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Abstract. In this paper we present the concept of linear secret-sharing
homomorphisms, which are linear transformations between different secret-
sharing schemes defined over vector spaces over a field F and allow for
efficient multiparty conversion from one secret-sharing scheme to the
other. This concept generalizes the observation from (Smart and Talibi,
IMACC 2019) and (Dalskov et al., EPRINT 2019) that moving from a
secret-sharing scheme over F to a secret sharing over an elliptic curve
group G of order p can be done very efficiently with no communication
by raising the generator of G to each share over F. We then show how
to securely evaluate arbitrary bilinear maps, which can be instantiated
in particular with pairings over elliptic curves.
We illustrate the benefits of being able to efficiently perform secure
computation over elliptic curves by providing several applications and
use-cases. First, we show methods for securely encoding and decoding
field elements into elliptic curve points, which enable applications that
require computation back and forth between fields and elliptic curves.
Then, we show how to use use the secure pairing evaluation to sign and
verify Pointcheval-Sanders signatures (D. Pointcheval and O. Sanders,
CT-RSA 2016) in MPC, which enable multiple applications in which
some authenticity property is required on secret-shared data. We con-
sider some of these applications in our work, namely Dynamic Proactive
Secret Sharing, on which a shared secret is intended to be transferred
from one set of parties to another, and Input Certification, on which the
“validity” of the input provided by some party to some MPC protocol
can be verified.

1 Introduction

A (t, n)-secure secret-sharing scheme allows a secret to be distributed into n
shares in such a way that any set of at most t shares are independent of the
secret, but any set of at least t + 1 shares together can completely reconstruct
the secret. In a linear secret-sharing schemes (LSSS), shares of two secrets can be
added together to obtain shares of the sum of the secrets. A popular example of
a (n− 1, n)-secure LSSS is additive secret sharing, whereby a secret s ∈ F (here
F denotes integers modulo a prime p) is secret-shared by sampling uniformly
random s1, . . . , sn ∈ F subject to s1 + · · · + sn ≡ s mod p. Another popular



choice of a (t, n)-secure LSSS is Shamir secret sharing [35], that distributes a
secret s ∈ F by sampling a random polynomial f(x) over F of degree at most t
such that f(0) = s, and setting the i-th share to be si = f(i).

Linear secret-sharing schemes are information-theoretic in nature, that is,
they do not rely on any computational assumption and therefore tend to be
very efficient. Furthermore, they are widely used in multiple applications like
distributed storage [21] or secure multiparty computation [12]. These schemes
can be augmented with techniques from public-key cryptography, like elliptic-
curve cryptography. As an example, consider (a variant of) Feldman’s scheme for
verifiable secret sharing1 [18]: To distribute a secret s ∈ F, the dealer samples a
polynomial of degree at most t such that f(0) = s, say f(x) = s+r1x+· · ·+rtxt,
and sets the i-th share to be si = f(i). On top of this, the dealer publishes
s · G, r1 · G, . . . , rt · G, where G is a generator of some elliptic-curve group G
of order p for which the discrete-log problem is hard. With this, each party can
detect if its share si is correct by computing si · G and checking that it equals
s ·G+ i1(r1G) + i2(r2G) + · · ·+ it(rtG).

Similar approaches have also been used to instantiate polynomial commit-
ments [26], or to securely compute ECDSA signatures [15,36]. The key idea be-
hind these techniques is that the group G, having order p, is homomorphic to F
as an additive group. Given this, a linear secret sharing scheme over F, that sat-
isfies some kind of “homomorphism” mod p, turns out to be “compatible” with
arithmetic over G as well. This interaction enables applications that exploit the
power of primitives that require computational assumptions, like commitments
or signatures, together with efficient distributed information-theoretic techniques
of linear secret sharing.

In this work we formalize and generalize the above notion by using an ad-
equate mathematical definition of LSSS, extending it to general vector spaces,
of which elliptic curves are particular cases, and using linear transformations
between these vector spaces to convert from one secret-shared representation to
a different one. Furthermore, we extend this notion from linear transformation
to bilinear maps, and show how generic multiplication triples over F can be used
to securely compute these. We then show that these simple but powerful tech-
niques can be used to improve the efficiency of some relevant problems. This
was already shown in [15,36] to securely evaluate ECDSA signatures. Here we
consider other applications: More efficient signatures, proactive secret sharing
and input certification.

1.1 Our Contributions

Our contributions can be summarized as follows.

LSS homomorphisms and bilinear maps. We introduce the concept of LSSS
homomorphisms, which generalize the folklore notion of “putting the share in the

1 A verifiable secret sharing scheme is one in which parties can verify that the dealer
shared the secret correctly
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exponent”. Then, with the mathematical foundations of LSSS homomorphisms,
we show how generic multiplication triples can be used to securely evaluate
any bilinear map, using any linear secret-sharing scheme. This is presented in
Section 2. Furthermore, our experimental results in Section 8 show that the
performance penalty per party for a pairing computation in MPC is only 30%
compared to computing a pairing in a non-MPC context, without considering
the cost of communication or preprocessing.

Secure computation over elliptic curves. Our treatment in Section 2 is completely
general, applying to arbitrary vector spaces and also arbitrary linear secret-
sharing schemes. Moreover, in Section 3 we instantiate our constructions with
popular secret-sharing schemes—specifically additive, Shamir and replicated se-
cret sharing—and we use pairings over elliptic-curves for the instantiation of
bilinear maps and vector spaces. This allows us to perform arbitrary computa-
tions over elliptic curves which use group addition and pairings. However, since
the most natural use-cases for elliptic curves include operating on strings that
are encoded into elliptic curve points, to be decoded later on, we present in Sec-
tion 4 how to securely encode secret shared data into secret-shared elliptic curve
points, as well as how to decode securely.

Secure evaluation and verification of signatures. We show how to securely sign
secret-shared data, and how to securely verify secret-shared signatures on secret-
shared data, in Section 5. To this end, we make use of Pointcheval-Sanders (PS)
signatures [33], which are a more efficient and compact drop-in replacement
for the Camenisch-Lysyanskaya signatures widely used in anonymous creden-
tials [10]. General-purpose MPC protocols can be used, in principle, to evalu-
ate arbitrary digital signature schemes securely. However, this typically requires
computing a hash function on the data to be signed, which is not particularly
efficient to do in MPC. Our approach constitutes the first efficient protocol for
signing and verifying in MPC, requiring only 1 round and a secure dot product
for signing, and 1 round with a single secure scalar multiplication (shared scalar
multiplied by a shared point) for verification. Finally, our experimental results
from Section 8 show that generating keys and verifying signatures using MPC is
at most twice as expensive in comparison to local computation. Signing multiple
messages reduces this performance penalty significantly by exploiting features
of the PS signature scheme.

Dynamic proactive secret-sharing. As an application of secure signatures, we
consider in Section 6 the problem of dynamic proactive secret sharing, where a
shared secret among multiple parties is transferred to a new set of parties while
preserving the privacy of the secret. Dynamic proactive secret-sharing is very
relevant primitive in the context of for example blockchains, where an initial
set of parties hold a secret-shared key, and wish to transfer it to a different
set of parties. Thus, this technique allows one to securely move control of an
account from one committee to a different one (where these two committees
can differ in both number of parties and the threshold). We propose a novel
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and simple protocol for proactive secret sharing with abort, where our protocol
for secure signatures is used to ensure that the secret is kept untouched during
transfer. In a nutshell, our protocol works by first transmitting the message
and a signature via a cheap but malleable proactivization method, followed
by a signature verification at the receiving end. This approach improves the
communication of the state of the art, CHURP [29], by a factor of 9, on top of
being fundamentally simpler.

Input certification. Finally, we apply our protocol for secure signatures to the
task of input certification in MPC. In this setting, some parties engage in an
MPC protocol, but the input they provide, on top of being private, must be
“cetified” by some trusted authority. Previous works considered either garbled
circuits or zero knowledge proofs. In our work, we consider a much simpler
solution in which the trusted authority provides each party with a signature on
its input, which is presented at computation time, and verified securely in MPC.
Our solution improves the state-of-the-art by a factor of at least 2 in terms of
computation, on top of being conceptually much simpler.

We provide experimental results via a proof-of-concept implementation in
Section 8.

1.2 Related Work

Previous works [15,36] make use of the folklore idea of “putting the shares in
the exponent” to efficiently instantiate threshold ECDSA, among other things.
They approach the problem from a more practical point of view, using certain
specific protocols and focusing on the application at hand, whereas our work is
more general, applying to any linear secret-sharing scheme and also any vector
space homomorphism. Furthermore, these works did not consider the case of
cryptographic pairings, as these are not needed in the ECDSA algorithm.

Multiple works have addressed the problem of proactive secret-sharing. It
was originally proposed in [25,31], and several works have built on top of these
techniques [24,34,5,4,29], including ours. Among these, the closest to our work is
the state-of-the-art [29], which also makes use of pairing-friendly elliptic curves
to ensure correctness of the transmitted message. However, a crucial difference
is that in their work, a commitment scheme based on elliptic curves, coupled
with the technique of “putting the share in the exponent” is used to ensure
each player individually behaves correctly. Instead, in our work, we use elliptic
curve computation on the secret rather than on the shares, which reduces the
communication complexity, as shown in Section 6.

Finally, not many works have been devoted to the important task of input
certification in MPC. For general functions, the only works we are aware of
are [7,27,37,8]. Among these, only [8] tackles the problem from a more general
perspective, having multiple parties and different protocols. However, their ap-
proach differs fundamentally from ours: In [8], the concept of signature schemes
with privacy is introduced, which are signatures that allow for an interactive pro-
tocol for verification, in such a way that the privacy of the message is preserved.
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Then, the authors present constructions of this type of signatures, and use them
to solve the input certification problem. However, the techniques from [8] differ
from ours at a fundamental level: Their protocols first compute a commitment
of the MPC inputs, and then engage in an interactive protocol for verification to
check the validity of these inputs. Furthermore, these techniques are presented
separately for two MPC protocols: one from [17] and one from [16]. Instead, our
results apply to any MPC protocol based on linear secret-sharing schemes, and
moreover, is much simpler and efficient as no commitments, proofs of knowl-
edge, nor special interactive verification is needed, beyond the MPC execution
of a cheap verification protocol.

2 LSS Homomorphisms and Bilinear Maps

Let F be a prime field of order p. We use a ∈R A to represent that a is sampled
uniformly at random from the finite set A.

2.1 Linear Secret Sharing

In this section we define the notion of linear secret sharing that we will use
throughout this paper. Most of the presentation here can be seen as a simplified
verision of [13, Section 6.3], but it can also be regarded as a generalization since
we consider arbitrary vector spaces.

Definition 1. Let F be a field. A linear secret sharing scheme (LSSS) S over V
for n players is defined by a matrix M ∈ Fm×(t+1), where m ≥ n, and a function
label : {1, . . . ,m} → {1, . . . , n}. We say M is the matrix for S. We can apply
label to the rows of M in a natural way, and we say that player Plabel(i) owns the
i-th row of M . For a subset A of the players, we let MA be the matrix consisting
of the rows owned by players in A.

To secret-share a value s ∈ V , the dealer samples uniformly at random a
vector rs ∈ V t+1 such that its first entry is s, and sends to player Pi each row of
M · rs owned by this player. We write Js, rsK for the vector of shares M · rs, or
simply JsK if the randomness vector rs is not needed. Observe that the parties
can obtain shares of s1 + s2 from shares of s1 and shares of s2 by locally adding
their respective shares. We denote this by Js1 + s2K = Js1K + Js2K.

