion). Suppose the adversary is (p1, γ)-admissible.
For ` ∈ [3], let C` denote the work received by m-convergence opportunities due to queries with in-
dices in I(`). Then, for t < 0,

E[exp(tC`)] ≤ [M(t)]|I
(`)|, where M(t) := (1− γp1)2m · p1γ · (e

tγ
p1 − 1) + 1 and |I(`)| is the number

of indices in I(`).

24

Proof. For j ≥ 1, let Yj be the contribution towards C` due to indices in epoch I
(`)
j . Then, it

suffices to prove by induction on k that E[exp(t
∑k

j=1 Yj)] ≤ [M(t)]km.

Induction. The base case k = 0 is trivial. Assume that for some k ≥ 0, E[exp(t
∑k

j=1 Yj)] ≤
[M(t)]km. We next consider the contribution Yk+1 due to epoch I

(`)
k+1.

Let F is the sub-sigma-algebra corresponding to the randomness up to (and including) query
with index `m + 3km − m such that conditioning on F ,

∑k
j=1 Yj is completely determined, but

none of the heads/tails outcomes relevant to Yk+1 are revealed yet.
Therefore, we have E[exp(t

∑k+1
j=1 Yj)|F] = exp(t

∑k
j=1 Yj)E[exp(tYk+1)|F].

To complete this inductive step, we use the following claim.
Claim. E[exp(tYk+1)|F] ≤ [M(t)]m.

Assuming the truth of this claim, we have E[exp(t
∑k+1

j=1 Yj)|F] ≤ exp(t
∑k

j=1 Yj) · [M(t)]m.
Hence, taking expectation again and using the induction hypothesis finishes the inductive step.
Proof of Claim. For ι ∈ [m], let Zι denote the contribution to Yk+1 due to index `m + 3km + ι;
we have Yk+1 =

∑
ι∈[m] Zι. Observe that the collection {Zι : ι ∈ [m]} of random variables are non-

negative. Moreover, even conditioning on F , with probabilty 1, at most one of them is non-zero.
Hence, Lemma 6.5 states that they are negatively associated.

Hence, we have E[exp(t
∑m

ι=1 Zι)|F] ≤
∏m
ι=1 E[exp(tZι)|F] ≤ M(t)m, where the last inequality

follows from Lemma 6.4.

Lemma 6.7 (Convergence opportunities). Suppose that adversary A is (p1, γ)-admissible, and m
is an integer such that ρ := (1− γp1)2m. Let CA denote the total work received by m-convergence
opportunities during the above randomized experiment. Then, for any 0 < ε ≤ 1,

Pr[CA ≤ (1− ε) · ρ · (T − 2m)] ≤ exp(−ε
2

2
· ρp1

γ
· T − 2m

3
).

Proof. Fix some t < 0. By the convexity of the exponential function, we have exp(t
∑3

`=1 C`) ≤
1
3

∑3
`=1 exp(3tC`).

Hence, we have E[exp(t
∑3

`=1 C`)] ≤ 1
3

∑3
`=1 E[exp(3tC`)] ≤ [M(3t)]T̂ , where T̂ := T−2m

3 ,

M(3t) := ρ · p1γ · (e
3tγ
p1 − 1) + 1, ρ := (1− γp1)2m, and the last inequality follows from Lemma 6.6.

Observe that [M(3t)]T̂ = E[exp(t
∑T̂

i=1Gi)], where the Gi’s are independently and identically
distributed random variables, each of which equals 3γ

p1
with probability ρp1

γ and 0 with probability

1− ρp1
γ .

Finally, observing that E[
∑T̂

i=1Gi] = ρ · (T − 2m), the standard argument of Chernoff bound
using moment generating function gives the result.

7 Ideal-World Protocol

To prove our main theorem, our next step is to analyze an ideal protocol that sits somewhere in
between our core randomized experiment and the real-world protocol. In comparison with the core
randomized experiment described earlier, this ideal protocol is more close in nature to the real-
world protocol. However, in the ideal protocol, we do not explicitly deal with the specific difficulty
adjustment function that is part of the real-world protocol. To prove security properties about

25

the ideal protocol, we only require that mining difficulties for honest and corrupt nodes do not
change too fast (and some additional standard compliance rules), a technical condition that we will
specify precisely later. As mentioned earlier, this bounded difficulty change condition is necessary
for a Nakamoto-like blockchain to be secure. Later in the analysis of the real-world protocol, we
will show through an inductive argument that given the real world’s difficulty change function, the
real world execution can be regarded as a special case of the ideal world execution — and thus all
security properties proven in the ideal world will carry over to the real world.

Syntax. In every round, Z inputs some (p, txs) to each honest node where p is a mining difficulty
parameter, and txs is a set of transactions. A mining difficulty parameter of p indicates that a
block is successfully mined with probability p.

In every round, each honest node outputs to the environment Z an abstract blockchain denoted
chain := {(pi, txsi)}i∈[|chain|] where each abstract block consists of a difficulty parameter pi and a
set of transactions txsi.

Measuring work. The work of a block (pi,) is defined as 1
pi

, and the total work of chain is
defined as

‖chain‖ :=

|chain|∑
i=1

1

pi

We note that the notation ‖chain‖ is different from |chain|— the latter refers to the length of chain,
while the former refers to the work contained in ‖chain‖ and is often referred to as the work-length
of chain.

Ideal protocol. Figure 3 presents a simple ideal protocol where nodes interact with an ideal
functionality Ftree to mine blocks. Ftree keeps track of all valid chains. Upon receiving a query
(chain, (p, txs)) from a node, if chain is presently a valid chain, then Ftree flips a coin of probability
p to decide if a next block is mined. In the ideal protocol, the difficulty parameters p submitted
to Ftree must respect a bounded change condition which is enforced by Ftree. We now state this
bounded difficulty change condition.

Bounded difficulty change. Let γ be some constant. Notice that Ftree performs a coin flip
upon each extend query. Let pi denote the difficulty parameter of the i-th such coin flip where
i ∈ [N]. We say that pi is (γ,K)-admissible the following holds: let i, i− 1, i− 2, . . . , i− T be the
longest preceeding sequence of coin flips (in reverse order) such that

∑i
j=i−T pj ≤ K, and let pmin

and pmax denote the min and max difficulty parameters among the (i, i− 1, i− 2, . . . , i−T)-th coin
flips, then it must hold that pmax ≤ γ · pmin.

In the above, to deal with boundary conditions, we simply pretend that for any j ≤ 0, the
difficulty parameter of the j-th coin flip is p0. Similarly, throughout this paper, we assume chain[i] =
(p0, genesis) for every i ≤ 0.

Compliant executions. Let 0 < ν < 1 and φ > 0 be any constant. We say that (A,Z) is
Πideal(γ, p0,K)-compliant w.r.t. parameter (φ, ν) iff the following hold for every view of non-zero
support:

26

Ftree(γ, p0,K)

On init: tree := (p0, genesis)

On receive extend(chain, (p, txs)):

assert chain ∈ tree, chain||(p, txs) /∈ tree

assert p is (γ,K)-admissible

coin←$Bernoulli(p), assert coin = 1

append (p, txs) to chain in tree, and return “succ”

On receive verify(chain): return (chain ∈ tree)

Figure 2: Ideal functionality Ftree.

Protocol Πideal(γ, p0,K)

On init: chain := (p0, genesis), henceforth let Ftree := Ftree(γ, p0,K)

On receive chain′: if ‖chain′‖ > ‖chain‖ and Ftree.verify(chain′) = 1: chain := chain′, gossip chain

Every time step:

• receive input (p, txs) from Z
• if Ftree.extend(chain, (p, txs)) outputs “succ”: chain := chain||(p, txs) and gossip chain

• output chain to Z

Figure 3: Ideal protocol Πideal.

• Bounded difficulty change. Ftree never aborts due to receiving a p value that is not (γ,K)-
admissible.

• Majority honest. Honest mining power must exceed corrupt mining power by a constant margin
for every round. More formally, let αmax := ν

2(∆+1) , the following must hold:

for any round t ≤ |view|, mt(view)

nt(view)
>

1 + φ

1− ν
=

1 + φ

1− 2αmax(∆ + 1)

• Bounded mining rate. For any round t in view, for any p submitted by either honest or corrupt
nodes to Ftree in round t, it holds that

p ·mt(view) < αmax where αmax :=
ν

2(∆ + 1)

Deferred proofs. In the interest of space, we provide a full analysis of security properties retained
by the ideal protocol in the supplementary materials. Also in the supplementary materials, we show
through an inductive proof that the real-world execution is a special case of the ideal world, and
thus all security properties in the ideal world carry over to the real world.

27

References

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure compu-
tation without authentication. In CRYPTO, pages 361–377, 2005.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
CRYPTO, 1992.

[DR98] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
Random Struct. Algorithms, 13(2):99–124, 1998.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Eurocrypt, 2015.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol
with chains of variable difficulty. In Crypto, 2017.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 1995.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[PS17a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, 2017.

[PS17b] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In DISC, 2017.

[PS17c] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Asiacrypt, 2017.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Eurocrypt, 2017.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bit-
coin. In Financial Cryptography, 2015.

A Analysis of the Ideal Protocol

Notations. We define some useful notations for the ideal protocol.

• chain is said to be an honest chain in view if some honest node outputs chain to Z in some round
in view;

• A block denoted chain[i] is said to be an honest block in view if some honest node called
Ftree.extend(chain[: i− 1], chain[i]) in view, and Ftree’s corresponding coin comes up heads.

• A block denoted chain[i] is said to be a corrupt block in view if some corrupt node called
Ftree.extend(chain[: i− 1], chain[i]) in view, and Ftree’s corresponding coin comes up heads.

