
MP2ML: A Mixed-Protocol Machine Learning Framework
for Private Inference∗

(Full Version)

Fabian Boemer
fabian.boemer@intel.com

Intel AI
San Diego, California, USA

Rosario Cammarota
rosario.cammarota@intel.com

Intel Labs
San Diego, California, USA

Daniel Demmler
demmler@informatik.uni-

hamburg.de
University of Hamburg
Hamburg, Germany

Thomas Schneider
schneider@encrypto.cs.tu-

darmstadt.de
TU Darmstadt

Darmstadt, Germany

Hossein Yalame
yalame@encrypto.cs.tu-darmstadt.de

TU Darmstadt
Darmstadt, Germany

ABSTRACT
Privacy-preserving machine learning (PPML) has many applica-
tions, from medical image evaluation and anomaly detection to
financial analysis. nGraph-HE (Boemer et al., Computing Fron-
tiers’19) enables data scientists to perform private inference of deep
learning (DL) models trained using popular frameworks such as
TensorFlow. nGraph-HE computes linear layers using the CKKS ho-
momorphic encryption (HE) scheme (Cheon et al., ASIACRYPT’17),
and relies on a client-aided model to compute non-polynomial acti-
vation functions, such asMaxPool and ReLU, where intermediate
feature maps are sent to the data owner to compute activation func-
tions in the clear. This approach leaks the feature maps, from which
it may be possible to deduce the DL model weights. As a result, the
client-aided model may not be suitable for deployment when the
DL model is intellectual property.

In this work, we present MP2ML, a machine learning framework
which integrates nGraph-HE and the secure two-party computa-
tion framework ABY (Demmler et al., NDSS’15), to overcome the
limitations of the client-aided model. We introduce a novel scheme
for the conversion between CKKS and secure multi-party com-
putation (MPC) to execute DL inference while maintaining the
privacy of both the input data and model weights. MP2ML is com-
patible with popular DL frameworks such as TensorFlow that can
infer pre-trained neural networks with native ReLU activations.
We benchmark MP2ML on the CryptoNets network with ReLU
activations, on which it achieves a throughput of 33.3 images/s and
an accuracy of 98.6%. This throughput matches the previous state-
of-the-art for hybrid HE-MPC networks from GAZELLE (Juvekar
et al., USENIX’18), even though our protocol is more accurate and
scalable than GAZELLE.

KEYWORDS
private machine learning, homomorphic encryption, secure multi-
party computation.

∗Please cite the conference version of this paper published at ARES’20 [9].

1 INTRODUCTION
Several practical services have emerged that use machine learn-
ing (ML) algorithms to categorize and classify large amounts of
sensitive data ranging from medical diagnosis to financial eval-
uation [14, 67]. However, to benefit from these services, current
solutions require disclosing private data, such as biometric, financial
or location information.

As a result, there is an inherent contradiction between utility
and privacy: ML requires data to operate, while privacy necessitates
keeping sensitive information private [71]. Therefore, one of the
most important challenges in using ML services is helping data
owners benefit from ML, while simultaneously preserving their
privacy [69]. For instance, evaluating a private decision tree can
provide a solution for private medical diagnosis where the patient’s
medical data is sensitive information that needs to be protected
while simultaneously protecting the model [4, 38, 64, 72].

Modern cryptographic techniques such as homomorphic en-
cryption (HE) and secure multi-party computation (MPC) can help
resolve this contradiction. Using HE, a data owner can encrypt its
data with its public key, send the encrypted data for processing to
an untrusted data processor, and receive the encrypted result, which
only the data owner itself can decrypt with its private key [30, 55].
In secure two-party computation (2PC), a special case of MPC with
two parties [7, 33, 73], the data owner secret-shares its data with the
data processor and uses the secret-shared data to securely compute
the result without revealing any individual values.

While HE and MPC have the potential to address the privacy
issues that arise in ML, each technique has its advantages and
limitations. HE has high overhead for computing non-polynomial
activations, such as ReLU and MaxPool, which are commonly used
in deep learning (DL) models. While efficient HE-based inference
is possible by replacing activation functions with polynomial ap-
proximations, this degrades the accuracy of the DL model [10], and
requires a costly re-training of the model. MPC schemes support
a larger set of functions and it is possible to perform private DL
inference using only MPC schemes. However, MPC requires the
structure (e.g., the Boolean circuit) of the neural network to be

public, and involves multiple rounds of interaction between the
parties.

Hybrid methods combine HE and MPC to take advantage of each
method’s strengths. Recent research has demonstrated the ability to
evaluate neural networks using a combination of HE and MPC [5,
6, 31, 35, 37, 46, 50, 53, 54, 58, 61]. For example GAZELLE [37],
using a combination of HE and MPC, demonstrates three orders of
magnitude faster online run-time when compared to the existing
exclusively MPC [54] and exclusively HE [31] solutions.

DL software frameworks, such as TensorFlow [1], MXNet [18],
and PyTorch [51], as well as open-source graph compilers, such
as Intel’s nGraph [22] and TVM [19] accelerate the development
of DL. These libraries abstract away the details of the software
and hardware implementation, enabling data scientists to describe
DL models and operations at a high level (e.g., tensors and com-
pute graphs). Historically, a major challenge for building privacy-
preserving machine learning (PPML) systems has been the absence
of software frameworks that support privacy-preserving primitives.

