
Anonymous IBE From Quadratic Residuosity
With Fast Encryption

Xiaopeng Zhao1, Zhenfu Cao1,2(�), Xiaolei Dong1, and Jinwen Zheng1

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal
University, Shanghai, China

52164500025@stu.ecnu.edu.cn, zfcao@sei.ecnu.edu.cn
dongxiaolei@sei.ecnu.edu.cn, jinwen.zheng@foxmail.com

2 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen and
Shanghai Institute of Intelligent Science and Technology, Tongji University, China

Abstract. We develop two variants of Cocks’ identity-based encryption.
One variant has faster encryption which is as efficient as RSA encryption.
The other variant makes the first variant anonymous under suitable com-
plexity assumptions, while its decryption efficiency is about twice lower
than the first one. Both the variants have ciphertext expansion twice
larger than the original Cocks’ identity-based encryption.
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1 Introduction

The notion of identity-based cryptography was first proposed by Shamir [17] in
1984. This new paradigm of cryptography aims at solving the issue of managing
and recovering the public-key certificate by simplifying the key management.
For example, users’ identification information such as email addresses or names
rather than digital certificates can be used as their public key for encrypting
or verifying digital signature. Shamir constructed an identity-based signature
scheme using the RSA function, but developing identity-based encryption (IBE)
schemes turns out to be much harder. Until the year 2001, Shamir’s open problem
was solved by Boneh and Franklin [5] and Cocks [12] independently. Recently,
lattice was considered as an emergent system for constructing IBE schemes (e.g.,
as in [13]). The Boneh-Franklin IBE scheme makes use of bilinear maps and is
truly practical. Therefore, this work has attracted tons of attention from re-
searchers over the years. However, Cocks’ IBE scheme received less attention
because of the lack of algebraic structure. Although Cocks’ IBE scheme is in-
efficient for large messages, it is simple, elegant and secure under the standard
quadratic residuosity (QR) assumption in the random oracle model. It can be
used to encrypt short session keys in practice, e.g., a 128-bit symmetric key.
Thus, the scheme was followed up by some researchers [2, 6, 7, 9–11, 15, 18].



In 2016, Joye [15] made Cocks’ scheme amenable to applications including
electronic voting, auction systems, private information retrieval, or cloud com-
puting; Joye proved that Cocks’ scheme is homomorphic by considering Cocks’
ciphertext as elements of the algebraic group

Fp,δ2 = (Fp \ {±δ}) ∪ {∞} = {u ∈ Fp | u2 6= δ2} ∪ {∞}

for a odd prime p and δ ∈ F×
p . A similar conclusion can also be reached by

considering Cocks’ scheme over the polynomial quotient ring ZN [x]/(x2 − Rid)
for which N is an RSA modulus and Rid is the IBE public key of an identity id
[9, 10]. Our two variants are based on the latter structure.

It is well-known that Cocks’ scheme is not anonymous due to Galbraith’s
test [4]. The test has been studied by several researchers [2, 18]. Despite the
test, some researchers [2, 11, 15] managed to propose anonymous variants of
Cocks’ scheme. In this work, we mainly follow the approach of Joye in [15],
which does not increase Cocks’ ciphertext size or sacrifice its security.

In this work, we use the time-space tradeoff method to propose two variants
of Cocks’ IBE scheme [12] in the following two aspects:

1. Our first proposal omits the computation of the Jacobi symbol
(
a
b

)
for κ-

bit integers a and b, which has O (M(κ) log κ)3 time complexity [8], and the
modular multiplicative inverse in Cocks’ encryption. In detail, the ciphertext
extension is increased by a factor of 2, but the encryption in our proposal
only requires several modular multiplications of time complexity O (M(κ)).
The proposal can also be proved semantic secure under a complexity assump-
tion slightly stronger than the QR assumption. Moreover, this improvement
hardly influences the decryption speed.

2. Inspired by the anonymous IBE scheme without ciphertext expansion pro-
posed in [15, Section 6.2], our second proposal makes the first proposal
anonymous under suitable complexity assumptions. This improvement do
not influence the ciphertext expansion either. We use this scheme to con-
struct a public-key encryption with keyword (PEKS) scheme with fast PEKS-
encryption algorithm.

The rest of the paper is organized as follows. In §2, we review the notion
of semantic secure and the notion of anonymity. In §3, we describe our first
proposal and prove that it is semantic secure. In §4, we describe our second
proposal and prove that it is anonymous under reasonable assumptions. In §5,
we give a suitable application of our second proposal. Concluding remarks are
given in §6.

2 Preliminaries

We write x R← X for sampling at random an element x from the set X. If A
is an algorithm, then we write x ← A(y) to mean: “run A on input y and the
output is assigned to x”.
3 M(κ) is the time to multiply κ-bit numbers.
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2.1 Identity-Based Encryption

An identity-based encryption (IBE) scheme is defined as a tuple of proba-
bilistic polynomial time (PPT) algorithms (Setup,KeyGen,Enc,Dec):

Setup(1κ) The setup algorithm Setup is a randomized algorithm that takes a
security parameter 1κ as input, and outputs a tuple (mpk,msk), where mpk
denotes the public parameter and msk denotes the master secret key. The
plaintext space is denoted by M.