• Let mt0:t1(view) :=
∑t1

r=t0
mr(view) be the honest mass during the window [t0, t1];

• Let nt0:t1(view) :=
∑t1

r=t0
nr(view) be the honest mass during the window [t0, t1];

28

• Given a chain such that ‖chain‖ ≥ w1, we define chain〈w0 : w1〉 to be an alias for chain[i : j]
where i is the latest block such that ‖chain[: i − 1]‖ ≤ w0 and j is the earliest block such that
‖chain[j]‖ ≥ w1.

Similarly, given chain such that ‖chain‖ ≥ w, we use the notation chain〈w :〉 to be an alias for
chain[i :] where i is the latest block such that ‖chain[: i − 1]‖ ≤ w0; and we use the notation
chain〈: w〉 to be an alias for chain[: j] where j is the earliest block such that ‖chain[j]‖ ≥ w.

Fact A.1. For any view of non-zero support, for any duration [t0, t1] in which either mt0:t1(view) ≤
K/(2γpt0(view)) or mt0:t1(view)+nt0:t1(view) ≤ K/(γpt0(view)) or nt0:t1(view) ≤ K/(C ·γpt0(view))
where C = 2+φ−ν

1−ν and pt0(view) denotes the minimum value of difficulty parameter p received by
Ftree from an honest node in round t0, it must hold that all difficulty parameters received by Ftree

during [t0, t1] have difficulty parameters γ apart (unless the execution aborted).

Proof. Follows directly from honest majority and bounded difficulty change compliance rules.

Additional shorthand terminology. Henceforth in all of our ideal-world proofs, we will assume
that (A,Z) is Πideal(γ, p0,K)-compliant w.r.t. parameter (φ, ν) for some positive constant φ, ν.
Henceforth in this section, whenever we say that “except with negligible probability over the choice
of view, some event ev(view) holds”, we formally mean that for any positive constants φ, ν, γ, for
any possibly unbounded (A,Z) that is Πideal(γ, p0,K)-compliant w.r.t. parameter (φ, ν), for any
κ ∈ N,

Pr[view←$EXECΠ
ideal(A,Z, κ) : ev(view) = 1] ≥ 1− negl(κ)

A.1 Convergence Opportunities

We define a notion of convergence opportunity which will be useful both for the work growth proof
and for the consistency proof later.

Convergence opportunity. We say that round t ≤ |view| −∆ is a convergence opportunity in
view iff

• No honest node mines a block in round [t−∆, t);

• In round t, exactly one honest node mines a block;

• No honest node mines a block in round (t, t+ ∆];

Let p denote the difficulty parameter of the honest block mined in round t, the work received by a
convergence opportunity is defined as 1

p . We also use the notation (t, p)-convergence opportunity
to denote the fact that t is a convergence opportunity where the single honest block mined in round
t has difficulty parameter p.

Lower bound on convergence opportunities. We now prove a lower bound on the total work
received by convergence opportunities over any sufficiently long window. Henceforth, let C[t0 :
t1](view) be a random variable representing the total work received by convergence opportunities
in the time window [t0 : t1] in view.

29

Lemma A.2 (Lower bound on work received by convergence opportunities). Let K = Θ(κ). For
any positive constant ε, ε′, except with negligible probability over the choice of view, the following
holds: for any time window [t0, t1] such that mt0:t1(view) ≥ εK/(γpt0) where pt0 = pt0(view) denotes
the difficulty parameter of the first honest coin flip in round t0, it holds that

C[t0 : t1](view) > (1− ε′)(1− ν)mt0:t1(view)

Proof. Due to the union bound, it suffices to prove the above statement for any window [t0, t1] such
that εK/(γpt0) ≤ mt0:t1(view) ≤ K/(2γpt0) — since proving the statement for any longer window
can be broken down to reasoning about polynomially many smaller windows.

Let us now consider a sequential view of the ideal world protocol, where in each round, the ideal
functionality Ftree first flips coins one by one sequentially for honest nodes (henceforth referred to
as honest coin flips), and then flips coins one by one for corrupt nodes. Henceforth, we use the
notation pt(view) to denote the difficulty parameter of the first honest coin flip in round t in view.

Let m∆ := 2αmax(∆ + 1) = ν be the maximum number of honest coin flips in a span of ∆ + 1
rounds. We say that the i-th honest coin in view is a m∆-convergence opportunity iff the following
hold (where we focus on only honest coin flips performed by Ftree in view):

• honest coin flips i−m∆ to i− 1 all come up tails;

• i-th honest coin flip comes up heads; and

• honest coin flips from i+ 1 to i+m∆ all come up tails.

Further, the work received by an honest coin that is a m∆-convergence opportunity is defined as
1/p where p is the difficulty parameter associated with the convergence opportunity.

Now, let C̃[t0 : t1](view) a random variable denoting the total work received by m∆-convergence
opportunities for all honest coins flipped during rounds [t0, t1]. Now, it is not hard to see that for
any view, for any time window [t0 : t1],

C[t0 : t1](view) ≥ C̃[t0 : t1](view)

Having observed this, the rest of the proof follows in a straightforward manner from Lemma 6.7.
In particular, due to the union bound, it suffices to show that for any fixed t0 and εK/(γpt0) ≤
T ≤ K/(2γpt0), except for a negligible fraction of the views, C̃[t0

T→](view) must be larger than

(1− ε′)(1− ν)T where C̃[t0
T→](view) denotes the work received by the next T honest coin flips in

view, starting at the first honest coin flip in round t0. Let Υ denote all other random bits related
to a view except for the T consecutive honest coin flips generated by Ftree starting at the beginning
of t0. By Lemma 6.7, conditioned on any choice of Υ (since the choice of Υ can be regarded as
being hard-coded in the adversary A in Lemma 6.7), it must be that

Pr[C̃[t0
T→](view) > (1− ε′)(1− ν)T] ≥ 1− negl(κ)

Thus it must be that except for a negligible fraction of views, C̃[t0
T→] > (1 − ε′)(1 − ν)T . This

concludes the proof.

30

A.2 Work Growth Lower Bound

Fact A.3 (Convergence opportunities contribute to work growth). For any view of non-zero sup-
port, for any t0, t1, any node i at time t0 and any node j honest at time t1, we have the following
where chainti denotes the chain of node i that is honest in round t:

C[t0 : t1 −∆] ≤ ‖chaint1j ‖ − ‖chaint0i ‖

Proof. By the definition of a convergence opportunity and the honest protocol, if the minimum
honest chain’s work-length at the beginning of a convergence opportunity is w, then for any round
after the convergence opportunity, every honest chain’s work-length must be greater than w + 1/p
where 1/p is the work received by this convergence opportunity. The remainder of the proof follows
by a straightforward inductive argument.

Theorem A.4 (Honest work growth lower bound). Let K = Θ(κ). For any positive constants ε, ε′,
except with negligible probability over the choice of view, the following holds: for any t0 and t1 such
that mt0:t1(view) ≥ εK/(γpt0(view)) for any node i at time t0 and any node j honest at time t1, it
holds that

‖chaint1j (view)‖ − ‖chaint0i (view)‖ ≥ (1− ε′)(1− ν)mt0:t1(view)

Proof. Due to Fact A.3 and Lemma A.2, for any positive constant ε′′, except with negligible prob-
ability over the choice of view, it must be that

‖chaint1j (view)‖ − ‖chaint0i (view)‖ ≥ (1− ε′′)mt0:t1−∆(view)

Due to our compliance rules, mt0:t1−∆(view) ≥ mt0:t1(view)−m∆ = mt0:t1(view)−ν. Since 0 < ν < 1,
mt0:t1(view) ≥ εK/(γpt0), and K = Θ(κ), for sufficiently large κ, it must be that for any positive
constant ε′ there exists a positive constant ε′′ such that

(1− ε′′)mt0:t1−∆(view) ≥ (1− ε′′)(mt0:t1(view)− ν) ≥ (1− ε′)mt0:t1(view)

A.3 Work Quality

Given t0 and t1, let A(view)[t0 : t1] be a random variable representing the amount of adversarial
successful work during the window [t0, t1] where adversarial successful work is defined as the total
work contained in all blocks mined by corrupt nodes.

Lemma A.5 (Adversarial successful work upper bound). Let K = Θ(κ). For any positive constants
ε, ε′, except with negligible probability over the choice of view, the following holds: for any t0, t1, it
must be that

A[t0 : t1](view) < max

(
(1 + ε)nt0:t1(view),

ε′K

γpt0(view)

)

31

Proof. It suffices to prove that except over negligible probability over the choice of view, for any
t0, t1, such that nt0:t1 ≥ ε′K/((1 + ε)γpt0(view)), it holds that

A[t0 : t1](view) < (1 + ε)nt0:t1(view)

Now, due to the union bound, it suffices to prove that for any fixed t0, and ε′K/((1+ε)γpt0(view)) ≤
T ≤ K/(Cγpt0(view)) where C = 2+φ−ν

1−ν , for any positive constants ε, ε′, except with negligible

probability over the choice of view, it holds that A[t0
T→](view)(1+ ε)nt0:t1(view) where A[t0

T→] is a
random variable denoting the amount of work earned by the adversary starting at the beginning of
round t0 and over the next T coin flips made by Ftree upon receiving extend requests from corrupt
nodes.

Let Υ denote all other random bits in view except for the T consecutive coin flips made by
Ftree upon adversarial extend queries starting at the beginning of round t0. Due to Lemma 6.3,
conditioned on any choice of Υ, the probability that A[t0 : t1] ≥ (1 + ε)T must be negligible in κ.
This concludes the proof.