To overcome this challenge, Intel recently introduced nGraph-
HE [10, 11], a HE-based framework that is compatible with exist-
ing DL frameworks. Using nGraph-HE, data scientists can deploy
DL networks over encrypted data without extensive knowledge of
cryptography. One of the major limitations of using HE in nGraph-
HE is the cleartext evaluation of non-polynomial functions such
asMaxPool and ReLU, which may leak information about the DL
model weights and hyper-parameters to the client.
Outline and Our Contributions. In this work, we introduce
MP2ML, a hybrid HE-MPC framework for privacy-preserving DL
inference. MP2ML extends nGraph-HE with MPC-based compu-
tation of ReLU activations, which prevents the leakage of model
weights to the client. We use the ABY framework [27] to implement
a 2PC version of the ReLU activation function. Our framework
integrates with TensorFlow, enabling data scientists to adopt
MP2ML with minimal code changes. After presenting preliminaries
from privacy-preserving DL (Sect. 2), and an overview of related
work (Sect. 3), we detail MP2ML (Sect. 4), which provides the
following core contributions:

• A privacy-preserving mixed-protocol DL framework based
on a novel combination of nGraph-HE [10, 11] and ABY [27];

• A user-friendly framework that supports private inference
on direct input from TensorFlow;

• Support for privacy-preserving evaluation of the non-linear
ReLU activation function with high accuracy;

• The first DL application using additive secret sharing in com-
bination with the CKKS homomorphic encryption scheme;

• An open-source implementation of our framework, available
under the permissive Apache license at https://ngra.ph/he.

We evaluate atomic operations and a neural network benchmark
using our framework (Sect. 5). Finally, we discuss our approach and
highlight differences to existing solutions (Sect. 6) and conclude
(Sect. 7).

2 BACKGROUND
We provide an overview of the techniques used in MP2ML. We
define our notation in Sect. 2.1 and provide an overview of the

cryptographic methods used in our framework and the adversary
model in Sect. 2.2.

2.1 Notation
𝑥 denotes a plaintext scalar, 𝑋 is a vector of 𝑛 plaintext scalars
(𝑥1, 𝑥2, .., 𝑥𝑛), ⟦𝑥⟧ is a homomorphic encryption of 𝑥 , ⟦𝑋⟧ is an
element-wise homomorphic encryption of𝑋 , and 𝑞 is the ciphertext
modulus. Let ⌊·⌉ denote rounding to the nearest integer, and [·]𝑞
denote modular reduction into the interval (−𝑞/2, 𝑞/2).

2.2 Cryptographic Preliminaries
Modern cryptographic protocols such as homomorphic encryp-
tion (HE) and secure multi-party computation (MPC) are essential
building blocks for privacy-preserving ML.
Homomorphic Encryption (HE). HE is a cryptographic primi-
tive supporting computation on encrypted data. HE schemes are
classified by the types of computation they support. Somewhat
HE (SHE) schemes support a limited number of additions or mul-
tiplications, while fully HE (FHE) schemes support an unlimited
number of additions and multiplications. In this work, we utilize the
CKKS HE scheme [20] and its SHE implementation in the Microsoft
Simple Encryption Arithmetic Library (SEAL) version 3.4 [63].

The security of the CKKS scheme is based on the assumed hard-
ness of the ring learning with errors (RLWE) problem. Let Φ𝑀 (𝑋)
be the 𝑀 th cyclotomic polynomial of degree 𝑁 = 𝜙 (𝑀). Usually
deg(Φ𝑀 (𝑋)) is a power of two for both performance and security
reasons. Then, the plaintext space is the ring R = Z[𝑋]/(Φ𝑀 (𝑋)).
The ciphertext space is R𝑞 = R/(𝑞R), i.e., degree-𝑁 polynomials
with integer coefficients mod 𝑞, where 𝑞 is the coefficient modulus.
Neural networks, however, typically operate on floating-point num-
bers. Hence, we need a conversion from floating-point numbers to
integers, which is typically done by multiplying a floating-point
number 𝑥 by some scale 𝑠 and encrypting [⌊𝑠𝑥⌉]𝑞 . However, the
homomorphic product of two ciphertexts at scale 𝑠 is a ciphertext
with scale 𝑠2. Subsequent multiplications increase the scale quickly
until the integers exceed the range (−𝑞/2, 𝑞/2), at which point
decryption becomes inaccurate.

Tomitigate this blow-up in the scale, CKKS introduces a rescaling
procedure. The rescaling procedure relies on a ‘layered’ ciphertext
space, in which each of 𝐿 layers contains a different ciphertext
modulus. Let 𝑝0, . . . , 𝑝𝐿−1 be primes, and let 𝑞𝑖 =

∏𝑖
ℓ=0 𝑝ℓ . Then,

the layered ciphertext space R𝑞𝐿−1 consists of 𝐿 layers, where layer
𝑖 has coefficient modulus 𝑞𝑖 . Rescaling brings a ciphertext 𝑐 with
scale 𝑠 from level ℓ to a ciphertext at level ℓ − 1 with scale 𝑠/𝑞ℓ ,
and reduces the ciphertext space from R𝑞ℓ to R𝑞ℓ−1 . The rescaling
algorithm is the homomorphic equivalent to removing inaccurate
LSBs as a rounding step in approximate arithmetic.