KeyGen (msk, id) The key generation algorithm KeyGen is a deterministic algo-
rithm that takes msk and an identity id as inputs, and outputs a decryption
key skid associated with the identity id.

Enc (mpk, id,m) The encryption algorithm Enc is a randomized algorithm that
takes mpk, an identity id and a plaintext m ∈ M as inputs, and outputs a
ciphertext C.

Dec(mpk, skid, C) The decryption algorithm Dec is a deterministic algorithm
that takes mpk, skid and a ciphertext C as inputs, and outputs the cor-
responding plaintext m if C is a valid ciphertext, and ⊥ otherwise.

For any identity id and all plaintexts m ∈ M, the correctness property requires
that

Dec (mpk, skid, C ← Enc (mpk, id,m)) = m.

2.2 Security Notions

The following notions are consistent with the notions described in [15, Section
2.2].

Semantic security. The semantic security property [14] states that it is infeasi-
ble for any adversary with the limited computation ability to get any information
of a plaintext given the corresponding ciphertext. The behaviors of an adver-
sary A can be simulated by a pair of probabilistic PPT algorithms (A1,A2).
The game between an adversary and a challenger contains the following four
successive phases:

Initialization phase: The challenger runs the algorithm Setup and keeps
the master secret key msk. It then gives the public parameter mpk to the
adversary A.

The first query phase: After receiving mpk, A1 adaptively chooses an iden-
tity subspace ID1 ⊆ ID (The identity space is denoted by ID), and issues the
key generation queries and obtains the private key corresponding to each
identity in ID1.

Challenge phase: A1 chooses a challenge identity id∗ /∈ ID1 and two different
plaintexts m0, m1 ∈ M of the same length. It then outputs them along with
some state information s.
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Guess phase: The challenger chooses a random bit b and encrypts mb with
mpk and id∗. It then sends the corresponding ciphertext C to the algorithm
A2. A2 can issue more key generation queries in the identity space ID2 ⊆ ID
which does not contain id∗. The goal of A2 is to guess the bit b from C and
s. It wins the game (carries a successful attack) if the guess is right.

Formally, an IBE scheme is said to be semantically secure if the advantage

AdvIND-ID-CPA
A (κ) =∣∣∣∣∣∣∣Pr
 (mpk,msk)

R← Setup(1κ),

(id∗,m0,m1, s)← AKeyGenmsk(·)
1 (mpk), : AKeyGenmsk(·)

2 (s, C) = b

b
R← {0, 1} , C ← Enc(mpk, id∗,mb)

− 1

2

∣∣∣∣∣∣∣
is negligible. The semantic security can also be called indistinguishable chosen-
identity chosen-plaintext security (IND-ID-CPA).

Anonymity. The notion of anonymity [3] is a strong requirement of privacy:
it is infeasible for any adversary with the limited computation ability to get
the identity of the recipient from a ciphertext. Anonymous IBE can be used
for searchable encryption [1, 4]. The behaviors of an adversary A can also be
simulated by a pair of probabilistic PPT algorithms (A1,A2). The game between
an adversary and a challenger contains the following four successive phases:

Initialization phase: The same as that in §2.2.
The first query phase: The same as that in §2.2.
Challenge phase: The adversary chooses two distinct challenge identities

id∗0, id
∗
1 /∈ ID1 and a plaintext m ∈ M. It then outputs them along with some

state information s.
Guess phase: The challenger chooses a random bit b and encrypts m with

mpk and id∗b . It then sends the corresponding ciphertext C to A2. A2 can
issue more key generation queries in the identity space ID2 ⊆ ID which does
not contain id∗0 and id∗1. The goal of A2 is to guess the bit b from C and s.
It wins the game if the guess is right.

Formally, an IBE scheme is said to be anonymous if the advantage

AdvANO-ID-CPA
A (κ) =∣∣∣∣∣∣∣Pr
 (mpk,msk)

R← Setup(1κ),

(id∗0, id
∗
1,m, s)← A

KeyGenmsk(·)
1 (mpk), : AKeyGenmsk(·)

2 (s, C) = b

b
R← {0, 1} , C ← Enc(mpk, id∗b ,m)

− 1

2

∣∣∣∣∣∣∣
is negligible in the security parameter κ for any PPT adversary A.
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2.3 Complexity Assumption
Let N be a product of two RSA primes p and q. Let JN =