Lemma A.6 (Weak work quality). Let K = Θ(κ). For any positive constants ε and ε′, except
with negligible probability over the choice of view, the following holds: for any honest chain denoted
chain in view, for any positive w such that the block preceeding chain〈w :〉 is honest, and let p∗

denote the difficulty parameter of this preceeding honest block, for any W ≥ εK/(γp∗), at least
µ = 1− 1+ε′

1+φ fraction of the work in chain〈w : w +W 〉 is contributed by honest nodes.

Proof. Let chain[L] denote the honest block immediately preceeding chain〈w : w+W 〉. If the block
immediately after chain〈w : w +W 〉 is not mined by an honest node, we expand chain〈w : w +W 〉
to the right until we either encounter an honestly-mined block or end of chain — let chain[R] denote
this honest block, and if end of chain is encountered, let R = |chain|+ 1. Let t0 and t1 be the time
at which chain[L] and chain[R] are mined respectively (or if R = |chain| + 1, let t1 be the current
time). Notice that due to our bounded difficulty change rule, since some honest node queried Ftree

with p∗ in round t0, all honest queries to Ftree in round t0 must have a difficulty parameter within
the range [p∗/γ, γp∗].

It suffices to prove that chain[L + 1 : R − 1] contains at least µ fraction of honest work —
since our earlier expansion to the right could only make chain quality worse. Notice that all work
contained in chain[L+ 1 : R− 1] must be mined during the time frame [t0, t1]. Let W ∗ denote the
total work contained in chain[L + 1 : R − 1]. Henceforth we ignore the negligible fraction of views
where relevant bad events happen.

Due to work growth lower bound, it must be that for any positive constant 0 < ε′′ < 1,
mt0:t1 < W ∗

(1−ε′′)(1−ν) , i.e., the honest mass during the window [t0 : t1] is small.

Due to our compliance rule, it must be that nt0:t1 < W ∗

(1−ε′′)(1+φ) . Due to Lemma A.5, for
any positive constant η, the amount of adversarial successful work must be upper bounded by

(1+η)W ∗

(1−ε′′)(1+φ) .

Now, for any positive constant ε′, we must be able to find sufficiently small η and ε′′, such that

(1 + η)W ∗

(1− ε′′)(1 + φ)
<

(1 + ε′)W ∗

1 + φ

This concludes the proof.

32

Fact A.7 (Bounded difficulty change in blockchain). Let K = Θ(κ). Except with negligible prob-
ability over the choice of view, the following holds: for any honest chain denoted chain in view, let
chain[j] be an honest block, and let chain[j′] be the earliest honest block such that j′ > j or if no
such block exists, then let chain[j′] = chain[−1], i.e., end of chain. Then, the following must hold:
for any j ≤ i ≤ i′ ≤ j′, it must hold that

1

γ
≤ chain[i].p

chain[i′].p
≤ γ

Proof. Ignore the negligible fraction of views where relevant bad events happen. Due to Lemma A.6,
let p∗ = chain[j].p, then for any positive constant ε, chain[j + 1 : j′] cannot contain more than
εK/(γp∗) work. Let t and t′ be the rounds in which some honest node mines chain[j] and chain[j′]
respectively — if chain[j′] is end of chain, let t′ be the current time. Due to work growth lower
bound, for any positive constant ε′, it must hold that mt:t′ < εK/((1 − ε′)γp∗). Obviously every
block in chain[j + 1 : j′] must be mined within the duration (t, t′]. The remainder of the proof
follows directly from our bounded difficulty change compliance rule, and by plugging in sufficiently
small constants ε and ε′.

Fact A.8. Let K = Θ(κ). Except with negligible probability over the choice of view, the following
holds: let node i be honest in round r, and let chain be node i’s chain in round i, and let p−1 :=
chain[−1].p. Suppose that node i submits a query at difficulty p to Ftree, it must hold that 1

γ ≤
p
p−1
≤ γ.

Proof. Straightforward due to Fact A.7 and the fact that there is a non-negligible probability that
the honest mining attempt is successful.

Theorem A.9 (Work quality). Let K = Θ(κ). For any positive constants ε and ε′, except with
negligible probability over the choice of view, the following holds: for any honest chain denoted chain
in view, for any positive w, let p∗ denote the difficulty parameter of the block preceeding chain〈w :〉,
for any W ≥ εK/(γp∗), at least µ = 1− 1+ε′

1+φ fraction of the work in chain〈w : w+W 〉 is contributed
by honest nodes.

Proof. Denote chain〈w : w + W 〉 as chain[L′ : R]. If the block preceeding chain〈w : w + W 〉 is not
an honestly mined block, we expand chain〈w : w +W 〉 to the left, until we either encounter either
an honestly mined block or genesis — let chain[L] be this block where we stop. It suffices to prove
that chain[L + 1 : R] contains at least µ fraction of honest work except for a negligible fraction of
the views. This follows in a straightforward manner from Lemma A.6 and Fact A.7.

A.4 Consistency

We say that adversarial successful work covers the range (w,w + W] iff for any w′ ∈ (w,w + W],
there exists some valid chain in Ftree, such that the first block in chain〈w :〉 is mined by corrupt
nodes.

Fact A.10. Let (t, p) be a convergence opportunity in view. Let (w,w+ 1/p] denote the work range
covered by the single honest block mined in round t, and suppose that the adversarial successful
work in view does not cover the range (w,w + 1/p], Then, for any honest chain chain in view,
chain〈w,w + 1/p〉 = B where B is the single honest block mined in round t.

33

Proof. After time t+∆ in view, all honest chains will have work-length at least w+1/p. Further, by
definition of a convergence opportunity, we know that besides the work mined in round t, there is no
other honest successful work in view that covers the work range (w,w + 1/p]. Thus, if adversarial
successful work does not cover this work range, then this work range in all honest chains must
correspond to the block B as defined above.

Theorem A.11 (Consistency after removing trailing work). Let K = Θ(κ). For any positive
constant ε, except with negligible probability over the choice of view, the following holds: for any
r, t where t ≥ r, let chainr and chaint denote two honest chains in round r and round t respectively.
Then, for any w > 0 such that chainr〈w :〉 has at least εK/(γp∗) work where p∗ is the difficulty
parameter of the first block in chainr〈w :〉 it holds that

chainr〈: w〉 ≺ chaint

Proof. Suppose for the sake of reaching a contradiction that chainr〈: w〉 is not a prefix of chaint.
Let w′ < w be the largest value such that chainr〈: w′〉 ≺ chaint, i.e., chainr〈: w′〉 ≺ chaint is the
longest common prefix of chainr and chaint. Let chainr[i] = chaint[i] be the latest honest block in
chainr〈: w′〉, and let s be the round in which it was mined. It holds that all blocks in chainr[i+ 1 :]
and chaint[i+ 1 :] must be mined after round s.

By Fact A.10, it must be the case that C[s : r − ∆](view) ≤ A[s : r](view), since otherwise,
there must be an honest block B mined during a convergence opportunity in [s, r−∆], and B must
appear in both chainr and chaint. Below we prove that except with negligible probability over the
choice of view, it must be that C[s : r−∆](view) > A[s : r](view) — if we can do so, then we reach
a contradition, and thus we can conclude the proof.

Below we ignore the negligible fraction of views where relevant bad events take place. By
Lemma A.2, for any positive constant εc, it holds that

C[s : r −∆](view) > (1− εc)(1− ν)ms:r−∆(view)

By Lemma A.5, for any positive constant εa, it holds that

A[s : r](view) < (1 + εa)n
s:r(view)

By work growth lower bound and the fact that chainr[i + 1 :] contains more than εK/(γp∗)
work, it must be that ms:r ≥ 0.5εK/(γp∗). Thus for any positive constants φ, ε, and 0 < ν < 1,
there exist sufficiently small constants εc, εa, ε1 such that the following holds for sufficiently large
κ:

C[s : r −∆](view) > (1− εc)(1− ν)ms:r−∆

≥(1− εc)(1− ν)(ms:r −m∆) = (1− εc)(1− ν)(ms:r − ν)

>(1− ε1)(1− ν)ms:r # recall that ms:r ≥ 0.5εK/(γp∗)

>(1− ε1)(1 + φ)ns:r # honest majority compliance

>(1 + εa)n
s:r(view) > A[s : r](view)

34

A.5 Work Growth Upper Bound

Fact A.12 (Total work upper bound). Let K = Θ(κ). For any positive constants ε, ε0, except
with negligible probability over the choice of view, the following holds: for any window [t0, t1], total
successful work during [t0, t1] must be upper bounded by

max

(
(1 + ε)(mt0:t1(view) + nt0:t1(view)),

ε0K

γpt0(view)

)

Proof. The proof is almost idential to that of Lemma A.5, except that now we are concerned about
Ftree’s coin flips for both honest and corrupt nodes.

Theorem A.13 (Honest work growth upper bound). Let K = Θ(κ). For any positive constants
ε, ε0, except with negligible probability over the choice of view, the following holds: for any window
[t0, t1], for any node i at time t0 and any node j honest at time t1, it holds that

‖chaint1j (view)‖ − ‖chaint0i (view)‖ < max

(
(1 + ε)

(
mt0:t1(view) + nt0:t1(view)

)
,

ε0K

γpt0(view)

)
Proof. Henceforth let

zr:r
′
(view) := mr:r′(view) + nr:r

′
(view)

Due to the union bound, it suffices to prove that for any positive constants ε, ε0, except with
negligible probability over the choice of view, we have that for any [t0, t1] such that ε0K

(1+ε)γpt0 (view)
≤

zt0:t1(view) ≤ K
γpt0 (view)

, for any node i at time t0 and any node j honest at time t1, ‖chaint1j (view)‖−
‖chaint0i (view)‖ < (1 + ε)zt0:t1(view). Suppose for the sake of contradiction that there exist pos-
itive constants ε, ε0, for a polynomial fraction of the views, we can find some [t0, t1] such that

ε0K
(1+ε)γpt0 (view)

≤ zt0:t1(view) ≤ K
γpt0 (view)

, and moreover, ‖chaint1j (view)‖ − ‖chaint0i (view)‖ ≥ (1 +

ε)zt0:t1(view). Among these polynomial fraction of views as said above, henceforth ignore the neg-
ligible fraction where relevant bad events happen, and for the remainder of views, the following
statements hold.

