
An F-algebra for analysing information leaks in
the presence of glitches

Vittorio Zaccaria

Department of Electronics, Information and Bioengineering, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano - Italy

first.last@polimi.it, ORCID: 0000-0001-5685-9795

Abstract. This report deals with the problem of identifying the potential correlations
between the observable power consumption of a digital circuit and its inputs, when
the operating conditions of the circuit involve a logic hazard (also known as glitch).
This problem is of utmost importance when the circuit is a cryptographic primitive
that must ensure that secret input data (e.g., keys) does not leak.
We present a universal algebra construction that allows to derive a set of artifacts
from a digital circuit among which a conservative estimate of the Boolean expression
that the circuit might leak as well as the extended input/output correlation matrix
[1]. This allows the evaluation of the robustness against side channel attacks through
a set of constructions that fall under the umbrella of robust probing security [2]. We
believe that such a formalization is well suited for CAD synthesis tools to help the
design of more robust cryptographic primitives.
Keywords: No keywords given.

1 Introduction
A glitch is a temporary fluctuation of the logic values of internal nodes which occurs when
different paths from the inputs to the output have different delays. A glitch might produce
additional power consumption, with respect to the ideal regime, and for this reason it
might present problems when the circuit is a cryptographic primitive that is the target of
a correlation power attack. In these circuits, some of the inputs should be guaranteed to
be unobservable by an external attacker and they are colloquially referred to as the secret
[3]; however, it is usually understood that glitches’ additional power consumption might
be used to derive the secret itself [4]. A common approach to detect if such a scenario is
possible, is to model glitches as extended probes on the circuit’s nodes, whose observations
are correlated with all the inputs to the logic cone associated with that node [5]. We will
show that this concept, which is non completely formalized in literature (see Section 2),
admits an algebraic formalization that can be put to work to derive the correlation matrix
from a symbolical description of the circuit. We believe that such algebraic reasoning
(introduced in Section 3 and 4) might be useful when one wants to integrate such analysis
in a CAD flow. In Section 5 we show a practical application of the presented method,
as well as some practical benchmarking consideration on real-world circuits. Section 6
concludes this report by highlighting possible future work.

2 Background work
A side channel attack of a cryptographic circuit consists in exploiting available side-channel
information such as power consumption or time measurements to derive secret information



2 An F-algebra for analysing information leaks in the presence of glitches

(i.e., the key) that is used for cryptographic operation [6]. In the context of power-based
attacks, a probing attack is an attack where the attacker is allowed to put power probes
into the circuit (which correspond to logic nodes) whose observations are then combined
to derive the secret [7].

Among probing attacks, a correlation based attack derives the secret by exploiting
the expected correlation of the observed power and the secret itself. A d-probing secure
circuit is a circuit where it is guaranteed that if the attacker uses up to d probes, it will be
impossible to construct any meaningful correlation with the secret. To build a d-probing
secure implementation of a circuit

t = f(s)

where s is the secret, designers use masking [8], i.e., they encode the secret s over a set of
d+ 1 shares S = {si}i=0...d where

s0 = s⊕
d⊕
i=1

si

while si, i > 0 are uniformly random values. They then design a set of d functions:

ti = fi(subseti(S)), t =
d⊕
i=0

ti

and, to ensure composition, any subset of {ti}i=0...d must be uniformly distributed if
the input shares si are uniformly distributed. In typical implementation, refresh blocks
are often used to inject randomness to ensure this property [2]. Of course, ensuring
that each internal node is not correlated with the secret is a hard problem; the current
understanding is that probing security might be preserved when combining functions that
present strong-non-interference [2].