{
x ∈ Z∗

N

∣∣ ( x
N

)
= 1

}
,

i.e., the set of integers whose Jacobi symbols are 1. Let QRN = {x | ∃y ∈
Z∗
N , x ≡ y2 (mod N)}. The following complexity assumption slightly modifies

the QR assumption.
Definition 1 (Strong Quadratic Residuosity (SQR) Assumption). Given
a security parameter κ. A PPT algorithm RSAgen (κ) generates two RSA primes
p and q such that p ≡ −q mod 4. Let N = pq and given some u R← JN \QRN .
The strong quadratic residuosity assumption with respect to RSAgen (κ) asserts
that the advantage AdvSQR

A,RSAgen (κ) defined as∣∣∣Pr [A (N, u, x) = 1
∣∣∣ x R← QRN

]
− Pr

[
A (N, u, x) = 1

∣∣∣ x R← JN \QRN

]∣∣∣
is negligible for any PPT adversary A; the probabilities are taken over the ex-
periment of running (N, p, q) ← RSAgen (κ) and choosing at random x ∈ QRN

and x ∈ JN \QRN .
The only difference between the SQR assumption and the assumption on which
Cocks’ scheme relies is the choice of p and q. In the latter assumption, N = pq
where p ≡ q ≡ 3 (mod 4) and −1 ∈ JN \QRN is public. Hence, we believe that
breaking one is as intractable as breaking the other.

3 A Variant of Cocks’ IBE Scheme with Fast Encryption
Our first scheme can be viewed as a variant of the classical Cocks’ scheme (as
in Appendix A).

Define the function

JN (x) =

{
⊥, if gcd(x,N) 6= 1;

i, if gcd(x,N) = 1 and
(

x
N

)
= (−1)i.

Our first proposal proceeds as follows.
Setup(1κ) Given a security parameter κ, Setup generates two RSA primes p

and q such that p ≡ −q mod 4. Let N = pq. Setup samples an element
u

R← JN \ QRN . The public parameter is mpk = {N, u,H} where H is a
publicly available cryptographic hash function mapping an arbitrary binary
string to JN . The master secret key is msk = {p, q}.

KeyGen(mpk,msk, id) Using mpk and msk, KeyGen sets Rid = H (id). If Rid ∈
QRN , KeyGen computes rid = R

1/2
id mod N ; otherwise it computes rid =

(uRid)
1/2

mod N . Finally, KeyGen returns skid = {rid} as user’s private key.
Enc (mpk, id,m) On inputting mpk, an identity id and a plaintext m ∈ {0, 1},

Enc derives the hash value Rid = H (id). Enc then chooses at random two
polynomials f(x), f(x) of degree 1 from ZN [x] and calculates

g(x) = f(x)2 mod (x2 −Rid) and g(x) = f(x)2 mod (x2 − uRid).

The returned ciphertext is C = {(−1)m · g(x), (−1)m · g(x)}.
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Dec(mpk, skid, C) On inputting mpk, a secret key skid = {rid} and a ciphertext
C = {c(x), c(x)}. Dec computes

m′ =


(

c(rid)
N

)
if r2id ≡ H(id) (mod N);(

c(rid)
N

)
otherwise.

and recovers the plaintext m as JN (m′).

Correctness. The correctness of the decryption follows by noticing that when
r2id ≡ H(id) (mod N) we have

m′ =

(
c(rid)

N

)
=

(
(−1)mf(rid)2

N

)
= (−1)m,

and thus we can recover the plaintext m by the function JN . When r2id ≡ uH(id)
(mod N), we can proceed similarly.

Before proving that the above scheme is semantic secure, we need the follow-
ing theorem.

Theorem 1. Let t ∈ Z∗
N and R an element in JN \QRN . If c(x) = f(x)2

t mod

x2 −R for some f(x) R← ZN [x] is a polynomial of degree 1, then the sets

Ωk =

{
g(x) ∈ ZN [x]

∣∣∣∣ deg g(x) = 1,
g(x)2

k
mod (x2 −R) = c(x)

}
are of the same size for each k ∈ Z∗

N .

Proof. Consider the two sets Ωt, Ωt, to prove the theorem, it suffices to prove
that #Ωt = #Ωt for fixed t and any t ∈ Z∗

N . Suppose that
(

t−1t
p

)
= (−1)it and(

t−1t
q

)
= (−1)jt for it, jt ∈ {0, 1}. Since(

Rit

p

)
=

(
t−1t

p

)
and

(
Rjt

q

)
=

(
t−1t

q

)
,

there exist Wp ∈ Z∗
p and Wq ∈ Z∗

q such that

W 2
pR

it ≡ t−1t (mod p)

W 2
qR

jt ≡ t−1t (mod q)

According to the Chinese Remainder Theorem, we have

Z[x]/(N, x2 −R)∼= Z[x]/(p, x2 −R)⊕ Z[x]/(q, x2 −R).