Fist, for such a choice of [t0, t1], it must be that all coin flips by Ftree during [t0, t1] have difficulty
parameters at most γ apart. Let chain0 denote the least-work honest chain in round t0, and let
chain1 denote the most-work honest chain in round t1. Suppose that chain0 and chain1 are mined
in rounds r0 and r1 respectively — by the definition of the honest protocol, it must be that r0 ≤ t0
and r1 ≤ t1.

• By Fact A.12, there exists a positive constant η ≥ ε such that zr0:r1 ≥ (1 + η)zt0:t1 — since
otherwise by Fact A.12, there cannot be more than (1 + ε)zr0:r1 total successful work between
[r0, r1].

• Since zr0:r1 ≤ zr0:t1 , we have that zr0:t1 = zr0:t0 + zt0:t1 ≥ (1 + η)zt0:t1 . This means that
zr0:t0 ≥ ηzt0:t1 ≥ εzt0:t1 .

• Now let chain[i∗] denote the latest honest block in chain. By work quality, it must be that for any
positive constant η, chain[i∗ + 1 :] has at most ηK/(γp∗) work where p∗ = chain[i∗].p. Further,
by Fact A.7 and Fact A.8, it holds that p∗ is at most γ3 apart from pt0(view).

35

• The above means that there exists an honest node whose work length is at least ‖chain‖ −
ηK/(γp∗) at some time s < r0. We also know that there is an honest node whose work length
is ‖chain‖ at time t0. This means that the minimal honest work growth between s and t0 is at
most ηK/(γp∗). But earlier, we have shown that zs:t0 ≥ zr0:t0 ≥ εzt0:t1 ≥ εε0K

(1+ε)γpt0 (view)
. Thus

for any positive constants ε0, ε, there exists a sufficiently small η such that by work growth lower
bound, the minimal honest work growth between s and t0 cannot be as small as ηK/(γp∗). Thus
we reach a contradiction.

A.6 Some Corollaries

Corollary A.14 (Bounded blockchain difficulty change). Let K = Θ(κ). For any positive constants
ε, except with negligible probability over the choice of view, the following holds: for any honest
chain denoted chain in view, for any w, for any chain〈w : w + (1 − ε)K/(2γp∗)〉 where p∗ is the
probability of the first block in chain〈w :〉, it holds that for any two blocks chain[i], chain[j] ∈ chain〈w :
w + (1− ε)K/(2γp∗)〉, 1

γ ≤
pi
pj
≤ γ where pi = chain[i].p and pj = chain[j].p.

Proof. Below we ignore the negligible fraction of views where relevant bad events take place. Let
chain[L] the first honest block (or genesis) to the left of chain〈w : w+(1−ε)K/(2γp∗)〉, let chain[M]
the last honest block inside chain〈w : w + (1 − ε)K/(2γp∗)〉. and let chain[R] be the first honest
block to the right of chain〈w : w+(1− ε)K/(2γp∗)〉— or if no such block exists, let R = |chain|+1.
By Fact A.7, it holds that chain[L].p and p∗ are at most a multiplicative factor of γ apart. Let
chain[` : `′] be an alias for chain〈w : w+(1−ε)K/(2γp∗)〉. By work quality, for any positive constant
ε0, it holds that chain[L + 1 : ` − 1] cannot contain more than ε0K/(γp

∗) work. For a sufficiently
small constant ε0, it holds that chain[L + 1 : M] contains less than (1 − 0.5ε)K/(2γp∗) work.
Let r0, r1, and r2 denote the times at which chain[L], chain[M], chain[R] are mined respectively
(and if R > |chain|, let r2 be the current time). By work growth lower bound, it holds that
mr0:r1(view) < (1 − 0.25ε)K/(2γp∗). Since all blocks between chain[L + 1 : M] must be mined in

between [r0, r1], it holds that for every j, j′ ∈ [L+ 1 : M], 1
γ ≤

chain[j].p
chain[j′].p ≤ γ.

Now, since all blocks in chain[L+1 : M] have difficulty parameters at most γ apart, and also by
work quality, it holds that for any positive constant ε1, chain[M + 1 : R− 1] has at most ε1K/(γp

∗)
work. Thus, for a sufficiently small constant ε1, we have that mr0:r2(view) < (1− 0.25ε)K/(2γp∗).

We now have that for every j, j′ ∈ [L+ 1 : R− 1], 1
γ ≤

chain[j].p
chain[j′].p ≤ γ.

Corollary A.15 (Consistency after removing trailing blocks). Let K = Θ(κ). For any positive
constant ε, except with negligible probability over the choice of view, the following holds: for any
r, t where t ≥ r, let chainr and chaint denote two honest chains in round r and round t respectively.
Then, it holds that

chainr[: −εκ] ≺ chaint

Proof. We ignore the negligible fraction of views where relevant bad events happen. Due to
Corollary A.14, and since K = Θ(κ), it holds that for a sufficiently small positive constant ε,
‖chainr[−εκ :]‖ ≥ εκ/(γp∗) where p∗ := chainr[−εκ].p. The remainder of the proof follows from
Theorem A.11.

36

B Hybrid Protocol

Before we analyze the real-world protocol, we first consider a hybrid-world protocol that is closer
to the real-world protocol. In the hybrid world, every Lepoch blocks in the blockchain is called
an epoch. All blocks in the same epoch has a unique difficulty parameter in every view where the
difficulty parameter is chosen by the adversary, and difficulty parameters for adjacent epochs must
have bounded change γ.

In the hybrid world, we will mainly prove a lemma that says even if the adversary mines into
the past by extending chains that are much shorter than present honest chains, it does not help
the adversary to break the relevant security properties including work growth, work quality, and
consistency.

B.1 Hybrid Protocol Πhyb: Epoch-Based Difficulty Adjustment

The hybrid-world protocol Πhyb(γ, p0, Lepoch) is almost identical to Πideal(γ, p0,K), except with
the following modification: in Πhyb(γ, p0, Lepoch), instead of having each nod specify the difficulty
parameter with each extend query, the adversary A is now responsible for informing Fhyb of the
difficulty parameter pe for each epoch e ∈ N. All blocks at lengths [(e− 1) · Lepoch + 1, e · Lepoch]
belong to epoch e, and must adopt difficulty parameter pe. The adversary A is allowed to choose
the difficulty parameters adaptively; however, the difficulty parameter for epoch e must already
have been chosen before any node (corrupt or honest) calls Fhyb to extend a block at length
(e− 1)Lepoch + 1 or greater; or else Fhyb aborts.

B.2 Πhyb is Secure Provided No Mining into the Past

We say that (A,Z) is strongly compliant w.r.t. Πhyb iff

1. Bounded difficulty change. For every view of non-zero support, A chooses the difficulty parameter
for every epoch in a way that Fhyb never aborts; further, for any adjacent epochs e and e + 1,
it must be the case that

1

γ
≤ pe

pe+1
≤ γ

2. Majority honest and bounded mining rate. Same as Πideal’s corresponding compliance rules —
except that here the p for each extend query is decided by the corresponding epoch’s difficulty.

3. No mining in the past. Corrupt nodes never ask Ftree to extend a chain whose length is more
than 0.25Lepoch shorter than the current shortest honest chain.

Fact B.1 ((γ,K)-admissibility of strongly compliant hybrid-world execution). Suppose that Lepoch =
Θ(κ). Let view be an execution trace of Πhyb(γ, p0, Lepoch). Then, there exists a K = Θ(κ), such
that except with negligible probability over the choice of view, the following holds: if view has not
aborted, then all honest and corrupt Fhyb queries in view are (γ,K)-admissible, i.e., the bounded
difficulty rule adopted in Πideal is respected for K.

Proof. By induction. The base case is obvious. It suffices to prove that if by round t− 1, all Fhyb

queries are (γ,K)-admissible for a sufficiently small choice of K = Θ(κ), then all queries in round
t, must be (γ,K)-admissible too (except for a negligible fraction of bad views).

37

Notice that as long as all Fhyb queries have respected (γ,K)-admissibility, the security properties
we have proven for Πideal are respected (except with negligible probability over the choice of view)
thus far. Henceforth we ignore the negligible fraction of views where relevant bad events happen.

Let ε be a sufficiently small constant. Due to consistency, by the end of any round r ≤ t − 1,
all honest chains must be prefixes of each other except for the last εκ blocks. Thus by the end of
any round r ≤ t− 1, honest nodes can be in at most two adjacent epochs.

Let e be the largest epoch any honest node reaches by the end of round t − 1. Let t′ be the
earliest round in which all honest nodes have reached length at least (e− 2)Lepoch + 0.5Lepoch, i.e.,
the middle point of epoch e−1. Note that in this round t′, some honest node must still be in epoch
e−1, since otherwise, there must be an honest node whose chain length grows by at least 0.5Lepoch

blocks in a single round — and this is impossible by work growth upper bound.
Thus during [t′, t], all honest nodes must be mining at difficulties either pe−1 or pe that are at

most γ apart. Since corrupt nodes are not allowed to mine off a chain that is 0.25Lepoch shorter
than the shortest honest chain, between [t′, t], all corrupt nodes must be mining at either pe−1 or
pe too.

