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Abstract

Secret sharing is a very useful way to maintain secrecy of private data when
stored in a distributed way among several nodes. Two significant questions
in this area are 1. how to accommodate new nodes and assign shares to the
new nodes, the problem becomes harder if the number of joining nodes or the
access structure is not known in advance and can be (potentially) unbounded
and 2. to reduce the computational complexity of secret sharing schemes. In
this paper we propose two new constructions of such secret sharing schemes
based on different combinatorial structures. The first construction is based
on generalized paths joining the opposite vertices of a hypercube which has
been divided into smaller hypercubes. The second construction is a forest-
based construction utilizing a dynamic data structure technique known as
fractional cascading. The generalized path we call a pavement is new to this
paper. Both our constructions use a new secret redistribution scheme to
assign and re-assign shares to nodes. Towards the second question we show
that allowing certain trade-offs, the constructions are implementable by AC0

circuits which is the lowest complexity class in which secret sharing and
reconstruction is possible. To the best of the knowledge of the authors, none
of the similar existing schemes (evolving or dynamic) are AC0 computable
and this paper for the first time combines the idea of hypercubes and dynamic
data structures with secret sharing for preserving long-term confidentiality
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of secret data.
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1. Introduction

Secret sharing schemes were proposed independently by Shamir [1] and
Blakley [2] in 1979. They proposed schemes where any k (or more) out of
n participants are qualified to recover the secret with 1 < k ≤ n. The
resulting access structure (a specified collection of subsets of participants
who are eligible to reconstruct the secret) is called a (k, n)-threshold access
structure where k acts as a threshold value for being qualified. The works
[1, 2] were forwarded to the case of general access structures (where the
subsets of participants eligible to reconstruct the secret do not have any
specific mathematical structure but can be arbitrary) by the work of Ito et
al. [3].

Classical secret sharing schemes assume that the number of participants
and the access structure are known in advance. Moreover, the secret sharing
process is an one time event – the dealer who is in possession of the secret
shares it among the participants and the process is over. There is no further
communication between the dealer and the participants and also among the
participants. Ultimately, a qualified subset of participants may communicate
among themselves to recover the secret. Later on, several other variants of
secret sharing were proposed – proactive secret sharing [4], dynamic secret
sharing [5], share redistribution [6, 7], sequential secret sharing [8], evolving
secret sharing [9] to name a few important ones.

In proactive secret sharing [4], secret data is split using Shamir’s technique
to realize a (k, n)-threshold access structure. The difference with normal se-
cret sharing schemes lies in the fact that the shares are renewed on a regular
time interval in order to resist attacks from mobile adversaries who may
learn more and more shares over time. Dynamic secret sharing scheme al-
lows, without reconstructing the shared secret, to add or delete shareholders,
to renew the shares, and to modify the conditions for accessing the secret.
This important primitive of redistributing the secret was initially considered
by Chen et al. [6], Frankel et al. [7] and Desmedt-Jajodia [10]. To describe
a dynamic secret sharing scheme more formally, let us consider two sets of
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nodes P and P ′ containing n and n′ many nodes respectively. Let us sup-
pose that each node Pj in P has received a share sj of the secret value s. ΓP
denote the access structure that specifies which subsets of P are authorized
to recover the secret s from their shares. The goal of redistribution is that
without the help of the original dealer, the nodes in P ′ will receive the shares
of s in accordance with a possibly different access structure ΓP ′ . In the pro-
tocol, the nodes in P act like virtual dealers, while nodes in P ′ are the ones
who receive shares.
Nojoumian-Stinson [11] proposed unconditionally secure share re-distribution
schemes, in absence of a dealer, based on a previously existing VSS proto-
col of Stinson-Wei [12]. In their construction, they have assumed less than
one-fourth of nodes behave dishonestly and also that the number of nodes is
fixed throughout. Their work was improved upon by the work of Desmedt-
Morozov [13] who relaxed the proportion of dishonest nodes to one-third of
the total population and also allowed the number of nodes to change. A
related primitive viz. sequential secret sharing (SQS) was introduced by
Nojoumian-Stinson [8] as an application of dynamic threshold schemes. In
this new primitive, different (but related) secrets with increasing thresholds
are shared among a set of players who have different levels of authority. Sub-
sequently, each subset of the players can only recover the secret in their own
level. Finally, the master secret will be revealed if all the secrets in the higher
levels are first recovered.
In a recent work, Komargodski et al. [9] initiated the study of evolving se-
cret sharing schemes for the case where the set of parties is not known in
advanced and could potentially be infinite (or even more generally the access
structure may change). Specifically, parties arrive one by one and whenever
a party arrives there is no communication to the parties that have already
received shares, i.e. the dealer distributes a share only to the new party. In
the most general case, a qualified subset is revealed to the dealer only when
the last party in that subset arrives. In special cases, the dealer knows the
access structure to begin with, just does not have an upper bound on the
number of parties. They assume that the changes to the access structure are
monotone, namely, parties are only added and qualified sets remain qualified
as more and more parties join. This is called an evolving access structure.

All of the variants of secret sharing described above have the possibility of
applications in preserving long-term confidentiality of private data. In fact,
such an application of proactive secret sharing has already been shown in
[14]. Secret sharing can provide information-theoretic security which can be
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used to protect confidentiality of stored data – which is absolutely necessary
for providing “long-term” security particularly in the future era of quantum
computers.