Therefore, the map ϕ : Ωt → Ωt given by h(x) 7→ g(x) where deg g(x) = 1 and

g(x) ≡Wpx
ith(x) (mod (p, x2 −R))

g(x) ≡Wqx
jth(x) (mod (q, x2 −R))
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is well defined. In the other direction, the inverse map ψ : Ωt → Ωt is given by
g(x) 7→ h(x) where

h(x) ≡W−1
p

(
R−1x

)it
g(x) (mod (p, x2 −R))

h(x) ≡W−1
q

(
R−1x

)jt
g(x) (mod (q, x2 −R))

It is straightforward to verify that ψ ◦ ϕ = 1Ωt and ϕ ◦ ψ = 1Ωt
where 1Ωt and

1Ωt
denote the identity maps on Ωt and Ωt respectively. This establishes the

bijection and completes the proof. ut

Theorem 2. Let A = (A1,A2) be an adversary against the IND-ID-CPA security
of the scheme in §3, making qH queries to the random oracle H that are not
followed by extraction queries, and a single query in the Challenge phase.
Then, there exists an adversary B against the SQR assumption such that

AdvIND-ID-CPA
A (κ) =

qH
2
· AdvSQR

B,RSAgen(κ)

The security proof is obtained by following the proof of [15, Appendix A].

Proof. Suppose that B is given an RSA modulus N ← RSAgen(κ), a random
element w ∈ JN and u

R← JN \ QRN and is asked to determine whether w ∈
JN \QRN . B sets mpk = {N, u,H} and gives it to A1, who has oracle access to
hash queries and extraction queries, i.e., asking the private key corresponding
to each identity in the chosen set ID1. B answers the oracle queries as follows:

Hash queries Initially, B maintains a counter ctr initialized to 0 and a list
SH ← ∅ whose entry is in the form {id, Rid, rid}. In addition, B selects i∗ R←
{1, 2, . . . , qH}.
When A queries oracle H on an identity id, B increments ctr and checks
whether there is an entry whose first component is id. If so, it returns Rid;
otherwise,
1. If ctr = i∗, it returns w and appends {id, w,⊥} to SH.
2. Otherwise, it returns h = u−jr2 mod N for which r

R← ZN and j
R←

{0, 1}, and appends {id, h, r} to SH.
Extraction queries WhenA queries the secret key on id, B first checks whether

there is an entry whose first component is id. If not, it invokes H(id) to gen-
erate such an entry {id, Rid, rid}. Finally, if rid =⊥, it aborts; otherwise, it
returns rid.

Afterwards, A1 selects a challenge identity id∗ /∈ ID1. If H(id∗) 6= w, B returns
b

R← {0, 1}; otherwise, B does the following process:

1. Choose at random two polynomials f(x), f(x) of degree 1 from ZN [x] and
b

R← {0, 1}. Calculate

g(x) = f(x)2 mod (x2 − w)
g(x) = f(x)2 mod (x2 − uw)
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The corresponding ciphertext is

Cb =

{
{g(x), −g(x)} , if b = 0;

{−g(x), g(x)} , otherwise.

2. Give Cb to A2. A2 may issue more hash queries and extraction queries on
identities except for id∗. Finally, A2 returns a bit b′.

3. If b = b′ return 1; otherwise return 0.

We first analyze the subcase that w 6= H(id∗). In this case B returns a random
bit, regardless of what w is. Therefore, we have Pr[B (N, u,w) = 1 | w ∈ QRN ∧
w 6= H(id∗)] = Pr [B (N, u,w) = 1 | w ∈ JN \QRN ∧ w 6= H(id∗)] = 1/2. We now
consider the subcase that w = H(id∗). If w ∈ QRN , according to the fact that
uw ∈ JN \ QRN and Theorem 1, we conclude that Cb is a valid ciphertext
for b. For the same reason, if w ∈ JN \ QRN , we conclude that Cb is a valid
ciphertext for 1 − b; in this case, B returns 1 if and only if A loses the IND-
ID-CPA game. Let ϵ = Pr [B (N, u,w) = 1 | w ∈ QRN ∧ w = H(id∗)] and ϵ′ =
Pr [B (N, u,w) = 1 | w ∈ JN \QRN ∧ w = H(id∗)]. We have

Pr [B (N, u,w) = 1 | w ∈ QRN ]

= Pr [w = H(id∗)] · Pr [B (N, u,w) = 1 | w ∈ QRN ∧ w = H(id∗)]

+ Pr [w 6= H(id∗)] · Pr [B (N, u,w) = 1 | w ∈ QRN ∧ w 6= H(id∗)]

=
ϵ

qH
+

(
1− 1

qH

)
· 1
2

and similarly,

Pr [B (N, u,w) = 1 | w ∈ JN \QRN ]

= Pr [w = H(id∗)] · Pr [B (N, u,w) = 1 | w ∈ JN \QRN ∧ w = H(id∗)]

+ Pr [w 6= H(id∗)] · Pr [B (N, u,w) = 1 | w ∈ JN \QRN ∧ w 6= H(id∗)]