The security of the CKKS encryption scheme is measured in
bits, with 𝜆 = 128 bits implying ∼2128 operations are required to
break the encryption. 𝜆 is a function of the encryption parameters
{𝑁, 𝐿, 𝑞0, . . . , 𝑞𝐿−1}.

Unlike other HE schemes, such as BFV [13, 29], CKKS is also
an approximate HE scheme. The decryption after addition and
multiplication is approximate, but the error in the decryption is
bounded under certain assumptions on the selection of the encryp-
tion parameters. More concretely, if 𝑐1 and 𝑐2 are encryptions of

2

https://ngra.ph/he

the messages𝑚1 and𝑚2, respectively, then 𝐷𝑒𝑐 (𝑐1 +𝑐2) ≈𝑚1 +𝑚2
and 𝐷𝑒𝑐 (𝑐1 · 𝑐2) ≈𝑚1 ·𝑚2.

The runtime performance of CKKS depends heavily on the choice
of the encryption parameters. As shown in Table 1, larger 𝑁 and 𝐿
lead to larger runtimes in BFV. CKKS, however, is significantly faster
than BFV. In both schemes, ciphertext-plaintext addition and multi-
plication are substantially faster than ciphertext-ciphertext multi-
plication. That is, if 𝑝 is an encoding of𝑚1, and 𝑐 is an encryption of
the message𝑚2, then𝐷𝑒𝑐 (𝑝+𝑐) ≈𝑚1+𝑚2 and𝐷𝑒𝑐 (𝑝 ·𝑐) ≈𝑚1 ·𝑚2.

Table 1: SEAL CKKS and BFV performance test. Parameters
satisfy 𝜆 = 128-bit security. Runtimes averaged across 1000
trials.

Operation
Runtime (µs)

N = 212, L = 3 N = 213, L = 5 N = 214, L = 9
BFV CKKS BFV CKKS BFV CKKS

Add 16 16 59 59 240 239
Multiply plain 643 54 2,684 212 11,338 853
Decrypt 462 55 1,638 216 6,686 893
Square 3,246 105 12,162 472 50,799 2,370
Multiply 4,578 157 17,068 708 71,505 3,420
Rescale N/A 458 N/A 2,273 N/A 10,392
Encrypt 2,060 2,249 5,461 6,296 17,197 20,438
Relinearize 952 961 4,612 4,700 27,563 27,671
Rotate one step 953 1,123 4,661 5,325 27,764 30,355
Rotate random 3,611 4,197 19,482 21,887 123,229 134,267

While CKKS induces a significant runtime andmemory overhead
compared to unencrypted computation, the use of plaintext pack-
ing, also referred to as batching, improves the amortized overhead.
Plaintext packing encodes 𝑁 /2 complex scalars into one plaintext
or ciphertext. It works by defining an encoding map C𝑁 /2 → R,
where R is the plaintext space. An operation (addition or multi-
plication) performed on an element in R corresponds to the same
operation performed on 𝑁 /2 elements in C𝑁 /2. The number of 𝑁 /2
elements in the packing is also referred to as the number of slots
in the plaintext. We use the complex packing optimization from
nGraph-HE [11] to increase the slot count to 𝑁 .

MP2ML uses batch-axis plaintext packing: encode an inference
data batch of shape (𝑛, 𝑐, ℎ,𝑤), where 𝑛 ≤ 𝑁 is the batch size, as
𝑐 × ℎ ×𝑤 ciphertexts, with ciphertext 𝑐𝑐,ℎ,𝑤 packing the 𝑛 values
(·, 𝑐, ℎ,𝑤) in the data batch. Then, inference is performed on the 𝑛
data points simultaneously. We refer to [10] for more details.
Secure Multi-Party Computation (MPC). MPC is a crypto-
graphic technique, which enables two or more parties to jointly
evaluate a function 𝑓 without revealing their private inputs to
each other. In this work, we focus on the two-party case, in
which typically one of two approaches is used: Yao’s garbled cir-
cuit (GC) protocol [74] or the Goldreich-Micali-Wigderson (GMW)
protocol [33]. In both protocols, the function to be computed is
represented as a Boolean circuit.

In Yao’s GC protocol [74], each of the two parties – called garbler
and evaluator – evaluates a function 𝑓 , represented as a Boolean
circuit, without exposing its input to the other party. The GC proto-
col consists of two phases. In the first phase, the circuit is garbled

by assigning two random labels to each wire in the circuit, with
each label corresponding to the logical values of 0 and 1. A garbled
table maps each possible combination of these input labels to its
corresponding output label, according to the logic function of each
Boolean gate. The privacy of GCs stems from the fact that output
labels are encrypted and only a single output label per gate can be
decrypted by using the input labels as decryption keys. Since wire
labels are random strings, the garbler can simply encode its own
private inputs into the circuit. The evaluator receives the wire labels
corresponding to its private inputs privately by using an oblivi-
ous transfer protocol [28, 39]. In the second phase, the evaluator
computes the circuit outputs using the garbled tables to iteratively
decrypt the outputs of each gate until the output of the entire circuit
has been decrypted. The output can then be revealed to one or both
parties by providing the final mapping of output labels to plaintext
bits to the designated parties.

