
Personal data exchange protocol: X

V. Belsky1[0000−0002−4546−5464], I. Gerasimov1[0000−0003−1921−823X],
K. Tsaregorodtsev1[0000−0002−9281−417X] and I. Chizhov1[0000−0001−9126−6442]

1Cryptography Laboratory, SPC «Kryptonite», Moscow, Russia cryptolab@kryptonite.ru

Abstract. Personal data exchange and disclosure prevention are widespread problems in
our digital world. There are a couple of information technologies embedded in the commer-
cial and government processes. People need to exchange their personal information while
using these technologies. And therefore, It is essential to make this exchange is secure. De-
spite many legal regulations, there are many cases of personal data breaches that lead to
undesirable consequences. Reasons for personal data leakage may be adversary attack or data
administration error. At the same time, creating complex service interaction and multilayer
information security may lead to many inconveniences for the user. Personal data exchange
protocol has the following tasks: participant’s data transfer, ensuring information security,
providing participants with trust in each other and ensuring service availability. In this pa-
per, we represent a personal data exchange protocol called X1. The main idea is to provide
personal data encryption on the user side and thus to prevent personal data disclosure and
publication. This approach allows us to transfer personal data from user to service only in
the form of an encrypted data packet — blob. Each blob can be validated and certified by a
personal data inspector who had approved user’s information. It can be any government de-
partment or a commercial organization, for example, passport issuing authority, banks, etc.
It implies that we can provide several key features for personal data exchange. A requesting
service cannot publish the user personal data. It still can perform a validation protocol with
an inspector to validate user data. We do not depend on service data administration infras-
tructure and do not complicate the inspector’s processes by adding additional information
about the personal data request. The personal data package has a link between the personal
data owner and a service request. Each blob is generated for a single request and has a
time limit for a provided encrypted personal data. After this limit, the service can not use a
received package. The user cannot provide invalid personal data or use the personal data of
another person. We don’t restrict specified cryptographic algorithms usage The X protocol
can be implemented with any encryption, digital signature, key generation algorithms which
are secure in our adversary model. For protocol description, Russian standardized crypto-
graphic protocols are used. The paper also contains several useful examples of how the X
protocol can be implemented in real information systems.

Keywords: X· personal data · VKO GOST · symmetric cryptography.

1 Introduction

Recently information technology is being actively implemented in public service delivery pro-
cesses. Digital government, public service portals and similar information systems are becoming
more and more familiar in modern society. A lot of useful tasks such as taking a loan, applying
for a passport, sign a contract can be done without leaving home using a computer or a mobile
phone. Generally, it is necessary to provide personal data for performing these operations. De-
spite the rather strict regulation of personal data processing in many countries, there always occur
data leakage cases as the result of administration errors or hacker attacks. It leads to undesirable
consequences for people, for example, money, property and reputation loss.

Some countries increase the restriction of information security policies, but it leads to the
creation of significant inconveniences for such users as services, which in turn lowers their attrac-
tiveness to citizens. Thus the creation of useful and secure personal data processing system — one
of the main problems for public information services developers.

In the most general case, the following tasks are set for personal data processing systems:
1 The paper was published in Russian in International Journal of Open Information Technologies ISSN:
2307-8162 vol. 8, no. 6, 2020

2 V. Belsky et al.

– Personal data transfer between participants;
– Information security;
– Building trust in system participants;
– Service availability.

Many practices and services solve these tasks. One example is a network authentication pro-
tocol Kerberos [10]. However, it is necessary to create a secure ticket issuing server. But server
compromise leads to all user personal data disclosure, so Kerberos has a single point of failure and
additional requirements to the infrastructure. Another example is authorisation protocol OAuth
[8]. However, its feature is a transfer of authority to the service by password, which imposes a re-
sponsibility for the service for providing personal data transfer, processing and storage. If the user
transfers personal data to the service via a secure channel, then it is be necessary to have a high
level of trust to this service. This can not be guaranteed when the service encrypts personal user
data on his side. In this case, the user loses control over the transferred personal data processing.
The X protocol of secure user personal data exchange to different services helps to solve all these
problems. In this paper, we describe the protocol, participant registration algorithm, personal data
exchange and verification mechanisms. Also, we give recommendations for using the cryptography
algorithms in our protocol.

2 About personal data

The problems of personal data leakage arose a long time ago but recently it went to a new
level. Using cloud and electronic services has become a necessary activity for people. A lot of user
information has been collected by different services. The amount of such information is enormous.

In the age of digital society, citizens send a copy of their passport or a personal ID (SSN)
by email or messengers very often. For example, registration in various services of short-term car
rental requires sending passport photocopy and user driving license. Many IT-companies collect
and store a significant number of user information. Eventually, leakage of these data gets the scale
of local disasters.

The examples of significant leakages and several cases can be pointed out in the articles [16].
Around the world lately a number of personal data records involved in various leakages exceeded
a billion [11]. Simultaneously, there is a growth of database sales offers amount with personal
information [13]

Legislatively, this problem is being solved by specified norms adoption, establishing requirements
for those who collect and gather personal data.

For example, the personal data law [1] is adopted in Russia which adjusts the specified area
and establishes requirements and limitations. In Europe, the law called GDPR [3] is adopted which
includes quite strict regulations of personal data processing control and sets heavy fines for non-
compliance with these requirements. Law enforcement practice is only taking shape, but there are
some precedents in which significant fines were issued [14][2]. It is obvious that only law norms
usage can not completely solve the personal data security problem. It is needed to use technical
means of protection to support legal norms.

Technically, the problem of protecting personal data is not easy to solve. For example, the usage
of only data encryption can not solve the problem because the service which uses personal data
gains access to it, and it means he can potentially violate its confidentiality. Therefore, users have
to agree with the high level of trust for this service. But how can it be achieved by technical means?
Besides, after personal data have been transferred to the service, the user completely loses control
over the process. There are known cases of personal data leakage which generally occur because
personal data was transferred to the service and the service was not able to provide a necessary
security level.

Some protocols allow granting the service certain data access along with the authentication.
One of the examples is a network authentication protocol Kerberos [10], which solves authentica-
tion problem and granting the user access to specified resources. The protocol uses only symmetric
encryption algorithms and consists of several procedures of authentication and getting the «tick-
ets» — special data structures which give access rights. This protocol does not solve the further
problem with personal data processing.

Personal data exchange protocol: X 3

Another example is the authorization protocol OAuth [8]. Its feature is that rights are given
to the service through password authentication. This protocol also does not solve the problem of
controlling data processing. Note that the OAuth protocol is used for the service authentication of
«Public services portal of the Russian Federation». In order to control user authentication, some
countries have a plan to create a unique digital citizen profile using a single identifier. At first sight,
such an approach could solve a leakage problem if users provide this identifier instead of personal
data. But this decision brings new threats. One of the single identifier usage examples is a Social
Security number (SSN) in the USA. In case of SSN leakage, the adversary gets the opportunity to
control all personal data, which means the adversary thieves user’s digital identity.

The most meaningful approach to the technical solution of this problem is modern cryptographic
methods. For example, the homomorphic encryption concept of confidential calculation provides
data processing without giving access to it. However, such cryptographic mechanisms are poorly
studied and have extremely low consumer properties and currently they are not standardized at
the national level. At the same time, a usual requirement for public information systems is using
a standardized mechanism.

In fact, the service very often does not need to process personal data. Generally, it is enough
to know that the data is received from the actual user, the data is valid and relevant.