=
1− ϵ′

qH
+

(
1− 1

qH

)
· 1
2

Consequently, we have

AdvSQR
B,RSAgen(κ)

= |Pr [B (N, u,w) = 1 | w ∈ QRN ]− Pr [B (N, u,w) = 1 | w ∈ JN \QRN ]|

=

∣∣∣∣ ϵqH +

(
1− 1

qH

)
· 1
2
−

(
1− ϵ′

qH
+

(
1− 1

qH

)
· 1
2

)∣∣∣∣
=

2

qH
·
∣∣∣∣12 −

(
1

2
ϵ+

1

2
ϵ′
)∣∣∣∣

=
2

qH
AdvIND-ID-CPA

A (κ)

This completes the proof. ut

8



4 An Anonymous Variant of Cocks’ IBE Scheme with
Fast Encryption

Galbraith developed a test which shows that Cocks’ scheme is not anonymous.
It was rigorously proved in [2, 18] that the test can distinguish the identity of the
recipient from a ciphertext C with overwhelming probability. It is not difficult
to see that the scheme in §3 is also not anonymous when we simply modify
Galbraith’s test as:

GT (Rid, Ci(x)) =

(
c2i0 − c2i1αiRid

N

)
, i = 1, 2.

where α1 = 1, α2 = u and C = (C1(x), C2(x)) = (c10 + c11x, c20 + c21x) repre-
sents the ciphertext (we still call it Galbraith’s test in what follows). To avoid
this attack, we should generate two types of ciphertexts whose Galbraith’s tests
are −1 and +1 separately. Obviously, multiplying the ciphertext polynomial by
a scalar does not work since the corresponding Galbraith’s tests does not change.
What about multiplying a polynomial? In fact, a polynomial x is feasible since

GT (Rid, C
′
i(x) = xCi(x)) = −GT (Rid, Ci(x)), i = 1, 2.

Therefore, inspired by the anonymous IBE scheme without ciphertext expansion
from [15, Section 6.2], we can construct the following anonymous IBE scheme
with fast encryption and without ciphertext expansion. Our second scheme pro-
ceeds as follows.

Setup(1κ) Given a security parameter κ, Setup generates two RSA primes p
and q such that p ≡ −q mod 4. Let N = pq. Setup samples an element
u

R← JN \ QRN . The public parameter is mpk = {N, u,H} where H is a
publicly available cryptographic hash function mapping an arbitrary binary
string to JN . The master secret key is msk = {p, q}.

KeyGen(mpk,msk, id) Using mpk and msk, KeyGen sets Rid = H (id). If Rid ∈
QRN , KeyGen computes rid = R

1/2
id mod N ; otherwise it computes rid =

(uRid)
1/2

mod N . Finally, KeyGen returns skid = {rid} as user’s private key.
Enc (mpk, id,m) On inputting mpk, an identity id and a plaintext m ∈ {0, 1},

Enc derives the hash value Rid = H (id). Enc then chooses at random two
polynomials f1, f2 of degree 1 from ZN [x] and two bits β1, β2

R← {0, 1}. Set

g
(0)
1 (x) = (−1)mf1(x)2 mod (x2 −Rid)

g
(1)
1 (x) = (−1)mx · f1(x)2 mod (x2 −Rid)

g
(0)
2 (x) = (−1)mf2(x)2 mod (x2 − uRid)

g
(1)
2 (x) = (−1)mx · f2(x)2 mod (x2 − uRid)

The returned ciphertext is

C =
{
g
(β1)
1 (x), g

(β2)
2 (x)

}
.
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Dec(mpk, skid, C) On inputting mpk, a secret key skid = {rid} and a ciphertext
polynomial set C = {C1(x), C2(x)}. If r2id ≡ Rid mod N , Dec computes σ =
GT (Rid, C1(x)); otherwise it computes σ = GT (Rid, C2(x)). Finally, Dec
computes

m′ =


(

h(rid)
N

)
, if σ = 1;(

ridh(rid)
N

)
, otherwise.

and recovers the plaintext m as JN (m′).

Correctness. According to the correctness proof of the scheme in §3, it is
enough to show that the decryption is correct when σ = −1 and r2id ≡ Rid mod N .
In this case, we have C1(x) = g

(1)
1 (x) and

m′ =

(
ridC1(rid)

N

)
=

(
(−1)mr2idf1(rid)2

N

)
= (−1)m.

Thus, the decryption works correctly.

Remark 1. The amount of computation in the decryption is about twice times
larger than that in the scheme from §3. However, the efficiency of the encryption
and the size of the ciphertext expansion do not change.

It can be easily seen that the scheme in §4 is also IND-ID-CPA secure by com-
paring the ciphertexts between the above scheme and the scheme in §3: The
ciphertext polynomials for the two schemes differ only by a polynomial x. There-
fore, assuming that there exists an IND-ID-CPA adversary A against the above
scheme, we can use A to break the IND-ID-CPA security of the scheme from §3.
The following theorem estimates the size of the first component of the scheme’s
ciphertext space when β1 = 0.