2. Our Contribution

In this paper we answer the two questions in the abstract as follows :
we use hypercubes and forest-based dynamic data structures to accommo-
date, distribute and renew shares among storage nodes. We note that such
data structures are not only used to accommodate new nodes, but these data
structures take active part in how the shares of old nodes are redistributed
and given to new nodes and are helpful in keeping the complexity of the
computations very low. In the concluding section we indicate how to use
other dynamic data structures such as Tango trees etc. to produce different
access structures which can accommodate new nodes. Such dynamic versions
of data structures also help to delete nodes, push a node up or down a hier-
archical order and so on. As we will see in section 6, all our constructions are
implementable in the AC0 complexity class unlike all the previously men-
tioned existing schemes which cannot be implemented by AC0 circuits (the
reason is explained briefly in section 3.4). Hence we can achieve long term
confidentiality of such dynamic schemes with low computation resources. In
order to achieve this we introduce a new formal definition for secret redistri-
bution and a new generalized path in hypercubes known as pavements.

The novel contributions of this paper can be summarized as follows.

• Hypercube-based node addition. In this case new arriving nodes form
new faces of a hypercube which has been divided into grids. In the
first construction, new nodes increase the size of the hypercube and in
the second construction, the new nodes increase the dimension of the
hypercube. In the two-dimensional case, the size of the tth generation
is 2t + 1 in the first construction and t2 in the second construction.
Using share redistribution we can ensure that in this case the dealer
may become offline after a certain stage.

• Utilizing dynamic data structure techniques to accommodate new nodes.
Our novel idea is to use a data structure technique known as fractional
cascading. This data structure is a technique to speed up a sequence
of binary searches for the same value in a sequence of related data
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structures. In our construction we use the idea of cascading to assign
shares to new nodes. The nodes along with the connecting edges form
a forest. Hence this is a new application of the fractional cascading
technique. Compared to the previous construction this construction
can accommodate more nodes but this requires certain preprocessing
of the nodes. Using the dynamic variant of fractional cascading one
can also efficiently delete nodes from the structure.

The reason to consider different constructions is the size of the genera-
tions. While the hypercube based construction can accommodate polynomial
number of new nodes, fractional cascading based construction is useful when
the number of new nodes is bounded by some constant.

The rest of this paper is organized as follows. In Section 3, we discuss
the preliminary definitions. In Section 4, we describe the main constructions.
In Section 5.1 we describe the redistribution schemes and analyse the share
sizes. In Section 6 we prove that our constructions can be implemented by
AC0 circuits. Finally in Section 7 we discuss how data structures determine
access structures and the paper is concluded in Section 8.

3. Preliminaries

3.1. Secret Sharing Scheme

An access structure for a set P of nodes is a monotone family Γ of subsets
of P . Sets in Γ are called authorized/qualified sets and those not in Γ are
called forbidden/unqualified sets. A secret sharing scheme S for an access
structure A consists of a pair of algorithms (Share,Rec). Share is a proba-
bilistic algorithm that gets as input a secret s (from a domain of secrets S)

and a number n, and generates n shares Π
(s)
1 ,Π

(s)
2 , . . . ,Π

(s)
n . Rec is a deter-

ministic algorithm that gets as input the shares of a subset B of nodes and
outputs a string. The requirements for defining a secret sharing scheme are
as follow:

Definition 3.1. 1. (Correctness) For every secret s ∈ S and every qual-

ified set B ∈ A, it must hold that Pr[Rec({Π(s)
i }i∈B, B) = s] = 1.

2. (Security) For every forbidden set B /∈ A and for any two distinct

secrets s1 6= s2 in S, it must hold that the two distributions {Π(s1)
i }i∈B

and {Π(s2)
i }i∈B are identical.
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The share size of a secret sharing scheme S is the maximum number of
bits each node has to hold in the worst case over all nodes and all secrets.

Definition 3.2. (Ramp Secret Sharing Scheme) A (k, l, n) ramp secret shar-
ing scheme with k < l ≤ n, on a set of n nodes is such that any subset of
nodes of size greater than equal to l can recover the secret whereas, any subset
of size less than k has no information about the secret.

3.2. Evolving Secret Sharing

Let A = {At}t∈N be an evolving access structure. A secret sharing scheme
S for A consists of a pair of algorithms (SHARE,REC). SHARE is a
probabilistic algorithm and REC is a deterministic algorithm which satisfy
the following:

1. SHARE(s,Π
(s)
1 ,Π

(s)
2 , . . . ,Π

(s)
t−1) gets as input a secret s from the domain

of secrets S and the secret shares of nodes 1, 2, . . . , t − 1 and outputs
the share of the tth node viz. Π

(s)
t .

2. (Correctness) For every secret s ∈ S, every t ∈ N and every qualified

set B ∈ At, it must hold that Pr[Rec({Π(s)
i }i∈B, B) = s] = 1.

3. (Security) For every t ∈ N and every forbidden set B /∈ At and for any
two distinct secrets s1 6= s2 in S, it must hold that the two distributions
{Π(s1)

i }i∈B and {Π(s2)
i }i∈B are identical.

3.3. Secret Redistribution

Let us suppose that a node P has a share S which can be combined with
some other particular nodes to reconstruct the secret. In the dynamic setting
let us suppose that at some time new nodes arrive. A secret redistribution
scheme is to modify the share of P and distribute shares to chosen new nodes
such that ,

• The current share of P can no longer be combined with the previous
nodes to reconstruct the secret.

• The current share P can be combined with the current shares of the
chosen new nodes to recover the original share of P .

To formalize this notion we introduce the following definition.
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Definition 3.3. An (n, k)-redistribution scheme consists of two groups of
nodes of sizes n and k, P1, . . . , Pn and Q1, . . . , Qk respectively. The nodes
P1, . . . , Pn have predefined shares as per some secret sharing scheme. A re-
distribution scheme modifies the shares of P1, . . . , Pn to compute n + k new
shares such that:

1. Original shares of P1, . . . , Pn are deleted.

2. New n + k shares are distributed among all the n + k nodes P1, . . . , Pn

and Q1, . . . , Qk.

3. All nodes P1, . . . , Pn and Q1, . . . , Qk combining can reconstruct the orig-
inal shares of P1, . . . , Pn.

4. nodes P1, . . . , Pn cannot use original shares anymore.