The X protocol offers secure user’s personal data processing using standardized means and
protocols.

3 Protocol purpose

Suppose that a certain inspector issues personal data to the user (sometimes inspector is called
provider), Who can always verify and confirm these data. Personal data are given to the service for
a limited time after which it ceases to be valid i.e. it can not be used for performing any operations
(for example, signing a contract). The only opportunity the service has is to verify user personal
data with the inspector at any time and to make sure that the data were valid and corresponded
to the specified user at some point in the past.

We specify a list of properties the protocol must possess in order to provide secure transfer of
user personal data:

1. Service must have the ability to ensure that the personal data came from a particular user;
2. Service must have the ability to verify that the personal data is valid (correct, relevant, match

the requested data type and user identity);
3. Service does not have the possibility to transfer personal data to the third parties;
4. User must not provide invalid, irrelevant or other person’s personal data;
5. User must not provide personal data not matching service request;
6. User provides personal data for a limited time. After the time expiration, a message with

personal data becomes invalid;
7. User must verify to whom, for how long and what kind of personal data he provides;
8. User must have an ability to deny the fact of providing personal data if he did not provide it;
9. User must not deny the fact of providing personal data if he did provide the data.

Specified protocol X properties are achieved using the cryptographic mechanisms. Service re-
ceives encrypted personal data. Only the user who forms an encrypted data set (blob) or inspector
who must be able to verify it can decrypt personal data. In order to provide participant authenti-
cation and message integrity validation, digital signature mechanisms are used. Thus it is assumed
that there is user public key management infrastructure which has a certification authority. This
authority registers users and ensures that the public keys match their owners. It is not a part of
the protocol, therefore, its description is beyond the protocol description.

4 Protocol participants

There are the following participants in the protocol:

4 V. Belsky et al.

U: System user, the owner of the personal data. The user must be registered in certification
authority CA;

Inspector: Personal data inspector. A trusted service which validates user personal data. He re-
ceives it encrypted from the service and verifies it by the provided user identifier. The inspector
can be a government agency (for example, a tax service or a pension fund) or a commercial
structure (for example, a bank or insurance company).

Src: Service requests user personal data. The service can be a medical facility, financial organisa-
tion or any commercial company the user wants to establish a contractual relationship with.

AgentU: User agent — a program or a device using which the user interacts with protocol par-
ticipants. The agent usually is a browser or a mobile application.

CA: Certified authority provides public key certificate life cycle and protocol participants creden-
tials control. It is assumed that the certified authority registers all participants. The registration
process is described further.

5 Notations

We use the following Notations:
EK(M): Message M encryption using a symmetric encryption algorithm with key K;
KA: Signing (private) key of participant A;
CertA: Signature verification (public) key of participant A. The key is in the form of the certificate

signed by CA; we assume the signing key (private key) KA matches key certificate CertA;
Sign(M)CertA : Message M digital signature created using the participant A signing key which

matches the certificate CertA;
(a1, . . . , an, signA): A collection of messages a1, . . . , an and its digital signature signa = Sign(a1, . . . , an)CertA

joined in a vector;
xA: Participant A ephemeral private key used for key agreement procedure;
yA: Participant A ephemeral public key used for performing key agreement procedure. yA = xA ·P ,

P is a nonzero point in a cyclic subgroup of elliptic curve group;
KAB: Common symmetric encryption key between protocol participants A and B.

6 Protocol X description

The protocol consists of the following stages:
1. Protocol participants registration
2. Personal data transfer
3. Personal data verification

Protocol scheme is shown in the figure 1.
It is assumed that participant interaction is performed in a public network (Internet) protected

by the protocol TLS [12] or any other similar protocol. Moreover, it is assumed that the protocol
participants have secure access to CA functions necessary for message signature verification. For
example, such functions can be new public key certificates processing, revoked certificates update
etc.

Further, we do not describe in detail these actions only mentioning the fact of digital signature
validation using the public key certificate.

Below we describe participant registration protocol steps. Note that the registration steps can
be performed in any order independent from each other. The source code of our implementation
is available on GitHub: https://github.com/RnD-Kryptonite/x-protocol. The repository has the
possible realization of the X protocol steps in Python with each participant role class object.

6.1 User registration stage RU stage

For registration, the user performs the following steps (see figure 2):
1. The user registers in the CA providing the proof of identity (user physical presence is neces-

sary).
2. Sets a password to his account in CA.
3. Receives an identifier UID. Further, we assume that UID can be used as a user login in CA.

Personal data exchange protocol: X 5

Fig. 1. The Protocol scheme

Fig. 2. RU stage

6.2 User agent registration stage (RA stage)

As a user agent (AgentU), mobile application or browser can be used. ForAgentU registration
it is necessary to perform the following steps (see figure 3):

1. Using AgentU application, the user authenticates in CA and sends a request for application
registration.

2. In case of successful authentication, CA sends authentication confirmation to AgentU and
requests user public key.

3. The AgentU generates user private and public signature keys: KU and CertU respectively.
Using a secure channel, the public key is sent to CA.

4. CA confirms user public key correctness, signs the public key certificate and publishes it in
CA certificate list. AgentU receives the signed certificate CertU .

6 V. Belsky et al.

Fig. 3. RA stage

6.3 Service registration stage (RS stage)

For registration, the service performs the following steps (see figure 4):

1. Sends a registration request to CA, specifying the necessary registration data and network
name (address) for getting user requests.

2. The service receives a registered identifier SrcID in response.
3. Generates private and public signature keysKS and CertS respectively. Using a secure channel,

the public key is sent to CA.
4. CA confirms public key correctness, signs the public key certificate and publishes it in the CA

certificate list. The certificate includes the network name (address) for getting user requests.
The service receives a signed certificate CertS .

6.4 Inspector registration stage (RI stage)

For registration, the inspector performs the following steps (see figure 5):

1. Sends a registration request to CA, specifying the necessary registration data and network
name (address) for getting service requests. Moreover, the inspector specifies a scope of per-
sonal data which he verifies.

2. The inspector receives a registered identifier InID in response.
3. Generates private and public signature keysKI and CertI respectively. Moreover, the inspector

generates private and public keys xI and yI respectively for key agreement protocol. Using a
secure channel, public keys CertI and yI are sent to CA.

4. CA confirms the inspector public keys correctness, signs the public key certificate and publishes
it in the CA certificate list. The certificate includes the network name (address) for getting
service requests and yI . Inspector receives a signed certificate CertI .

It is assumed that a service and an inspector are organisations which have necessary informa-
tion systems and technical means to interact with CA and cryptographic mechanisms realisation.
A specific order of CA interaction and necessary means depends on CA realisation and their
description is out of scope. It is important that all the participants are registered and have the
correct private and public signature key pairs.

Personal data exchange protocol: X 7

Fig. 4. RS stage

Fig. 5. RI Stage

The user does not always have means for providing correct cryptographic mechanisms. For this
reason, AgentU is a way of interaction with other participants and realisation of the necessary
cryptographic mechanisms.

Besides, it is assumed that given scope CA publishes an inspector who has an ability to verify
a specific personal data set. This can be achieved, for example, by including a personal data set
identifier in the inspector public key certificate. Correctness and consistency of mapping between
scope and inspector is a CA responsibility. Generally, the protocol does not fix the mechanism of
providing such mapping.