The correlation matrix associated with a Boolean function allows to detect any vul-
nerability that exploitable in a correlation attack [9, 10]. At the moment, there does
not exist a complete mathematical formalization that allows computing the correlation
matrix between glitch-enabled probes and the secret; the work presented here is a first
step towards this goal. It is not, however, the first work addressing an algebraic modeling
for circuits’ glitches. Probably one of the most important works in this field is the seminal
paper from Brzozowski and Ésik [11]. In their work, the authors provide a change counting
algebra that models the input waveforms as nonempty words over 0 and 1 which account
for unwanted transitions over an otherwise stable signal. The algebra can derive a similar
waveform for the outputs by considering the worst case scenario of the propagation of
such changes within the circuit. Unfortunately, this framework is hardly applicable when
one wants to detect whether a certain set of either internal or output transients present
correlation with the circuit’s input shares. On one side, while it is possible to simulate
internal transients given an input one, correlations must be computed separately and they
might well depend on initial values used for the simulation1. On the other side, one is
forced to determine the fixed point of the state of all internal wires which admittedly might
limit the applicability of the whole approach given the exponential complexity.

Vaudenay [12] employs a different algebraic scheme, where input variables of a circuit
are divided in two sets, i.e., variables that present a glitch (Γ) and variables that do not
(V ). They show that the observable power consumption of the circuit is symbolically
expressible in terms of variables in V and that this expression can be derived algebraically
once glitch assumptions on Γ have been set. However, this approach produces only an

1This might be mitigated by exploiting the equivalence with some algebra Ck which would imply
evaluating the initial state only for a limited set of values.



Vittorio Zaccaria 3

approximation of the dependency of observable power and inner circuit nodes and, as it is
based on opinionated assumptions, it is very difficult to apply in real cases.

Compared to previous works, we will show that it is possible to build an hazard algebra
which computes directly the correlation matrix between the inputs of the circuit and all
the probes that an attacker can put on it. This correlation matrix is not built through
simulation (as in [11]) nor on particular assumptions on glitched inputs (as in [12]).

2.1 On notation and terminology
The study of algebraic structure that we present is based on the concept of functors and
their algebras (colloquially referred to as F-algebras). These abstract algebra constructions
allow for a synthetic description of the properties of the objects we are going to treat
(namely, operators and associated domains).
Definition 1 (Functor). A functor is a function whose domain and co-domain are function
themselves (i.e., an higher-order function). A functor has the additional property that it
respects function composition, i.e., given a functor T :

T (g ◦ f) = Tg ◦ Tf

A functor might change the domain of the function on which it acts; in general if g : A→ B,
the function Tg acts from a domain TA to a domain TB.
Definition 2 (Functor algebra). A functor algebra is a pair (A, u : TA→ A) where A is
the carrier domain of the algebra while T is its signature. For example, if TA = A×A,
then (A, u : A×A→ A) would be the description of a binary operator u. Complex algebras
can be described by using slightly more complex signatures, e.g., TA = 1 + (A×A) could
be seen as the signature of a monoidal poset (A,>,∧) with a unit > and a binary operator
∧. For this reason, we will use subscripts in the functor signature to identify the operators
in the algebra, i.e., we will write

TA = 1> + (A×A)∧ (1)
Note that a functor signature does not specify underlying algebraic laws (this is possible

but not necessary in our exposition). Later on, we will introduce a suitable signature
functor for the Boolean expressions used in this report.
Definition 3 (Algebra morphism). Given a functor T , a function κ is called an F-algebra
morphism (S, ψ)→ (U, φ) if the following diagram commutes:

TS TU

S U

ψ

Tκ

φ

κ

By Lambek’s lemma [13], there exists a prototypical (also called initial) algebra (S, ψ)
for which ψ is invertible. In the case of a Boolean signature T , its initial algebra S is
the domain of graphs representing the Boolean circuit. More importantly, there exists a
unique morphism from S to U such that the following commutes:

TS TU

S U

'

Tκφ

φ

κφ

The function κφ is called the cata-morphism of φ and corresponds to a precise recursive
definition derived from the non-recursive φ. This essentially means that, from S, one can
build, recursively, new representations on other carrier domains (e.g., U) by exploiting an
algebra over them (e.g., φ).