The main properties of a secret sharing scheme are privacy and reconstruc-
tion, which are defined with respect to an access structure. In this work, and for
the sake of simplicity, we consider only threshold access structures. That said,
our results generalize without issue to more general access structures as well.

Definition 2. An LSSS S = (M, label) is (t, t+ 1)-secure if the following holds:

– (Privacy) For all s ∈ V and for every subset A of players with |A| ≤ t, the
distribution of Mrs is independent of s

– (Reconstruction) For every subset A of players with |A| ≤ t there is a recon-
struction vector eA ∈ FmA such that eᵀA(MArs) = s for all s ∈ V .
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2.2 LSS over Vector Spaces

Let V be a finite-dimensional F-vector space, and let S = (M, label) be an LSSS
over F. Since V is isomorphic to Fk for some k, we can use the LSSS S to secret-
share elements in V by simply sharing each one of its k components. This is
formalized as follows.

Definition 3. A linear secret-sharing scheme over a finite-dimensional F-vector
space V is simply an LSSS S = (M, label) over F. To share a secret v ∈ V , the
dealer samples uniformly at random a vector rv ∈ V t+1 such that its first entry
is v, and sends to player Pi each row of M · rv ∈ V m owned by this player.
Privacy properties are preserved. To reconstruct, a set of parties A with |A| > t
uses the reconstruction vector eA as eᵀA(MArv) = v.

As before, given v ∈ V we use the notation Jv, rvKV , or simply JvKV , to
denote the vector in V m of shares of v.

2.3 LSS Homomorphisms

Let U and V be two finite-dimensional F-vector spaces, and let φ : V → U
be a vector-space homomorphism. According to the definition in Section 2.2,
any given LSSS S = (M, label) over F can be seen as an LSSS over V or over
U . However, the fact that there is a vector-space homomorphism from V to U
implies that, for any v ∈ V , the parties can locally get Jφ(v)KU from JvKV . We
formalize this below.

Definition 4. Let U and V be two finite-dimensional F-vector spaces, and let
φ : V → U be a vector-space homomorphism. Let S = (M, label) be an LSSS
over V . We say that the pair (S, φ) is a linear secret-sharing homomorphism.

The following simple proposition illustrates the value of considering LSS ho-
momorphisms.

Proposition 1. Let U and V be two finite-dimensional F-vector spaces, and
let (S, φ) be a LSS homomorphism from U to V . Given v ∈ V and Jv, rvKV ,
applying φ to each share leads to Jφ(v), φ(rv)KU .2

Proof. Simply notice that φ (Jv, rvKV ) = φ(Mrv) = Mφ(rv) = Jφ(v), φ(rv)KU .
ut

2.4 LSSS with Bilinear Maps

In Section 2.3 we saw how the parties could locally convert from sharings in one
vector space to another vector space, provided there is a linear transformation
between the two. The goal of this section is to extend this to the case of bilinear

2 We extend the definition of φ to operate on vectors over V pointwise.
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maps. More precisely, let U, V,W be F-vector spaces of dimension d,3 and let
S = (M, label) be an LSSS over F. From Section 2.2, S is also an LSSS over U ,
V and W . Let φ : U×V →W be a bilinear map, that is, the functions φ(·, v) for
v ∈ V and φ(u, ·) for u ∈ U are linear. In this section we show how the parties
can obtain Jφ(u, v)KW from JuKU and JvKV , for u ∈ U and v ∈ V .

Unlike the case of a linear transformation, this operation requires communi-
cation among the parties. Intuitively, this is achieved by using a generalization
of “multiplication triples” to the context of bilinear maps. At a high level, the
parties can preprocess “bilinear triples” (JαKU , JβKV , Jφ(α, β)KW ) where α ∈ U
and β ∈ V are uniformly random, open δ = u− α and ε = v − β, and compute
Jφ(u, v)KW as

Jφ (δ + α, ε+ β)KW = φ(δ, ε) + φ(δ, JβKV ) + φ(JαKU , ε) + Jφ(α, β)KW .

We formalize this intuition below where we describe the protocol in detail. For
the protocol we assume a functionality FOuterProd that produces random shares
Ja1K , . . . , JadK , Jb1K , . . . , JbdK over F, together with JaibjK for i, j ∈ {1, . . . , d}.
This is used to produce the “bilinear triples” sketched above. Also, in the protocol
below we assume that {u1, . . . , ud} is a basis for U and that {v1, . . . , vd} is a
basis for V .

Protocol Πbilinear

Inputs: JuKU and JvKV .
Output: JwKW where w = φ(u, v) ∈W .

OFFLINE PHASE

1. The parties call
(
{JaiK}di=1, {JbiK}di=1, {JaibjK}di,j=1

)
← FOuterProd.

2. The parties use the LSS homomorphisms x 7→ x · ui and x 7→ x · vi
to locally compute JαKU =

∑d
i=1 JaiK · ui and JβKV =

∑d
i=1 JbiK · vi,

respectively.
3. The parties compute Jφ(aiui, bjvj)KW ← JaibjK · φ(ui, vj) using the

LSS homomorphisms x 7→ x · φ(ui, vj).

4. The parties compute locally Jφ(α, β)KW =
∑d
i,j=1 Jφ(aiui, bjvj)KW .

ONLINE PHASE

1. The parties open δ ← JuKU − JαKU and ε← JvKV − JβKV
2. The parties use the LSS homomorphism φ(δ, ·) to compute

Jφ(δ, β)KW ← φ(δ, JβKV ), and similarly they use the LSS homomor-
phism φ(·, ε) to compute Jφ(α, ε)KW ← φ(JαKU , ε).

3. The parties compute locally and output Jφ(u, v)KW = φ(δ, ε) +
Jφ(δ, β)KW + Jφ(α, ε)KW + Jφ(α, β)KW .

3 It is not necessary for these spaces to have the same dimension, but we assume this
for simplicity in the notation.
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3 Instantiations

In the previous section we developed a theory for LSS homomorphisms and se-
cure computation for bilinear maps based on an arbitrary linear secret sharing
scheme and an arbitrary linear transformation between vector spaces. In this sec-
tion we instantiate the vector spaces with elliptic curves, and the bilinear maps
with cryptographic pairings, which allows us to securely evaluate cryptographic
primitives based on elliptic curves, as we will show in subsequent sections. Ad-
ditionally, we instantiate the secret sharing scheme with three types of sharings:
additive secret sharing with MACs, used in dishonest-majority protocols [16],
Shamir secret sharing, used for honest majority protocols [17], and replicated
secret sharing for the specific case of 3 parties with an honest majority [1].

3.1 Instantiating the Vector Spaces with Elliptic Curves

Let G be an elliptic curve group of order a prime p, which in particular means
that G is an F-vector space, and let G be a generator of G. Consider the iso-
morphism φ : F → G given by x 7→ x · G. Let S = (M, label) be an LSSS
over F. Given what we have seen so far, S can be seen as an LSSS over G. To
secret-share a curve point P ∈ G, the dealer samples random points (P1, . . . , Pt),
computes (Q1, . . . , Qm)ᵀ = M · (P, P1, . . . , Pt)

ᵀ ∈ Gm, and sends Qi to party
Plabel(i). Furthermore, if s ∈ F is secret shared as JsK, the LSS homomorphism
property applied to φ implies that each party can locally multiply its share by
the generator G to obtain Js ·GKG.

Now, consider the scalar multiplication map f : F × G → G given by
f : x, P 7→ x · P . Using ΠBilinear with f we can obtain the protocol ΠScalarMul,
described below, which computes a scalar multiplication between a scalar and
point when both scalar and point are secret-shared. We remark that this proto-
col was presented in [36] and as such our presentation here can be considered as
illustrating that ΠBilinear generalizes the techniques in their work. Also, when the
dimension d is equal to 1, the functionality FOuterProd becomes a multiplication
triple functionality FMulTriple that produces (JaK , JbK , Ja · bK), where a, b ∈ F are
uniformly random.

Protocol ΠScalarMul

Inputs: JxK and JP KG
Outputs: Jx · P KG

OFFLINE PHASE

1. Parties call (JaK , JbK , Ja · bK)← FMulTriple.
2. Parties use the LSS homomorphism x 7→ x ·G for a generator G of G

to compute JBKG = JbK ·G and JCK = Ja · bK ·G.
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ONLINE PHASE

1. Parties open d← JxK− JaK and Q← JP KG − JBKG.
2. Using the LSS homomorphism, parties compute JEKG = JaK · Q and

JF KG = d · JBKG.
3. Parties compute locally Jx · P KG = JEKG + JF KG + d ·Q+ JCKG.

Bilinear Pairings. Consider G1,G2,GT elliptic curve groups of order a prime p.
As usual in the field of pairing-based cryptography, we use additive notation for
the groups G1,G2, and multiplicative notation for GT . We denote by 0G1

, 0G2

and 1GT
the identities of G1,G2 and GT , respectively. Consider a pairing e :

G1 ×G2 → GT satisfying:

1. For all G ∈ G1, H ∈ G2 and a, b ∈ F, e(aG, bH) = e(G,H)ab.
2. For P1 ∈ G1, P2 ∈ G2 with P1 6= 0, P2 6= 0, e(P1, P2) 6= 1.
3. The map e can be computed efficiently.

This notation will be used for the rest of the paper. In the context of Section
2, the groups G1,G2,GT can be viewed as F-vector spaces of dimension 1, so we
can apply the techniques presented there to compute Je(P1, P2)KGT

from JP1KG1

and JP2KG2
. We summarize the resulting protocol below. We let G1 and G2 be

some generators of G1 and G2, respectively.

Protocol Πpairing

Inputs: JP1KG1
and JP2KG2

.
Output: Je(P1, P2)KGT

.

OFFLINE PHASE

1. The parties call (JaK , JbK , Ja · bK)← FMulTriple.
2. The parties use the LSS homomorphisms x 7→ x·G1 and x 7→ x·G2 to

locally compute JQ1KG1
= JaK ·G1 and JQ2KG2

= JbK ·G2, respectively.
3. Using the LSS homomorphism x 7→ e(G1, G2)x, the parties compute

Je(Q1, Q2)K = Je(a ·G1, b ·G2)KGT
← e(G1, G2)JabK

ONLINE PHASE

1. The parties open D1 ← JP1KG1
− JQ1KG1

and D2 ← JP2KG2
− JQ2KG2

2. The parties use the LSS homomorphism e(Q1, ·) to compute
Je(D1, Q2)KGT

← e(D1, JQ2KG1
), and similarly they use the LSS ho-

momorphism e(·, D2) to compute Je(Q1, D2)KGT
← e(JQ1KG1

, D2).
3. The parties compute locally and output Je(P1, P2)KGT

= e(D1, D2) ·
Je(D1, Q2)KGT

· Je(Q1, D2)KGT
· Je(Q1, Q2)KGT

.
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3.2 Instantiating the Secret Sharing Schemes

In what follows we instantiate the secret sharing scheme S with three popular
schemes: Additive SS, replicated SS and Shamir SS.

Additive SS. In this scheme each party Pi gets a uniformly random value ri ∈ F
subject to

∑n
i=1 ri = s, where s ∈ F is the secret. This scheme is (n−1, n)-secure.

Let us denote additive secret sharing of s by JsKadd, and abusing notation, we

write JsKadd = (r1, . . . , rn), where each ri is the share of party Pi. Given an
elliptic curve group G of order p, having G as generator, the parties can obtain
shares of s ·G by locally multiplying the generator G by their share ri; that is,
Js ·GKadd = (r1 ·G, . . . , rn ·G).