5. nodes P1, . . . , Pn cannot obtain original shares from new shares.

We will denote a (2, 2)-secret sharing scheme by (Share(2,2),Rec(2,2)) and

an (n, k)-redistribution scheme by the pair (Redist
(n,k)
GEN ,Redist

(n,k)
REC). The algo-

rithm Redist
(n,k)
GEN generates n+k new shares from n old shares and Redist

(n,k)
REC

combines new shares to output old shares.
We shall use a (1, 1), (1, 2), (3, 1)-redistribution schemes for Algorithm 2

and a (1, k) redistribution scheme for the fractional cascading based scheme.
Redistribution schemes are constructed using pseudo-random generators or
by coding theoretic techniques combined with random permutations. More
details can be found in Section 5.1.

3.4. AC0 complexity class

AC0 is the complexity class which consists of all families of circuits having
constant depth and polynomial size. The gates in those circuits are NOT,
AND and OR, where AND gates and OR gates have unbounded fan-in. In-
teger addition and subtraction are computable in AC0. It is also well known
that calculating the parity of an input cannot be decided by AC0 circuits [15].
For any circuit C, the size of C is denoted by size(C) and the depth of C is
denoted by depth(C). Recently, a lot of research [16], [17], [18], [19], [20] have
been done focusing on possibilities of obtaining cryptographic primitives in
low complexity classes. Since all the schemes mentioned in the introduction
(Shamir’s Scheme and others) use linear algebraic techniques which involve
computing parity functions, the share and the reconstruction procedures of
the schemes cannot be implemented by AC0 circuits.
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3.5. Fractional Cascading

Fractional cascading is a technique to speed up a sequence of binary
searches for the same value in a sequence of related data structures. The
first binary search in the sequence takes a logarithmic amount of time, but
successive searches in the sequence are faster. Fractional cascading was in-
troduced by Chazelle and Guibas in [21]. We refer the reader to [22] for more
on fractional cascading and its applications. Briefly, suppose a collection of
k ordered lists L1, . . . , Lk are given. The fractional cascading solution is to
store a new sequence of lists Mi. The final list in this sequence, Mk, is equal
to Lk; each earlier list Mi is formed by merging Li with every second item
from Mi+1. With each item x in this merged list, we store two numbers: the
position resulting from searching for x in Li and the position resulting from
searching for x in Mi+1. If we have to search an element q in the structure,
we perform a query by doing a binary search for q in M1, and determining
from the resulting value the position of q in L1. Then, for each i > 1, we
use the known position of q in Mi to find its position in Mi+1. The value
associated with the position of q in Mi points to a position in Mi+1 that is
either the correct result of the binary search for q in Mi+1 or is a single step
away from that correct result, so stepping from i to i + 1 requires only a
single comparison.

4. Main Results

4.1. Dynamic secret sharing from hypercubes

In this section we construct a dynamic scheme utilizing hypercubes di-
vided into smaller hypercubes.
• Two Dimensional grid-based construction: Let us consider an

n×n grid where the edges represent the nodes. We introduce two definitions.

Definition 4.1. A minimal path in a grid is a shortest path of length 2n
connecting (0, 0) and (n, n) (i.e. containing 2n nodes).

Definition 4.2. A pavement corresponding to a minimal path P is a set of
edges in a grid such that

1. The pavement contains all the edges of the minimal path P .

2. For each point (i, j) in the minimal path P , the square formed by the
points (i− 1, j), (i− 1, j − 1) and (i, j − 1) is also in the pavement.
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We shall use the following notation : An undirected edge between two
adjacent points (i, j) and (k, l) is denoted by E

(k,l)
(i,j) .

Definition 4.3. For a point (i, j), (i > 0, j > 0), the previous points are
(i − 1, j), (i, j − 1), (i − 1, j − 1) whichever exists. The previous edges are :

E
(i,j)
(i−1,j), E

(i,j)
(i,j−1), E

(i−1,j)
(i−1,j−1) and E

(i,j−1)
(i−1,j−1) whichever exists.

• The Access Structure: Let us fix, at time t, two diagonally opposite
points (0, 0) and (nt, nt). We do not include the time variable in future
to avoid cumbersome expressions. A set of edges (nodes) is assigned as a
qualified set if the edges contain a pavement connecting the two diagonally
opposite points.
In the access structure induced by the sharing algorithm 1 and 2, minimum
number of nodes which may form a qualified set lies between 2n and 2n+2n =
4n and the total number of minimal qualified sets is the number of ways to

connect two diagonally opposite points which is

(
2n

n

)
. A minimal qualified

set is a qualified set of participants such that whenever any participant is
removed from the set, it is no longer a qualified set. Forbidden sets are those
sets of participants (nodes) who cannot reconstruct the secret or have no
information about the secret.
• Adding nodes and share distribution: In two dimensions if we have a

n × n grid, the new nodes are accommodated to form an (n + 1) × (n + 1)
grid. Nodes are included by increasing the last row and the last column.
Algorithm 1 describes the process of adding nodes in a structured way and
Algorithm 2 gives details of share distribution.
• Secret Reconstruction: At time t + 1, a qualified is a set of points

containing a pavement from (0, 0) to (n + 1, n + 1). Secret is reconstructed
iteratively from (n + 1, n + 1) to (0, 0) The shares of the previous edges are
utilized.

For the share redistribution algorithms we refer to Section 5.1. From
the secret reconstruction procedure in Algorithm 2 the correctness of secret
recovery by a qualified set of nodes is evident. We prove the secrecy of the
scheme in the following theorem.

Theorem 1. Forbidden sets of nodes in Algorithm 2 do not get any infor-
mation about the secret.