In the GMW protocol [33], the two parties secret-share all in-
puts and intermediate values using an XOR-based secret sharing
scheme. Then the parties interact in several communication rounds
to securely compute the function 𝑓 on their shared values. By ex-
changing their final shares and computing the XOR, one or both
parties can reconstruct the plaintext outputs of the circuit.

The ABY MPC framework [27], provides an efficient implemen-
tation of both protocols and their state-of-the-art optimizations
such as [3, 8, 40, 47, 62, 75].
Adversary Model. In this work, we use the semi-honest1 adver-
sary model, in which we assume that the adversary follows the
protocol honestly, but attempts to infer additional sensitive infor-
mation from the observed protocol messages. This model is weaker
than the malicious (active) adversary model, where the adversary
can arbitrarily deviate from the protocol. However, the semi-honest
model allows to build highly efficient secure computation protocols
and is therefore widely used in privacy-preserving DL applica-
tions [5, 6, 10, 11, 31, 35, 37, 50, 54, 58]. This assumption is similar
to the one used in HE-based DL, where it is assumed that a server
correctly computes a function on a homomorphic ciphertext. Proofs
of security w.r.t. semi-honest adversaries are given for Yao’s proto-
col in [45], and the GMW protocol in [32].

MP2ML protects the privacy of both the client’s and the server’s
inputs. In the setting where the server stores a trained neural net-
work and the client provides encrypted data for inference, our
framework provides privacy for both parties’ inputs. The client
is unable to infer sensitive information about the trained model,
which may be intellectual property of the server. MP2ML reveals
only the total size of the model and the number and type of non-
linear operations, since these values must be known in the MPC
protocol. At the same time, the server cannot access the client’s
plaintext inference inputs or classification outputs, which may be
sensitive medical or financial information.

3 RELATEDWORK
Previous work in privacy-preserving DL typically uses either ex-
clusively HE or exclusively MPC. GAZELLE [37] is a notable excep-
tion, using both HE and MPC in a hybrid scheme. Table 2 shows a
comparison between MP2ML and previous work. While pure HE

1also called passive, or honest-but-curious adversary model

3

Table 2: Comparison of privacy-preserving DL Frameworks. Model privacy includes preventing the data owner from deducing
the weights from intermediate feature maps, protecting the activation function (i.e., ReLU or MaxPool), protecting the model
architecture, and only the number of ciphertexts can be leaked. Usability includes support for non-polynomial activation
functions, integration with a standard DL framework such as TensorFlow or PyTorch, and availability as open-source code.

Framework Protocol Model privacy Usability

HE MPC Weights Act. fun. Architecture Non-poly Act. TF/PyTorch Support Open-Source

nGraph-HE2 [10] ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓1

CHET [26] ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

CryptoDL [35] ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

RAMPARTS [2] ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

CryptoNets [31] ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓2

nGraph-HE [11] ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓1

Chimera [12] ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

Cingulata [15] ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓3

TFHE [21] ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓4

SecureML [49] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Barni [5] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Sadeghi et al. [58] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Chameleon [54] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

XONN [53] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

SecureNN [70] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓5

ABY3 [48] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓6

TASTY [34] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓7

Dalskov et. al [24] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

PySyft [57] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓8

TF Encrypted [23] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓9

CrypTFlow [43] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓10

Slalom [66] ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓11

GAZELLE [37] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

MP2ML (This work) ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓12

1 https://ngra.ph/he
2 https://github.com/microsoft/CryptoNets
3 https://github.com/CEA-LIST/Cingulata
4 https://github.com/tfhe/tfhe
5 https://github.com/snwagh/securenn-public
6 https://github.com/ladnir/aby3
7 https://github.com/tastyproject
8 https://github.com/OpenMined/PySyft
9 https://github.com/tf-encrypted/tf-encrypted
10 https://github.com/mpc-msri/EzPC
11 https://github.com/ftramer/slalom
12 https://ngra.ph/he

solutions maintain complete model privacy, they typically lack the
support for non-polynomial activation functions, such as ReLU and
MaxPool, with the notable exception of TFHE [21], which is used as
a backend in Cingulata [15] and Chimera [12]. Pure MPC solutions,
on the other hand, support non-polynomial activations at the cost
of leaking the full model architecture. Hybrid HE-MPC schemes
provide the advantages of both HE and MPC approaches. MP2ML
provides the first hybrid HE-MPC framework that integrates with
a DL framework such as TensorFlow. Similar to GAZELLE [37],
our framework leaks the number of ciphertexts and the activation

function used in each non-linear layer. However, MP2ML does not
reveal the functionality and size of the linear layers.

Next, we summarize several different approaches for preserving-
privacy DL.
HE-based DL. The main workload of DL models is multiplication
and addition in convolution and general matrix multiply (GeMM)
operations [36], making HE an attractive solution for privacy-
preserving DL. However, DL models typically consist of functions
which are not suitable for HE. For example, computing ReLU or

4

https://ngra.ph/he

MaxPool requires a comparison operation that is not supported
efficiently in all HE methods.

One solution, which requires access to the entire DL workflow
including training, is re-training the DL model with polynomial
activation functions [6, 50]. The CryptoNets network [31] by Mi-
crosoft Research is an HE-based private DL framework, which
uses the polynomial activation function 𝑓 (𝑥) = 𝑥2 to achieve 99%
accuracy on the MNIST dataset [44]. CHET [26] takes the same
approach on the CIFAR-10 dataset [42] and uses the activation func-
tion 𝑓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 . This approach reduces the accuracy from
84% in models with ReLU to 81.5%. CryptoDL [35] uses a similar
approach, which reduces the accuracy from 94.2% in the original
model to 91.5% for the CIFAR-10 dataset.