In the scheme above, at reconstruction time, a maliciously corrupt party can
lie about its share, causing the reconstructed value to be incorrect. To help solve
this issue, actively secure protocols in the dishonest majority share a secret s
as JsKadd, together with Jr · sKadd, where r is a global uniformly random value

that is also shared as JrKadd. We denote this by JsKadd∗. At reconstruction time,

the adversary may open JsKadd to s + δ where δ is some error known to the
adversary. To ensure that δ = 0 (so the correct value is opened), the parties

compute (s+ δ) JrKadd − Jr · sKadd, open this value, and check it equals 0. It can
be easily shown that, if δ 6= 0, this check passes with probability at most 1/|F|.

The same check can be performed over G: The sharings Js ·GKaddG are accom-

panied by Jr · s ·GKaddG , where r is a global uniformly random value that is also

shared as JrKadd. At reconstruction time Js ·GKaddG can be opened to (s+ δ) ·G,

and to ensure δ = 0 the parties open JrKaddG · (s+ δ) ·G− Jr · s ·GKaddG and check
that this point is the identity. It is easy to see that, like in the case over F, the
check passes with probability at most 1/|F| if δ 6= 0. We denote this “robust”

sharing of s ·G by Js ·GKadd∗G .

Shamir SS. Let F≤d[x] be the ring of polynomials over F of degree at most d.
Consider a setting with n parties, and let 0 < t < n. In this scheme each party
Pi gets f(i) where f(x) ∈R F≤t[x]. We denote JsKshmF = (f(1), . . . , f(n)).

Let 2t+1 = n, and let U, V,W be F-vector spaces of dimension d,4 and let φ :
U×V →W be a bilinear map. Now, consider shared values Jx1K

shm
U , . . . , JxLKshmU

and Jy1K
shm
V , . . . , JyLKshmV . A protocol Πshm

DotProd that, on input these shares, pro-

duces JzKtW , where z =
∑L
`=1 φ(x`y`), can be instantiated by using L calls to the

Πbilinear protocol, although this incurs in a communication complexity that is at
least proportional to L. Instead, we consider a different protocol that produces
an output that may be incorrect by an additive amount δ ∈ W known to the
adversary, but has a communication complexity that is independent of L. This
is explained in detail in Section A.2 in the appendix. The resulting protocol,

4 As in Section 2, the condition that all three spaces have the same dimension is not
necessary.
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which can be seen as a generalization of the multiplication protocol in [23], has
a communication complexity of d · log(|F|) · 5.5 · n bits.

Replicated SS. This is a (1, 2)-secure LSSS for 3 parties. In this scheme each
party Pi gets (ri, ri+1), where the sub-indexes wrap modulo 3, and s = r1 +
r2 + r3, where s ∈ F is the secret. Like above, let U, V,W be F-vector spaces of
dimension d, and let φ : U × V → W be a bilinear map, and consider shared
values Jx1K

rep
U , . . . , JxLKrepU and Jy1K

rep
V , . . . , JyLKrepV . Although a protocol Π rep

DotProd

that, on input these shares, produces JzKrepW , where z =
∑L
`=1 φ(x`y`), can be

instantiated by using L calls to the Πbilinear protocol, this would again incur
in a communication complexity that is at least proportional to L. Instead, we
consider a different protocol that produces an output that may be incorrect by
an additive amount δ ∈ W known to the adversary, but has a communication
complexity that is independent of L. This is explained in detail in Section A.3 in
the appendix. The resulting protocol, which can be seen as a generalization of the
multiplication protocol in [1], has a communication complexity of d · log(|F|) · 3
bits.

Remark 1. The protocols Πshm
DotProd and Π rep

DotProd above instantiate a functionality

that we denote by FDotProd that, on input (JxiK
shm/rep
U )Li=1 and (JyiK

shm/rep
V )Li=1,

produces Jz + δKshm/repW , where z =
∑L
`=1 φ(x`y`) and δ ∈ W is an error known

by the adversary, with a communication that is independent of L. In the case
that the error δ is not allowed, we denote the corresponding functionality by
FDotProd∗, and it can be instantiated by feeding the protocols above through
the compiler from [11], at a cost of increasing by only twice the communication
complexity, in the amortized setting.5

4 Secure Computation over Elliptic Curves

The previous section showed a “toolbox” for performing computation over el-
liptic curves: We can secret-share elliptic curve points, perform addition locally,
and securely compute the analogue of elliptic curve multiplication, which are
pairings. This can potentially enable a new range of applications that require
secure computation over elliptic curves. However, we typically use elliptic curve
computation not to operate on curve points, but on bit-strings that are mapped
to and from these curves. Consider for example the following use-case: Parties
hold JmKF and wish to encrypt it using, e.g., El-Gamal. Using an LSS homomor-
phism on JmK would effectively encode m in the exponent, and then we could
use secure computation over elliptic curves to compute the encryption of m.

The above works for encryption. However, what if the goal is to decrypt?
That is, given some ciphertext and a secret-shared private key, the parties wish
to compute shares of the corresponding plaintext. Using secure computation over

5 Although the results from [11] are set for the case in which U = V = W = F, it is
not hard to extend them to the more general case.
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the elliptic curve, the parties can compute shares of m ·G. Now, obtaining shares
of m from Jm ·GK is not that straightforward as it involves solving a discrete-log
problem. If m · G was in the clear and m was known to be bounded, then m
could be recovered by exhaustive search. However, performing exhaustive search
in MPC is not feasible, so it is not obvious how to decode JmK from Jm ·GK.

The issue above arises from the fact that the encoding of JmK was done
using the LSS homomorphism x 7→ x · G, which is highly efficient due to its
linearity, but has a “one-wayness” to it, making it very hard to decode. In the
following, we show a different way of encoding a shared field element JmK in such
a way that, although the encoding itself is interactive (and therefore less efficient
than the LSS homomorphism encoding described above), the decoding process is
practically efficient. This enables a seamless interplay between traditional secure
computation over F, and secure computation over an elliptic curve group as
defined here.

In the following, as well as in the rest of the paper, we will rely on several
secure computation functionalities, some of them which have been introduced
already. We list them here in brief. Also, for a functionality/protocol Fabc/Πabc,
we denote by Cabc its total communication cost, in bits.

– FMulTriple outputs a triple (JaK , JbK , JcK) where c = ab. Note that this is a
special case of FOuterProd for d = 1.

– FDotProd takes as input (JxiK)Li=1 and (JyiK)Li=1, and produces Jz + δK, where

z =
∑L
`=1 φ(x`y`) and δ ∈ F is an error known by the adversary. FDotProd∗

is similar, except it does not accept such error.
– FMul takes two inputs JxK and JyK, and outputs JwK where w = xy. FMul is

a particular case of FDotProd∗ for L = 1.
– FRand(K) outputs JxK where x ∈ K, where K is a F-vector space. Notice

that it is enough to have a functionality which samples a secret-shared field
element; to get a secret point, parties can locally apply an appropriate LSS
homomorphism to obtain a secret-shared group element.

– FCoin(K) outputs a uniformly random s ∈ K to all parties.

4.1 Secure Encoding and Decoding

We now show how to map secret-shared messages into curve points, and back,
in the presence of an active adversary and an honest majority. Consider the
following commonly used injective encoding for encoding bit-strings into points
on the curve G over F (see [20]): To encode a message m ∈ {0, 1}`, with ` ≤
(1/2− ε) log2 p for a fixed ε ∈ (0, 1/2), pick a random integer x ∈ [0, p− 1] such
that m = x mod 2`. If x is a valid curve-point for G, then output (x, y), and
otherwise pick a new random x and start over. We denote this encoding by En
and its inverse as De (notice that De simple discards y and returns x mod 2`).

Our aim now is to implement (En,De) securely; that is, we wish to compute
JEn(x)K given JxK with x ∈ {0, 1}`, and JDe(X)K given JXKG with En(m) = X ∈
G for some m. For this we will use two protocols, described in brief here and
presented in detail in Appendix D. The first protocol is ΠIsSqr, which takes as
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input a secret-shared value JxK and outputs 1 if x is a square, and 0 otherwise.
That is, if ΠIsSqr outputs 1, then there exists a value y such that x2 = y mod p.
The other protocol is ΠSqrt which, on input a square JxK, outputs JyK satisfying
y = x2 mod p.

In the following, we assume that the curve is given as y2 = x3 +ax+ b where
a and b are constants.

Decoding. We begin with decoding. Given a secret-sharing JEn(m)KG where
En(m) = (x, y) and m ≡ x mod 2`, the goal is to obtain JmK. Besides JEn(m)KG,
we assume that we also have access to a secret-sharing of the upper `−log2 p bits
of x and we denote this value as JrK. Write JzKG = JEn(m)KG and let xi, resp. yi
be the values that comprise the i’th party’s share of z. To decode z, each party
first re-shares the xi and yi they hold, after which everyone computes the point
addition formula over all the coordinates. In a nutshell, this is the same idea
used when decomposing a number into bits. In this scenario, parties mask the
value they want to bit-decompose and then compute a binary adder to unmask
each bit.

Protocol ΠDecode

Inputs: JXKG, JrK where r was the randomness added during encoding.
Outputs: JmK the encoded message, secret-shared over the basefield.

1. Each party Pi parses their share of JXKG as the pair (xi, yi) and
secret-shares JxiK, JyiK towards the other parties.

2. Parties apply a parity check matrix to check that the reshared values
are consistent (see Appendix A.3 for details).

3. For j = 2, . . . , t+1 where t is the number of corrupt parties, compute
the curve addition of the shares over the secret-shared coordinates:
(a) Invoke JaK = FRand(F).
(b) JzK← FMul(Jxj − xj−1K , JaK) and open z.
(c) Compute JdK =

q
(xj − xj−1)−1

y
= z−1 JaK, JλK =

FMul(Jyj − yj−1K , JdK) and finally
q
λ2

y
= FMul(JλK , JλK).

(d) Compute Jx′K =
q
λ2

y
− JxjK− Jxj−1K.

(e) Compute Jy′′K = FMul(JλK , Jxj − x′K) and Jy′K = Jy′′K− JyjK.
(f) Set JxjK = Jx′K and JyjK = Jy′K.

4. Output Jxt+1K− JrK.

ProtocolΠDecode computes the injective encoding with complexity (t+1)(CRand(1)+
CMul(4) + COpen(1)) + CShare(n) + CCheck(n).

Lemma 1. Protocol ΠDecode securely outputs the lower ` bits of JXKG.

Proof. LetXi = (xi, yi) be the i’th party’s share ofX = (x, y). Notice thatX can

be reconstructed as a linear combination of the Xi’s; in particular, X =
∑t+1
i=1Xi

(we omit constants in this linear combination for the sake of simplicity). This
linear combination is computed in step 3 in the protocol, so, at step 3.f, parties
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hold shares of the coordinates of X, secret-shared over the base field. Finally,
JxK− JrK removes the randomness located in the upper log2 p− ` bits of x. Step
1 potentially poses a problem, as a corrupt party may secret-share an incorrect
value. However, the parity check applied in step 2 ensures this cannot happen,
as the adversary can only modify at most t shares.

Encoding. To encode a value x ∈ F, recall that we first need to add a bit of
randomness to it, in order to have a chance at hitting a valid x-coordinate for
our curve. Let ` be an upper bound on the size of x, i.e., x ≤ 2`. We first consider
a straightforward, but ultimately insecure, approach utilizing FCoin: Parties use
FCoin to sample a random value r < p such that its lower ` bits are 0. Parties
then call ΠIsSqr(JxK + r), and restart the process (i.e., go back and pick another
r) if this protocol outputs 0. However this fails to be secure. Indeed, if x is of low
entropy, then revealing whether or not JxK + r is a square, reveals information
about x itself (in particular, the adversary can rule out values x′ for which x′+r
is a square).