The remainder of the induction step proof is obvious by observing that due to work growth upper
bound, mt′:t + nt

′:t ≥ 0.5Lepoch/p
e−1, and assuming that K = Θ(κ) is appropriately small.

We therefore conclude that work growth lower and upper bounds, work quality, and consistency
hold for strongly compliant executions of Πhyb as stated in the following lemma.

Lemma B.2 (Security properties of Πhyb in strongly compliant executions). Suppose that Lepoch =
Θ(κ). Then for any (A,Z) that is strongly compliant w.r.t. Πhyb, work growth lower and upper
bound, work quality, consistency (after removing either trailing work or blocks) hold as stated in
Section 7.

Proof. Follows directly from Fact B.1.

B.3 Πhyb is Secure Even with Mining into the Past

(A,Z) is weakly compliant w.r.t. Πhyb iff (A,Z) satisfies “bounded difficulty change”, “majority
honest”, and “bounded mining rate” as stated earlier, but now (A,Z) no longer needs to respect
“no mining into the past”. In a weakly compliant execution, corrupt nodes are no longer required
to not query Fhyb on chains that are much shorter than current honest chains, i.e., the adversary
is now more powerful. We show, however, that this added power does not help the adversary in
breaking the security properties of Πhyb.

Lemma B.3 (Security properties of Πhyb in weakly compliant executions). Suppose that Lepoch =
Θ(κ). Then for any (A,Z) that is weakly compliant w.r.t. Πhyb, work growth lower and upper
bound, work quality, consistency (after removing either trailing work or blocks) hold as stated in
Section 7.

Proof. Consider some view such that in round r, the shortest honest chain is of length `, and the
adversary queries Fhyb with chain and txs, where chain’s length is less than ` − 0.25Lepoch and
chain||(p, txs) is not in Fhyb where p is the difficulty for length |chain|+1. Suppose that this mining
attempt is successful in view. Let chain′ := chain||(p, txs) be the result of the successful mining
attempt. It suffices to show that except for a negligible fraction of views where relevant bad events
happen, chain′ cannot be a prefix of any honest chain in view.

38

Henceforth, we ignore the negligible fraction of views where relevant bad events happen. For
the sake of contradiction, suppose that there is some honest chain chain∗ in view such that chain′ ≺
chain∗. Let chain[: i] be an alias for chain′, and let chain[j] be the first honest block in chain∗ after
the prefix chain[: i]. By definition of the honest protocol, j − i > 0.25Lepoch. Let r′ be the round
in which chain[j] was mined by an honest node.

Let W be the total work contained in chain∗[` + 1 : j − 1]. By work growth lower bound, it
holds that mr:r′ ≤ (1 + ε)W for any arbitrarily small constant ε. By the honest majority rule,
nr:r

′
< (1 − ε)W if ε is sufficiently small. Recall our core randomized experiment analysis for

adversarial successful work upper bound. Then, it is not hard to see that for every 0.25Lepoch

number of consecutive blocks in chain∗[`+ 1 : j− 1] that contain a total of W ∗ work, the adversary
must make at least (1− 0.5ε)W ∗ queries to Fhyb to successfully mine all these blocks. Thus, there
cannot be more than W adversarial successful work between [r, r′] — but now by construction,
chain∗[`+ 1 : j − 1] must all be adversarial. Thus we reach a contradiction.

C Analysis of the Real-World Protocol

C.1 Simulator Construction

Modified hybrid-world protocol. Before we describe our simulator, we describe a slight variant
of our hybrid protocol.

a) Each hybrid-world block is now of the form (p, txs, t), where t is referred to a block’s timestamp
similar to the timestamp field denoted time in the real-world protocol.

b) Rather than calling Fhyb.extend(chain, txs), honest nodes would now call Fhyb.extend(chain, (txs, t))
where t denotes the current time. Recall that in the hybrid world, the difficulty parameter is
specified by A on a per-epoch basis to Fhyb, and thus each extend query need not specify p.

Simulator construction. We construct a simulator SA that interacts with a real-world adver-
sary A in a blackbox manner, and participates in Πhyb.

1. Random oracle queries. S answers H and H.ver queries from A in the following way.

• S remembers all hash queries, and whenever A asks a H(x) query that has been seen before,
it answers in the same way as before.

• Whenever A asks a H.ver(x, y) query, if there was a previous H(x) query where the answer
returned was y, return 1; else return 0.

• If at any time, S is about to return the same answer y to a hash query H(x) but y has been
returned for a different hash query H(x′) where x′ 6= x, S aborts outputting collision-failure.

• Whenever A asks an H(x) query that has not been seen before, the simulator S performs the
following.

– If x is of the form x := (h−1, txs, η, t, p), and the simulator has recorded a chain where
chain[−1] = (h−1, , , t−1,) such that t > t−1 and p = getdiff(chain): S computes chain :=
extract(chain), Now, if Fhyb.extend(chain, (txs, t)) outputs 1, S picks a random y subject
to y < Dp and records the chain chain ′ := chain||(h−1, txs, η, t, y); else S picks a random y
subject to y ≥ Dp.

39

– Else S picks a random y.

– Regardless of which case, S checks to see if A has included y in any earlier query. If so, S
aborts outputting predict-failure. Else, S returns y.

2. Simulated real-world internal state for honest nodes. For each honest node j, the
simulator simulates its honest behavior in the real world, and keeps track of its “simulated”
real-world chain denoted chainj . We shall describe how each honest node’s simulated real-world
chain is updated later.

3. Process messages received from A. Whenever S receives a chain from A destined for honest
node j, S checks the validity of chain where H.ver is answered internally by S itself. If chain
is valid but Fhyb.verify(extract(chain)) = 0, abort outputting tree-failure. If chain is valid and
chain.time ≤ tcur where tcur is the current time,

• if chain is longer than node j’s simulated real-world chain, S updates node j’s simulated
real-world chain to chain;

• S forwards extract(chain) to honest node j.

4. Simulate honest nodes’ successful mining attempts. Whenever the simulator S receives a
message chain from some honest node j, if chain has not been received before, parse chain[−1] :=
(p, txs, t). Let chain be node j’s current simulated real-world chain that S internally keeps track
of as mentioned earlier. S performs the following:

• Parse chain[−1] := (, , , , , h−1).

• Pick a random h subject to h < Dp; pick a random η. If h or η has been observed in any
earlier query from A, abort outputting predict-failure. If either h or η has been generated by
S internally before, abort outputting collision-failure. Else, remember h to be the answer to
any future hash query (h−1, txs, η, p, t).

• Record chain||(h−1, txs, η, t, p, h), and remember it as the simulated real-world chain for j.

• Send chain||(h−1, txs, η, t, p, h) to A.

5. Simulate honest nodes’ failed mining attempts. At the end of every round, for every
honest node j that did not send a message to S in EXECΠhyb , the simulator looks up node
j’s simulated real-world chain dentoed chain, and parses chain[−1] := (, , , , , h−1). The
simulator generates a random η and a random y subject to y ≥ Dp. If either h or η has
been generated by S internally before, abort outputting collision-failure. If either η or y is ever
observed in any earlier query from A (either in the past or in the future), abort outputting
predict-failure. Else, record y as the answer to any future hash query (h−1, txs, η, p, t) where p
is the difficulty Fhyb would have chosen for mining off extract(chain), t is the current time, and
finally, txs is the set of transactions the honest nodes use for mining in this round — without loss
of generality, we modify Fhyb to disclose (chain, (txs, t)) to S upon every honest mining request
extend(chain, (txs, t)), note that this does not affect the analysis of our ideal or hybrid protocol.

6. Choose difficulty. The simulator S uses the following strategy to choose difficulty for the
hybrid-world execution: whenever the simulator S records a real-world chain denoted chain: for
every e ∈ N , if eLepoch ≤ |chain| and S has not registered the difficulty for epoch e with Fhyb,

40

it computes pe using chain like in the real-world algorithm, and registers p with Fhyb as the
difficulty for epoch e.

If at any time during the execution, S notices that a simulated honest chain would have computed
a different difficulty parameter for any epoch e than the one S submitted to Fhyb, it aborts
outputting consistency-failure.

7. Corrupt and uncorrupt. Whenever some honest node j becomes corrupt, S discloses to A
the simulated real-world chain for j denoted chain as node j’s internal state. Whenever some
corrupt node j becomes uncorrupt, S sets its simulated real-world chain to be genesis and sets
its p := p0.

8. Internal checks of Πhyb compliance. The simulator makes the following internal checks
throughout the simulated execution. At the beginning of each round, the simulator S performs
internal checks to make sure that all of Πhyb’s compliance rules have been satisfied thus far. If
not, the simulator aborts outputting hyb-compliance-failure.

Fact C.1. For every view of non-zero support from EXECΠhyb(κ,SA,Z), at the end of every round,
as long as the view has not aborted, the following hold:

• For every chain that S has recorded, it holds that extract(chain) ∈ Fhyb.

• For every chain ∈ Fhyb, S has recorded a chain such that extract(chain) = chain.

Fact C.2. For every view of non-zero support from EXECΠhyb(κ,SA,Z), at the end of every round,
if the execution has not aborted, then the following holds: suppose an honest node j’s chain is
chainj, then the simulator maintains a simulated real-world chain for j denoted chainj, such that
extract(chainj) = chainj.

Fact C.3. For every view of non-zero support from EXECΠhyb, it holds that view does not abort due
to tree-failure.