Depending on the use cases, such accuracy degradation may
not be acceptable. Furthermore, polynomial activations introduce
further difficulties in training. Polynomial activation functions are
not bounded and grow faster than standard activation functions
such as ReLU, possibly resulting in overflows during the training.

RAMPARTS [2] uses the Julia language to implement HE opera-
tions with the PALISADE HE library [56]. However, RAMPARTS
is not open-source, and lacks support for source code outside of
Julia. The Cingulata compiler [15] uses a custom implementation of
the Fan-Vercauteren HE scheme [29] in C++. Cingulata translates
computations to Boolean circuits, reducing performance on GeMM
workloads.
FHE-based DL. In this setting, we assume the network has been
trained with non-polynomial activation functions, and no changes
can be made. Fully homomorphic encryption (FHE) schemes, which
support an unlimited number of additions and multiplications,
are used to provide precise polynomial approximations of non-
polynomial activations. However, due to their large computational
overhead, FHE schemes are typically much slower than other alter-
natives. For instance, using TFHE [21], FHE-based DL models have
very low efficiency for arithmetic functions such as GeMM.
MPC-based DL. Pure MPC schemes are another method to evalu-
ate pre-trained neural networks. For instance, in [58], Yao’s garbled
circuits [74] applied to a generalization of universal circuits [41,
68] are used to evaluate neural networks and hide their topol-
ogy. ABY [27] supports arithmetic and Boolean circuits and ef-
ficient switching between them, enabling arbitrary functions for
network models. ABY3 [48] combines arithmetic secret sharing
and garbled circuits and optimized conversions between these pro-
tocols to improve previous work. SecureNN [70], an extension
of SecureML [49], demonstrates enhanced performance using a
third party. Chameleon [54] is an ABY-based framework for secure
evaluation of DL models, using a somewhat-trusted third party
in the offline phase to generate correlated randomness. Specially,
Chameleon performs polynomial operations using arithmetic se-
cret sharing and non-linear operations such as ReLU using Boolean
sharing protocols, GC or GMW [33].

XONN [53] use GCs for private inference. However, XONN bina-
rizes the network, i.e., evaluates networks with weights that are bits,
which is costly to train and reduces accuracy. PySyft [57] and TF
Encrypted [23] are two frameworks for secure DL models built on
PyTorch and TensorFlow, respectively, and use only MPC to evalu-
ate DL models. CrypTFlow [43], a system extending SecureNN [70],
is a recent framework for private DL model evaluation based on

TensorFlow and uses pure MPC to evaluate DL layers securely.
In [24], the authors provide secure inference of ML quantized mod-
els in MP-SPDZ [25] with active and passive security, and evaluate
the output by TensorFlow directly. MPC-based DL solutions tend
evaluate all DL layers with MPC protocols.

Two main disadvantages in this setting include sharing the func-
tional form (i.e., structure/topology) of the network – which may
be intellectual property – with all the parties, and the high commu-
nication overhead for multiplication operations. GAZELLE [37], for
instance, replaces arithmetic sharing with HE for multiplication,
resulting in a 30× faster runtime than Chameleon’s MPC-based mul-
tiplication scheme [37].GAZELLE [37], for instance, replaces arith-
metic sharing with HE for multiplication, resulting in a 30× faster
runtime than Chameleon’s MPC-based multiplication scheme [37].
Hybrid DL. Hybrid PPML frameworks combine different privacy-
preserving protocols. Slalom [66] performs all linear layers in secure
inference using Intel SGX, a trusted execution environment (TEE).
TEE-based solutions are very efficient, but are prone to attacks [17].

Hybrid HE-MPC schemes compute linear layers (e.g., Fully-
Connected and Convolutional) using HE and activation functions
using MPC. The work of [5] combined garbled circuits with additive
HE schemes. Chimera [12] is a hybrid HE-HE scheme where the
ReLU activation function is performed using TFHE [21] and the
other functions are performed by the FV/CKKS HE scheme [20].
The main drawback of Chimera is the expensive switching between
the two HE schemes.

GAZELLE [37] is a hybrid HE-MPC scheme which uses additive
HE for polynomial functions and MPC (garbled circuits) for non-
polynomial activation functions. GAZELLE uses a small plaintext
modulus, which will result in degraded accuracy on larger networks,
and does not integrate with DL frameworks.

GAZELLE [37], for instance, replaces arithmetic sharing with
HE for multiplication, resulting in a 30× faster runtime than
Chameleon’s MPC-based multiplication scheme [37].

4 THE MP2ML FRAMEWORK
In this section, we provide a detailed description of our MP2ML
framework. The main idea borrows from three popular frameworks
in literature, including pure MPC using the ABY framework [27],
pure HE as in nGraph-HE [10], and hybrid MPC-HE frameworks
such as TASTY [34] or GAZELLE [37]. See Sect. 6 for a comparison
of MP2ML and GAZELLE.

nGraph-HE [10, 11], an HE-based extension of Intel’s DL graph
compiler, provides compatibility with popular DL frameworks such
as TensorFlow, enabling data scientists to benchmark linear layers
in DL models in a privacy-preserving manner without extensive
knowledge in cryptography.