We must thus resort to fancier machinations that allows us to sample an
appropriate r without revealing it. Luckily, sampling a random value where
its lower bits are zero has been used before—in particular in connection with
secure truncation protocols (see e.g., [14]). We thus assume a functionality FsRand

which outputs a secret-shared r suitable for our purposes (see short description
in Appendix C). The final thing we require is a tuple (JRKG , JrxK , JryK) where
R = (rx, ry). Such a tuple can be generated by sampling a random JRKG and
then using step 2 in ΠDecode to obtain JrxK and JryK.

Protocol ΠEncode

Inputs: JmK the message to be encoded.
Outputs: JEn(m)KG, JrK.

1. Sample JrK = FsRand and compute JxK = JmK + JrK.
2. Call ΠIsSqr(JxK). If the return value is 0, go back to the previous step.
3. Call JyK = ΠSqrt(

q
x3

y
+ JxK a + b). Note that parties now have JxK,

JyK which are secret-sharings of En(m) in the field.
4. Parties then compute the curve addition formula between the points

(JxK , JyK) and (JrxK , JryK). Let (JzxK , JzyK) be the result.
5. JzxK and JzyK is opened. Write Z = (zx, zy).
6. Output JEn(m)KG = JXKG = Z − JRKG and JrK.

ProtocolΠEncode computes the injective encoding ofm with complexity CEncode ≤
CsRand(3) + CIsSqr(3) + CSqrt + 2COpen(1) + CRand(1) + CMul(4). Its security comes
from the fact that, at the end of step 5, parties hold Z = X + R, and since R
is random, nothing is revealed about X. Notice that an exact cost is not possi-
ble, since step 2 may repeat. However, [20] proves that a suitable r is found in
expected 3 iterations.
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5 Digital Signatures in MPC

In this section we show how the techniques presented in the previous sections can
be used to securely sign and verify messages that are secret shared, using keys
that are similarly secret-shared. More precisely, we present here three protocols:
First, a key generation protocol ΠKeygen for generating (pk, JskK) securely where
pk is a public key and JskK a secret-shared private key. Second, a signing protocol
ΠSign protocol that on input a secret shared message JmK and JskK output from
ΠKeygen outputs JσK where σ is a signature on m under sk. Finally, we present a
verification protocol ΠVerify which on input JmK, JσK and pk outputs JbK where b
is a value indicating whether or not σ is a valid signature on m under the private
key corresponding to the public key pk.

We choose to the PS signature scheme [33] as our starting point. The primary
reason for choosing the PS scheme is that signatures are short and independent
of the message length, and that messages do not need to be hashed prior to
signing. Interestingly, computing PS signatures securely leads to a number of
optimizations that are made possible since e.g., the secret key is not known by
any party.

5.1 The PS Signature Scheme

The following signature scheme due to Pointcheval and Sanders [33] (henceforth
PS) signs a vector of messages m ∈ Fr as follows (we present the multi-message
variant here):

– Setup(1λ): Output pp← (p,G1,G2,GT , e), a type-3 pairing.

– Keygen(pp): Select random H ← G2 and (x, y1, . . . , yr) ← Fr+1. Com-
pute (X,Y1, . . . , Yr) = (xH, y1H, . . . , yrH) set sk = (x, y1, . . . , yr) and pk =
(H,X, Y1, . . . , Yr).

– Sign(sk,m): Select random G ← G1 \ {0} and output the signature σ =
(G, (x+

∑r
i=1miyi) ·G).

– Verify(pk,m, σ): Parse σ as (σ1, σ2). If σ1 6= 0 and e(σ1, X +
∑
miYi) =

e(σ2, H) output 1. Otherwise output 0.

The remainder of this section will focus on how to instantiate the PS signature
scheme securely.

5.2 Distributed PS Signatures

The ΠKeygen protocol presented below shows how to generate keys suitable for
signing messages of r blocks. The protocol proceeds in a straight forward manner:
parties invoke FCoin and FRand a suitable number of times to generate the private
key and then use an appropriate LSS homomorphism to compute the public key.
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Protocol ΠKeygen

Inputs: pp = (p,G1,G2,GT , e), r
Outputs: (pk, JskK)

1. Parties invoke FCoin(G2) to obtain H, and invoke FRand(F) a total of
r + 1 times to obtain (JxK , Jy1K , . . . , JyrK).

2. Let φ2 : F→ G2 be LSS-homomorphism given by φ2 : x 7→ xH. Using
φ2, compute JXKG2

= φ2(JxK) and JYiKG2
= φ2(JyiK) for i = 1, . . . , r.

3. Parties open X ← JXKG2
and Yi ← JyiKG2

for i = 1, . . . , r. Out-
put the pair (pk, JskK) where pk = (H,X, Y1, . . . , Yr) and JskK =
(JxK , Jy1K , . . . , JyrK).

The communication complexity of ΠKeygen is CKeygen = CCoin(1) + CRand(r +
1) + COpen(r + 1) field elements.

Next up is computing Sign on secret-shared inputs, a process which is straight-
forward, given the tools we have described so far: Parties only need to pick a
random group element (which we do using FCoin) and then call FDotProd to com-
pute the second component of the signature.

Protocol ΠSign

Inputs: JskK = (JxK , Jy1K , . . . , JyrK), JmK = (Jm1K , . . . , JmrK)
Outputs: JσK

1. Parties obtain σ1 ∈R G1 by invoking FCoin(G1). If σ1 = 0, repeat this
step.

2. Parties invoke JzK ← FDotProd∗ ((JyiK)ri=1, (JmiK)ri=1) and then com-
pute JwK = JxK + JzK.

3. Parties use the LSS homomorphism x 7→ x · σ1 to compute locally
Jσ2KG1

← ΠScalarMul(JwK , σ1).
4. Output (σ1, Jσ2KG1

).

Protocol ΠSign produces a correct signature with communication complexity
CCoin(1) + CDotProd∗(r). Observe that, if the secret-sharing scheme is instantiated
either with Shamir or Replicated secret sharing, the communication complexity
becomes independent of r.

Remark 2. If we replace FDotProd∗ above by FDotProd, the effect would be that an
adversary could add any point δ ∈ G1 to the output, getting (σ1, Jσ2 + δKG1

),
causing the signature to be wrong. This is actually acceptable in some settings, in
particular, the one we consider in Section 6. Furthermore, as we saw in Section 3,
this makes the protocol much more efficient.

Finally, we show verification. However, to permit an efficient instantiation
we make the following very minor modification to Verify, which we dub Verify∗:
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On successful signature verification, Verify∗ outputs 1 and otherwise Verify∗ out-
puts non-zero. Clearly Verify and Verify∗ carry the same amount of information,
however the latter is less strict on the value indicating a failure—in particular,
it does not mandate that a failure is indicated by the output 0. (As we will see,
the output will be an element of GT for which a “0” does not exist.)

Protocol ΠVerify∗

Inputs: pk = (H,X, Y1, . . . , Yr), JmK = (JmiK)ri=1, σ = (σ1, Jσ2KG1
)

Outputs: JbKGT
= JVerify∗(pk,m, σ)K

1. If σ1 = 0 then output JµKGT
← FRand(GT ).

2. Compute JαKGT
= e(Jσ2K , H) using the LSS Homomorphism x 7→

xH.
3. Locally compute JβKGT

= e(σ1, X +
∑r
i=1 JmiKYi) using LSS homo-

morphisms.
4. Output JbKGT

← ΠScalarMul(JρK , JαKGT
/ JβKGT

) where JρK was ob-
tained by invoking FRand.

The communication complexity of theΠVerify∗ protocol is CRand(1)+CScalarMul(1).
We now argue security.

Lemma 2. Protocol ΠVerify∗ outputs a secret-sharing of 1 if σ = (σ1, Jσ2KG1
) is

a valid signature on JmK with public key pk, otherwise the protocol outputs a
secret-sharing of a uniformly random element.

Proof. Note that JαKGT
/ JβKGT

= Je(σ1, X +
∑
imiYi)/e(σ2, H)KGT

which is

1GT
if and only if e(σ1, X+

∑
imiYi) = e(σ2, H); that is, if the signature is valid.

Thus we have that the distribution of JbKGT
= J(a/β)ρKGT

is either uniformly
random (if α 6= β), or 1GT

(if α = β). To see that JbKGT
is uniformly random

when α 6= β it suffices to note that α/β is a generator of GT and that ρ was
picked at random.

6 Applications to Proactive Secret Sharing

In a real-life scenario secret-sharing techniques can be used to distribute knowl-
edge of a secret among multiple parties in such a way that only certain threshold
of parties (or in general, certain subsets defined in some specific way) can re-
construct the secret, whereas any other set of parties obtains no information
whatsoever about the secret. Hence, privacy of the secret is guaranteed as long
as the adversary cannot get hold of more than certain number of shares. However,
as time passes, the chances of information leakage increase and it may become
easier for the adversary to gain access to enough shares as to reconstruct the
secret. Proactive Secret Sharing (PSS) deals with this problem by “refreshing”
the shares with certain periodicity so that the shares gathered by an adversary
before this process become “incompatible” with the new shares produced by the
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PSS scheme. Furthermore, some PSS schemes, which we call dynamic PSS, allow
the secret to be transferred from one set of parties to a new one, having perhaps
a different number of participants or even a different privacy threshold.

Many works have been devoted to developing and improving PSS schemes in
the past [25,4,31,34,9,29]. To date, the most efficient solution for dynamic PSS is
CHURP [29], which works by first performing a fast optimistic proactivization
in which cheating can be detected, but no particular cheater can be pointed out.
In case some malicious behavior is detected, the proactivization is repeated with
a more expensive method that is able to detect cheaters. In this work we focus
on PSS with abort, which, as the optimistic protocol in [29], allows transferring
a secret from one committee of parties to another one while ensuring privacy
of the secret, but a malicious adversary may cause the whole process to abort.
However, if the protocol does not abort then it is guaranteed that the correct
secret is transmitted to the new committee.

In what follows we show how to apply the secure signatures developed in Sec-
tion 5 to improve the efficiency of dynamic PSS with abort. Our construction is
fundamentally simple: First we develop a highly efficient protocol for proactiviz-
ing a secret that guarantees privacy, but allows the adversary to tamper with the
transmitted secret. Then, we use our signatures to transmit a signature on the
secret, that can be checked by the receiving committee. In this way, due to the
unforgeability properties of the PS signature scheme, an adversary cannot make
the receiving committee accept and incorrectly transmitted message. This con-
struction leads to a 9-fold improvement in terms of communication with respect
to the optimistic protocol from [29].

6.1 Proactive Secret Sharing

First we present the definitions of proactive secret sharing, or PSS for short. We
remark that our goal is not to provide formal definitions of these properties but
rather a high level description of what a PSS scheme is, so that we can present
in a clear manner our optimizations to the work of [29].

In a PSS scheme a set of n parties have shares of a secret JsK = (s1, . . . , sn)
under a threshold t. At a given stage, a proactivization mechanism is executed,
from which the parties obtain Js′K = (s′1, . . . , s

′
n). A PSS scheme should satisfy

the following properties:

– (Correctness). It must hold that s = s′

– (Privacy). An adversary corrupting a set of at most t parties before the
proactivization, and also a (potentially different) set of at most t parties
after the proactivization, cannot learn anything about the secret s.

The PSS schemes we consider in this work are dynamic in that the set of
parties holding the secret before the proactivization step may be different than
the set of parties holding the secret afterwards.
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6.2 Partial PSS

In what follows we denote by C = {Pi}ni=1 and C′ = {P ′i}ni=1 the old a new com-
mittees, respectively. Furthermore, we denote U = {Pi}t+1

i=1 and U ′ = {P ′i}
t+1
i=1.