Proof. Suppose for the sake of reaching a contradiction that at some round r, view aborts due to
tree-failure and the relevant bad chain is denoted chain — we now show that this is impossible
given view has not aborted due to collision-failure or predict-failure.

By assumption chain is valid but Fhyb.verify(extract(chain)) = 0. Let chain[: `] where ` ≥ 1
be the shortest prefix of chain such that Fhyb.verify(extract(chain[: `])) = 0. It holds that
Fhyb.verify(extract(chain[: `−1])) = 1. Parse chain[`] := (h−1, txs, η, time, p, h), and chain[`−1] :=
(h′−1, txs′, η′, time′, p′, h−1) where h < Dp and h−1 < Dp. It holds that S has recorded h to be the
answer of the hash query H(h−1, txs, η, time, p); similarly, S has recorded h−1 to be the answer of the
hash query H(h′−1, txs′, η′, time′, p′). Since S has not aborted due to collision-failure or predict-failure,
it holds that S cannot have recorded H(h−1, txs, η, time, p) = h when simulating successful honest
mining, since if this is the case, due to no collision-failure, it must hold extract(chain)[: `] ∈ Fhyb

when S records H(h−1, txs, η, time, p) = h. Therefore, the only possible way for S to have recorded
H(h−1, txs, η, time, p) = h is if A has made a hash query for H(h−1, txs, η, time, p) in prior to r. Let
r′ < r be the first round in which A makes such a query. In this round r′, it must hold that S has
not recorded any chain ′ that ends with the hash h−1 — if so, due to no-collision, then this recorded
chain ′ must agree with chain[: `−1], and therefore after this hash query, extract(chain)[: `] ∈ Fhyb.
However, by no predict-failure and no collision-failure, it must hold that in round r′, S must have

41

already recorded the hash entry H(h′−1, txs′, η′, time′, p′) = h−1. Due to no collision-failure, S never
records h−1 to be the answer of any other hash query. However, by construction of S, then
S will also never record a real-world chain ending with h−1 — but we know that at round r,
extract(chain)[: ` − 1] ∈ Fhyb and therefore in round r, S must have recorded chain[: ` − 1]. This
reaches a contradiction.

Fact C.4. For any Πreal-compliant p.p.t. pair (A,Z), all but negl(κ) fraction of views from EXECΠhyb(1κ,SA,Z)
do not abort due to collision-failure, predict-failure, or consistency-failure.

Proof. This is easy to see, since collision-failure requires that S generates two random numbers
from {0, 1}κ that collide, and predict-failure requires that A predicts a random number S generates
without seeing it. Since both S and A run in time poly(κ), this does not happen except with negl(κ)
probability.

No consistency-failure arises directly from the consistency of Πhyb.

C.2 Simple Facts about Hybrid-World Compliance

Assumptions and notations. Since our simulator S internally checks hybrid-world compliance
at the beginning of every round, as long as a view from the simulated execution EXECΠhyb(κ,S,Z)
has not aborted, it holds that except with negl(κ) probability over the choice of view, all honest
nodes agree on the difficulty for the same length in the blockchain due to consistency of Πhyb.
Therefore henceforth we may ignore the bad views where the above fails to hold. For the remaining
good views, we may speak about the difficulty of an epoch (as perceived by honest nodes).

We use the following notations:

• We use pe(view) to denote the difficulty of epoch e in view;

• We use the notation pt0(view) to denote the difficulty corresponding to the epoch defined by the
maximum honest chain length at time t0.

Hybrid-world compliance. Recall that S internally checks its hybrid-world compliance at the
beginning of every round. We now wish to show that for any Πreal-compliant p.p.t. (A,Z), all
but negl(κ) fraction of views from EXECΠhyb(κ,SA,Z) do not abort due to hyb-compliance-failure.
Recall that Πhyb has several compliance rules: “honest majority” follows directly from the same
constraint on the real-world A. Therefore, we only need to make sure that S respects bounded
mining rate, bounded change in difficulty, as well as ∆-bounded network delivery. Among these,
∆-bounded network delivery and bounded change in difficulty are easy to show and covered by the
following simple facts.

Fact C.5. For every Πreal-compliant (A,Z), SA delivers honest messages within ∆ rounds in the
hybrid world.

Proof. By construction, S only drops invalid chains from A or if the chain’s timestamp is greater
than the current time. Whenever S sends some chain to A on behalf of an honest node, it must
triggered by S receiving extract(chain) from some honest node j. Further, such a chain must be
valid and has a timestamp in the present. Since A must forward chain within ∆ delay to every
other honest node, S must forward extract(chain) to all other honest nodes in the hybrid execution
too.

42

Fact C.6. For every Πreal-compliant (A,Z), except for a negl(κ)fraction of views from EXECΠhyb(κ,SA,Z),
SA respects bounded difficulty change.

Proof. Straightforward due to consistency of Πhyb as well as by definition of the real-world difficulty
change function (i.e., that difficulty change must be bounded by γ on both sides).

Henceforth, we focus on showing that all but negl(κ) fraction of views from EXECΠhyb(SA,Z)
do not abort due to violation of “bounded mining rate”. In essence, what we need to show is that
the difficulty adjustment function always chooses an appropriate difficulty parameter in light of the
recent number of nodes.

C.3 Analysis of the Difficulty Adjustment Function

Henceforth, if a view aborts due to violating the “bounded mining rate” compliance rule, we say
that it aborts due to high mining rate.

Proof intuition. Henceforth, we say that an honest node enters epoch e in round r in view if its
chain length first reaches (e − 1)Lepoch in round r in view. We say that a view enters epoch e in
round r if the r is the first round in which some honest node enters epoch e in view.

Henceforth, let

C := 6χ, C0 :=
C

12χ2γ
=

1

2χγ

Given a view sampled from EXECΠhyb(κ,S,Z), we say that epoch e starts safe in view iff

pe(view) ·mt0(view) <
C

∆tgt

where t0 is the first round in which an honest node enters epoch e. We say that epoch e starts
calibrated in view iff

C0

∆tgt
< pe(view) ·mt0(view) <

C

∆tgt

where t0 is the first round in which an honest node enters epoch e. Henceforth, we sometimes also
say that an epoch is safe or calibrated for short — this means the same as the epoch starts safe or
calibrated.

More intuitively, an epoch starts safe if at the epoch’s beginning, the honest mining rate is not
too high. An epoch starts calibrated if at the epoch’s beginning, the honest mining rate is neither
too high nor too low. Clearly, if an epoch starts calibrated in view, it must also start safe in view.

Informally, we wish to prove the following:

a) If epoch e starts safe, then except with negl(κ) probability, view will not abort due to high
mining rate prior to entering epoch e+ 1; further, epoch e+ 1 will also start safe.

Note that to show that a view does not abort prior to entering the next epoch e+ 1, it suffices
to show that pr(view)mr(view) < αmax for any round r ∈ [t0, t1] where t0 is the round in which
view enters epoch e and t1 is the time of entering epoch e+ 1. Henceforth if this condition fails,
we say that view aborts due to high mining rate.

b) If epoch e not only starts safe but also starts calibrated, then epoch e+1 will also start calibrated.

43

In our proof, we will analyze the following two cases one by one:

• Case 1: an epoch e starts safe but not calibrated, i.e., pe(view) ·mt0(view) < C0
∆tgt

. In this case,

we wish to show that except with negl(κ) probability, view does not abort due to high mining
rate prior to entering the next epoch; and further, the next epoch starts out safe.

In this case, at the start of the epoch, the mining rate can be very small, and therefore the
epoch may take much longer than W time to complete. In this case, our estimation of the
mining power by taking average over the last epoch may not give an accurate estimate of the
most recent mining power — since mining power may have changed quite a lot during this long
epoch. However, intuitively, once the mining power becomes sufficiently high such that the
expected block interval becomes close to ∆tgt, the current epoch must finish off quickly. Due
to the slowing changing nature of the mining power, the current epoch cannot finish with an
unusually high mining power. Further, even though our mining power estimate may be off, the
worst case is that the difficulty parameter adjusts by γ.

In this case, we can prove that “appropriate mining rate” is maintained till the next epoch, and
further, the aforementioned invariant is maintained at the beginning of the next epoch — more
specifically, let t1 be the first round in which an honest node enters the next epoch, it must hold
that

pe+1(view) ·mt1(view) <
C

∆tgt

• Case 2: epoch e starts out calibrated, i.e., C0
∆tgt

< pe(view) ·mt0(view) < C
∆tgt

.

In this case, the epoch begins with sufficient mining power such that the expected block interval
is close to ∆tgt. We can show that the epoch must end within W amount of time, and therefore
mining power cannot have changed too much during the epoch. Further, our estimation of
mining power by taking average over the epoch must be somewhat accurate. Therefore, we can
conclude in this case that appropriate mining rate is respected till the next epoch, and further,
the aforementioned invariant is maintained at the beginning of the next epoch.

C.3.1 Calibrated Leads to Calibrated

First, we prove a helpful fact: except with negl(κ) probability, once an epoch enters a state of being
calibrated, the epoch will end quickly without aborting. More formally, let bad epoch(view) = 1
be the following bad event: there exists a time t0, let e denote the epoch corresponding to the
maximum honest chain length at time t0, we have that

• C0
∆tgt
≤ pe(view) ·mt0(view) ≤ C

∆tgt
;

• however, either view aborted due to high mining rate prior to an honest node enters epoch e+ 1
or the first honest node enters epoch e+ 1 after t0 +W .