ABY [27] supports both linear and non-linear operations and can
implement and securely evaluate them as arithmetic or Boolean
circuit. ABY also supports single instruction multiple data (SIMD)
gates for high throughput.

MP2ML is a hybrid HE-MPC framework integrating ABY and
nGraph-HE, and is compatible with DL frameworks such as Ten-
sorFlow. Our work focuses on the setting in which the client can
privately perform inference without disclosing his or her input
to the server as well as preserving the privacy of the server’s DL

5

model. In MP2ML we directly build on the usability of nGraph-HE,
which requires only minimal changes to existing TensorFlow code.
In particular, similar to [11], only a single line of code must be
added to enable evaluation with MP2ML, as shown in Sect.4.3.

4.1 Private ML Workflow
MP2ML combines HE and MPC to enable the evaluation of neural
network models in an efficient and privacy-preserving manner. We
detail the steps in which a server performs private inference on a
client’s encrypted data. Briefly summarized, the steps are as follows:

• Client: Input encryption, transmission to the server
• Private Inference
– Server: Non-interactive evaluation of linear layers
– Both: Conversion from HE values to MPC values
– Both: Interactive evaluation of non-linear layers
– Both: Conversion from MPC values to HE values
– repeat until network output is reached

• Server: Transmission of the encrypted model output to the
client

• Client: Output decryption
We now explain each of these steps in more detail:

Client Input Encryption. First, the client encrypts its input using
the CKKS HE scheme, as implemented by Microsoft SEAL [63],
and sends it to the server. <For increased throughput, multiple
values are packed into a single ciphertext using batch-axis plaintext
packing (cf. Sect. 2.2). Now we sequentially evaluate each layer in
the DL model using HE or MPC.
Linear Layers. The server evaluates linear layers using the HE-
based nGraph-HE [10, 11] implementation. This includes tensor
computation operations, such as Convolutional, AvgPool, and Fully-
Connected layers, as well as tensor manipulation operations, such
as Broadcast, Reshape, Concatenate, and Slice. Using HE for the
linear layers enables the server to hide themodel structure/topology
from the client, and results in no communication overhead.
Non-Linear Layers.We use anMPC protocol to privately evaluate
non-linear layers, i.e., ReLU activations. This distinguishes our
framework from nGraph-HE. In nGraph-HE’s client-aided model,
the server sends the encrypted non-linear layers’ inputs to the client,
which decrypts these inputs, performs the non-linear operation
locally, encrypts the result and sends it back to the server. The
client-aided protocol reveals intermediate values to the client and
thus directly leaks information about the trained model, which is
often considered private or intellectual property by the server.

In contrast, MP2ML evaluates the non-linear functions using
a secure two-party protocol between the client and the server,
such that no sensitive information about the intermediate values
is leaked. The client learns only the type of non-linear activation
function and their total number, but no intermediate value. This
approach protects both the server’s model as well as the client’s
inputs. Next, we describe the ReLU, ReLU6 andMaxPool activation
functions and our implementations thereof.
ReLU Evaluation. Fig. 1 illustrates our secure MPC-based ReLU
computation. We assume that the server has previously homomor-
phically computed linear layers or received the client’s inputs and
holds a homomorphic ciphertext ⟦𝑥⟧. The first step is to convert
the ciphertext to an MPC value.

Previous work [5, 34, 37] uses arithmetic masking to convert a
homomorphic ciphertext into an MPC value: the server additively
blinds ⟦𝑥⟧ with a random mask 𝑟 and sends the masked ciphertext
⟦𝑥 + 𝑟⟧ to the client, who decrypts. Then, both parties evaluate a
subtraction circuit in MPC to remove the random mask. MP2ML
extends this approach to fixed-point arithmetic.

In our private ReLU protocol, the server and the client perform
the following steps:

(1) Conversion from HE to MPC: The first step is to convert the
homomorphic ciphertext to an MPC value. To do this, the
server generates two random masks, 𝑟1 and 𝑟2, which are in-
tegers chosen uniformly at random from the entire domain
of the ciphertext space at the lowest level: (−𝑞0/2, 𝑞0/2).
The server first rescales the ciphertext to the lowest level,
such that the ciphertext space is R𝑞0 . Then, the server per-
forms the homomorphic subtraction 𝑟1 from the ciphertext
⟦𝑥⟧ with the ciphertext modulus 𝑞0, and sends the result-
ing ciphertext [⟦𝑥 − 𝑟1⟧]𝑞0 to the client. Since 𝑟1 is chosen
uniformly at random, the resulting ciphertext [⟦𝑥 − 𝑟1⟧]𝑞0
perfectly masks the plaintext value 𝑥 .
The client decrypts ⟦𝑥 − 𝑟1⟧ using its private key. We now
have 𝑟1 and 𝑟2 on the server side and [𝑥 − 𝑟1]𝑞 on the
client side. Since ABY operates on unsigned integers, we
map the range (−𝑞0/2, 𝑞0/2) to (0, 𝑞) by performing the

transformation SignedToUnsigned𝑞0 (𝑥) =
{
𝑥 + 𝑞0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

,

with inverse transformation UnsignedToSigned. Note,
SignedToUnsigned𝑞0 (𝑥) ≥ 𝑞0/2 ⇐⇒ 𝑥 ≤ 0. Let 𝑥𝑢 refer
to the unsigned value 𝑥𝑢 = SignedToUnsigned(𝑥).