Theorem 3. With the notations in the above scheme. Fix N , m ∈ {0, 1} and
assume without loss that Rid = H(id) ∈ QRN . The set

ZN,m,Rid =
{
Ca,b(x) = (−1)m(ax+ b)2 mod (x2 −Rid) : a, b

R← Z∗
N

∣∣∣ arid ± b ∈ Z∗
N

}
has size at least φ(N)(p−3)(q−3)

16 (φ denotes the Euler’s totient function). More-
over, the set of the first component of the scheme’s ciphertext has size at least
φ(N)(p−3)(q−3)

8 when β1 = 0.

Proof. We have by a simple calculation that

Ca,b(x) = (−1)m(ax+ b)2 ≡ (−1)m
(
a2Rid + b2 + 2abx

)
(mod x2 −Rid).

Suppose that Ca1,b1(x) = Ca2,b2(x), we have

a21Rid + b21 ≡ a22Rid + b22 (mod N)

2a1b1 ≡ 2a2b2 (mod N)
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This is equivalent to

(a1rid + b1)
2 ≡ (a2rid + b2)

2
(mod N)

(a1rid − b1)2 ≡ (a2rid − b2)2 (mod N)

Fixing a1 and b1, if a1rid + b1 ∈ Z∗
N and a1rid − b1 ∈ Z∗

N (this means that
GT (Rid, Ca,b(x)) = 1), then there are at most 16 choices of a2 ∈ Z∗

N and b2 ∈ Z∗
N

for which Ca1,b1(x) = Ca2,b2(x). The number of cases of a1rid ± b1 ∈ Z∗
N for

a1, b1 ∈ Z∗
N is exactly φ(N)(p − 3)(q − 3). This proves the first assertion. It is

then clear that ZN,0,Rid
∩ZN,1,Rid

= ∅ since the decryption algorithm can recover
the original plaintext. This proves the remaining assertion. ut

Given an RSA modulus N = pq and ∆ ∈ Z∗
N , define the following sets:

– SN,∆ =
{
u ∈ Z∗

N

∣∣ gcd(u2 −∆,N) = 1
}

– S[−1]
N,∆ =

{
u ∈ Z∗

N

∣∣∣ (u2−∆
N

)
= −1

}
– S[+1]

N,∆ =
{
u ∈ Z∗

N

∣∣∣ (u2−∆
N

)
= 1

}
– (SN,∆)

2
=

{
u ∈ Z∗

N

∣∣∣ (u2−∆
p

)
=

(
u2−∆

q

)
= 1

}
Perron [16] proved that for a prime p and any r relatively prime to p, the set
r +QRp (QRp represents the set of quadratic residues containing 0) contains k
quadratic residues4 and k quadratic non-residues when p = 4k − 1, or k + 1
quadratic residues and k quadratic non-residues when p = 4k + 1 and r ∈ QRp.
Take r = −∆ = −Rid and assume without loss that p ≡ 3 (mod 4), q ≡ 1
(mod 4) and Rid ∈ QRN . There are

(
p+1
4 − 1

)
× 2 = p−3

2 elements u ∈ Z∗
p

for which
(

u2−∆
p

)
= 1 and

(
q+3
4 − 2

)
× 2 = q−5

2 elements u ∈ Z∗
q for which(

u2−∆
q

)
= 1. Thus the size of (SN,∆)

2 equals (p−3)(q−5)
4 and the size of S[+1]

N,∆

equals (p−3)(q−5)
4 + (p−3)(q−1)

4 = (p−3)(q−3)
2 (See also [18, Corollary 3.4]). Conse-

quently, the set

S
[+1]
N,∆ =

{
a+ bx : a, b

R← Z∗
N

∣∣∣ a
b
∈ S[+1]

N,∆

}
has size φ(N)(p−3)(q−3)

2 . It has been proved that the set of the first component
of the scheme’s ciphertext has size at least φ(N)(p−3)(q−3)

8 when β1 = 0. Since
the latter set can not cover the former set, in order to prove that the scheme
achieves anonymity, we need to make the following assumption:

Assumption 1 The set
{
(f, g)

∣∣∣ f ∈ S[+1]
N,Rid

, g ∈ S[+1]
N,uRid

}
is computationally

equivalent to the scheme’s ciphertext space when the identity of the recipient is
id and β1 = β2 = 0.
4 Perron considered the integer 0 as a quadratic residue. We should deal with it care-

fully.

11



When β1 = β2 = 1, it is clear that each component of the ciphertext space has
size at least φ(N)(p−3)(q−3)

8 . However, the set

S
[−1]
N,∆ =

{
c+ dx : c, d

R← Z∗
N

∣∣∣ c
d
∈ S[−1]

N,∆

}
also has size φ(N)(p−3)(q−3)

2 . Again, we shall make another assumption:

Assumption 2 The set
{
(f, g)

∣∣∣ f ∈ S[+1]
N,Rid

, g ∈ S[−1]
N,uRid

}
is computationally

equivalent to the scheme’s ciphertext space when the identity of the recipient is
id and β1 = β2 = 1.