Proof. By definition, forbidden sets are those sets of nodes which do not
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Figure 1: Increasing grid to accommodate new nodes.

contain a pavement. We prove the theorem for new columns formed by
nodes. For new rows, the proof is similar. There are two cases :
Case 1: The set of nodes (edges) do not contain a minimal path connecting
(0, 0) to (n + 1, n + 1). Thus, either the points (0, 0) or (n + 1, n + 1) is
not present in the set, or the set can be divided into at least two connected
components. If either of the points (0, 0) or (n+1, n+1) is not present, then
by our construction the secret cannot be recovered. Also existence of two
connected components mean that the minimum distance between the two
connected components in the grid is ≥ 2. This means that in the grid there
is a square of four points (i, j), (i − 1, j), (i, j − 1) and (i − 1, j − 1) such
that at most two of them belong to the set. By our construction, the shares
of the edges of the square formed by (i − 1, j), (i, j − 1) and (i − 1, j − 1)
have been modified and redistributed to give to (i, j). Hence in the absence
of two of them, the share between these nodes are hidden by the secrecy of
the underlying secret sharing scheme and the redistribution scheme.
Case 2: No minimal path in the set forms a pavement in the set. Again,
there is a square of four points (i, j), (i−1, j), (i, j−1) and (i−1, j−1) in the
grid such that at most three of them belong to the set. By our construction,
the shares of the edges (nodes) formed by (i−1, j), (i, j−1) and (i−1, j−1)

have been modified to give to the edge (node) E
(i,j)
(i,j−1). Hence in the absence

of one of them, the share between these nodes cannot be recovered and thus
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Algorithm 1 Construction of dynamic grid

1: procedure Accommodating nodes in new generation
2: At some stage an n× n grid has been created.
3: To include new nodes add them to the unassigned edges E

(n+1,i)
(n,i) and

E
(n+1,j+1)
(n+1,j) , (0 ≤ i ≤ n, 0 ≤ j ≤ n− 1) in the new column.

4: If the column is full, add new node to the unassigned edges E
(i,n+1)
(i,n) and

E
(j+1,n+1)
(j,n+1) , (0 ≤ i ≤ n, 0 ≤ j ≤ n− 1) in the new row.

5: Add nodes E
(n+1,n+1)
(n,n+1) and E

(n+1,n+1)
(n+1,n) .

6: If both the row and column are full, create a new generation i.e., a new
column and a new row to create an (n + 2)× (n + 2) grid.

the security of the scheme reduces to the underlying secret sharing scheme.
Combining the above arguments the proof follows. �

Remark 4.4 (Size of generation). We note that a generation is formed by a
new row and a column. Hence the size of the tth generation is 4t− 2.

• Increasing size of cube in three dimensions: This case is similar
to the 2-dimensional case except in this case we consider an (n × n × n)
grid. New nodes (edges) are added along three mutually adjacent faces of
the hypercube to make it into a (n + 1) × (n + 1) × (n + 1) grid cube. In
this case, the number of new nodes in the tth generation is poly(t). In three
dimensions, we can also take a face of a unit cube as a node and proceed as
in the case of (n× n) grid. In general as per requirement we can start with
a hypercube in any dimension which is divided into a grid and increase the
size of the grid for a new generation of nodes.

• Increasing dimension - from a two dimensional grid to a three
dimensional cube by adding edges:
• Node accommodation and share distribution: Let us suppose that we

have two-dimensional grid of size n× n, at time t− 1. For the new arriving
nodes we want to accommodate them in a new dimension. The advantage
of this construction is that in the tth generation we can accommodate O(t2)
many new nodes as compared to O(t) nodes in the two-dimensional case.
Similarly when going from three dimensions to four dimensions, in the tth

generation, we can accommodate O(t3) new nodes. To accomplish this we
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Algorithm 2 Grid based construction of secret sharing

1: procedure Share generation for new nodes
2: To assign share to a new node in generation t + 1,
3: Run Redist

(1,1)
GEN on the shares of E

(n+1,i)
(n,i) and E

(n,i)
(n−1,i)

4: Generate shares S1
(n,i) and S(n+1,i).

5: Dealer gives the share S1
(n,0) to E

(n,i)
(n−1,i) and gives the share S(n+1,i) to

E
(n+1,i)
(n,i) .

6: When new nodes arrive along the new column, for each node E
(n+1,i)
(n+1,i+1),

(1 ≤ i ≤ n − 1), dealer runs a (3, 1)- redistribution scheme Redist
(3,1)
GEN

(See section V) to modify the shares of E
(n,i)
(n+1,i), E

(n,i)
(n+1,i+1) and E

(n,i)
(n,i+1) to

give the share to E
(n+1,i)
(n+1,i+1).

7: Do the same procedure for rows.
8: Repeat the procedure until all the shares are exhausted.
9: When all the shares are exhausted, create a new generation i.e., a new

row and a new column.
10: procedure Secret Reconstruction
11: Given qualified set Q, consider the pavement P from (0, 0) to (n+1, n+1).
12: Let M be a minimal path in P
13: Remove any loop from M to get M ′.
14: Initialize i = n + 1, j = n + 1.
15: Do steps 16 to 18 until i, j > 0.
16: For a point (i, j) (i, j > 0) in the path M ′, the previous point in the path

is either (i− 1, j) or (i, j − 1).
17: Use the shares of the edges in the square formed by the points (i− 1, j),

(i, j − 1) and (i− 1, j − 1) to restore the share of the previous edge.
18: i = i− 1, j = j − 1.
19: Restore the share of (0, 0) to reconstruct the secret.
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Figure 2: Extending a two dimensional grid to three dimensions.

Figure 3: Share redistribution in higher dimension.

have to consider a line through each point in the two-dimensional grid in a
direction of the z-axis (new dimension). To accommodate new nodes along
the new direction we need to redistribute the shares of each of the points in
the two-dimensional grid. To keep number of new nodes quadratic in the tth

generation and limiting the share size, instead of extending to a complete
n× n× n three-dimensional cube, we only extend to an n× n× 2 cuboid.