Also, we consider Shamir Secret Sharing, as defined in Section 3.2. We assume
that n = 2t + 1. Our protocol ΠPartialPSS is inspired by the protocol from [5],
except that, since we do not require the transmitted message to be correct, we
can remove most of the bottlenecks like the use of hyper-invertible matrices or
consistency checks to ensure parties send shares consistently.

Protocol ΠPartialPSS(JsKC)

Inputs A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Either a consistently shared value Js′KC
′

or abort. If all parties
behave honestly then s′ = s.

1. Each Pi ∈ C samples si1, . . . , si,t+1 ∈R F such that si =
∑t+1
j=1 sij and

sends sij to Pj for j = 1, . . . , t+ 1.
2. Each Pi ∈ U samples rki ∈R F for k = 1, . . . , t, and sets r0,i = 0.

3. Each Pi ∈ U sets aij = sji +
∑t
k=0 rki · jk and sends aij to P ′j , for

each j = 1, . . . , n.
4. Each P ′j ∈ C′ sets s′j :=

∑t+1
i=1 aij .

5. The parties in C′ output the shares (s′1, . . . , s
′
n).

Theorem 1. Protocol ΠPartialPSS satisfies the following properties.

1. The resulting sharings are consistent. Furthermore, if all the parties behave
honestly, then the underlying secret is the same as provided as input.

2. An adversary simultaneously controlling t parties in C and t parties in C′

does not learn anything about the secret input s.

Proof. We begin by introducing some notation. Let A ⊆ C and A′ ⊆ C′ be the
corresponding subsets of corrupt parties. For an honest party Pi it should hold
that si =

∑t+1
j=1 sij , where sij is the additive share sent by Pi to Pj in step 1.

However, for Pi ∈ A, this may not be the case, so we define δi ∈ F such that
si + δi =

∑t+1
j=1 sij . Finally, each Pi ∈ U is supposed to send aij in step 3, but

naturally, parties in A∩U may not follow this. We define εij for Pi ∈ A∩U and
j = 1, . . . , n in such a way that aij + εij is the value sent by Pi to P ′j in step 3.

It is easy to see that the value reconstructed by P ′j in step 4 is s′j =
∑t+1
i=1 aij =

εj+δj+sj+
∑t
k=0 rk ·jk, where εj =

∑t+1
i=1 εij , rk =

∑t+1
i=1 rki (notice that r0 = 0).

This can be written as s′j = γj + h(j), where h(x) = f(x) + g(x) ∈ F≤t[x],

g(x) =
∑t
k=0 rk · xk ∈ F≤t[x] and γj = εj + δj .

From the above it follows that the final sharings s′j = γj + h(j) output by
the honest parties P ′j ∈ C′ \ A′ are consistent: The adversary knows all γi, so
it can re-define s′j ← s′j − γj + q(j) for P ′j ∈ A′, where q(j) ∈ F≤t[x] is such
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that q(i) = γi for Pi ∈ C′ \ A′, and in this way the sharings (s′1, . . . , s
′
j) are

consistent with the polynomial h(x) + q(x) ∈ F≤t[x]. Furthermore, if all parties
behave honestly then q(x) ≡ 0, so the shares (s′1, . . . , s

′
n) are consistent with the

polynomial h(x) which satisfies h(0) = f(0) + g(0) = s+ 0 = s.
Finally, we show that privacy holds. To see this, it suffices to show that

(s′1−s1, . . . , s′n−sn) are uniform shares of some value that the adversary knows.
We first claim that, fromt the point of view of the adversary, (g(1), . . . , g(n)) are
uniformly random shares of 0. This holds because s′j−sj = (sj+q(j)+g(j))−sj =
q(j) + g(j)

Now we argue privacy. For this we assume that q(x) ≡ 0 (that is, the adver-
sary did not cheat overall). This simplifies notation, but it is also without loss
of generality because as we saw above the worst thing an adversary can do is
shifting the secret by an amount the adversary itself knows. First, notice that
the view of the adversary is

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A︸ ︷︷ ︸
Sampled locally

, {sij}Pi∈C,Pj∈U∩A︸ ︷︷ ︸
Received in step 1

, {aij}Pi∈U,P ′j∈A′︸ ︷︷ ︸
Received in step 4

),

where gi(x) =
∑t
k=0 rki · xt (notice that g(x) =

∑t+1
i=1 gi(x)). We claim that this

view is independent of the secret s. To see this, we define a simulator S that, on
input ({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈U∩A) and without knowledge of s, produces an
indistinguishable view.

The simulator S is defined as follows:

– Sample sij ∈R F for Pi ∈ C \ A, Pj ∈ U ∩ A, and set sij := sij for Pi ∈
A, Pj ∈ U ∩ A.

– Define aij := sji + gi(j) for Pi ∈ U ∩ A, P ′j ∈ A′, and aij ∈R F for Pi ∈
U \ A, P ′j ∈ A′

– Output

({sij}Pi∈A,Pj∈U , {gi(x)}Pi∈A, {sij}Pi∈C,Pj∈U∩A, {aij}Pi∈U,P ′j∈A′).

The two views are perfectly indistinguishable: {sij}Pi∈C,Pj∈U∩A ≡ {sij}Pi∈C,Pj∈U∩A
because, given that |U ∩ A| ≤ t < t+ 1, in the real execution the honest parties
Pi ∈ C \ A sample {sij}Pj∈U∩A independently and uniformly at random, like
in the simulation. Also {aij}Pi∈U,P ′j∈A′ ≡ {aij}Pi∈U,P ′j∈A′ given the rest of the

views because, in the real execution, {aij}Pi∈U\A,P ′j∈A′ are uniformly random

since they are only conditioned on aj =
∑t+1
i=1 aij = sj + g(j) for P ′j ∈ A′, but

since |A′| ≤ t and g(x) ∈R F≤t[x] with g(0) = 0, {g(j)}P ′j∈A′ are independent

and uniform so {aj}Pj∈A′ look uniform and independent to the adversary. ut

Extending to group elements. Protocol ΠPartialPSS can be extended in a straight-
forward way to proactivize shares JαKCG, where G is an elliptic curve group by
running the exact same protocol “in the exponent”. More formally, the LSSS
homomorphism x 7→ x ·G, where G is a generator of G, is used.
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Communication Complexity. In protocol ΠPartialPSS there is a total of n(n + 1)
field elements communicated.

6.3 Simple and Efficient PSS with Abort

The protocol ΠPartialPSS presented in the previous section guarantees privacy and
consistency of the new sharings, but it does not satify the main property of a
PSS, which is guaranteeing that the secret remains the same, if a malicious party
deviates from the protocol. More precisely, a malicious party may disrupt the

output as Js+ γKC
′
← ΠPartialPSS(JsKC), where γ is some value known by the

adversary. This is of course not ideal, but it can be easily fixed by making use
of the secure signatures we proposed in Section 5. In a nutshell, the committee
C uses ΠPartialPSS to send to C′ not only the secret s, but also a signature on
this secret using a secret-key shared by C. Then, upon receiving shares of the
message-signature pair, the parties in C′ proceed to verifying this pair securely
using C’s public key, and if this check passes then it can be guaranteed that
the message was correct, since the adversary cannot produce a valid message-
signature pair for a new message.

The protocol is presented more formally in Protocol ΠPSS below.

Protocol ΠPSS(JsKC)

Inputs A shared value JsKC = (s1, . . . , sn) among a committee C.

Output: Consistent shares JsKC
′

or abort.

Setup: Parties in C have a shared secret-key JskCKC, and its corresponding
public key pkC is known by the parties in C′.a

1. Parties in C call (σ1, Jσ2K
C
)← ΠSign(JskCKC , JsKC).

2. Parties in C ∪ C′ call Js′KC
′
← ΠPartialPSS(JsKC) and Jσ′2K

C′ ←
ΠPartialPSS(Jσ2K

C
).

3. P1, . . . , Pt+1 all send σ1 to the parties in C′. If some party in Pj ∈ C′

receives two different σ1 from two different parties, then the parties
abort.

4. Parties in C′ call v ← ΠVerify∗(Js′K
C′
, (σ1, Jσ′2K

C′
), pkC). If v = 0 then

the parties in C′ output Js′KC
′
. Else, they abort.

a This can be easily generated by using protocol ΠKeygen.

Intuitively, the protocol guarantees that the parties do not abort if and only
if the message is transmitted correctly. This follows from the unforgeability of
the PS signature scheme: If an adversary can cause the parties to accept with
a wrong message/signature pair, then this would constitute a forged signature.
The fact that privacy is maintained regardless of whether the parties abort or not
is more subtle, and follows from the fact that this bit of information indicating
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whether the protocol aborted can be shown to be independent of the secret, and
only depends on the errors introduced by the adversary.

We summarize these properties in Theorem 2 below, where we provide a
sketch of the corresponding simulation-based proof. However, in our proof we
do not reduce to the unforgeability of the signature scheme directly, but rather
to a hard problem over elliptic curves directly. This is easier and cleaner in our
special setting, given that the signatures are produced and checked within the
same protocol. The computational problem we reduce the security of Protocol
ΠPSS to is the following, which can be seen as a natural variant of Computational
Diffie-Hellman (CDH) problem over G1.

Definition 5 (co-CDH assumption). Let G ∈ G1 and G′ ∈ G2 be generators.
Given (G,G′, aG, bG′) for a, b,∈R F, an adversary cannot efficiently find (ab)G.

With this assumption at hand, which is assumed to hold for certain choices
of pairing settings [19], we can discuss the security of ΠPSS.

Theorem 2. Protocol ΠPSS instantiates the PSS-with-abort functionality de-
scribed in Section 6.1, that is, if the parties do not abort in the protocol ΠPSS,

then the parties in C′ have shares JsKC
′
, where JsKC was the input provided to the

protocol. Furthermore, privacy of s is satisfied regardless of whether the parties
abort or not.

Proof (Sketch). We only provide a sketch of the corresponding simulation-based
proof. Let s′ = s + δ and σ′2 = σ1 + γ, where δ ∈ F and γ ∈ G1 are the
errors introduced by the adversary in the ΠPartialPSS protocol. Our simulator
simply emulates the role of the honest parties, with these virtual honest parties
using random shares as inputs. The simulator also emulates all the necessary
functionalities like FDotProd∗, FCoin and FRand. Using an argument along the lines
of the proof of Theorem 1, the simulator is then able to learn the errors δ and
γ. The simulator then makes the virtual parties abort if δ 6= 0 or γ 6= 0G1 .

We show that the simulated execution is indistinguishable to the adversary
from a real execution. To see this, first observe that in the real execution, the
honest parties abort if the output of Verify∗ is not 0. Furthermore, it is easy to

see that the output of ΠVerify∗(Js′K
C′
, (σ1, Jσ′2K

C′
), pkC) is equal to 0 if and only if

δ · e(σ1, Y ) = e(γ,H). Given this, the only scenario in which the two executions
(real and simulated) could differ is if δ 6= 0 or γ 6= 0G1 , but δ ·e(σ1, Y ) = e(γ,H),
since in this case the honest parties in the real execution do not abort, but the
honest parties in the ideal execution do. However, we show this cannot happen:
If δ 6= 0 or γ 6= 0G1

, then δ · e(σ1, Y ) 6= e(γ,H), with overwhelming probability.
To see why the claim above holds, we make a reduction to the co-CDH

problem defined above: An adversary gets challenged with (α1H,α2H
′), and

its goal is to find α1α2H. The adversary then plays the simulator above, but
uses σ1 = α1H and Y = α2H

′. Now suppose that in the simulation δ 6= 0
and δ · e(σ1, Y ) = e(γ,H ′). We can see then that this equation implies that
δα1α2 = β, where β ∈ F is such that γ = βH ′. In particular, it implies that
α1α2H = δ−1βH = δ−1γ, so the adversary, who knows δ and γ, can compute
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α1α2H as above, thus breaking co-CDH. Finally, it is easy to see that if γ 6= 0
and δ · e(σ1, Y ) = e(γ,H), then δ 6= 0 with high probability since otherwise
e(γ,H) = 0, so the same argument as above works. This finishes the sketch of
the simulation-based proof of the theorem. ut

Proactivizing multiple shared elements. If multiple shared elements Js1K
C
, . . . , JsLKC

are to be proactivized, we can make use of the fact that the signature scheme
described in Section 5 allows for cheap signing and verification of long messages
without penalty in communication.