8 V. Belsky et al.

6.5 Personal data transfer stage (SD stage)

We describe the personal data transfer from user to service. The user U queries the service a
certain action request (for example, to get a loan, to sign a contract, to issue a certificate) The
query is created using AgentU, for example at the service website. Generally, the user should
transfer his personal data to the service. The service must be sure the received data belongs to the
user and may be disclosed (only if it is needed and only if certain conditions are met).

In order to transfer personal data, user and service perform the following steps (see figure 6:

1. Using AgentU, the user sends UID to the Src by the address, specified in CertS .
2. The service Src creates a request REQUEST for getting the personal data. He specifies a

SrcID, UID, scope, TTL and signs it with his private key KS . The request is sent to the
AgentU.

REQUEST =
(
SrcID,UID, scope,TTL, signS

)
(1)

TTL is a set of current timestamp and information about how long service wants to have
access to the user data.

3. AgentU verifies the service’s REQUEST signature.
4. The user verifies the correctness of the SrcID, scope, TTL. In other words, the user visually

controls to whom, how long and which data he is going to transfer.
5. AgentU identifies the inspector who verifies the requested data, gets the inspector public

key yI from CertI for the key agreement . AgentU performs VKO_GOST procedure and
gets a KUI — common with the inspector symmetric encryption key. In order to do this,
AgentU generates ephemeral public and private keys yU and xU respectively and computes:
KUI = K(xU , yI , UKM). The function K(·, ·, ·) description is provided in table 1.

6. AgentU creates a response REPLY, which consists of the received earlier request RE-
QUEST, the personal data SecData and a random number salt. The response is encrypted
using the key KUI :

REPLY = EKUI
(REQUEST,SecData, salt).

7. AgentU creates a blob (blob) and signs it using the private key KU :

blob = (yU ,UID,REPLY, signU)

AgentU sends blob to the service.

This is the end of personal data transfer stage. As a result, the service receives blob. He can
verify the signature using the certificate CertU and make sure the blob has been created by the
user U. The encrypted part REPLY can not be decrypted by the service since he does not have
the key KUI . The user has the signed service request REQUEST.

Table 1. VKO key agreement algorithm

VKO_GOSTR3410
m — the order of a group of points on an elliptic curve, q — the order of a cyclic
subgroup, P — a subgroup non-zero point, UKM — a random number.

A B
xA, yA = xA · P xB , yB = xB · P
K(xA, yB , UKM) =

(
m
q
· UKM · xA mod q

)
· (yB)

Personal data exchange protocol: X 9

Fig. 6. SD stage

6.6 Personal data validation stage (VD stage)

After receiving the signed blob, the service can perform personal data validation at any moment.
In order to validate the personal data, the service does the following steps (see figure 7):

1. The service identifies the inspector by the scope value which he has from his request and sends
blob = (yU ,UID,REPLY, signU) to the Inspector. The service takes the inspector network
address from the certificate CertI .

2. Inspector verifies the user’s blob signature using the published CertU .
3. Inspector takes yU from the blob. Then he performs VKO_GOST procedure with his private

key xI and performs VKO_GOST for getting a common with the user symmetric key KUI :
KUI = K(xI , yU , UKM). The function K(·, ·, ·) description is provided in table 1.

4. Using the key KUI , Inspector decrypts REPLY = EKUI
(REQUEST,SecData, salt) and

receives REQUEST, SecData and salt.
5. Inspector verifies that the user identifier from the certificate CertU which is taken during the

step 2 equals to the user identifier from the REQUEST. Otherwise, he ends the protocol with
the error code.

6. Inspector verifies that the time, personal data type and the service who requested the valida-
tion equals to TTL, scope, SrcID respectively from the request. If some equality is violated,
he ends the protocol with the error code.

7. Using the obtained values of SecData, TTL, UID the inspector validates the personal data
correctness at the TTL moment using his inner database. Decision is made on the validity of
personal data: yes/no.

8. The inspector sends the service the following data set: (blob,TTL, yes/no, signI).

The need for TTL usage during the validation is related to the possibility of the personal data
change (for example, surname change).

7 Protocol security analysis

In section 3 protocol properties are defined. We analyze protocol mechanisms which provide
these security properties.

Property 1 (service must have the ability to ensure that personal data came from a particular
user) It is provided by verification of the user’s blob digital signature and verification of the inspec-
tor’s reply digital signature. Also, user identification is performed during his physical registration
in CA.

10 V. Belsky et al.

Fig. 7. VD Stage

Property 2 (service must have the ability to verify that the personal data is valid) is provided
by the inspector who verifies blob. Note that the blob verification result is signed by the inspector
who is registered in CA.

Property 3 (service does not have the possibility to transfer personal data to the third parties)
is satisfied since the service receives encrypted personal data. The blob encryption key is formed
during the VKO_GOST procedure between the user U and the inspector InID and is unknown
to the service.

Property 4 (user must not provide invalid, irrelevant or other person’s personal data) is satisfied
by the verification of the UID, TTL and SecData on personal data validation stage by the
inspector.

We examine now property 5 (user must not provide personal data not matching service request)
in detail. Violation of this property is happening if SecData does not match the received RE-
QUEST. If the user provides invalid personal data, then the property 5 is satisfied similarly to the
property 4. We consider the attack when the user specifies another REQUEST. Such replacement
lets the user dispute the fact of providing the blob.

Let us assume that the user receives two requests: Ra, Rb; and he wants to form blob as an
answer to Ra, but specify the other request Rb. There are the following cases:

– Rb : scopeRb
! = scopeRa

. Then blob does not pass the step 6 of the personal data validation
stage.

– Rb : TTLRb
! = TTLRa

. There are two situations:
• SecDataRb

== SecDataRa
i.e. the user personal data does not change during the time

|TTLRb
− TTLRa | between two requests. Then the user does not violate the protocol

forming the same blob on both requests but at different time.
• SecDataRb

! = SecDataRa
. Then blob does not pass the step 7 of the personal data

validation.
– Rb : SrcIDRb

! = SrcIDRa . It means that two different services request the same personal data
type scope. The blob creation process is equal for both requests, but blob does not pass the
step 6 of the personal data validation stage.

Thus, the user can not perform the threat by replacing the REQUEST in the protocol and the
property 5 is satisfied.

Property 6 (user provides personal data for a limited time) is satisfied because the blob does
not pass the step 6 of the personal data validation stage after the time specified in the blob (TTL
parameter).

Property 7 (User must verify to whom, for how long and what kind of personal data he provides)
is provided by the blob formation procedure. Note that REQUEST includes such parameters as

Personal data exchange protocol: X 11

SrcID, scope, TTL. This REQUEST is signed with a signature private key which matches Src.
Thus, the user knows to whom he sends the data. Moreover, the blob includes scope and TTL
parameters which describe what data and how long is provided to the service.

Property 8 (user must have an ability to deny the fact of providing personal data if he did not
provide it) is ensured by the following statement. The blob blob correctness is confirmed by the
inspector only if certain conditions (steps 2, 6 и 7 of the personal data validation stage) are met.
In particular, a successful verification of the blob and the user digital signature are required. If the
user does not provide the data, then the blob signature can not be formed by the adversary.

Property 9 (user must not deny the fact of providing personal data if he dit provide the data)
is ensured according to the similar reasons. The user digital signature of the blob guarantees
impossibility of denying the blob formation fact. According to the property 7 we can claim that
the user did know to whom, for how long and which data he was going to provide and that he did
provide it.

8 Protocol features

We discuss the protocol features which can be used while building the personal data infrastruc-
ture.