Definition 4.5. A three-dimensional pavement is set of edges TP in the
n× n× 2 cuboid such that

1. TP contains at least one point of the form (i, j, 0).

2. Points in TP of the form (i, j, 0) induce a pavement in the original
two-dimensional grid. Original grid is formed by points of the form
(i, j, 0), 0 ≤ i, j ≤ n.

3. For each point (i, j, 0) in TP , the edges E
(i,j,1)
(i,j,0) and E

(i,j,2)
(i,j,1) are also in

TP .
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• Access Structure: A set of edges in the (n × n × 2) cuboid is defined
to be a qualified set if the set of edges contain a three-dimensional pavement
connecting the points (0, 0, 0) and (n, n, 0). The node accommodation is
formalized in Algorithm 3.
• Share distribution to new nodes: Let us suppose that for i > 0, the new

edge (node) E
(i,j,1)
(i,j,0) is added. To give share to this node a (1, 1)-redistribution

scheme is applied and the share of the edge (node) E
(i,j,0)
(i−1,j,0) is modified to

give share to E
(i,j,1)
(i,j,0) . When i = 0, j > 0 and the edge E

(0,j,1)
(0,j,0) is added, the

share of the node E
(0,j,0)
(0,j−1,0) is modified to give to the new node. Finally, when

the node corresponding to the edge E
(0,0,1)
(0,0,0) is added, the shares of the nodes

E
(0,1,0)
(0,0,0) and E

(1,0,0)
(0,0,0) are modified using a (2, 1)-redistribution scheme to give

share to the new node. Now to further add edges of the form E
(i,j,2)
(i,j,1) , we use

a (1, 1)-redistribution scheme to modify old share of E
(i,j,1)
(i,j,0) and give share to

E
(i,j,2)
(i,j,1) .

• Reconstruction: Given qualified set Q.

1. For each point (p, q, 0), restore the share of the edge E
(p,q,0)
(p−1,q,0) using the

shares of the edges E
(p,q,1)
(p,q,0) and E

(p,q,2)
(p,q,1) .

2. Using the restored shares of the edges E
(p,q,0)
(p−1,q,0), use the reconstruction

technique as in the case of two-dimensional grid to reconstruct the
secret.

The correctness of secret reconstruction follows from the fact that Q contains
a three-dimensional pavement which in turn contains a two-dimensional pave-
ment. By an essentially similar argument as in Theorem 1 we can see that
forbidden sets do not have any information about the secret entity.

So the minimum number of nodes that a qualified set can have is ≥
2n×4 = 8n. Our idea can be generalized to higher dimensions. As in the case
of two-dimensional grid, we can accommodate new nodes by adding necessary
edges in the (n× n× n) hypercube to make a (n× n× n× 2) hypercuboid.
Also instead of adding edges, we may define a node to be a face of a unit
cube and proceed by adding faces. Most generally we can accomplish this
by adding edges/faces to a simplicial complex. The advantage in simplicial
complex based construction is that it can support the following scenario :
the number of nodes in a latter generation is less than that in an earlier
generation.
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Let us suppose that we have a two-dimensional (n×n) grid. By the previ-
ous discussion we can accommodate 2n2 new nodes. Also let us assume that
points in the two-dimensional grid is ordered in the lexicographic ordering.

Algorithm 3 Grid based scheme-increasing dimension

1: procedure Accommodation in 3-dimensions
2: Initialize i = 0.
3: While i ≤ 2n2 do steps 3 to 14.
4: ith new node arrives.
5: If i ≤ n2, then do steps 6 to 9, else go to step 10.
6: Find least (as per lexicographic order) unassigned unmodified edge in

the grid. Denote by (p, q).
7: Update the coordinates of (p.q) to (p, q, 0).

8: Assign the edge E
(p,q,1)
(p,q,0) as new node.

9: Redistribute appropriate share to E
(p,q,1)
(p,q,0) .

10: If i > n2 do steps 11 to 13.
11: Find least (as per lexicographic order) unmodified edge coordinate in

the set {(p, q, 1) : p, q ≤ n}. Denote by (p, q, 1).

12: Assign E
(p,q,2)
(p,q,1) as new node.

13: Redistribute share of E
(p,q,1)
(p,q,0) to E

(p,q,2)
(p,q,1) .

14: Increase i by 1.

Remark 4.6. Here we observe that the dealer only distributes shares to the
first two edges. After this the dealer is not required any more. The share
redistribution can be done by the nodes themselves. Hence this scheme can
be used in the dealer free situation.

4.2. Fractional Cascading based Dynamic Secret Sharing

Fractional cascading connects with secret sharing in the sense of redis-
tribution of secret shares. For preprocessing we denote nodes by positive
integers and arrange the nodes in increasing order in several lists. When a
new node arrives, it is added to a suitable list the share of certain (bounded
number of) nodes are changed.
• Overview of our idea: Let us suppose that at any instance we have k or-
dered lists of nodes in increasing order where each node has a positive weight.
The lists of nodes are L1, ..., Lk. The first node x1

1 in the list L1 is connected
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to all those nodes in L2 whose weights are less than or equal to x1
1. The

second node x2
1 in L1 is connected to all those nodes in L2 which have not

been previously connected and whose weights are less than or equal to x2
1 and

so on. We repeat the previous step for nodes in L2 and L3 and so on. Note
that initially, there can be nodes which are not connected to any other node.
Each node in the list L1 is the root of a tree along with the connections.
Let us suppose at this stage a new node with weight q arrives. If q <
max(Lk), insert q in Lk maintaining the order and update the connections
between Lk−1 and Lk. If q > max(Lk) and q < max(Lk−1), insert q in Lk−1
keeping the order and update the connections between Lk−2, Lk−1 and Lk.
If q > max(Lk−1) go to Lk−2 and so on. If q > max(L1), add q to the end of
L1.