4 An F-algebra for analysing information leaks in the presence of glitches

2.2 Previously proposed algebras
Both previously introduced algebras ([11] and [12]) can be seen as particular types of
F-algebras by defining a suitable carrier type2. For Brzozowski’s F-algebra (B, β), the
carrier type B is the set of all nonempty words over 0 and 1, in which no two consecutive
letters are the same. Such values represent waveforms with a constant initial value, a
transient period involving a finite number of changes, and a constant final value. Waveforms
of this type are called transients by the authors. In this case, authors derive by simulation
the value in B corresponding to the output of a circuit represented in S (thus indirectly
defining the function κβ). For Vaudenay’s F-algebra (S, γ), where S is the same a graph
representation of the circuit, γ maps a subset of input variables to constant values.

3 Sequential circuits as elements of initial F-algebras
In this paper, we focus on non-feedback circuit that contain zero or more registers and
where inputs are indexed with integers. Just as Eq. 1 represented the operations within a
simple monoidal poset, we embed the Boolean constants and operators (>,⊥,∧,∨,¬) in
the following signature functor:

TX = 1⊥ + 1> + (X ×X)∧ + (X ×X)∨ +X¬ +X! + Nv

where we use subscripts to identify the actual operators referenced, e.g.,

• the binary operators such as ∧ and ∨ and ¬ correspond to AND and OR and NOT

• ! has the meaning sampled value of, i.e., a =!c means that a is the value of c after
being sampled into a register (we use the same notation as in [14]).

• conventional neutral elements 0 and 1 of ∨ and ∧ respectively

• v corresponds to an integer labeling of the inputs; this is useful for referencing the
names of the inputs.

Given this signature we will intend a⊕ b as ¬a ∧ b ∨ a ∧ ¬b.
As said before, the initial algebra S is a directed graph structure that symbolically

represents the actual circuit. For our purposes, a value s ∈ S represents the graph of the
logic network built with conventional operators, registers and input variables as identified
by indexes; for example, this is a value in S which represents a circuit which takes two
inputs, combines them with the binary operator ∧ and samples the output in a register (!):

∧ !

v1

v0

!(v0 ∧ v1)=

For all intents and purposes, a circuit representation in S can be derived from a low
level description of the circuit itself. In our experiments, we will work by parsing any
s ∈ S from the netlist of a circuit in Verilog format.

2The functor underlying both of them is the signature functor of a Boolean algebra.



Vittorio Zaccaria 5

4 Notable F-algebra morphisms

4.1 Computing the Fourier expansion
In the following section, we will need to derive dependencies between a function and its
input parameters. We will use the Fourier expansion as the coefficients of the expansion
represent exactly the correlation of the output with xor’ed combination of inputs [9], [15]:

Definition 4 (Fourier expansion of a Boolean function). The Fourier expansion of a
Boolean function f : Fn2 → F1

2 is a pseudo-Boolean function

Ff ≡ f̂(γ) = 2−n
∑
x∈Fn2

(−1)f(x)χγ(x)

where χγ(x) = (−1)γ·x is called Fourier character or parity function and forms an
orthonormal basis for the vector space for all functions f : Fn2 → Q [15]. The spectral
coordinate γ ∈ Fn2 identifies a subset of the original n variables while f̂(γ) represents,
informally, the contribution of the xor of that subset on the overall function value.

The Fourier expansion of a Boolean function of n variables, is an element of the group
algebra (Q[Fn2 ], ?, ν) over the rational field Q, where ? is the conventional convolution3

while the identity is:
ν = γ 7→ (γ == 0)

Another notable element of the above algebra is:

Fidi = γ 7→ (γ == 2i)

which is the Fourier expansion of the identity over the i-th parameter. This algebra can
be equipped with an operator · which corresponds to Ff∧g = Ff · Fg

Since our initial algebra allows to define functions of arbitrary size, we need the carrier
of the F-Algebra to contain the Fourier expansion of functions with any number of input
variables, i.e., the graded group algebra