Fact C.7. For any Πreal-compliant (A,Z), any sufficiently large κ,

Pr[view←$EXEC
Πhyb(κ,SA,Z) : bad epoch(view) = 1] ≤ negl(κ)

44

Proof. By union bound over the choice of t0, it suffices to prove the above for any fixed t0.
Without loss of generality, we assume that for more than negl(κ) fraction of the views it holds

that C0
∆tgt

≤ pe(view) ·mt0(view) ≤ C
∆tgt

, since otherwise, the fact trivially holds. Consider such a
view. Suppose view aborted due to high mining rate prior to entering epoch e+ 1. Due to bounded
change in mining power and the fact that Cχ

∆tgt
≤ ν

2∆ , it must hold that by time t0 +W , no honest

node has entered epoch e+ 1 yet (and the abort cannot have happened before t0 +W).
Therefore, it suffices to show that for negl(κ) fraction of such views, at some t′ < t0 +W , some

honest node must have entered epoch e+ 1.
Suppose that for more than negl(κ) fraction of such views, by time t0 +W , no honest node has

entered epoch e+ 1. Due to bounded change in mining power, it holds that for any such view for
any t ∈ [t0, t0 +W], pe(view) ·mt(view) > C0

χ·∆tgt
.

Moreover, for all but negl(κ) fraction of such views, work growth lower bound holds. If we
ignore views where work growth lower bound fail, it holds that for any such view, honest chain
must have growth more than Lepoch by time t0 +W , as long as

W >
2Lepoch∆tgtχ

C0
= 4χ2γLepoch∆tgt

but this contradicts our assumption.

Fact C.8. Except with negl(κ) probability over the choice of view, the following must hold for
EXECΠhyb(SA,Z) for any constant ε > 0: let e be any epoch, let ` denote the ending length of epoch
e. Suppose that SA calls getdiff(chain[: `]) at some point in view in order to set the difficulty of
extract(chain[: `−κ0]) with Fhyb, and let r := chain[`−Lepoch+κ0].time, let r′ := chain[`−κ0].time,
then the following hold:

• t0 ≤ r ≤ r′ ≤ t1 where t0 and t1 denote the rounds in which view enters epochs e and e + 1
respectively;

• Lepoch − 4κ0 ≤ min honest grr:r
′
(view) ≤ max honest grr:r

′
(view) ≤ Lepoch

• (1− ε)Lepoch−4κ0
2pe(view) ≤ m

r:r′(view) ≤ 1+ε
1−2αmax∆ ·

Lepoch

pe(view)

Proof. Ignore all views where chain quality and work growth fail. It holds that there is an honest
block in the range chain[` − Lepoch : ` − Lepoch + 2κ0] and in the range chain[` − 2κ0 : `]. The
remainder of the proof is obvious: due to work growth upper bound and the majority honest
compliance rule, it holds that (1− ε)Lepoch−4κ0

2pe(view) ≤ m
r:r′(view). Due to work growth lower bound, it

holds that mr:r′(view) ≤ 1+ε
1−2αmax∆ ·

Lepoch

pe(view) .

Let calibrated failure(view) = 1 be the following bad event that there exists some epoch e that
starts in time t0 (here we say that an epoch e starts in round t0 if t0 is the first round in which an
honest node’s chain reaches that of epoch e) such that

• C0
∆tgt

< pe(view) ·mt0(view) < C
∆tgt

, i.e., epoch e starts calibrated;

• however, either view aborted prior to the first honest node enters epoch e + 1; or epoch e + 1
does not start calibrated.

45

Lemma C.9. For any Πreal-compliant (A,Z), any sufficiently large κ,

Pr[view←$EXEC
Πhyb(κ,SA,Z) : calibrated failure(view) = 1] ≤ negl(κ)

Proof. Let calibrated failuree(view) = 1 be defined just like calibrated failure(view) but for a fixed
epoch e. Due to union bound over the choice of e, it suffices to prove that for any fixed e,

Pr[view←$EXECΠhyb(κ,SA,Z) : calibrated failuree(view) = 1] ≤ negl(κ)

Without loss of generality, we assume that there are more than negl(κ) fraction of views where
C0

∆tgt
< pe(view) · mt0(view) < C

∆tgt
since otherwise the lemma trivially holds. Consider any such

view. By Fact C.7, except for negl(κ) fraction of such views, some honest node must enter epoch
e + 1 at some time t1 < t0 + W (and further view does not abort prior to t1). Henceforth ignore
views where this fails to hold.

In view, when SA computes the difficulty for the prefix extract(chain)[: eLepoch − κ0], let r and
r′ be defined as in Fact C.8 for chain. Due to Fact C.8 and ignore all views where the bad events
related to Fact C.8 take place, it must hold that for any ε > 0,

(1− ε) ·
Lepoch − 4κ0

2pe
≤ mr:r′(view) ≤ 1 + ε

1− 2αmax∆
·
Lepoch

pe

We first show that the next epoch starts out safe. If the case pe+1 := 1
γ p

e is triggered, then due
to Fact C.7 bounded change in mining power, and the fact that γ > χ, it holds trivially that the
next epoch starts safe. Otherwise, due to our difficulty adjustment algorithm, we have that

pe+1 ≤ ∆′

∆tgt
pe

Let m := mr:r
′

r′−r ; we have that

mpe+1 ≤ 1 + ε

1− 2αmax∆
·

Lepoch

pe(r′ − r)
· ∆′

∆tgt
pe =

1 + ε

1− 2αmax∆
·

Lepoch

pe(r′ − r)
· (r′ − r)pe

(Lepoch − 2κ0)∆tgt
≤ 4

∆tgt

where the last inequality holds as long as Lepoch > 8κ0, ν := 2αmax∆ < 1
4 , and ε sufficiently small.

Due to bounded change in mining power, we have that mt1 < χm. We have that

pe+1(view) ·mt1(view) <
4χ

∆tgt
<

C

∆tgt

where the last inequality holds as long as C > 4χ.
We now show that the next epoch starts out not only safe, but also calibrated. The argument

is similar as the above. If the case pe+1 := γpe is triggered, it trivially holds that epoch e + 1
starts calibrated (since we have already shown that the next epoch must start safe for views where
relevant bad events do not happen) — this arises from bounded change in mining power, the fact
that χ < γ, and due to Fact C.7.

Otherwise, we have that

pe+1 ≥ ∆′

∆tgt
pe

46

Therefore, let m := mr:r
′

r′−r ; we have that

mpe+1 ≥ (1− ε) ·
Lepoch − 4κ0

pe(r′ − r)
· ∆′

∆tgt
pe = (1− ε) ·

Lepoch − 4κ0

pe(r′ − r)
· (r′ − r)pe

(Lepoch − 2κ0)∆tgt
≥ 1

1.6∆tgt

Due to bounded change in mining power and Fact C.7, we have that mt1 ≥ m
χ . We have that

pe+1(view) ·mt1(view) ≥ 1

1.6χ∆tgt
≥ C0

∆tgt

Note that the last inequality holds since γ > χ ≥ 1.

C.3.2 Analysis of a Safe but Non-Calibrated Start

Let safe failure(view) = 1 be the following bad event that there exists some epoch e:

• pe(view) ·mt0(view) ≤ C0
∆tgt

where t0 is the first round in whch an honest node enters epoch e;

• however, view aborted prior to any honest node entering epoch e+ 1; or let t1 denote when the
first honest node enters epoch e+ 1, we have that pe+1(view) ·mt1(view) > C

∆tgt
.

Lemma C.10. For any Πreal-compliant (A,Z), any sufficiently large κ,

Pr[view←$EXEC
Πhyb(κ,SA,Z) : safe failure(view) = 1] ≤ negl(κ)

Proof. Let safe failuree(view) = 1 be defined just like safe failure(view) but for a fixed epoch e. Due
to union bound over the choice of e, it suffices to prove that for any fixed e,

Pr[view←$EXECΠhyb(κ,SA,Z) : safe failuree(view) = 1] ≤ negl(κ)

Without loss of generality, we assume that there are more than negl(κ) fraction of views where
pe(view) ·mt0(e,view)(view) ≤ C0

∆tgt
since otherwise the lemma trivially holds. Consider any such view.

Let t be the first round such that pe(view) ·mt(view) > C0
∆tgt

.

Let C1 := χ · C0, notice that due to bounded change in mining power, we have that pe(view) ·
mt(view) < C1

∆tgt
, i.e., the mining power cannot abruptly jump to C1 or higher in round t. Without

loss of generality, we may assume that for more than negl(κ) fraction of such views, it holds
that t ≤ t1, since otherwise, the lemma trivially holds. Consider such a view where pe(view) ·
mt0(e,view)(view) ≤ C0

∆tgt
and t(e, view) ≤ t1 where t is defined as above. Now due to Fact C.7, except

for negl(κ) fraction of such views, all honest nodes must reach epoch e+ 1 at some time t1 < t+W
(and the view must not abort before that). Due to bounded change in mining power, it must hold
that for any r ∈ [t, t1], pe(view) · mr(view) ≤ C1·χ

∆tgt
. By our difficulty adjustment algorithm, the

difficulty at most becomes easier by γ at time t1, i.e., pe+1 ≤ γpe. Therefore, we have that

pe+1(view) ·mr(view) ≤ γC1 · χ
∆tgt

≤ C

∆tgt

47

Lemma C.11 (No abort due to hyb-compliance-failure). For any Πreal-compliant p.p.t. pair (A,Z),
all but negl(κ) fraction of views from EXECΠhyb(κ,SA,Z) do not abort due to hyb-compliance-failure.

Proof. Follows in a straightforward fashion from Lemma C.10 and Lemma C.9.

We now show that if the real-world protocol starts out in a safe state, then after a polynomially
bounded warmup period, the protocol will enter a calibrate state.