In this structure, the generations are based on range of the weights of the
nodes. When all the generations are exhausted, the new node is added to
L1. The sizes / ranges of the previous generations are increased suitably and
the process is repeated.

To share a secret S, first the secret is distributed among all the nodes of
L1 using the hypercube-based construction on a suitably sized hypercube. As
per this construction, one element can be attached only to bounded many
nodes. Hence each of the shares in L1 are distributed to bounded many
nodes in L2 and so on along the connections. When new nodes arrive, share is
redistributed along the connections. Nodes in one list combine to reconstruct
the share of the previous list. Share sizes do not increase drastically due the
nature of the structure and pre-processing. The process is formalized in
Algorithm 4.

Given k lists L1, L2, ..., Lk each of size at most n. Each list is filled with
nodes denoted by its weight in increasing order. Here size(Li) denotes the
number of nodes in the list Li. Elements of the lists are denoted by Li[.].
To store the connections, for each node we maintain lists C(p,q)[.], where p, q
denotes the list and the position in the list respectively.

Following this procedure we must delete the duplicate connections. This
may happen because from the algorithm an element in a list can be connected
from two distinct elements in the previous list. In such a case the connection
from the node with greater denomination is deleted.

Remark 4.7. It is clear from figure 4 that each of the nodes along with the
connections form a tree and hence the whole structure becomes a forest. One
more reason to consider such a dynamic data structure / forest based con-

16



Figure 4: Connecting nodes among ordered lists.

struction is that different generations may have different sizes. Also in many
practical scenarios, one may need to add new nodes to an earlier genera-
tion as per hierarchical requirements. Such a construciton can support such
scenarios.

4.2.1. Share distribution

Let us suppose that initially there are n many elements in the list L1.
The dealer can run an (n, n) scheme to generate n shares for L1. Otherwise
to keep computations in AC0, to share a secret S, we express n as 2k +
1. According to this expansion we run the distribution and redistribution
scheme of hypercube based construction to generate n shares for the nodes
in the list L1. If a node in L1 is connected to t nodes in L2, use a (1, t)-
redistribution scheme, to redistribute shares among the nodes in L2. Repeat
the procedure for nodes in L2 and their connections in L3 and so on. When
new nodes arrive, the connections are updated and shares are redistributed
as per the updated connections.

17



Algorithm 4 Combining fractional cascading and secret sharing

1: procedure Creating initial connections
2: Initialize i = 1, j = 1, g = 1.
3: While i ≤ k − 1 do steps 4 to 8.
4: While j ≤ size(Li) do steps 5 to 7.
5: While g ≤ size(Li+1) do step 6.
6: If Li+1[g] ≤ Li[j] then add g to the list C(i,j) else increase g by 1.
7: Increase j by 1.
8: Increase i by 1.

9: procedure Accommodating new nodes
10: New node denoted by q is to be included.
11: If q < max(Lk), insert q in a proper position in Lk and update the

connections between Lk and Lk−1. Else go to step
12: If q < max(Lk−1), insert q in a proper position in Lk−1 and update

the connections between Lk−2 and Lk−1. Create new connections between
Lk−1 and Lk. Else go to step

13: Repeat step with Lk−j until we reach L1.
14: Insert/Add q in a proper position in L1.

4.2.2. Secret Reconstruction

In our constructions, share generation, distribution and redistribution oc-
curs at every level and generation. In each generation the nodes which are
connected to a particular node in the previous generation, combine to recon-
struct the partial share. This partial share in turn is used in combination
with the share of the node in the previous generation to generate the partial
share of of the node in the generation one level above. This process is con-
tinued until we reach the first generation. Here the complete shares of the
nodes have been reconstructed, and now the the secret can be recovered.

4.2.3. Privacy

In this scheme, whenever a new generation is created, the shares of the
nodes in the previous generation gets modified. The nodes in the last gen-
eration combine to form the partial shares of the elements in the previous
generation who in turn combine to reconstruct the partial shares of the nodes
in the generation one level above and so on. Hence no proper subset of nodes
combining together can reconstruct the secret. It is only when all the nodes
combine then the secret can be reconstructed. So no node is redundant to
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this scheme.

4.2.4. Size of generation

In each generation, there are at most k-nodes which is same as the number
of lists.

5. Share distribution, redistribution schemes and share size

In this section we discuss some share distribution and redistribution
schemes and their share sizes.

5.1. Share distribution and redistribution schemes

5.2. (2, 2)-scheme or (n, n)-scheme

The (2, 2) scheme that we use is the (2, 2)-threshold scheme of Shamir
[1]. Shamir’s scheme is an ideal secret sharing scheme, meaning that the size
of the secret and the share size is the same. Similar is the (n, n)-scheme but
this scheme is not AC0 computable.

5.3. Redistribution Schemes

In this section we formalize the redistribution schemes.

5.3.1. (1, 1) and (1, 2)-redistribution scheme

We first look at the definition of a random partition.

Definition 5.1. A random partition of a string into p parts is a random
permutation of the elements of the string followed by partitioning the string
into p equal parts.

Let us suppose that the share S1
1 has to be redistributed into shares S11

1

and S12
1 . There are two ways to do this. Firstly encode S1

1 using an (n, k)-
code where the operations can be done in AC0 [23]. Now partition the coded
string into two equal parts using a random partition to generate shares S11

1

and S12
1 . Secondly one may use a pseudorandom generator instead of codes

to extend the message and generate the shares S11
1 and S12

1 . The procedure
for the (1, 2)-redistribution scheme is formalized below.

The same procedure can be generalized to case of a (1, k)-redistribution
scheme. If we use pseudorandom generators we use the following modified
algorithm.
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Algorithm 5 Redistribution of secret shares

1: procedure Share Redistribution (Redist
(1,2)
GEN)

2: Encode(S) using a coding scheme to generate Enc(S).
3: Use random partition to split Enc(S) to S1, S2 and S3.
4: Keep S1 for old node whose share is being modified.
5: Distribute S2 and S3 to two new nodes.