Note that the user identifier compromise does not lead to all the personal data disclosure.
A compromise should be understood as publishing information about correspondence between

UID and a certain person. In the protocol, the identifier UID is a part of the certificate CertU
and can be seen publicly. But UID relation to the personal data does not show publicly. Moreover,
there is no database where all the user personal data are associated with this identifier. If particular
blob and an ephemeral key xU which was used to encrypt personal data are compromised, the
adversary gets access only to the data specified in the blob.

Also, note that the user encrypts his personal data by himself and only he is responsible for
this process. Thus, the data security does not depend on the service infrastructure and its rules of
a data exchange. It is assumed that the inspector is a trusted party for the rest of the participants.

In order to participate in the protocol, the inspector does not need to change or create another
infrastructure. The only condition is to have a mechanism for encrypted blob verification. Cer-
tainly, there is some additional load for the inspector, but it does not compare with complexity of
organisation, security and support of a single database.

The protocol does not specify which cryptographic algorithms should be used. It is possible
to use any secure digital signature, encryption and key agreement algorithms. In particular, the
following Russian cryptography standards can be used in the protocol X:

– VKO R 50.1.113-2012 (key agreement) [15];
– GOST 34.10-2012 (digital signature) [6];
– GOST 34.12-2015 (block ciphers) [5][7].

9 Possible protocol usage

During the steps 6, 7 of the personal data transfer stage, the user performs an encryption of
his personal data using the key KUI . The personal data format can be anything that corresponds
to the data type scope. The protocol X has wide possibilities of its usage in different scenarios. In
this section, we describe only some of them.

All the scenarios differ by the scope of the requested personal data which can consist of:

– necessary for operation execution data;
– user credentials (name, login, a certain system identifier).

9.1 Conclusion of employment contracts and salary payments

User concludes a contract with an employer. For this, he must provide a lot of personal data,
including his name and tax identification number. Moreover, the user must write an application
for transferring salaries to his bank account.

12 V. Belsky et al.

We describe how this procedure can be performed with the X protocol usage. The employer
is a service. He requests user personal data for employment contract conclusion and forming an
application about salary payment. Public services can play a role of inspector which verifies specified
personal data for a contract. As for the salary payment application, a bank can verify the specified
account. The service specifies necessary personal data type in his request. The user performs the
protocol X. He creates two blobs: the first contains data for the employment contract and the
second contains data which indicate the order to transfer any money received from the service to a
specified bank account. The service performs the protocol with an inspector (or several inspectors)
and receives the blobs confirmation. Now the employment contract includes the result of the first
blob verification.

The second blob and service’s transfer operation is sent to the bank which was the inspector.
The bank decrypts the blob and performs an instruction to transfer the sum from service request
to the user account.

9.2 Online shopping

User purchases a product in the online shop. In order to arrange a delivery and to form a
purchase receipt, he needs to provide a passport, telephone number and delivery address. But the
user does not trust the online shop. He has concerns that the personal data can be disclosed or
given to the third parties to spam an advertisement.

We describe how this procedure can be performed with the protocol X. The online shop is a
service which requests user personal data for purchase receipt and product delivery. There is an
inspector, for example, a post office, who validates the relation of specified address to the user’s
passport. The service specifies necessary personal data in his request. If the user agrees for a buying
payment, he performs the protocol and transfer the blob with the requested data to the service.
The service forms the package and sends it to the post office with the received blob. The inspector
performs personal data validation stage (VD stage) gets user personal data and his address and
sends the package to the specified address.

9.3 Loan processing

User wants to take a loan in the bank. The bank must verify a lot of facts about the user: his
credit history, criminal records, etc. In order to do this, the user must confirm his personal data,
for example, a passport number, its date of issue, registration address, tax identification number
etc. But the user can not trust the bank and is afraid of data leakage.

We describe our view of this problem solution based on the protocol X. The user transfers an
encrypted personal data in the blob blob to the bank which is the service. The bank sends blob to
the personal data inspector (for example, tax service, Ministery of Home Affairs etc.) who verifies
blob. The inspector sends the result of verification to the bank. The validation result is specified
in the loan contract between the bank and the user.

Now the bank has the opportunity to send a request to the inspector to provide information
about the user whose data is in the blob. Decrypting blob, the inspector can get additional
information about him from his database and then send it to the bank. After the blob validity
expiration, the bank can not get any information about the user.

9.4 Insurance company request

User wants to receive life and health insurance. An insurance company must get the confirmation
of the user’s health status. But the user does not trust the company and is afraid of his illness
history disclosure.

The protocol X can be used here in the following way. The insurance company which plays
the role of inspector, requests the empty blob from the user. It means that no personal data is
required, only confirmation. In other words, the insurance company requests a health certificate
from the user. If the user agrees, he sends the empty blob, which is formed and signed according
to the protocol. This blob is transferred to the inspector, which is a hospital. The inspector verifies
the user’s illness history. Thus the blob verification result depends on user health condition. If the

Personal data exchange protocol: X 13

user passes such validation (for example, he can use a vehicle), then the blob is confirmed during
the VD stage. A successful validation result can be specified in the insurance contract.

A distinctive feature of this example is an empty blob creation when SecData is an empty set.

10 Further research directions

The suggested protocol version does not solve an anonymity problem of users and services.
Any inspector gets access to the information of what the user sends personal data to what service.
Partially this problem can be solved by service anonymization i.e. the inspector does not know
what service gets personal data and knows only his identifier. But it requires to develop a protocol
which uses temporary user and service unique identifiers for each blob.

Another research is about using an identity-based cryptography (IBC) as a replacement of
public key certificates on IBC identifiers. Such changes simplify work with certificates.

On step 7 of the personal data validation stage, the inspector verifies the SecData relation
to the user identifier UID. Each identifier is received during the registration in CA and does not
need to be equal to the user identifier in the inspector information system. Firstly, if the inspector
is a government service then the user identifier UID can be equal to those which is used for user
accounting in the government databases. Such equality can be provided during the user registration
stage with CA and the inspector interaction. Secondly, an additional protocol step can be used.
During this step, CA sends the inspector additional information for adding UID in the inspector
database. Lastly, if it is supported by the inspector, the value SecData in the answer can be signed
by the user with the identifier which has a «clear» form for the inspector information system. The
choice of a specific solution largely depends on the practical implementation of the protocol and
requires further research.

As it was mentioned before, in case of the inspector private key compromise, services get access
to all the inspector’s blob content. The protocol uses one inspector key pair for all users and
blobs. In order to reduce the consequences during such compromise, separate keys can be used for
each user. In that case, the inspector must organize and support key management infrastructure
and publish the service which provides user access to the inspector public key. Key diversification
problem also requires additional research.

11 Protocol security

11.1 Introduction

In this section, we prove that under certain assumptions properties set out in section 3 are
fulfilled. In particular, we want to show that the following conditions are satisfied: и вообще
получить

Reply indistinguishability

Requirement: An adversary must not receive information about the user’s personal data analyzing
his replies Reply :

Reply = EKUI
(Request, SecData, salt),

We do not require the personal data length (number of encrypted blocks), specified inspector
ID to be hidden.

Requirement meaning: the Service must not have an ability to disclose personal data and any other
information about the personal data at all analyzing the user’s replies on his requests.

Possible consequence of requirement violation: Theoretically, the adversary has the opportunity
to extract information from the replies on his requests or service requests which can cause the
adversary to get access to the user’s personal data.