U =
⊕
i

Q[Fi2]

where
⊕

must be indented as the direct sum of vector spaces.
Convolution (?) between two Fourier expansions of functions with n and m parameters

is done by extending4 the original functions over max(n,m) parameters.
From a symbolic expression of a function s ∈ S it is possible to derive its corresponding

Fourier expansion by taking the cata-morphism κu of the following F-algebra (U, u):

u(f ∧ g) = f · g
u(f ∨ g) = ((f ? u(>)) · (g ? u(>))) ? u(>)

u(!f) = f

u(¬f) = f ? u(>)
u(⊥) = ν

u(>) = −1× ν
u(v n) = Fidi

3Note that for the convolution between two Fourier expansions it holds that Ff ? Fg = Ff⊕g
4The inverse of a restriction.



6 An F-algebra for analysing information leaks in the presence of glitches

4.2 Computing the leakage of a single-output function

In the robust probing model [5, 4], researchers have devised a dramatically conservative way
to reason about glitches and the security of secrets. In fact, they assume that the glitches
associated with a cone of logic can produce power spikes that are, at worst, correlated
with the actual value of the inputs of the cone. This means that, when not considering
glitches, the power consumption of s = v0 ⊕ v1 is correlated with just v0 ⊕ v1 while in
the case of glitches, the observable information (power) is correlated with both v0, v1 and
v0 ⊕ v1 unless a register is present; a glitch is thus seen as a companion boolean function
("extended probe") that is available for free to the attacker. The additional information,
other than the circuit outputs, that the attacker might observe is referred to as leakage.
We will model these leakages as Boolean functions themselves through a new carrier type L
(for Leakage) that can be derived from any circuit s ∈ S, again through a cata-morphism.
Any l ∈ L is tuple containing at least two functions,

l = (lo, lω, {lι,1 . . . lι,n}), n ≥ 0

which correspond to:

• the regular function from which it has been derived (lo ∈ S)

• the information on the inputs derivable from its cone of logic (lω ∈ S, aka output
probe) up to the last register output when glitches are present.

• the information on the inputs derivable from all the previous register inputs (zero or
more lι ∈ S), also called internal probes.

One can derive a leakage l ∈ L from any circuit s ∈ S through an appropriate algebra
(L, λ : TL→ L):

λ((o1, ω1, ι1) ∧ (o2, ω2, ι2)) = (o1 ∧ o2, ω1 ∧ ω2, ι1 ∪ ι2) (2)
λ((o1, ω1, ι1) ∨ (o2, ω2, ι2)) = (o1 ∨ o2, ω1 ∧ ω2, ι1 ∪ ι2) (3)

λ(!(o1, ω1, ι1)) = (o1, o1, {ω1} ∪ ι1) (4)
λ(¬(o1, ω1, ι1)) = (¬o1, ω1, ι1) (5)

λ(⊥) = (⊥,>, {}) (6)
λ(>) = (>,>, {}) (7)

λ(v n) = (v n, v n, {}) (8)

Note that, for the construction of output probes (in (2) and (3)), we usexs logical
conjunction because its Fourier expansion has a correlation with all its inputs. By
induction, any output probe built in this way will have correlation with all its inputs, thus
any derivation is consistent with the robust probing security model. Instead, registers
break information flow by forcing the current output probe ω1 to be considered as an nner
probe (Eq. 4).