6: procedure Share Reconstruction (Redist
(1,2)
REC)

7: Input: S1, S2, S3

8: Concatenate S1, S2, S3 to get S1.
9: Apply inverse permutation on S1 to get Enc(S).

10: Output: Dec(Enc(S)) −→ S.

Algorithm 6 Redistribution using pseudorandom generators

1: procedure Share Redistribution (Redist
(1,k)
GEN)

2: Stretch S using a pseudorandom generator get S̄.
3: Use a random permutation to permute the elements of S̄.
4: Split S̄ into k + 1 equal parts, S1, . . . , Sk+1.
5: Distribute S1, . . . , Sk+1.

Algorithm 7 (3, 1)-redistribution scheme

1: procedure Share Redistribution on (S1, S2, S3)
2: Concatenate S1, S2, S3 to get S1.
3: Encode S using a coding scheme to generate Enc(S1).
4: Use a random partition to split Enc(S1) into four parts

S11, S12, S13, S14 and distribute first three to old nodes and S14 to new
node.

5: procedure Share Reconstruction after Redistribution
6: Concatenate S11, S12, S13, S14 to get S̄.
7: Use the inverse permutation to get Enc(S1).
8: Apply Dec(Enc(S1)) to get S1.
9: Split S1 to get original shares S1, S2 and S3.
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In construction 2, we use a (3, 1)-redistribution scheme. It is formalized
in the following algorithm. Let us suppose that we want to modify three old
shares S1, S2, S3 to give to new node.

Remark 5.2. We note that these redistribution schemes follow Definition
3.3. Clearly the properties 1 − 4 of Definition 3.3 are satisfied. To see that
property 5 is satisfied we recall the redistribution process. First the original
shares of some particular nodes are concatenated to get a single string. This
string is encoded via a coding scheme to get an encoded string. Following this
a random partition is applied. This is the crucial step. A random partition is
a random permutation of the elements of the string followed by the division
of the string into some equal parts. Due to the random permutation an old
node cannot distinguish between old share and new share. Even if a constant
fraction of the string is observed, no information can be obtained from the
new string. For a full proof, we refer the reader to Lemma 3.7 and 3.8 of
[24].

Since there are only finitely many permutations of a string of N elements,
we can order these permutations and embed the order of the permutation used
in the string for the participants to use during the reconstruction process.
This adds a linear overhead to the share size. Some other information we
need to store are the size of the partitions which adds a constant overhead to
the share size.

5.4. Share Size

From the redistribution schemes that we have used, we note that share
size for the tth generation depends on the error correcting code and the and
the number of nodes that we are using. Share size also depends on our choice
of complexity classes. If we want our computations to be implementable in
the very low complexity class AC0 then the share size will be more when com-
pared to the cases where the share and reconstruction is implementable in
higher complexity classes namely NC1 (NC1 is the class of decision problems
decidable by uniform boolean circuits with a polynomial number of gates of
at most two inputs and depth O(log1n), or the class of decision problems
solvable in time O(log1n) on a parallel computer with a polynomial num-
ber of processors.). We may use the error correcting codes of Cheragchi[23]
which are near optimal error-correcting codes. For implementation in the
AC0 complexity class we may use the error correcting codes of Cheng, Ishai,
Li [24]. Here we note that the while the length of the encoded string in
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Cheragchi’s scheme is O(1), the scheme cannot be implemented in the AC0

complexity class. On the other hand the size of the string in the case of [24]
is exponential.

5.4.1. Share Size for grid and hypercube based algorithm 2

In this construction there are two different share sizes of the nodes of
the t-th generation. For nodes(edges) of the form En+1,0

(n,0) , we use a (1, 1)-

redistribution scheme and for nodes of the form E
(n+1,i)
(n,i) , i > 0, we use

a (3, 1)-redistribution scheme. Similarly for nodes along new row. Let us
suppose that f(1,1) : N→ N is the function by which the length of a string is
stretched when applied through a error correcting code or a pseudorandom
generator during the (1, 1)-redistribution scheme. Hence the share sizes of the
nodes of the form En+1,0

(n,0) , of the t-th generation is [f t−1
(1,1)(s)/2] and [f t

(1,1)(s)/2]

when new generation nodes arrive. For nodes of the form E
(n+1,i)
(n,i) , i > 0,

share sizes of the t-th generation is [f t−1
(3,1)(s)/4] and [f t

(3,1)(s)/4] when new
generation nodes arrive.

5.4.2. Share size for fractional cascading based algorithm 4

In this scheme first the secret is shared among the nodes(elements) in the
first list. Following this the shares are redistributed as per the connections
made in the other lists. Depending on the range of weights of the nodes, share
has to be redistributed among a bounded number of nodes. To distribute
shares among the nodes of the first list L1, we can use either of the following
:-

1. The (k, k)-Shamir’s scheme for k nodes in L1.

2. The hypercube based (k, k)-scheme.

Next if we have to redistribute shares among say R many nodes depending
on the range of weights, then we use a (1, R)-redistribution scheme as in
algorithm 6. Finally when new nodes arrive, shares are redistributed as per
a (1,W )-redistribution scheme where W is the number of connections to be
updated. Here we note that while Shamir’s scheme is ideal, the dynamic
(k, k) scheme that we have constructed is not ideal.

5.4.3. Share Size-exact values

We have noted that to obtain the exact value of the share size of the
nodes of the t-th generation, we need the coding scheme that we are using
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and the extra information that we are embedding in the share strings such as
the permutation and the size of the partition. If we use good error correcting
codes as in the codes of [23], then from the discussion in this section the share
size for the nodes in the t-th generation turns out to be polynomial in t and
the size of the secret S. If we use AC0-error correcting codes as in [24], then
the share size of nodes in the t-th generation turns out to be exponential in
t.