14 V. Belsky et al.

Blob unforgeability

Requirement: An adversary must not be able to forge the user’s blob.

[y, UID,Reply]sgn(U)

Requirement meaning:

1. Service must have the ability to ensure that personal data came from a particular user U ;
2. User must have an ability to deny the fact of providing personal data if he did not provide it;
3. User can not deny the fact of providing personal data if he dit provide the data.

Possible consequence of requirement violation: Theoretically, the adversary has the opportunity
to forge user replies on service requests. In particular, to provide personal data to the unwanted
service for him.

Request unforgeability

Requirement: An adversary must not be able to forge service request

Request = [SrcID,UID, scope, ttl]sgn(S)

Requirement meaning: User can verify to whom, for how long and what kind of personal data he
provides;

Possible consequence of requirement violation: Theoretically, the adversary gets the opportunity
to forge service requests, in particular, to request certain users personal data on service’s behalf.
It could lead to undesirable consequences.

Inspector reply unforgeability

Requirement: An adversary must not be able to forge the inspector reply.

check = [yes/no, ttl, blob]sgn(I)

Requirement meaning:

1. Service must have the ability to verify that the personal data is valid (correct, relevant, match
the requested data type and user identity);

2. User can not provide invalid, irrelevant or other person’s personal data;
3. User can not provide personal data not matching service request;
4. User provides personal data for a limited time. After the time expiration, a message with

personal data becomes invalid;

Possible consequence of requirement violation: Theoretically, the adversary gets the opportunity
to forge inspector replies, in particular, to confirm invalid/expired personal data.

11.2 Main result

The above properties are performed in the following adversary model:

1. Block cipher mode of operation used for processing messages is ROR -CPA -secure;
2. Signature scheme used in the protocol is EUF-CMA -secure (in random oracle model, see [9]);
3. Diffie-Hellman problem in the appropriate group (in case of standard [15] — group of points

on an elliptic curve) is hard.

In particular, the following theorem holds:

Personal data exchange protocol: X 15

Theorem 1 The probability of breaking the protocol can be bounded from above as:

2q ·AdvDDH(t+ q · (4 + 2µ)) + q ·AdvROR−CPASE (t+ q · (2µ+ 1), 1, µ)+

3 ·AdvEUF-CMA
Sert (qusr, t) +AdvEUF-CMA

insp (qinsp, t)

+AdvEUF-CMA
User (qblob, t) +AdvEUF-CMA

src (qsrc, t)

Where the following notations are used:

qusr — number of the users authenticated in CA;
qblob — number of the blobs signed by the user;
qsrc — number of the requests signed by the service;
qinsp — number of the requests signed by the inspector;
q — number of the adversary encryption requests Req;
µ — the maximal length of the request Request‖SecData‖salt;
t — the running time of the adversary.

11.3 Basic definitions

We introduce (and recall) certain definitions which we use later in the text.
To make the notations shorter, we denote [M]sgn(A) as a messageM user A secret key signature;
We recall that the following definitions were previously introduced:

Request: Service request of the form

Request = [SrcID,UID, scope, ttl]sgn(S)

Reply: User reply of the form

Reply = EKUI
(Request, SecData, salt)

blob: Formed blob:
blob = [y, UID,Reply]sgn(U)

Also introduce some additional definitions which are used further:

check: Inspector reply on blob validation request

check = [blob, ttl, yes/no]sgn(I)

GetData(UID, scope): Function returning personal data of the user with UID identifier relevant
to the scope.

GetID(scope): Function returning the inspector’s ID given the scope.

11.4 Main problems

We give a list of standard assumptions on which protocol provable security is based. Through-
out the rest of the paper, it is assumed that the adversary is a certain probabilistic algorithm
(probabilistic Turing machine).

Decisional Diffie-Hellman, DDH Let G be the cyclic group with a generator g. The group
is given to the adversary. The adversary goal is to distinguish a random group element gc from
the element obtained as a result of running the Diffie-Hellman protocol gab with known ga, gb.
Formally, the adversary interacts with one of the environments DH or Rand. In the beginning of
the experiment during the Init procedure a certain b (modelling second participant secret key) is
chosen. Then the adversary performs one request to oracle O and depending on the environments
receives whether a tuple (ga, gb, gab), or a tuple (ga, gb, gc). In the DDH problem the adversary
is allowed to make only one request to his oracle O. Using the tuple received from the oracle, the

16 V. Belsky et al.

adversary must decide which experimneter he interacts with. The adversary returns bit 1 if he
believes that he interacts with the oracle DH, else he must return bit 0.

Algorithm 1 Rand
1: function Init
2: b←R {1, . . . , |G|}
3: function O
4: a←R {1, . . . , |G|}
5: c←R {1, . . . , |G|}
6: return (ga, gb, gc)

Algorithm 2 DH
1: function Init
2: b←R {1, . . . , |G|}
3: function O
4: a←R {1, . . . , |G|}
5: return (ga, gb, gab)

The adversary advantage is defined as a difference of the following probabilities:

AdvDDH(A) = P[DH(A)→ 1]− P[Rand(A)→ 1]

Probability is taken over all random choices during the experiment and over random bits of the
adversary A.

AdvDDH(t) = max
A∈A(t)

AdvDDH(A),

The maximum is taken over all the adversaries A ∈ A(t), which take time no more than t. Note
again that the number of the requests to oracle O is equal to 1.

Multiple Decisional Diffied-Hellman, MDDH Let G be the cyclic group with a generator g.
The group is given to the adversary. Unlike the previous experiment, the adversary is given the
opportunity to interact with the oracle O several times, that is, the adversary receives q tuples of
the form:

(gx1 , gy, gz1), . . . , (gxq , gy, gzq),

where zi either is equal to xi · y (in all tuples) or is selected randomly equiprobable. Note that in
the environments DH and Rand element b(= y) is chosen once.

The adversary goal is to distinquish these two situations:

AdvMDDH(A) = P[DH(A)→ 1]− P[Rand(A)→ 1]

AdvMDDH(t, q) = max
A∈A(t,q)

AdvMDDH(A),

The maximum is taken over all the adversaries A ∈ A(t, q) which take time no more than t and
perform no more than q oracle O queries.

Statement 1 The following inequality holds:

AdvMDDH(t, q) ≤ q ·AdvDDH(t+ 4q)

Proof. Using hybrid argument (see for example [4], [9]) we show that the inequality holds.
We define ξi = (gxi , gy, gxi·y) — random variables received from the oracle O in the environment

DH; ηi = (gxi , gy, gzi) — random variables received from the oracle O in the environment Rand.
Then it is needed to find the distance between random vectors (distinct two random vectors):

ξ =

ξ1
ξ2
...
ξq

 , η =

η1
η2
...
ηq

 ,

Personal data exchange protocol: X 17

where the distance is understood in the sense of two random vectors indistinguishability by an
algorithm with the running time no more than t :

∆(ξ, η) = max
A
|P[A(ξ)→ 1]− P[A(η)→ 1]|.

Note that for the distance defined this way the triangle inequality holds:

∆(ξ, η) ≤ ∆(ξ, ν) +∆(ν, η),

since for each particular fixed algorithm A the following inequality holds:

|P[A(ξ)→ 1]− P[A(η)→ 1]| =|P[A(ξ)→ 1]− P[A(ν)→ 1] + P[A(ν)→ 1]− P[A(η)→ 1]| ≤
≤ |P[A(ξ)→ 1]− P[A(ν)→ 1]|+ |P[A(ν)→ 1]− P[A(η)→ 1]|

Moving on first to the maximum over all possible A in the right side of the inequality and then in
the left side we receive the required inequality.