Optimizing the signatures. As we noted in Section 5.2, we can use the more
efficient functionality FDotProd instead of FDotProd∗, at the expense of allowing
the adversary to produce incorrect signatures by adding any error to the second
component of the signature. However, this is completely acceptable in our set-
ting. In fact, the adversary can already add an error to the second component
of the signature when using the ΠPartialPSS protocol. Hence, in our protocol ΠPSS

we use the modified version of ΠSign that uses FDotProd instead of FDotProd∗.

Using AMD codes. The fact that the worst that can happen in the ΠPartialPSS

protocol is that the transmitted message is wrong by an additive amount known
by the adversary implies that other methods to ensure correctness of the trans-
mitted value can be devised. This is described in Section B.2 in the appendix.
Although the overall computation is much more efficient since it does not involve
any public-key operations, the communication of the method we present here is
worse by a factor of 2.

Communication Complexity. The communication complexity of the ΠPSS pro-
tocol is CPartialPSS(L+ 1) + CSign(L) + CVerify(L). Recall that CSign(L) = CCoin(1) +
CDotProd(L), and CVerify(L) = CRand(1) + CScalarMul(1) For the case of Shamir se-
cret sharing, CRand(1) = 2n log |F|, using the protocol from [17] and amortizing
over multiple calls to FRand. Also, CDotProd(L) = 5.5n log |F|, and CScalarMul(1) =
5.5n log |F| too, using the specialized bilinear protocol Πshm

DotProd for Shamir SS
described in Section 3.2. We ignore the cost CCoin(1) since it can be instantiated
non-interactively using a PRG.

Given the above, the total communication complexity of the ΠPSS protocol
is

log(|F|) · ((L+ 1) · n · (n+ 1) + 13n) bits.

Comparison with CHURP. This dynamic PSS protocol, proposed in [29], is the
state of the art in terms of communication complexity. At a high level, CHURP
is made of two main protocols, Opt-CHURP, which is able to detect malicious
behavior during the proactivization but is not able to point out which party or
parties cheated, and Exp-CHURP, which performs proactivization while enabling
cheater detection at the expense of being heavier in terms of communication.
Since in this work we have described a PSS protocol with abort, we compare our
protocol against Opt-CHURP.
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The total communication complexity of Opt-CHURP is 9Ln2 log |F| bits in
point-to-point channels, plus 256n bits over a blockchain.6 Furthermore, al-
though not mentioned in our protocol, a lot of the communication that appears
in the 13n term in our ΠPSS protocol can be regarded as preprocessing, that
is, it is independent of the message being transmitted and can be computed in
advance, before the proactivization phase.

Finally, we note that our novel protocol ΠPSS is much more conceptually
simple than Opt-CHURP. This is because, unlike in Opt-CHURP, our protocol
does not require the expensive use of commitments and proofs at the individual
level (i.e. per party) in order to ensure correctness of the transmitted value.
Instead, we compute a global signature of the secret and check its validity after
the proactivization.

7 Applications to Input Certification

MPC, classically, does not put any restriction on what kind of inputs are allowed,
yet such a property has its place in many applications. (For example, one might
want to ensure that the two parties in the millionaires problem do not lie about
their fortunes).

Signatures seem like the obvious candidate primitive for certifying inputs in
MPC: A trusted party T will sign all inputs xi of party Pi that need certifi-
cation. Then, after Pi have shared its input Jx′iK, which it may change if it is
misbehaving, parties will verify that Jx′iK is a value that was previously signed
by T . While this approach clearly works (if Pi could get away with sharing x′i,
then Pi produced a forgery) it is nevertheless hindered by the fact that signature
verification is expensive to compute on secret-shared values, arising from the fact
that the usual first step in verifying a signature is hashing the message, which is
prohibitely expensive in MPC. In this section we show that by using our secure
PS signatures from Section 5, this approach is not longer infeasible, and in fact,
it is quite efficient.

7.1 Certifying inputs with PS signatures

We consider a setting in which n parties P1, . . . , Pn wish to compute a function
f(x1, . . . ,xn), where xi ∈ FL corresponds to the input of party Pi. We assume
that all parties hold the public key pk of some trusted authority T , who pro-
vided each Pi with a PS signature (σi1, σ

i
2) on its input xi. We also assume a

functionality FInput that, on input xi from Pi, distributes to the parties consistent
shares Jxi1K , . . . , JxiLK. This is implemented in different ways dependending on
the secret-sharing scheme. We also assume the existence of a broadcast channel.

Using the protocols presented in Section 5, a very simple protocol for certi-
fying inputs. Our protocol, ΠCertInput, allows a party Pi to distribute shares of
its input, only if this input has been previously certified.

6 For a more detailed derivation of this complexity, see Section B.1 in the appendix.
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Protocol ΠCertInput

Input: Index i ∈ {1, . . . , n} and
(
(xi)

L
i=1, σ1, σ2

)
from Pj .

Output: (JxiK)i where Verify(pk, (JxiKi), (σ1, σ2)) = 1, or abort.

1. Pj calls FInput to distribute
(
(JxiK)i, Jσ2KG1

)
. Also, Pj broadcasts σ1

to all parties.
2. Parties call JrKGT

← ΠVerify∗(pk, (JxiK)Li=1, σ1, Jσ2KG1
).

3. Parties open JrKGT
, who output (JxiK)i if r = 1GT

and abort other-
wise.

The security of the protocol follows seamlessly from the unforgeability of the
PS signatures, proven in [33].

Complexity analysis. The communication complexity of the protocol ΠCertInput

is CInput(L) + CVerify(L) + COpen(1) bits.

Optimization if multiple parties provide input. If all parties P1, . . . , Pn useΠCertInput

to certify their input, each party can call ΠCertInput, which, in the case that a pro-
tocol with guaranteed output delivery is used to compute ΠVerify, allows parties
to identify exactly which party provided a faulty input. However, one can im-
prove the communication complexity if a “global” abort is accepted, that is, if
the parties do not abort then all the inputs are correctly certified, but if they do
abort, then it is not possible to identify which party provided an incorrect input
(however, for protocols without guaranteed output delivery, this is acceptable
since the abort can already happen due to malicious behavior in other parts of
the protocol).

The optimization works as follows. Consider the n ΠCertInput executions, cor-
responding to all parties. At the end of step 2, n shares Jr1KGT

, . . . , JrnKGT
have

been produced. The parties then locally compute JrKGT
=
∏n
i=1 JriKGT

(recall
that GT is a multiplicative group), open r, and accept the secret-shared inputs
if and only if this opened value equals 1GT

. Notice that, if at least one signature
is incorrect, then at least one ri is uniformly random, so r will be uniformly
random too and therefore the probability that it equals 1GT

in this case is at
most 1/|GT |.

7.2 Comparison with [8]

Certifying inputs for MPC with the help of signatures has been studied previ-
ously in [8]. However, the approach followed in that work is conceptually much
more complex than the one we presented here. At a high level, instead of verifying
the signature in MPC, the parties jointly produce commitments of the secret-
shared inputs, and then each input owner uses these commitments, together with
the signatures, to prove via an interactive protocol (that roughly resembles a
zero-knowledge proof of knowledge) “posession” of the signatures. Furthermore,
the protocols presented in [8] depend on the underlying secret-sharing scheme
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used, and two ad-hoc constructions, one for Shamir secret-sharing (using the
MPC protocol from [17]) and another one for additive secret sharing (using the
MPC protocol from [16]), are presented. Instead, our approach is completely
general and applies to any linear secret-sharing scheme, as defined in Section 2.

We present in Section 8.1 a more experimental and quantitative comparison
between our work and [8]. We observe that, in general, our approach is at least
2 times more efficient.

8 Implementation and Benchmarking

We implemented our protocols with the help of the RELIC toolkit [2] using
the pairing-friendly BLS12-381 curve as the choice of parameters. This curve
has embedding degree k = 12 and a 255-bit prime-order subgroup, and became
popular after the ZCash cryptocurrency [6]. It is now in the process of standard-
ization due to its attractive performance characteristics, including an efficient
towering of extensions, efficient GLV endomorphisms for scalar multiplications
in the pairing groups, cyclotomic squarings for fast exponentiation in GT , among
others. In terms of security, the choice is motivated by recent attacks against the
DLP in GT [28] and are supported by the analysis in [30]. Our implementations
make use of all optimizations implemented in RELIC, including Assembly accel-
eration for Intel 64-bit platforms, and extend the supported algorithms to allow
computation of arbitrarily-sized linear combinations of G2 points through NAF
interleaving. We take special care to batch operations which can performed si-
multaneously, for example merging scalar multiplications together or combining
the two pairing computations within MPC signature verification as a product of
pairings. We deliberately enabled the variable-time but faster algorithms in the
library relying on the timing-attack resistance built in MPC, since computations
will be performed essentially over ephemeral data. The resulting code is available
in the library repository.

We benchmarked our implementation on an Intel Core i7-7820X Skylake pro-
cessor running at 3.6GHz. We turned off HyperThreading and TurboBoost to
reduce noise in the benchmarks. Each procedure was executed 104 times and the
averages are computed and reported in Table 1. It can be seen from the table
that the MPC versions of scalar multiplications and exponentiations introduce
a computational overhead ranging from 2.17 to 2.77, while pairing computation
becomes only 30% slower. We notice that performance impact is higher for ex-
ponentiation in GT due to a less efficient implementation in RELIC. This is
justified by the lower prevalence of such operations in pairing-based protocols
compared to operations in G1 and G2. For the PS protocol, key generation and
signature verification in MPC are penalized approximately by a 2-factor, while
the cost of signature computation stays essentially the same. There is no perfor-
mance penalty for signature computation involving many messages because of
the batching possibility in the PS signature scheme.
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Operation Local (cc) Two-party (cc)

Scalar multiplication in G1 386 840
Scalar multiplication in G2 1,009 2,417
Exponentiation in GT 1,619 4,483
Pairing computation 3,107 4,063

PS key generation (1 msg) 2,670 4,723
PS signature computation (1 msg) 626 532
PS signature verification (1 msg) 5,153 11,514

PS key generation (10 msgs) 11,970 23,464
PS signature computation (10 msgs) 656 532
PS signature verification (10 msgs) 11,131 16,216

Table 1. Efficiency comparison between local computation and two-party computation
of the main operations in pairing groups and PS signature computation/verification.
We display execution times in 103 clock cycles (cc) for each of the main operations in
the protocols and report the average for each of the two parties.