The following picture shows an example input graph of a Boolean circuit (left) and
the corresponding leakage expressions of the probes (right) as computed by the algebra
morphism κλ:



Vittorio Zaccaria 7

⊕

v1v0 v2

⊕

v1v0 v2

⊕

∧

v1v0 v2

∧

lo lω lι,1 lι,2

⊕

v1v0 v2

⊕
! !

output probe inner probesregular outputoriginal

s ∈ S

We note that the subset of operators of the above algebra respect distributivity,
commutativity and identity of Boolean algebras except:

• annihilators of ∧ and ∨: s ∧ ⊥ 6= ⊥ and s ∨ > 6= >

• complementation: s ∧ ¬s 6= ⊥ and s ∨ ¬s 6= >

5 Possible applications
In this report we are concerned with deriving the correlation matrix5 of both glitches and
regular output of any circuit expressed in S. Note that L is embedded in a cartesian power
of S, i.e.,

∃q.L ' Sq

We will call this embedding ι and note that it extends also for a cartesian product of L’s,
i.e., there exists k for which:

ιm : Lm → Sk

An n-vector Boolean function can be seen as an element of Sn i.e., a function
FinSet(n)→ S. Its correlation matrix c assigns a Fourier expansion to any combination
of outputs

c : 2n → U

whose codomain is the graded algebra U , i.e., c ∈ U2n . It is possible to build a correlation
matrix by exploiting the function κu, i.e., through a function

κnu : Sn → U2n

that is built from κu using the convolution operator ? of the graded algebra U . In practice,
any line of of the matrix is understood as the convolution of the Fourier expansion of a
combination of function outputs. It is possible to build a mapping σm from an m-vector
Boolean function to the correlation matrix of its leakages in U2n by concatenating the
algebra morphisms described before with κmλ , i.e.:

σm = κnu ◦ ιm ◦ κmλ (9)

To see an application of this mapping, consider the domain oriented masked-AND
circuit [16]. This is a well-known probing secure construction that, given two values a, b
encoded in two uniformly random secret shares a0⊕a1 = a, b0⊕ b1 = b, produces c0 and c1
such that c0⊕ c1 = a∧ b. This construction can be extended over d+ 1 shares for achieving

5The correlation matrix of a vector Boolean function is a scaled version of its Walsh transform. For
this reason, this might be sometimes referred with the latter name.



8 An F-algebra for analysing information leaks in the presence of glitches

d probing security and is split into three layers, the non-linear layer performs the shared
multiplication, the refresh layer re-masks the intermediate shares with a random value r0
and samples them into a register (black ring) while the compression layer produces the
two output shares.

⊕
a1

b0

a1b1

a0

b0

⊕
r0

a0 b1

⊕
c0

⊕

c1

compression layer C
refresh layer R
non-linear layer N

Figure 1: The domain oriented masking construction for multiplying two bits encoded over
2 shares.

Given the expressions of c0 and c1 we obtain, through the algebra morphism ι2 ◦ κ2
λ

(first part of Eq. 9), the following construction in S8, where cω∗ are the output probes,
while cι∗ are the internal probes:

c0 = ((a1 ∧ b1)⊕ ((a1 ∧ b0)⊕ r0)) (10)
c1 = ((a0 ∧ b0)⊕ ((a0 ∧ b1)⊕ r0)) (11)
cω0 = ((a1 ∧ b1) ∧ ((a1 ∧ b0)⊕ r0)) (12)
cω1 = ((a0 ∧ b0) ∧ ((a0 ∧ b1)⊕ r0)) (13)
cι0 = (a0 ∧ b0) (14)
cι1 = ((a0 ∧ b1) ∧ r0) (15)
cι2 = (a1 ∧ b1) (16)
cι3 = ((a1 ∧ b0) ∧ r0) (17)

By applying κ8
u we obtain the corresponding correlation matrix, shown in Figure 2,

where α∗ are the hamming weight of the input spectral coordinates while ω∗ the hamming
weight of the output spectral coordinates. Roughly speaking, a 1 in a specific cell indicates
a correlation different from zero from a certain number of output lines to a certain amount
of input shares. For example, a 1 in the cell

i = (ωcι = 0, ωc−,ω = 2), j = (αa = 1, αb = 1, αr = 0)

indicates an existing correlation between two of the outputs (either c− or cω) with one



Vittorio Zaccaria 9

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 αr

0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 αb

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 αa

ωcι ωc−,ω
0 0 1
0 1 1 1 1 1 1 1 1 1 1 1
0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 1 1 1 1 1

Figure 2: Derived correlation matrix for the DOM example.

share of a and one share of b. Note that a correlation with two shares of the input (e.g., a)
would expose the secret as one could correlate with the xor of both shares.