Consider the following set of vectors:

γi =

η1
...
ηi
ξi+1

...
ξq

.

Then γ0 = ξ, . . . , γq = η.
In that case, we can write down:

∆(γ0, γn) ≤ ∆(γ0, γ1) + . . .+∆(γq−1, γq),

where each inequality holds thanks to triangle inequality (see above).
Therefore if we limit the distinction probability of the two «nearby» vectors γi and γi+1 then

the distinction probability of γ0 and γq does not exceed sums of «nearby» vectors distinction
probability.

we show that ∆(γi, γi+1) can be bounded from above using computation difficulty of DDH
problem.

During the transition γi → γi+1 we replace the coordinate ξi+1 with ηi+1, leaving the rest of
the coordinates unchanged. If there is an adversary B, which distinguishes well the replacement
one of the coordinates then he can be used to solve DDH problem. It is enough for this to model
all the rest of the vector coordinates and to receive (i+ 1)-th coordinate from the oracle DDH.

Assume for the modelling that we have an oracle O (from DDH problem) which returns either a
tuple (gx, gy, gxy) or (gx, gy, gz). Using the mentioned above adversary B we construct an adversary
A which solve DDH problem.

Generate the first i vector coordinates:

1. Generate xt ←R {1, . . . , |G|}, zt ←R {1, . . . , |G|}, t = 1, . . . , i;
2. Set ηt = (gxt , gy, gzt), t = 1, . . . , i;

As (i + 1)-th coordinate set oracle reply — a tuple (gx, gy, C), where C = gxy or C = gr is
chosen randomly (depending on what is the actual oracle we interact with actually).

The rest of the coordinates are generated in the following way:

1. Generate xt ←R {1, . . . , |G|}, t = (i+ 2), . . . , q;
2. Set ξt = (gxt , gy, (gy)xt), t = (i+ 2), . . . , q;

In that case, vector coordinates have necessary distributions. For the modelling we have to
generate at most 2q random numbers and to raise the group elements to the appropriate degree
(no more than 2q elements).

18 V. Belsky et al.

Thus, it takes no more than 4q operations (random number generation, group exponentiation).
If we assume that the mentioned operations take one computation step, the following estimation
holds:

∆(γi, γi+1) ≤ AdvDDH(t+ 4q),

and, therefore, the result estimation is:

AdvMDDH(t, q) = ∆(γ0, γq) ≤ q ·AdvDDH(t+ 4q)

ROR -CPAmodel We give formal ROR -CPAmodel definition for encryption scheme SE with
initialization vector IV which is chosen randomly at each encryption.

Adversary interacts with one of the environments: Real or Rand. The environment Real chooses
secret key (during initialisation step) and gives access to the encryption oracle. The environment
Rand also chooses secret key but instead of encrypting the received message its oracle encrypt a
random string of the same length.

Algorithm 3 Rand
1: function Init
2: k ←R Keys

3: function O(m)
4: iv ←R IV
5: r ←R {0, 1}|m|
6: return SEivk (r)

Algorithm 4 Real
1: function Init
2: k ←R Keys

3: function O(m)
4: iv ←R IV
5: return SEivk (m)

If the adversary believes that he interacts with real oracle encryption then he must return 1 else
return 0. The adversary advantage in ROR -CPAmodel is defined as a difference of the following
probabilities:

AdvROR−CPASE (A) = P[Real(A)→ 1]− P[Rand(A)→ 1]

EUF-CMA -signature scheme model We give a formal definition of EUF-CMA -signature
scheme model.

During the initialization procedure the Environment Forge chooses a pair of secret and public
keys and gives the adversary access to the signature oracle.

Given the requestm from the adversary A the oracle memorizes it and returns its signature. The
adversary performs several oracle O requests. After that he returns a message m∗ and a signature
σ∗.

The environment returns 1 if and only if the signature is valid and message m∗ has not been
previously requested.

Algorithm 5 Forge
1: function Init
2: (pk, sk)←R Keys
3: msgs← []

4: function O(m)
5: msgs← msgs ∪m
6: σ = Sign(sk,m)
7: return (m,σ)

8: function Fin((m∗, σ∗))
9: if m ∈ msgs then
10: return 0
11: return V erify(pk,m∗, σ∗)

Personal data exchange protocol: X 19

The adversary has access to oracle signature O and can adaptively choose messages m1, . . . ,mq

for signing. The adversary goal is to get a signature of the message which has not been previ-
ously requested. The adversary advantage in EUF-CMAmodel is defined as a signature forge
probability:

AdvEUF-CMA (q, t) = max
A∈A(q,t)

P[Forge(A)→ 1]

Further proof Using the introduced models MDDH, ROR -CPA and EUF-CMA , we bound
from above the probability of unwanted events by the adversary advantage in the specified models.
For this, we consider each of the requirements (reply indistinguishability, blob unforgeability, re-
quest unforgeability, inspector reply unforgeability), formalize it in the form of the corresponding
environment and bound from above the adversary advantage in each environment by the adversary
advantage in the basic models (MDDH, ROR -CPA and EUF-CMA).

11.5 Reply indistinguishability

Requirement: An adversary must not receive information about the user’s personal data analyzing
his replies Reply :

Reply = EKUI
(Request, SecData, salt),

We do not require the personal data length (number of encrypted blocks) and specified inspector
ID to be hidden.

Which basic properties ensure that the requirement is met:

1. ROR -CPA security of the encryption mode EK(·);
2. DDH computational complexity for corresponding key agreement protocol ([15]) group.

Requirement formalization The adversary has the ability to send the oracle O requests in the form
of equal-length text pairs:

Request = (SrcID,UID, scope, ttl)

The oracle assigns the inspector for personal data validation by the scope and performs with
him the secret key agreement protocol k = KUI . The secret key agreement procedure is performed
place each new request.

The oracle Real responds on the request with:

Reply = Ek(Request, SecData, salt)

The oracle Rand responds on the request with:

Reply = Ek(Request, r, salt), |r| = |SecData|

The oracle returns the result to the adversary. Analyzing the oracle replies, the adversary must
return bit 0 if he believes that he interacts with the oracle Rand else he returns bit 1.

Algorithm 6 Rand
1: function O(Request)
2: m← GetData(UID, scope)
3: InspID ← GetID(scope)
4: k ← V KO(Kpriv

U ,Kpubl
I)

5: r ←R {0, 1}|m|+saltLen
6: return Ek(Request‖r)

Algorithm 7 Real
1: function O(Request)
2: m← GetData(UID, scope)
3: InspID ← GetID(scope)
4: k ← V KO(Kpriv

U ,Kpubl
I)

5: salt← {0, 1}saltLen
6: return Ek(Request‖m‖salt)

20 V. Belsky et al.

We define the adversary advantage as a difference between corresponding probabilities:

AdvROR−Reply(A) = P[Real(A)→ 1]− P[Rand(A)→ 1]

AdvROR−Reply(t, q, µ) = max
A∈A(t,q,µ)

AdvROR−Reply(A),

where the maximum is taken over all the adversaries A ∈ A(t, q, µ) which:

1. takes time no more than t;
2. Performs at least q requests to the oracle O;
3. The maximal length of the request Request‖SecData‖salt is no more than µ.