8.1 Certified Inputs

Here we compare our protocol for input certification from Section 7 with the
experimental results reported in [8]. To perform a fair comparison, we converted
the timing results from the second half of Table 2 in [8] to clock cycles using
the reported CPU frequency of 2.1GHz for an Intel Sandy Bridge Xeon E5-
2620 machine. Each procedure in our implementation was executed 104 times
for up to 102 messages, after which we decreased the number of executions lin-
early with the increase in messages by the same factor. We used as reference
the largest running time of the two running parties (input provider and other
party) reported in [8], since the computation would be bounded by the maximum
running time. Our results are shown in Table 2, and show that our implemen-
tations are competitive for small numbers of messages, but improve on related
work by a 2-factor when the number of messages is at least 100. While the two
benchmarking machines are different (Intel Sandy Bridge and Skylake), our im-
plementations do not make use of any performance feature specific to Skylake,
such as more advanced vector instruction sets. Hence we claim that the per-
formance of our implementations would not be substantially different in Sandy
Bridge, and just converting performance figures to clock cycles makes the results
generally comparable.
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Supplementary Material

A Some Linear Secret Sharing Schemes

A.1 Additive Secret-Sharing

In this scheme each party Pi gets a uniformly random value ri ∈ F subject to∑n
i=1 ri = s, where s ∈ F is the secret. More formally, this scheme Sadd is defined

as (Madd, labeladd), where Madd ∈ Fn×n is given below, and labeladd(i) = i:
r1
r2
...

rn−1
s− r1 − · · · − rn−1

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 −1 −1 · · · −1


︸ ︷︷ ︸

Madd∈Fn×n

·


s
r1
r2
...

rn−1



It is easy to see that this scheme is (n−1, n)-secure. Let us denote additive secret

sharing of s by JsKadd, and abussing notation, we write JsKadd = (r1, . . . , rn),
where each ri is the share of party Pi. Given an elliptic curve group G of order p,
having G as generator, the parties can obtain shares of s·G by locally multiplying
the generator G by their share ri; that is, Js ·GKadd = (r1 ·G, . . . , rn ·G).

Reconstruction. The scheme Sadd is mostly used in the dishonest majority
setting. However, at reconstruction time, a maliciously corrupt party can lie
about his share, causing the reconstructed value to be incorrect. To help solve
this issue, actively secure protocols in the dishonest majority share a secret s
as JsKadd, together with Jr · sKadd, where r is a global uniformly random value

that is also shared as JrKadd. We denote this by JsKadd∗. At reconstruction time,

the adversary may open JsKadd to s + δ where δ is some error known to the
adversary. To ensure that δ = 0 (so the correct value is opened), the parties

compute (s + δ) JrKadd − Jr · sKadd, open this value, and check it equals 0. It is
easy to see that this value equals r · δ, but since the adversary may cheat in this
opening, this opened value may be r · δ− ε. However, if δ 6= 0, this opened value
equals 0 if and only if r = ε/δ, which happens with probability at most 1/|F|
since ε and δ are chosen independently of the uniformly random r.

The same check can be performed over G: The sharings Js ·GKaddG are accom-

panied by Jr · s ·GKaddG , where r is a global uniformly random value that is also

shared as JrKadd. At reconstruction time Js ·GKaddG can be opened to (s+ δ) ·G,

and to ensure δ = 0 the parties open JrKaddG · (s+ δ) ·G− Jr · s ·GKaddG and check
that this point is the identity. It is easy to see that, like in the case over F, the
check passes with probability at most 1/|F| if δ 6= 0.
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A.2 Shamir Secret-Sharing

Consider a setting with n parties, and let 0 < t < n. In this scheme each party
Pi gets f(i) where f(x) ∈R F≤t[x] subject to f(0) = s, and s ∈ F is the secret.7

We denote JsKshmF = (f(1), . . . , f(n)). More formally, this scheme Sshm is defined
as (Mshm, labelshm), where Mshm ∈ Fn×(t+1) is given below, and labelshm(i) = i:

s1
s2
...

sn−1
sn

 =


10 11 12 · · · 1t

20 21 22 · · · 2t

...
(n− 1)0 (n− 1)1 (n− 1)2 · · · (n− 1)t

n0 n1 n2 · · · nt


︸ ︷︷ ︸

Mshm∈Fn×(t+1)

·


s
r1
r2
...
rt



It is easy to see that this scheme is (n − 1, n)-secure. Over a vector space V ,
sharing a point α ∈ V is done by sampling r1, . . . , rt ∈R V , and setting the
i-th share to be αi = α +

∑t
j=1 i

j · rj . In this way, αi = f(i), where f(x) =

α+
∑t
j=1 x

j · rj ∈R V≤t[x]. We denote this by JSKshmV .

Reconstruction. Consider a shared value JsKshm = (f(1), . . . , f(n)). If t ≥ n/2,
then it can be shown that, like in the additive scheme from Section 3.2, the
adversary can succeed in opening an incorrect value by modifying the shares
of the corrupt parties. However, if t < n/2, this cannot be done: The honest
parties will be able to detect that the opened value is not correct. Furthermore,
if t < n/3, the honest parties can do better: On top of detecting whether the
open value is the right one, they can correct the errors and compute the right
secret. We describe these below, and we also discuss extensions to elliptic curves.

Error detection (t < n/2). Assume t < n/2, and suppose that a most t shares
among (s1, . . . , sn) are incorrect. If all shares (s1, . . . , sn) lie in a polynomial of
degree at most t, then the reconstructed secret must be correct, given that a
polynomial of degree at most t is determined by any t+ 1 points, in particular,
it is determined by the t+1 ≤ n− t correct shares. In this way, by verifying if all
the shares lie in a polynmial of the right degree, the parties can detect whether
the reconstructed value is correct or not. This can be done by interpolating a
polynomial of degree at most t using the first t + 1 shares, and then checking
whether the other shares are consistent with this polynomial.

Alternatively, the parties can use the parity check matrix H ∈ F(n−t−1)×n,
which satisfies that A · (s1, . . . , sn)T is the zero-vector if and only if the shares si
are consistent with a polynomial of degree at most t. This check can be performed
for the group sharings JP KG as well.

7 We assume that |F| > n+ 1
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Error correction (t < n/3). If t < n/2 then the parties can detect whether a
reconstructed value is correct or not, but they cannot “fix” the errors in case the
value is not correct. Under the additional condition t < n/3, this can actually
be done, that is, the parties can reconstruct the correct value, regardless of any
changes the adversary does to the shares from corrupted parties. The algorithm
to achieve this proceeds, at least conceptually, as follows: The parties find a
subset of 2t + 1 shares among the announced shares that lies in a polynomial
of degree at most t; this set exists because there are at least n − t ≥ 2t + 1
correct shares. Then, the secret given by this polynomial is taken as the right
secret. This is correct because of the same reason as in the previous case: This
polynomial is determined by any set of t+ 1 points among the 2t+ 1 ones that
are consistent, and in particular, it is determined by the t+1 = 2t+1− t correct
shares, since at most t of them can be incorrect.

The main bottleneck in the reconstruction algorithm sketched above is finding
a consistent subset of 2t+1 shares, since there are exponentially-many such sets.
To this end, an error-correction algorithm like Berlekamp Welch is used [22],
which has a running time that is polynomial in n.

Finally, it is important to remark that, unlike the error-detection mechanism
above, this error-correction procedure cannot be performed over the group G.
This interesting result was shown in [32].

Dot Products of Shared Vectors. Let 2t+1 = n, and let U, V,W be F-vector
spaces of dimension d with bases {ui}di=1, {vi}di=1 and {wi}di=1, respectively.8

Consider a bilinear map φ : U ×V →W . For the rest of this section we consider
Shamir secret sharing, and we omit the superscript shm from the sharings, and
consider explicitly the degree of the polynomial used for the sharing: J·Kh denotes
Shamir secret sharing using polynomials of degree at most h.

Consider shared values Jx1K
t
U , . . . , JxLKtU , Jy1K

t
V , . . . , JyLKtV . In this section

we describe a protocol to compute Jz + δKtW , where z =
∑L
`=1 φ(x`y`) and δ ∈W

is some error known to the adversary. The main building blocks of the protocol
are the following:

– The parties can locally obtain Jφ(α, β)K2tW from JαKtU and JβKtV . To see this,

write JαKtU = (f(1), . . . , f(n)) and JβKtU = (g(1), . . . , g(n)), for some f(x) ∈
U≤t[x] and g(x) ∈ V≤t[x] such that f(0) = α and g(0) = β. Write f(x) =∑t
i=0 x

i · ri and g(x) =
∑t
i=0 x

i · si, and let h(x) =
∑t
i,j=1 x

i+j · φ(ri, sj) ∈
W≤2t[x]. It is easy to see that h(0) = φ(α, β) and that h(i) = φ(f(i), g(i))

for all i = 1, . . . , n, so Jφ(α, β)K2tW = (h(1), . . . , h(n)).

– There exists a protocol ΠDoubleSh that produces a pair (JwKtW , JwK2tW ), where

w ∈R W . Such a pair can be produced from d pairs (JriK
t
F , JriK

2t
F ) by defining

JwKkW =
∑d
i=1 JriK

k · wi for k = t, 2t. These pairs over F can be produced
using the protocol from [17].

8 As in Section 2, the condition that all three spaces have the same dimension is not
necessary.
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With these tools at hand we are ready to describe our main protocol.

Protocol Πshm
DotProd

Inputs: Shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV .

Output: Jz + δKW , where z =
∑L
`=1 φ(x`, y`) and δ ∈ W is some error

known to the adversary.

1. Call (JwKtW , JwK2tW )← ΠDoubleSh

2. Parties locally compute Jφ(x`, y`)K
2t
W ← φ(Jx`K

t
U , Jy`K

t
V ), for ` =

1, . . . , L;
3. Parties compute JeKW = JwK2tW +

∑L
`=1 Jφ(u`, v`)K

2t
W and send the

shares of e to P1.
4. P1 uses the n = 2t+ 1 shares received to reconstruct e+ δ (where δ

is the error the adversary may introduce by lying about its shares),
and broadcastsa e+ δ to all parties.

5. All parties set Jz + δKtW = (e+ δ)− JwKtW .

a A proper broadcast channel must be used.

The protocol is private because the only value that is opened is e, which is a
perfectly masked version of the sensitive value z, given that w is uniformly ran-
dom and unknown to the adversary. The communication complexity of Πshm

DotProd

is CshmDotProd = d · log(|F|) · 5.5 · n, using the optimization from [23].

A.3 Replicated Secret Sharing

This is a (1, 2)-secure LSSS for 3 parties. In this scheme each party Pi gets
(ri, ri+1), where the sub-indexes wrap modulo 3, and s = r1 + r2 + r3, where
s ∈ F is the secret. We denote JsKrepF = ((r1, r2), (r2, r3), (r3, r1)). More formally,
this scheme Srep is defined as (Mrep, labelrep), where Mrep ∈ F6×3 is given below,
and labelrep(i) = di/2e for i = 1, . . . , 6.

r1
r2
r2

s− r1 − r2
s− r1 − r2

r1

 =


0 1 0
0 0 1
0 0 1
1 −1 −1
1 −1 −1
0 1 0


︸ ︷︷ ︸
Mrep∈F6×3

·

 s
r1
r2



Reconstruction. Consider a shared value JsKrep = ((r1, r2), (r2, r3), (r3, r1)). To
open this share, P1 sends (r1, r2), P2 sends (r2, r3), and P3 sends (H(r3), H(r1)),
where H is a collision resistant hash function. To verify that the opening is done
correctly, the shares announced by P1 and P2 are checked against the hashes
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announced by P3. If they are consistent, since at most one party is corrupt, the
secret is correct.

Dot Products of Shared Vectors. Like in Section A.2, let U, V,W be F-vector
spaces of dimension d with bases {ui}di=1, {vi}di=1 and {wi}di=1, respectively, and
consider a bilinear map φ : U × V →W . For the rest of this section we consider
replicated secret sharing, and we omit the superscript rep from the sharings.