Theorem 4. If Assumption 1 and 2 hold, the above scheme is anonymous.

Proof. Let id∗0 and id∗1 be two distinct challenge identities. Without loss of gen-
erality, we assume that both H(id∗0) and H(id∗1) are in QRN . Letting ∆ = Rid∗r =
H(id∗r) for some r ∈ {0, 1}, consider the following two distributions:

D0,r =
{
Enc (mpk, id∗r ,m) = {g(β1)

1 (x), g
(β2)
2 (x)} : m ∈ {0, 1}

}
D1,r =

{
{a+ bx, c+ dx} : a, b, c, d

R← Z∗
N ,

a

b
∈ SN,∆,

c

d
∈ SN,∆

}
We claim that D0,r and D1,r are indistinguishable with overwhelming probabil-
ity. The first component of an element in D0,r is{

a1 + b1x : a1

b1
∈ (SN,∆)

2
, if β1 = 0;

a2 + b2x : a2

b2
∈ S[−1]

N,∆, otherwise.

It follows from Assumption 1 that S[+1]
N,∆ is computationally equivalent to the first

component of the ciphertext when β1 = 0, and from Assumption 2 that S[−1]
N,∆ is

computationally equivalent to the first component of the ciphertext when β1 = 1.
Since S[+1]

N,∆ ∪S
[−1]
N,∆ =

{
a+ bx : a, b ∈ Z∗

N

∣∣ a
b ∈ SN,∆

}
and β1 is chosen at ran-

dom, we deduce that the first component of D0,r and D1,r are computationally
equivalent. The similar arguments are valid for the second component, and hence
we have proved the claim. Since D1,0 and D1,1 are also indistinguishable with
overwhelming probability, this proves that D0,0 and D0,1 are indistinguishable
with overwhelming probability, and hence the scheme is anonymous. ut

5 Public-Key Encryption with Keyword Search from
Quadratic Residuosity

Boneh et al. introduced the notion of public-key encryption with keyword
search (PEKS) and gave a proper security model and a construction methodol-
ogy in [4]. PEKS is a form of “searchable encryption” that allows performing a
keyword search on data encrypted using a public-key system. A promising appli-
cation of PEKS is that of intelligent email routing. One may consider that mails
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come through a gateway which tests whether a keyword (e.g., “urgent”) exists in
an email. Of course any other information about the email can not be revealed.
PEKS scheme consists of four PPT algorithms (KeyGen,PEKS,Trapdoor,Test).

KeyGen(1κ) The key generation algorithm KeyGen is a randomized algorithm
that takes as input a security parameter 1κ and generates a public/private
key pair (pk, sk).

PEKS (pk,W ) Given a public key pk and a keyword W , PEKS outputs a search-
able ciphertext S for W .

Trapdoor (sk,W ) Given a private key sk and a keyword W , the trapdoor algo-
rithm Trapdoor produces a trapdoor TW for keyword W .

Test(pk, S, TW ) Given a public key pk, a searchable ciphertext S ← PEKS (pk,W ′)
and a trapdoor TW ← Trapdoor (sk,W ), the test algorithm Test outputs a
bit b with 1 meaning “accept” or “yes” and 0 meaning “reject” or “no”. It is
required that b = 1 when W =W ′.

In [1], the authors presented a new transform called new-ibe-2-peks that trans-
forms any IND-ID-CPA-secure and anonymous IBE scheme into a PEKS-IND-
CPA-secure and computationally consistent PEKS scheme. The resulting
PEKS-encryption algorithm picks and encrypts a random message X and ap-
pends X to the ciphertext. We can naturally apply new-ibe-2-peks to the scheme
of §4 and obtain the following PEKS scheme from quadratic residuosity.

KeyGen(1κ) Given a security parameter κ, KeyGen defines a parameter k and
generates two RSA primes p and q such that p ≡ −q mod 4. Let N =

pq. KeyGen also samples an element u R← JN \ QRN . The public key is
pk = {N, k, u,H} where H is a publicly available cryptographic hash function
mapping an arbitrary binary string to JN . The secret key is sk = {p, q}.