We assume that given UID and scope the function GetData returns the personal data of the
linked by UID user corresponding to the scope request. Given the scope request, the function
GetID returns the validating personal data inspector’s ID corresponding to the scope request.

Statement 2 The adversary advantage in the reply distinguishing problem can be bounded from
above as:

AdvROR−Reply(t, q, µ) ≤ 2 ·MDDH(t+ 2qµ, q) + q ·AdvROR−CPASE (t+ q · (2µ+ 1), 1, µ)

Proof. We perform the proof within two steps.

1. First, we replace the key agreement protocol V KO with a randomly chosen key. In this
transition, we can bound the probability of distinguishing from above by the complexity of
MDDH problem in the corresponding group (for example, the group of points on an elliptic
curve from the standard [15]).

2. Second, we reduce the Reply distinguishing probability with random keys to the ROR -
CPA security of the cipher Ek(·).

Algorithm 8 Real$
1: function O(Request)
2: m← GetData(UID, scope)
3: k ←R Keys
4: salt← {0, 1}saltLen
5: return Ek(Request‖m‖salt)

Algorithm 9 Rand$
1: function O(Request)
2: m← GetData(UID, scope)
3: k ←R Keys
4: r ← {0, 1}|Request|+|m|+saltLen
5: return Ek(r)

We write the adversary advantage as follows:

P[Real(A)→ 1]− P[Rand(A)→ 1] =(
P[Real(A)→ 1]− P[Real$(A)→ 1]

)
+
(
P[Real$(A)→ 1]− P[Rand$(A)→ 1]

)
+

+
(
P[Rand$(A)→ 1]− P[Rand(A)→ 1]

)
1. First term is bounded from above by a value

AdvMDDH(t+ qµ, q)

In the first term we replace the VKO protocol keys with random encryption keys. If there is an
adversary who distinguish two specified modes well then we can use it for solving the MDDH
problem. If we are given an oracle O from MDDH problem then it is enough to model all the
conditions for the adversary which distinguish two specified modes well. For encryption mode
imitation it is needed at most qµ encryption of a single block (we assume that an encrypting
one block of information is an elementary operation).

Personal data exchange protocol: X 21

2. Second term is bounded from above by a value:

q ·AdvROR−CPASE (t+ q · (2µ+ 1), 1, µ),

since we can consider the hybrid argument method again: a transition from ξi = Ek(m) to
ηi = Ek(r) with randomly chosen key k. We can model all the rest random vector coordinates.
It is necessary to do the following:
(a) To choose the key k ∈ Keys;
(b) To choose random r of the corresponding length;
(c) To encrypt m or r according to the encryption scheme.
Vector modelling time can be bounded from above as:

q︸︷︷︸
key

generation

+ qµ︸︷︷︸
гandom r
generation

+ qµ︸︷︷︸
encryption

.

3. In the third term we again replace the protocol VKO keys with random keys . This term is
bounded from above by a value:

AdvMDDH(t+ 2qµ, q),

since if there is an adversary who distinguishes two modes (Rand$ and Rand) well we can use
this adversary to solve MDDH problem. For modelling it is needed qµ operations to generate
r of the corresponding length and qµ operations of encryption.

From these facts the claimed estimation follows.

Replacing MDDH -advantage with the corresponding DDH -advantage we get the resulting
estimation:

Statement 3 The adversary’s advantage in the reply distinguishing problem can be bounded from
above as:

AdvROR−Reply(t, q, µ) ≤ 2q ·AdvDDH(t+ q · (4 + 2µ))+

+q ·AdvROR−CPASE (t+ q · (2µ+ 1), 1, µ)

Possible consequence of requirement violation: The ROR-CPA property is formulated under the
assumption that all keys are equally probable. It could be possible that the key KUI is unequiprob-
able given the information about user’s and inspector’s public keys. In order to replace the key
KUI with equiprobable one, the DDH assumption is needed.

Even if we assume that the key is chosen equiprobable, the encryption mode can be weak or to al-
low some information leakage about plaintext. To exclude this possibility, the ROR -CPA security
of encryption mode is needed.

If the generated in Diffie-Hellman protocol key is not equiprobable then we get some posterior
distribution on the keys; such unevenness can be used by the adversary to reduce the number of
keys to be searched.

If the key is equiprobable but the encryption mode allows information leakage (ROR -CPA property
is violated) then the adversary can (theoretically) extract the user personal data information by
Analyzing his replies on service requests.

11.6 Blob unforgeability

Requirement: An adversary must not have an opportunity to forge the user blob with non-negligible
probability.

[y, UID,Reply]sgn(U)

Which basic properties ensure that the requirement is met: EUF-CMA -security of signature
scheme (including collision resistance of the hash function H(·) if it is used in the signature scheme)

22 V. Belsky et al.

Requirement formalization The adversary has the ability to send requests to the oracle O in the
form of:

Reqi = (SrcID,UID, scope, ttl)

The oracle identifies the inspector for personal data validation by the scope and performs with
him the secret key agreement protocol k = KUI . This procedure is performed each new request.

Oracle O forms a blob to answer the adversary request.

blob = [yi, UID,Ek(Reqi, SecDatai, salti)]sgn(U)

and returns the result to the adversary.
Analyzing oracle replies, the adversary must form the valid blob on the user’s U behalf i. e.

present:

blob∗ = [y, UID,Ek(Req
∗, SecData∗, salt∗)]sgn(U)

where Req∗ 6= Reqi, i = 1, . . . , q, i. e. the adversary forms the blob on the request which has
not been queried yet.

We formally define an environment Blob, which remembers all received adversary requests.
An oracle O implements blob generation process. The adversary queries several requests to the

oracle O whereupon returns forged blob blob∗.
The experimenter verifies that:

1. User public key certificate is valid;
2. The signature is verifiable;
3. The Request Req has not been queried before;

We simplify the adversary task a little because for blob verification it is additionally required
that specified in the Request UID matches the signature ID and that the user personal data
matches the specified one.

Algorithm 10 Blob
1: function Init
2: requests := []

3: function O(Req)
4: requests = requests ∪Req
5: m← GetData(UID, scope)
6: InspID ← GetID(scope)
7: k ← V KO(Kpriv

U ,Kpubl
I)

8: salt← {0, 1}saltLen
9: Reply ← Ek(Req‖m‖salt)
10: c← (Kpubl

U , UID,Reply)
11: σ ← SignU (c)
12: return (c, σ)

13: function Fin(blob∗ = [y, UID,Reply]σ)
14: if !(SertCheck(σ)) then
15: return 0
16: c← (y, UID,Reply)
17: if !(V erify(c, σ)) then
18: return 0
19: k ← V KO(Kpubl

U ,Kpriv
I)

20: (Req‖SecData‖salt)← Dk(Reply)
21: if Req ∈ requests then
22: return 0
23: return 1

In order for the blob to pass the verification, it is enough to happen one of following two events:

A1: The adversary has succeeded to forge user public key certificate under his own key. In that
case, the adversary can forge any blobs.

Personal data exchange protocol: X 23

A2: The adversary has managed to forge the new blob signature.

In both cases, the adversary solves EUF-CMA porblem for the signature scheme which is used
in the protocol.

Thus the following statement holds:

Statement 4 Blob forge probability can be bounded from above as:

P[Blob(A)→ 1] ≤ P[A1] + P[A2] ≤ AdvEUF-CMA
Sert (qusr, t) +AdvEUF-CMA

User (qblob, t),

where the following notations are used: qusr — number of the users authenticated in CA;qblob —
number of the blobs signed by the user;t — time used by the adversary for the corresponding EUF-
CMA problem solution.