6. Complexity Analysis - Constructions in AC0

In this section we prove that in each of the above mentioned schemes,
the share distribution, redistribution and secret reconstruction can be im-
plemented by AC0 circuits. The motivation to study secret sharing schemes
that can be implemented by constant-depth circuits viz. AC0, comes from
the fact that most well-known secret sharing schemes require computations
that can not be implemented by constant-depth circuits (i.e. AC0 circuits).
Shamir’s scheme in [1] requires linear algebraic computations over finite fields
and hence cannot be computed in AC0. The visual secret sharing schemes
introduced by Naor and Shamir [25] require only computation of OR during
the secret reconstruction phase which can be implemented by AC0 circuits.
Recent work by Bogdanov et al. [26]and Cheng et al. [24] considers the
question of whether there exists secret sharing schemes such that both share
generation algorithm and secret reconstruction algorithm are computable in
AC0.

6.1. Hypercube-based scheme

Theorem 2. The share distribution, redistribution and secret reconstruction
can be done by AC0 circuits.

Proof. Share construction is initially done by the (2, 2)-threshold scheme.
This can be implemented by constant depth circuits since the only operations
used are XOR and OR. Share redistribution is done either by pseudorandom
generators or by encoding the scheme by a suitable error correcting code.
From [26], [27], there exists AC0 computable peudorandom generators and
from [24] we get coding schemes where both encoding and decoding can be
done in AC0. A random partition of a string into two parts is same a random
permutation of a string followed by dividing the string midway into two equal
halves. It is well known that a random permutation can be computed in AC0

and the partition can also be done be AC0 circuits.
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To reconstruct a redistributed share first the nodes in one generation con-
catenate their shares and apply inverse permutation to recover the encoded
share. Both these operations can be done in AC0. The share of this genera-
tion is now recovered by using AC0 decoding of the encoded share. Using this
recovered share, the previous generation recover their shares and recursively
the secret is recovered. Hence the whole reconstruction algorithm can be
done in AC0. Similarly the (3, 1)-redistribution scheme can be implemented
by AC0 circuits if we use the AC0 error correcting codes of [24]. �

6.2. Fractional Cascading based construction

Theorem 3. The Share distribution, Redistribution and secret reconstruction
can be done by AC0 circuits.

Proof. In this, the arriving nodes are included in k-lists. When a new node
arrives , the total number of connections that needs to be updated is k, since
there are k-many lists. Also the number of partitions into which the share
has to be redistributed is bounded by a constant. This constant depends
on the initial values in the k-lists. Hence we can assume that there is a
constant C, such that the total number of partitions needed to redistribute a
share is bounded above by C. To redistribute a share we use an (cn, n)-error
correcting code to encode the share, or a polynomial stretch pseudorandom
generator to increase the length of the share. This process can be done in
AC0 as in the previous proof. Next we use a random permutation to permute
the elements of the extended string and then split the string into at most C
parts. Both these processes can be achieved by AC0 circuits.

During reconstruction, the nodes of one generation combine to reconstruct
the share of the previous generation. This is done by concatenating the
shares, applying the inverse permutation and decoding the share. As in the
previous proof, all these processes can be done in AC0. �

7. Discussion

7.1. Data Structures determining access structures

We have constructed various versions of evolving secret sharing schemes
where the share generation and secret reconstruction can be implemented by
AC0 circuits. The binary tree based construction can be modified when new
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nodes arrive. We can use dynamic trees which support efficient insertion and
deletion of nodes/nodes. We mention a brief algorithm below. For practical
purposes we choose the Tango tree data structure. We refer the reader to [28]
for more on Tango trees. Briefly, a tango tree is It is an online binary search
tree that achieves an O(log log n) competitive ratio relative to the offline
optimal binary search tree, while only using O(log log n) additional bits of
memory per node. This improved upon the previous best known competitive
ratio, which was O(log n). In a tango tree, for each node its preferred child is
is the most-recently touched child by a traditional binary search tree lookup.
A preferred path is defined by starting at the root and following the preferred
children until reaching a leaf node. In the following algorithm, we consider
how the access structure gets modified as we accommodate a new node P . For
the exact algorithm to accommodate a new element to a tango tree, we refer
the reader to [28]. In this context we mention hierarchical access structures.
In such settings, the secret is shared among a group of participants that is
partitioned into levels. The access structure is then determined by a sequence
of threshold requirements: a subset of participants is authorized if it has at
least k0 members from the highest level, as well as at least k1 > k0 members
from the two highest levels and so forth. Such problems may occur in settings
where the participants differ in their authority or level of confidence and the
presence of higher level participants is imperative to allow the recovery of the
common secret. We can incorporate hierarchical structures in such schemes
by considering share distribution to the preferred child and preferred paths.
We also note that here the data structure we are using (for example Tango
Trees) determines the access structure of the secret sharing scheme.

Algorithm 8 Combining dynamic data structures and secret sharing

1: procedure Updating Access Structure
2: Initial Tango Tree T .
3: Accommodate new node P as a new element to T .
4: Update preferred child and preferred paths in T to get new tree T ′.
5: nodes at distance k from the root form the k-th generation.
6: Find the greatest k such that k-th generation is not modified.
7: Redistribute shares starting from (k + 1)-generation to the last gen-

eration
8: Induce hierarchy in each generation by considering preferred child in

each generation.
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8. Conclusion

In this paper we have given constructions of secret sharing schemes which
can accommodate new nodes over time. Our constructions make use of a new
combinatorial structure namely pavements and incorporate data structure
techniques. We have also shown that our constructions can be implemented
in the AC0 complexity class. Through our constructions we achieve long
term confidentiality of secret data distributed among nodes.
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