It can be seen that the construction is robust 1-probing secure as, even if one has access
to either output or inner probes, one needs more than one probe to get more than one
share in input (and thus reconstruct the secret). However, it is possible to get one input
share with one output share. While this is not problematic in itself, the propagation of
this information might dangerously combine with other data when one adds more circuit
stages6. Table 3 reports the computation times for a set of benchmark cyrptographic
gadgets. The gadgets are those available in netlist form publicly [14].

An alternative application to detect vulnerabilities could be directly implemented
within synthesis algorithms [19]; for example, let us consider the DOM gadget of Figure
1 where we purposefully introduce a vulnerability by summing r0 to a1 ∧ b1 instead of
a1 ∧ b0. Applying ι2 ◦ κ2

λ we would get the following:

c0 = ((a1 ∧ b1)⊕ ((a1 ∧ b0)⊕ r0)) (18)
c1 = (((a0 ∧ b0)⊕ r0)⊕ (a0 ∧ b1)) (19)
cω0 = ((a1 ∧ b1) ∧ ((a1 ∧ b0)⊕ r0)) (20)
cω1 = (((a0 ∧ b0) ∧ r0) ∧ (a0 ∧ b1)) (21)
cι0 = (a0 ∧ b0) (22)
cι1 = (a0 ∧ b1) (23)
cι2 = (a1 ∧ b1) (24)
cι3 = ((a1 ∧ b0) ∧ r0) (25)

and we note that, cω,1 can be factorized in
(b0 ∧ b1)z

6This construction is said to be not strongly non-interferent [2].



10 An F-algebra for analysing information leaks in the presence of glitches

Name Order Time Probes Inputs
DOM [16] 1 0.006 s (4, 2) (2, 1)
ISW [7] 1 0.004 s (0, 4) (2, 1)
Trichina [17] 1 0.005 s (2, 2) (2, 1)
Keccak [18] 1 9.66 s (10, 20) (2, 5)
ISW (MVerif) [7, 14] 1 0.004 s (4, 2) (2, 1)
DOM [16] 2 0.094 s (12, 3) (3, 3)
Keccak [18] 2 6 m, 57.179 s (45, 30) (3, 15)
ISW (MVerif) [7, 14] 2 0.084 s (12, 3) (3, 3)
DOM [16] 3 3.109 s (20, 4) (4, 6)
ISW (MVerif) [7, 14] 3 7.917 s (24, 4) (4, 6)
DOM [16] 4 22 m, 29.902 s (25, 10) (5, 10)
ISW (MVerif) [7, 14] 4 36 m, 19.023 s (40, 5) (5, 10)

Figure 3: Benchmark data for an application of the proposed algebra to verify if the
circuits are d-probing secure. The computation of σm has done on a single processor 2.9
GHz Intel i7 processor. The Probe column refers to the pair of respectively inner (cι)
and outer (c−,ω) probes. The Inputs column shows the number of shares for each input
variable and the number of additional random refresh values used in the gadget to preserve
uniformity of the output secret encoding.

where z is free of b0 and b1. The mere existence of this factorization means that cω,1 is
correlated (due to the spectral decomposition of the ∧ operator) with b0 ⊕ b1 = b, where b
is the secret. This means that the original circuit is not robust against glitches. Thus, to
check for a vulnerability, a synthesis tool could try to find whether the computed probes
are factorizable. This applies also to sets of probes, for which one should consider if the
cumulative xor of their expressions is factorizable.

6 Conclusions
We have shown that the detection of vulnerabilities admits an algebraic formalization
that can be used to derive important information from a circuit representation. Such
a formalization allows the production of different artifacts, from the explicit algebraic
representation of the information derivable from a probe, to the underlying correlation
matrix. The algebraic manipulation algorithms available in a synthesis tool might be used
in conjunction with the proposed algebra, to help designers with a feedback on potential
vulnerabilities of the circuit they are designing.