Possible consequence of requirement violation: If a collision of the hash function H(·) can be easily
found the second preimage search problem is probably also not hard.

In that case, the adversary can transfer the signature from one user’s blob to another generated
blob. The user can not deny the fact of providing a fake blob because there is his signature. The
service can not ensure that it is the user U who provided the personal data

Even provided that the function H(·) is collision resistant the signature scheme can be weak.
This allows the adversary to forge the signature on a completely different blob.

11.7 Request unforgeability

Requirement: An adversary must not be able to forge the service request

Request = [SrcID,UID, scope, ttl]sgn(S)

Which basic properties ensure that the requirement is met: EUF-CMA -security of signature
scheme (including collision resistance of the hash functionH(·) if it is used in the signature scheme).

Requirement formalization By analogy with the previous problem we consider the following for-
malization:

Algorithm 11 Request
1: function Init
2: requests := []

3: function O(UID, scope, ttl)
4: R← (SrcID,UID, scope, ttl)
5: requests.add(R)
6: σ ← SignSrc(R)
7: return (R, σ)

8: function Fin(R, σ)
9: if !(SertCheck(σ)) then
10: return 0
11: return V erify(c, σ)

In order for the request (Request) to pass the verification, it is enough to happen one of the
following two events:

A1: The adversary has succeeded to forge user public key certificate under his own key. In that
case, the adversary can forge any requests.

A2: The adversary has managed to forge the new request signature.

In both cases, the adversary solves EUF-CMA problem for the signature scheme which is used
in the protocol.

Thus the following statement holds:

24 V. Belsky et al.

Statement 5 Request forge probability can be bounded from above as:

P[Request(A)→ 1] ≤ P[A1] + P[A2] ≤ AdvEUF-CMA
Sert (qusr, t) +AdvEUF-CMA

src (qsrc, t),

where the following notations are used: qusr — number of the users authenticated in CA;qsrc —
number of the requests signed by the service;t — time spent by the adversary on solving the corre-
sponding EUF-CMA problem.

11.8 Inspector reply unforgeability

Requirement: An adversary must not be able to forge inspector reply

check = [yes/no, ttl, blob]sgn(I)

Which basic properties ensure that the requirement is met: EUF-CMA -security of signature
scheme (including collision resistance of the hash functionH(·) if it is used in the signature scheme).

Similar to two previous problems the following statement can be proved:

Statement 6 Inspector reply forge probability can be bounded from above as:

P[Insp(A)→ 1] ≤ AdvEUF-CMA
sert (qusr, t) +AdvEUF-CMA

insp (qinsp, t),

where the following notations are used: qusr — number of the users authenticated in CA;qinsp —
number of the requests signed by the inspector;t — time spent by the adversary on solving the
corresponding EUF-CMA problem.

Possible consequence of requirement violation: In that case, the adversary (as described previously)
has the opportunity to forge inspector reply at personal data verification process. In particular, he
can accept invalid personal data (conspired with the user), extend the personal data validity (ttl)
at its discretion and provide invalid personal data.

11.9 Conclusion

Gathering together the results of the statements 3, 5, 4, 6, we get that the probability of any
unwanted events (protocol operation violation) is no more than:

maxAdvROR−Reply(A),P[Blob(A)→ 1],P[Request(A)→ 1],P[Insp(A)→ 1] ≤

AdvROR−Reply(A) + P[Blob(A)→ 1] + P[Request(A)→ 1] + P[Insp(A)→ 1],

whence the original theorem 1 follows
Theorem 1.
The probability of breaking the protocol can be bounded from above as:

2q ·AdvDDH(t+ q · (4 + 2µ)) + q ·AdvROR−CPASE (t+ q · (2µ+ 1), 1, µ)+

3 ·AdvEUF-CMA
Sert (qusr, t) +AdvEUF-CMA

insp (qinsp, t)

+AdvEUF-CMA
User (qblob, t) +AdvEUF-CMA

src (qsrc, t)

Where the following notations are used:

qusr — number of the users authenticated in CA;
qblob — number of the blobs signed by the user;
qsrc — number of the requests signed by the service;
qinsp — number of the requests signed by the inspector;
q — number of the adversary encryption requests Req;
µ — the maximal length of the request Request‖SecData‖salt;
t — the running time of the adversary.

Personal data exchange protocol: X 25

References

1. Federal law of 27 july 2006 n 152-fz on personal data, https://pd.rkn.gov.ru/authority/p146/p164/
2. GDPR Fines and Penalties, https://www.nathantrust.com/gdpr-fines-penalties
3. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the

protection of natural persons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA
relevance), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679

4. Bellare, M., Rogaway, P.: Introduction to modern cryptography. Ucsd Cse 207, 207 (2005)
5. Dolmatov, V.: GOST R 34.12-2015: Block Cipher "Kuznyechik". RFC 7801 (Mar 2016).

https://doi.org/10.17487/RFC7801, https://rfc-editor.org/rfc/rfc7801.txt
6. Dolmatov, V., Degtyarev, A.: GOST R 34.10-2012: Digital Signature Algorithm. RFC 7091 (Dec 2013).

https://doi.org/10.17487/RFC7091, https://rfc-editor.org/rfc/rfc7091.txt
7. Dolmatov, V., Eremin-Solenikov, D.: GOST R 34.12-2015: Block Cipher "Magma" (Mar 2020),

https://datatracker.ietf.org/doc/html/draft-dolmatov-magma-06, work in Progress
8. Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor (October 2012),

http://www.rfc-editor.org/rfc/rfc6749.txt, http://www.rfc-editor.org/rfc/rfc6749.txt
9. Katz, J., Lindell, Y.: Introduction to modern cryptography. Chapman and Hall/CRC (2014)

10. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authentication Service
(V5). RFC 4120, RFC Editor (July 2005), http://www.rfc-editor.org/rfc/rfc4120.txt, http://www.rfc-
editor.org/rfc/rfc4120.txt

11. Newman, L.H.: 1.2 Billion Records Found Exposed Online in a Single Server,
https://www.wired.com/story/billion-records-exposed-online/

12. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, RFC Editor (August
2018)

13. S. Melendez, A. Pasternack: Here are the data brokers quietly buying and selling your personal in-
formation (2019), https://www.fastcompany.com/90310803/here-are-the-data-brokers-quietly-buying-
and-selling-your-personal-information

14. Samonte, M.: Google v CNIL Case C-507/17: The Territorial Scope of the Right to be Forgot-
ten Under EU Law (2019), https://europeanlawblog.eu/2019/10/29/google-v-cnil-case-c-507-17-the-
territorial-scope-of-the-right-to-be-forgotten-under-eu-law/

15. Smyshlyaev, S.V., Alekseev, E., Oshkin, I., Popov, V., Leontiev, S., Podobaev, V., Belyavsky, D.:
Guidelines on the Cryptographic Algorithms to Accompany the Usage of Standards GOST R 34.10-
2012 and GOST R 34.11-2012. RFC 7836 (Mar 2016). https://doi.org/10.17487/RFC7836, https://rfc-
editor.org/rfc/rfc7836.txt

16. Wikipedia contributors: List of data breaches — Wikipedia, the free encyclopedia (2020),
https://en.wikipedia.org/wiki/List_of_data_breaches, [Online; accessed 23-April-2020]