Lemma C.12 (A calibrated epoch starts soon). For any Πreal-compliant p.p.t. pair (A,Z), for all
but negl(κ) fractionof views from EXECΠhyb(κ,SA,Z), it holds that after some poly(κ) rounds, view
enters an epoch that starts calibrated.

Proof. When S sets the difficulty of the prefix chain[: eLepoch − κ0] with Fhyb, let r and r′ be
defined as in Fact C.8 for chain.

Let 0 < γ′ < χ < γ be a constant. If r′ − r > γ′(Lepoch − 2κ0)∆tgt, then pe+1 will reduce by
a factor of γ′ in comparison with pe. After polynomially many such epochs in which S discovers
r′− r > γ′(Lepoch− 2κ0)∆tgt, let e′ be the next epoch, either epoch e′ starts calibrated or in epoch
e′, S measures that r′ − r ≤ γ′(Lepoch − 2κ0)∆tgt. When the latter happens, below we argue that
epoch e′ + 1 will start calibrated. We ignore all views where relevant bad events take place.

Due to work growth upper bound, let m := mr:r
′
(view)

r′−r , for any sufficiently small constant ε > 0,
it must hold that

mpe ≥
(1− ε)(Lepoch − 4κ0)

γ′(Lepoch − 2κ0)∆tgt
≥ 1

2γ′∆tgt
≥ C0

∆tgt

Similarly, we can show that

mpe ≤ C

∆tgt

The remainder the the argument follows in the same manner as that of Lemma C.9, by showing
that

mpe+1 ≤ 1

1.6∆tgt

and further, by observing that due to Fact C.7, the epoch must complete prior to r′ +W ; and due
to bounded change in mining rate, mt′ ≥ m

χ .

C.4 Proofs for Our Main Theorems

We can now show that the view of the environment Z is indistinguishable in the real-world and
the hybrid-world executions. If so, and since all the security properties that we care about are
defined over honest nodes’ outputs which are observable by Z, we can immediately conclude that
the security properties that hold in the hybrid-world execution must hold in the real world as well.

Lemma C.13 (Indistinguishability of simulated and real-world executions). For any Πreal-compliant
p.p.t. pair (A,Z), the view of Z in EXECΠhyb(κ,SA,Z) is computationally indistinguishable from
the view of Z in EXECΠreal(κ,A,Z).

48

Proof. Consider S ′ that is the same as S but does not check collision-failure or hyb-compliance-failure.
Z’s view in EXECΠhyb(κ,S ′A,Z) and EXECΠhyb(κ,SA,Z) are computationally indistinguishable due
to Fact C.4 and Lemma C.11.

Conditioned on the fact that no predict-failure and no consistency-failure, it is not hard to see that
by construction, the view of Z in EXECΠhyb(κ,S ′A,Z) is identically distributed as EXECΠreal(κ,A,Z).

Theorem C.14 (Πreal under a safe start). For any admissible parameters such that

Γreal(φ, ν, χ, p0, Lepoch,∆tgt, κ0, γ) = 1

for any constants ε, ε′ > 0, and any T0 > ε′κ, it holds that Πreal(p0, Lepoch,∆tgt, κ0, γ) satisfies the
following properties against any p.p.t. (A,Z) that is Πreal-compliant w.r.t. these parameters:

• (T0, g0, g1, twarm)-chain growth, where g0 := 1
3χ2∆tgt

, g1 := 7χ2

∆tgt
, and twarm is some polynomially

bounded function in κ.

• (T0, µ)-chain quality where µ := 1− 1+ε
1+φ ;

• T0-consistency.

Proof. Consistency follows directly from Lemma C.13 and the consistency of Πhyb.
For chain quality, due to the union bound, it suffices to show chain quality for T0 = ε′κ and

for any sufficiently small constant ε′ such that T0 consecutive blocks span at most 2 epochs. If
the T0 consecutive blocks of interest is within a single epoch, chain quality follows directly from
Lemma C.13 and the work quality of Πhyb. If the T0 consecutive blocks of interest fall into two
epochs — let ε1 > 0 be a sufficiently small constant. If both epochs contain more than ε1κ blocks,
then by chain quality for a single epoch, both segments have good chain quality, and the chain
quality of the two segments combined must be good too. If one of the epoch contains less than ε1κ
blocks, the segment in the other epoch satisfies µ∗ = 1 − 1+ε2

1+φ chain quality for any constant ε2.

The overall chain quality over the two epochs must be lower bounded by µ = µ∗(T0−ε1κ)
T0

. For any

positive constants ε, ε′, for sufficiently small constants ε1, ε2, we have that µ ≥ 1− 1+ε
1+φ .

For chain growth, due to Lemma C.12, for any Πreal-compliant (A,Z), all but negl(κ) fraction of
views from EXECΠhyb(κ,SA,Z) enter a calibrated epoch after poly(κ) rounds. Due to Lemma C.9,
for all but negl(κ) fraction of views, once the view enters a calibrated epoch, all future epochs must
be calibrated. Therefore, it is not hard to see that once a calibrated epoch e starts in any such
view where the relevant bad events do not happen, it must hold that every epoch e′ ≥ e completes
within W time due to Fact C.7, and due to bounded change in mining power, for each epoch
e′ ≥ e, the honest mining rate at any time r within the epoch must be bounded from both sides:
C0

χ∆tgt
≤ pe

′
(view) ·mr(view) ≤ Cχ

∆tgt
. The remainder of the proof follows from the work growth of

Πhyb.

We say that (A,Z) respects calibrated start if for every view of non-zero support of EXECΠreal(κ,A,Z)
the first epoch starts calibrated. For any such Πreal-compliant p.p.t. pair (A,Z) that additionally
respects calibrated start, we can achieve the same security properties but without needing a warmup
period for the chain growth rates to stabilize, i.e., twarm := 0. This is formally stated in the following
corollary.

49

Corollary C.15 (Πreal under a calibrated start). For any admissible parameters such that

Γreal(φ, ν, χ, p0, Lepoch,∆tgt, κ0, γ) = 1

for any constant ε, ε′ > 0, and any T0 > ε′κ, it holds that Πreal(p0, Lepoch,∆tgt, κ0, γ) satisfies the
following properties against any p.p.t. (A,Z) that is Πreal-compliant w.r.t. these parameters and
additionally respects calibrated start:

• (T0, g0, g1, 0)-chain growth, where g0 := 1
3χ2∆tgt

, and g1 := 7χ2

∆tgt
.

• (T0, µ)-chain quality where µ := 1− 1+ε
1+φ ;

• T0-consistency.

Proof. The proof follows in the same manner as that of Theorem 5.1, but since the first epoch
starts calibrated, we have that twarmup = 0.

D Preliminary: Negative Association

Lemma D.1 (Negative Association for Competing Random Variables). Let X := {Xi : i ∈ [n]} be
a collection of non-negative random variables such that with probability 1, at most one of the Xi’s
is non-zero. Then, the collection X of variables are negatively associated.

Proof. As remarked in [DR98], the proof idea is due to Colin McDiarmid. Suppose I and J are
disjoint subsets of [n]. Moreover, f(ai : i ∈ I) and g(aj : j ∈ J) are either both non-increasing or
both non-decreasing functions on non-negative reals for each coordinate. We give the case (as used
later in our proof) that both f and g are non-increasing. Then, it suffices to prove that

E[f(Xi : i ∈ I) · g(Xj : j ∈ J)] ≤ E[f(Xi : i ∈ I)] ·E[g(Xj : j ∈ J)].

Define non-negative functions f̂(ai : i ∈ I) := f(0) − f(ai : i ∈ I) and ĝ(aj : j ∈ I) :=
g(0)− g(aj : j ∈ I), where each coordinate is non-negative.

Observe that with probability 1, at most one Xi’s is non-zero. This implies that f̂(Xi : i ∈
I) · ĝ(Xj : j ∈ I) is 0 with probability 1.

Therefore, we have E[f̂(Xi : i ∈ I) · ĝ(Xj : j ∈ I)] = 0 ≤ E[f̂(Xi : i ∈ I)] · E[ĝ(Xj : j ∈ I)],
which after rearranging gives the required result.

50

	Introduction
	Related Work

	Technical Roadmap
	Nakamoto's Varying Difficulty Blockchain
	Challenges of Analyzing a Varying Difficulty Blockchain
	Our Approach
	A Core Randomized Experiment
	Ideal-World Blockchain with Varying Difficulty
	Analyzing a Nakamoto-Like Varying Difficulty Blockchain

	Protocol Execution in a Permissionless Model
	Execution in a Permissionless Model
	Notations
	Syntax of a Blockchain Protocol
	Security Definitions for a Blockchain Protocol

	A Nakamoto-Like Varying Difficulty Blockchain
	Valid Blocks and Blockchain
	A Provable Variant of Nakamoto's Varying Difficulty Blockchain
	Compliant Executions

	Main Theorems
	Analysis of a Core Randomized Experiment
	Core Randomized Experiment and Intuition
	Total Work Received
	Convergence Opportunities

	Ideal-World Protocol
	Analysis of the Ideal Protocol
	Convergence Opportunities
	Work Growth Lower Bound
	Work Quality
	Consistency
	Work Growth Upper Bound
	Some Corollaries

	Hybrid Protocol
	Hybrid Protocol hyb: Epoch-Based Difficulty Adjustment
	hyb is Secure Provided No Mining into the Past
	hyb is Secure Even with Mining into the Past

	Analysis of the Real-World Protocol
	Simulator Construction
	Simple Facts about Hybrid-World Compliance
	Analysis of the Difficulty Adjustment Function
	Calibrated Leads to Calibrated
	Analysis of a Safe but Non-Calibrated Start

	Proofs for Our Main Theorems

	Preliminary: Negative Association