PEKS (pk,W ) Given a public key pk and a keyword W , PEKS selects a k-bit
message X = [xk−1, xk−2, . . . , x0] (with xi ∈ {0, 1}) and computes R =
H(W ). For each i = 0, 1, . . . k − 1, it chooses at random two polynomials
fi,1, fi,2 of degree 1 from ZN [x] and two bits βi,1, βi,2

R← {0, 1}. Set

g
(0)
i,1 (x) = (−1)xifi,1(x)

2 mod (x2 −R)

g
(1)
i,1 (x) = (−1)xix · fi,1(x)2 mod (x2 −R)

g
(0)
i,2 (x) = (−1)xifi,2(x)

2 mod (x2 − uR)

g
(1)
i,2 (x) = (−1)xix · fi,2(x)2 mod (x2 − uR)

PEKS outputs a searchable ciphertext

S =
{
g
(β0,1)
0,1 (x), g

(β0,2)
0,2 (x), g

(β1,1)
1,1 (x), g

(β1,2)
1,2 (x), . . . , g

(βk−1,1)
k−1,1 (x), g

(βk−1,2)
k−1,2 (x), X

}
Trapdoor (sk,W ) Given a private key sk and a keyword W , the trapdoor algo-

rithm Trapdoor sets R = H(W ). If R ∈ QRN , it computes TW = R1/2 mod

N ; otherwise it computes TW = (uR)
1/2

mod N . Trapdoor returns TW .
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Test(pk, S, TW ) Given a public key pk, a searchable ciphertext

S = {C0,1(x), C0,2(x), C1,1(x), C1,2(x), . . . , Ck−1,1(x), Ck−1,2(x), X}

where Ci,j(x) = ci,j,0 + ci,j,1x for i = 0, 1, . . . , k − 1 and j = 1, 2 and a
trapdoor TW ← Trapdoor (sk,W ), the test algorithm Test lets R = H(W ).
If T 2

W ≡ R mod N , Test computes σi =
(

c2i,1,0/c
2
i,1,1−R

N

)
and sets hi(x) =

Ci,1(x) for i = 0, 1, . . . , k − 1; otherwise it computes σi =
(

c2i,2,0/c
2
i,2,1−uR

N

)
and sets hi(x) = Ci,2(x) . Finally, Test computes

x′i =


(

hi(TW )
N

)
, if σi = 1;(

TWhi(TW )
N

)
, otherwise.

and recovers X ′ = [JN (x′k−1),JN (x′k−2), . . . ,JN (x′0)]. Test returns 1 if and
only if X = X ′; and 0 otherwise.

For encrypting a message m with n keywords W1,W2, . . . ,Wn with user’s public
key upk, Boneh et al. in [4] suggested that the sender computes and sends the
ciphertext

C = {Enc (upk,m) ,PEKS (upk,W1) ,PEKS (upk,W2) , . . . ,PEKS (upk,Wn)}

to a proxy given the trapdoor TWi
for each keyword Wi. Then the proxy can

test whether m contains some keyword Wi, but it learns nothing more about
any other information about m.

6 Conclusion

The encryptions in known variants of Cocks’ scheme are much slower than the
corresponding decryptions, i.e., the scheme by Clear et al. [11] needs about 79 ms
and 27 ms for a 128-bit message with a 1024-bit RSA modulus N . Our proposals
feature both anonymity and the best encryption time compared with other vari-
ants (i.e., nearly 10 times faster than those in the same setting). Furthermore,
they inherit the homomorphic property. These make schemes from quadratic
residuosity more competitive in the fields of IBE.
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A Cocks’ IBE Scheme and Galbraith’s Test

The following description generalizes the original Cocks’ IBE scheme [12] which only
considers Blum integers, i.e., N is an RSA moduli with p ≡ q ≡ 3 (mod 4). In this
case, Cocks’ scheme corresponds to the choice u = −1 in our description.

Setup(1κ) Given a security parameter κ. Generate two RSA primes p and q and let
N = pq. Sample uniformly an element u ∈ JN \ QRN . Output mpk = {N, u,H}
and msk = {p, q}, where H : {0, 1}∗ 7→ JN .

KeyGen (msk, id) Compute a = H(id). If a ∈ QRN . Compute r = a1/2 mod N ; other-
wise, compute r = (ua)1/2 mod N . Output skid = {r}.

Enc (mpk, id,m ∈ {±1}) Compute a = H(id). Choose at random t, t ∈ ZN such that(
t
N

)
=

(
t
N

)
= m. Compute

c = t+
a

t
mod N and c = t+

ua

t
mod N

Output C = {c, c}.
Dec(mpk, skid, C) On inputting a secret key skid = {r} and a ciphertext C = {c, c}.

Output the plaintext

m =

{(
c+2r
N

)
, if r2 ≡ a (mod N);(

c+2r
N

)
, otherwise.

where a = H(id).

Galbraith’s test for a Cocks’ ciphertext C = {c, c} is defined as the function GT :
ZN × ZN 7→ {−1, 0, 1} given by

GT (a, c) =
(
c2 − 4a

N

)
and GT (a, c) =

(
c2 − 4ua

N

)
, a = H(id)

Whenever the ciphertext C = {c, c} is encrypted under identity id, we have GT (a, c) =
GT (a, c) = 1, but for encryptions under another identity id′ the equation holds with
probability negligibly close to 1/2 [2], hence Cocks’ scheme is not anonymous.
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