References
[1] Joan Daemen, René Govaerts, and Joos Vandewalle. Correlation matrices. In Bart

Preneel, editor, Fast Software Encryption, Lecture Notes in Computer Science, pages
275–285. Springer Berlin Heidelberg, 1995.

[2] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-Interference and
Type-Directed Higher-Order Masking. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 116–129, New
York, NY, USA, 2016. ACM.



Vittorio Zaccaria 11

[3] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz.
Threshold Implementations of All 3 ×3 and 4 ×4 S-Boxes. In Cryptographic Hardware
and Embedded Systems – CHES 2012, Lecture Notes in Computer Science, pages
76–91. Springer, Berlin, Heidelberg, September 2012.

[4] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating Security Notions
in Hardware Masking. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 119–147, May 2019.

[5] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
François-Xavier Standaert. Composable Masking Schemes in the Presence of Physical
Defaults and the Robust Probing Model. IACR Cryptology ePrint Archive, (report n.
711), 2017.

[6] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Advances in Cryptology — CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, Berlin, Heidelberg, 1999.

[7] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In Dan Boneh, editor, Advances in Cryptology — CRYPTO
2003, Lecture Notes in Computer Science, pages 463–481. Springer Berlin Heidelberg,
2003.

[8] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael Wiener, editor,
Advances in Cryptology — CRYPTO ’99, Lecture Notes in Computer Science, pages
398–412, Berlin, Heidelberg, 1999. Springer.

[9] G. Z. Xiao and J. L. Massey. A spectral characterization of correlation-immune
combining functions. IEEE Transactions on Information Theory, 34(3):569–571, May
1988.

[10] V. Zaccaria, F. Melzani, and G. Bertoni. Spectral Features of Higher-Order Side-
Channel Countermeasures. IEEE Transactions on Computers, 67(4):596–603, April
2018.

[11] J. Brzozowski and Z. Ésik. Hazard Algebras. Formal Methods in System Design,
23(3):223–256, November 2003.

[12] Serge Vaudenay. Side-Channel Attacks on Threshold Implementations Using a Glitch
Algebra. In Sara Foresti and Giuseppe Persiano, editors, Cryptology and Network
Security, Lecture Notes in Computer Science, pages 55–70. Springer International
Publishing, 2016.

[13] Joachim Lambek. A Fixpoint Theorem for complete Categories. Mathematische
Zeitschrift, 103:151–161, 1968.

[14] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire,
and François-Xavier Standaert. maskVerif: Automated analysis of software and
hardware higher-order masked implementations. IACR Cryptology ePrint Archive,
(report n. 562), 2018.

[15] Ryan O’Donnel. Analysis of Boolean Functions. Cambridge University Press.

[16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection Order. IACR
Cryptology ePrint Archive, (report n. 486), 2016.



12 An F-algebra for analysing information leaks in the presence of glitches

[17] Elena Trichina. Combinational Logic Design for AES SubByte Transformation on
Masked Data. IACR Cryptology ePrint Archive, (report n. 236), 2003.

[18] Hannes Gross, David Schaffenrath, and Stefan Mangard. Higher-Order Side-Channel
Protected Implementations of Keccak. IACR Cryptology ePrint Archive, (report n.
395), 2017.

[19] E. Testa, M. Soeken, L. G. Amar, and G. De Micheli. Logic Synthesis for Established
and Emerging Computing. Proceedings of the IEEE, 107(1):165–184, January 2019.


	Introduction
	Background work
	On notation and terminology
	Previously proposed algebras

	Sequential circuits as elements of initial F-algebras
	Notable F-algebra morphisms
	Computing the Fourier expansion
	Computing the leakage of a single-output function

	Possible applications
	Conclusions