(2) MPC circuit evaluation: We now evaluate the ReLU circuit
shown in Fig. 1, which is similar to that of GAZELLE [37].
To do this, we

(a) first, compute the arithmetic integer addition of 𝑥𝑢 − 𝑟1
from the client and 𝑟1 from the server to obtain 𝑥𝑢 , possibly
outside the range (0, 𝑞0). A multiplexer compares the re-
sult to 𝑞0 and performs conditional arithmetic subtraction
of 𝑞0 to obtain 𝑥𝑢 mod 𝑞0.

(b) In the second step, we compute

ReLU(𝑥𝑢) =
{
𝑥𝑢 , 𝑥𝑢 ≤ 𝑞0/2
0, 𝑥𝑢 > 𝑞0/2

,

which corresponds to ReLU in the signed floating-point
domain.

(c) In the last step, to prevent ReLU(𝑥𝑢) from leaking to the
client, we compute ReLU(𝑥𝑢) + 𝑟2 mod 𝑞0, using the ad-
dition circuit and multiplexer, and output the plaintext
value ReLU(𝑥𝑢) + 𝑟2 mod 𝑞0 to the client.

(3) Conversion from MPC to HE: The client performs the
transformation UnsignedToSigned, encrypts the resulting
[ReLU(𝑥𝑢) + 𝑟2]𝑞0 value at level 𝐿 − 1 using the CKKS HE
scheme, and sends the encrypted value ⟦[ReLU(𝑥𝑢) + 𝑟2]𝑞0⟧
to the server. The server homomorphically subtracts 𝑟2,
to obtain the corresponding ciphertext ⟦[ReLU(𝑥𝑢)]𝑞0⟧ =

⟦[ReLU(𝑥)]𝑞0⟧.
ReLU6 Evaluation. Some neural networks, such as Mo-
bileNetV2 [59], use aBoundedReLU function, whereBoundedReLU

6

Decrypt -
HE	SUB

[[x]] r1
[[x-r1]]

x-r1

Client Server

r2

ReLU[[x]]

CMP

ABY_ReLU
ADDr1

0

1SUB
q x mod q

CMP

0

10
ReLU(x)

ADDCMP

SUB
q

0

1

Encrypt

ReLU(x)+r2	mod	q

-
HE	SUB

[[ReLU(x)	+	r2]]
r2

r1

r2

Figure 1: Protocol for privateReLU.CMP,ADD, and SUB are comparison, addition, and subtraction circuits executed byABY [27].
Other homomorphic operations are executed by nGraph-HE [11].

(𝑥, 𝛼) = min(max(𝑥, 0), 𝛼). Let ReLU6 refer to BoundedReLU (6).
Fig. 2 describes the steps to perform ReLU6. The evaluation
procedure is similar to that of ReLU, with an additional comparison
against the bound value, e.g. 6 for ReLU6.
Maxpool Evaluation. Fig. 3 shows the steps for MaxPool evalua-
tion. In this scenario, we want to obtain the maximum of 𝑛 cipher-
texts on the server side:

MaxPool([[𝑋]]) = max([[𝑥1]], [[𝑥2]], ..., [[𝑥𝑛]]).
When evaluatingMaxPool, the server holds a vector of 𝑛 cipher-

texts [[𝑋]]. Then server and client do the following steps:
(1) Conversion from HE to MPC: To convert homomorphic val-

ues to MPC values, the server generates a uniform random
integer 𝑟 ∈𝑅 𝑈 (−𝑞0/2, 𝑞0/2) and random vector 𝑅1 of 𝑛
ciphertexts as 𝑅1 = 𝑟1 |...|𝑟𝑛 , where all 𝑟𝑖 ∈𝑅 𝑈 (−𝑞0/2, 𝑞0/2).
The server first rescales the ciphertexts [[𝑋]] to the low-
est level. Then, the server homomorphically subtracts 𝑅1
from the vector of ciphertexts [[𝑋]] and sends the result-
ing vector [[[𝑋𝑢 − 𝑅1]𝑞]] to the client. The client decrypts
[[[𝑋 − 𝑅1]𝑞]] using its private key. We now have a vec-
tor 𝑅1 and number 𝑟 on the server side and vector [𝑋 −
𝑅1]𝑞 on the client side. As with the ReLU circuit, [𝑋 −
𝑅1]𝑞 , 𝑟 , and 𝑅1 are mapped to unsigned integers using the
transformation SignedToUnsignedShift𝑞0 (𝑥) = 𝑥 + 𝑞0. Let
UnsignedToSignedShift denote the inverse transformation.

(2) MPC circuit evaluation: After evaluating the circuit from
Fig. 3, we have the value SignedToUnsignedShift(max(𝑥1, ..,
𝑥𝑛) + 𝑟) mod 𝑞) on the client side.

(3) Conversion from MPC to HE: At this point, the client
performs the inverse mapping UnsignedToSignedShift,
encrypts max(𝑥1, .., 𝑥𝑛) + 𝑟 (mod 𝑞) using CKKS, and sends
the resulting ciphertext [[max(𝑥1, .., 𝑥𝑛) + 𝑟]] to the server.