Consider shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV . In this section

we describe a protocol to compute Jz + δKW , where z =
∑L
`=1 φ(x`y`) and δ ∈W

is some error known to the adversary. The only building blocks required for this
protocol are the following:

– The parties can locally obtain Jφ(α, β)KaddW from JαKrepU and JβKrepV . To see this,
write JαKrepU = ((α1, α2), (α2, α3), (α3, α1)) and JβKrepU = ((β1, β2), (β2, β3), (β3, β1)),
where α = α1+α2+α3 and β = β1+β2+β3. Let γi = φ(αi, βi)+φ(αi+1, βi)+
φ(αi, βi+1), for i = 1, 2, 3, which can be computed locally by party Pi. It is
easy to see that φ(α, β) = γ1 + γ2 + γ3, which completes the claim.

– A protocol for generating random shares J0KrepW . This can be done by gener-

ating d random shares J0KrepF , . . . , J0KrepF , and setting J0KrepW =
∑d
i=1 J0KrepF ·wi.

Furthermore, generating each J0KrepF can be done non-interactively by dis-
tributing some shared keys among the parties in a setup phase, as shown in
[1].

– An interactive protocol for obtaining Jw + δKrepW from JwKaddW , where δ ∈ W
is an additive error known to the adversary. If JwKaddW = (η1, η2, η3), this is
achieved by letting each Pi send ηi to Pi+1, so JwKrepW = ((η1, η2), (η2, η3), (η3, η1)).
It is shown in [1] that the only attack the adversary may carry in this protocol
is adding an error δ.

Our main protocol is described below.

Protocol Π rep
DotProd

Inputs: Shared values Jx1KU , . . . , JxLKU , Jy1KV , . . . , JyLKV .

Output: Jz + δKW , where z =
∑L
`=1 φ(x`, y`) and δ ∈ W is some error

known to the adversary.

1. Parties locally compute Jφ(x`, y`)K
add
W ← φ(Jx`K

rep
U , Jy`K

rep
V ), for ` =

1, . . . , L;
2. Parties sample J0KaddW and then locally compute JzKaddW = J0KaddW +∑L

`=1 Jφ(x`, y`)K
add
W .

3. Parties convert Jz + δKrepW ← JzKaddW .
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B Appendix to Section 6

B.1 Comparison with CHURP.

This dynamic PSS protocol, proposed in [29], is the state of the art in terms
of communication complexity. At a high level, CHURP is made of two main
protocols, Opt-CHURP, which is able to detect malicious behavior during the
proactivization but is not able to point out which party or parties cheated, and
Exp-CHURP, which performs proactivization while enabling cheater detection
at the expense of being heavier in terms of communication. Since in this work
we have described a PSS protocol with abort, we compare our protocol against
Opt-CHURP.

The protocol Opt-CHURP is comprised of three main subprotocols: Opt-
ShareReduce, Opt-Proactivize and Opt-ShareDist. In the first sub-protocol, Opt-
ShareReduce, the parties in C distribute shares of their shares towards the parties
in C′. A threshold of 2t is used for these “two-level” shares to account for the
fact that the adversary may control t parties in each committee C and C′. We
could avoid such high degree sharing in our ΠPartialPSS protocol since there the
parties do not share their shares directly. In Opt-ShareReduce, to ensure that a
party sends the right share, the parties must also communicate commitments
and witnesses for certain polynomial commitment scheme (see [29] for details).
The concrete communication complexity of this step is 12Ln2 elements, where
L is the amount of shared field elements being proactivized.

In the second stage, Opt-Proactivize the parties in C′ produce reduced-shares
(that is, “shares of shares”) of 0 that are added to the reduce-shares of the secret.
We will not discuss the details fo this procedure here, beyond mentioning that
this requires the parties to exchange shares and proofs in order to ensure the
correctness of this method. This incurs a communication complexity of 5Ln2

field elements, on top of requiring publishing n hashes on a blockchain, say 256n
bits using SHA256, which is a requirement that our protocol ΠPSS does not have.

In the final stage, Opt-ShareDist, each party in C′ sends the reduce-shares of
the i-th share to party P ′i , who reconstructs the refreshed share. Again, open-
ing information for certain commitments must be transmitted. This leads to a
communication complexity of 2Ln2.

Given the above, the total communication complexity of Opt-CHURP is
9Ln2 log |F| bits in point-to-point channels, plus 256n bits over a blockchain.
We see that, asymptotically, our protocol ΠPSS represents an improvement fac-
tor of around 9, on top of not making use of a blockchain. Furthermore, although
not mentioned in our protocol, a lot of the communication that appears in the
13n term in our ΠPSS protocol can be regarded as preprocessing, that is, it is
independent of the message being transmitted and can be computed in advance,
before the proactivization phase.

Finally, we note that our novel protocol ΠPSS is much more conceptually
simple than Opt-CHURP. This is because, unlike in Opt-CHURP, our protocol
does not require the expensive use of commitments and proofs at the individual
level (i.e. per party) in order to ensure correctness of the transmitted value.
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Instead, we compute a global signature of the secret and check its validity after
the proactivization.

B.2 Using AMD Codes.

Finally, we want to discuss a potential optimization of our ΠPSS that does not
make use of signatures and public-key cryptography in general. The fact that
the worst that can happen in the ΠPartialPSS protocol is that the transmitted
message is wrong by an additive amount known by the adversary implies that
other methods to ensure correctness of the transmitted value can be devised.
The basic idea, which is highly used in the dishonest majority setting to ensure
correct openings, is to use authentication codes. To transmit a secret JsKC, the

parties in C begin by calling JrKC ← FRand and then Js · rK ← FMul(JsK , JrK).9.

Next, the parties in C send to C′ the shares Js+ δKC
′
← ΠPartialPSS(JsKC) and

Js · r + εKC
′
← ΠPartialPSS(Js · rKC). After these shares are sent, the parties in C

open r to each other and then P1, . . . , Pt+1 send r, in the clear, to the parties in
C′.10

Once every party in C′ receives t + 1 identical copies of r, parties in C′

compute JzK = r · Js+ δKC
′
− Js · r + εKC

′
, then open z and check that z

?
= 0, and

abort if this is not the case. It is easy to see that the check passes if and only if
r · δ = ε, which, if δ 6= 0, is satisfied with probability 1/|F| since it is equivalent
to r = ε/δ, and r is uniformly random and independent of ε and δ. By setting
|F| ≥ 2κ, where κ is the statistical security parameter, we obtain a PSS protocol
in which the adversary can succeed in transferring an incorrect message with
only negligible probability.

If the message to be transmitted is longer than one field element, say Js1K
C
, . . . , JsLKC,

then the protocol can be modified for better efficiency by letting the parties in C
call JriK← FRand for i = 1, . . . , L, and then computing JmK← FDotProd({JsiK}i, {JriK}i),
where m =

∑L
i=1 siri, that is, FDotProd is a functionality that takes the dot prod-

uct of two shared vectors, which for some protocols can be instantiated at the
same communication cost of a single multiplication, as we saw in Section 3.
Then, the parties in C send {JsiK}i, JmK and {ri}i to the parties in C′, who run
a similar check to the one above.

This method is in general more efficient than the signature-based method we
presented earlier in terms of computation. However, in terms of communication,
a downside of this technique is that the long “key” {JriK}i must be sampled
and transmitted each time a new message must be proactivized, whereas, with
the signatured-based approach, the secret/public key pair is only sampled once
per committee, and it is used to transfer as many secret-shared messages as
required. As a result, the signature-based method has 0 overhead with respect

9 This multiplication may allow additive errors, which allows for a much more efficient
protocol [11]

10 Alternatively, only P1 may send r while the other parties P2, . . . , Pt+1 only send a
hash of this value.
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to the length of the message. Unfortunately, as mentioned above, the downside
of the signature-based approach is that, although it involves less communication
overall than the MAC-based approach, it involves much heavier computation as
it is based on elliptic curves, so it may only be benefitial when operating over
wide area networks.

C Functionality FsRand

The functionality FsRand used in the secure injective encoding in Section 4.1 has
also seen other uses, in particular in connection with secure truncation protocols
such as in [14]. FsRand can easily be realized with a functionality for generating
random bits. To obtain a k bit value r such that its lower ` bits are zero, do the
following:

1. Sample k − ` random bits JbiK for i = 0, . . . , k − `− 1.

2. Each party locally computes JrK = −2k−1bk−`−1 + 2`
∑k−`−1
i=0 2ibi.

D Protocols ΠIsSqr and ΠSqrt

We present here two protocols: One for testing if a number is a square, and
another for computing the root of a square number. Note that neither protocol
is private if the input is 0. However, for our purposes this is fine as we use them
on random values only.

Protocol ΠIsSqr

Inputs: JxK.
Outputs: 1 if x is a quadratic residue modulo p and 0 otherwise.

1. Invoke JbK← FRand(F) and compute JcK← FMul(JbK , JbK).
2. Compute JdK← FMul(JxK , JcK) and open d.
3. Compute d(p−1)/2 = x(p−1)/2c(p−1)/2.
4. If d ∈ {0,−1} output 0. Otherwise (d = 1) output 1.

Protocol ΠIsSqr has complexity CIsSqr = CRand(1) + CMul(2) + COpen(1)

Lemma 3. Protocol ΠIsSqr secure computes the Legendre symbol x.

Proof. Since c = b2, its Legendre symbol is 1. Thus the Legendre symbol of
d is determined entirely by x. Notice that b 6= 0 with probability 1 − 1/|F|.
As for privacy: Since b is random, b2 = c is random as well and thus acts as
a multiplicative mask of x. Thus revealing d reveals nothing about x, except
whether x is a square or not. ut

We next show how to compute the square root of a number modulo p. In
ΠSqrt below we assume that p ≡ 3 (mod 4) as that allows for an efficient method
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of finding y such that x = y2 (mod p), given x. More precisely, given x, we can
find y by computing y = x(p+1)/4. Observe that y2 = (x(p+1)/4)2 = x(p+1)/2 =
x · x(p−1)/2 = x since x is a square. (In practice, p is chosen such that it is
congruent to 3 modulo 4 for exactly this reason, so our protocol is compatible
with all standardized curves.) It remains to figure out how to compute this
formula without revealing x, which we do following a similar approach as in
ΠIsSqr. More precisely, we produce a couple of random values of a specific format
and use them as a multiplicative mask on the input. The masked input is then
opened, and we compute the square root of the masked value. Finally, the mask
is removed, in order to obtain the final result. The values that we need for the
mask can be produced using the FMulTriple functionality and a trick for computing
the inverse of a random element as described in [3].

Protocol ΠSqrt

Inputs: JxK where x has a square root.
Outputs: JyK such that y2 = x.

OFFLINE PHASE

1. Obtain a random triple (JaK , JbK , Jc = a · bK)← FMulTriple.
2. Open c and compute c−1 JbK =

q
(a · b)−1b

y
=

q
a−1

y
.

3. Compute
q
a2

y
← FMul(JaK , JaK).

4. Store the values (
q
a2

y
,
q
a−1

y
).

ONLINE PHASE

1. Compute JzK← FMul(JxK ,
q
a2

y
) and open z.

2. Output JyK = z(p+1)/4 ·
q
a−1

y
.

Protocol ΠSqrt computes the square root of its input with complexity CSqrt =
CMulTriple(1) + CMul(2) + COpen(2).

Lemma 4. Protocol ΠSqrt computes the square root of x securely.

Proof. Observe that z(p+1)/4 = (xa2)(p+1)/4 = x(p+1)/4a, and thus we obtain
y = z(p+1)/4a−1 = x(p+1)/4 as desired (as with ΠIsSqr, the mask a is non zero
with high probability). As for privacy, it suffices to note that a is random and
thus acts as a mask for the input, and thus z leaks nothing about x. ut
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