The server homomorphically subtracts 𝑟 to obtain the
corresponding ciphertext ofMaxPool:

max([𝑥1], [𝑥2], ..., [𝑥𝑛]) + 𝑟 − 𝑟]𝑞0 = [max([𝑥1], [𝑥2], ..., [𝑥𝑛])]𝑞0
= MaxPool[[𝑋]]𝑞0

To evaluate a complete network, MP2ML computes linear layers
using HE, and the above protocol for non-polynomial activations.
The encrypted final classification result is sent to the client for
decryption.

One detail to note is that the MPC-to-HE conversion yields a
ciphertext ⟦𝑦⟧ := ⟦ReLU(𝑥)⟧ at level 𝐿, i.e., modulo 𝑞𝐿−1, whereas
the masking was performed at level 0, i.e., modulo 𝑞0. Subsequent
computation on ⟦𝑦⟧ is performed at modulo 𝑞𝐿−1. However, since
𝑞𝐿−1 is a factor of 𝑞0, the computation is still accurate modulo 𝑞0.2
Thus, the final decryption must perform modulus-switching to 𝑞0
before performing the decryption. Alternatively, the decryption
output must be modified to return values modulo 𝑞0 rather than
values modulo 𝑞𝐿 .

Note, the integer results of the ReLU andMaxPool circuits are
only accurate in the interval (−𝑞0/2, 𝑞0/2). Hence, for fixed-point
numbers scaled to integers using a scaling factor 𝑠 , the result is only
accurate in the interval (−𝑞0/(2𝑠), 𝑞0/(2𝑠)). Therefore,𝑞0 ≫ 𝑠 must
be chosen accordingly to preserve accuracy of the computation.

Our conversion protocol achieves two important tasks. First,
it enables the secure computation of non-polynomial activation
functions, i.e., without leaking pre- or post-activation values to
the data owner. Second, as in the client-aided model, our protocol

2This is a result of the property that (𝑧 mod 𝑝𝑞) mod 𝑝 = 𝑧 mod 𝑝 for 𝑧 ∈
Z, 𝑝, 𝑞 ∈ N.

7

Decrypt -
HE	SUB

[[x]] r1
[[x-r1]]

x-r1

Client Server

r2

ReLU6[[x]]

CMP

ABY_ReLU6
ADDr1

0

1SUB
q x mod q

CMP
0

1

ReLU6(x)

ADDCMP

SUB
q

0

1

Encrypt

ReLU6(x)+r2	mod	q

-
HE	SUB

[[ReLU6(x)	+	r2]]
r2

r1

r2

0

1

0
CMP

6

Figure 2: Circuit for ReLU6 operation. CMP, ADD, and SUB refer to comparison, addition, and subtraction circuits executed by
ABY [27]. Other homomorphic operations are executed by nGraph-HE [10]

.

Decrypt -
HE	SUB

[[X]] R1
[[X-R1]]

X-R1

Client Server

r

Max(x1,…xn)	=
Maxpool[[X]]	X

CMP

ABY_Maxpool
ADD

R1
0

1SUB
q X mod q Max

Max(X) = Max(x1,…xn)

ADDCMP

SUB
q

0

1

Encrypt

Max(x1,…xn)+r

-
HE	SUB

[[Max(x1,…xn)+r]]
r

R1

r

Figure 3: Circuit for the MaxPool operation. CMP, ADD, SUB and Max refer to comparison, addition, subtraction and maxi-
mum(between 𝑛 numbers) circuits executed by ABY [27]. Other homomorphic operations are executed by nGraph-HE [10].

refreshes the ciphertexts, resetting the noise and restoring the ci-
phertext level to the top level 𝐿. This refreshment is essential to
enabling continued computation without increasing the encryp-
tion parameters. Rather than selecting encryption parameters large
enough to support the entire network, they must now only be large
enough to support the linear layers between non-linear activations.
For instance, the client-aided model in nGraph-HE performs in-
ference on MobileNetV2 [60], a model with 24 convolution layers,
using 𝑁 = 4096, 𝐿 = 4 ≪ 24. Without the ciphertext refreshment,
𝑁 = 32768, 𝐿 = 24 would be required, and each ciphertext would

have size∼12.58MB ofmemory, by factor 48xmore than the∼262KB
of our ciphertexts with 𝑁 = 4096, 𝐿 = 4.

4.2 Security
MP2ML protects the client’s inference input from the server, and at
the same time hides the full model structure of the server from the
client, revealing only the number and type of non-linear operations.
The MPC protocols we implement provide security against semi-
honest adversaries (cf. Sect. 2.2).

8

Note that HE-based solutions generally do not provide circuit
privacy, as the ciphertext of the result may leak information about
the number and types of operations performed on it. However, noise
flooding or an interactive decryption phase can help to mitigate this
leakage [37]. These mitigations can be applied in MP2ML as well,
even though, similar to [37], they are not yet included in our imple-
mentation. We expect the overhead for a single re-randomization
and an addition in MPC to be negligible. Note that this kind of
leakage is arguably smaller than in purely MPC-based solutions,
where the entire structure of the evaluated circuit is public and thus
the full structure of the ML model is leaked to the client.

4.3 Source Code Example
One of the primary advantages to MP2ML is the integration with
DL frameworks, in particular TensorFlow. MP2ML implements
nGraph’s [22] C++ ngraph::runtime :: Backend application pro-
gramming interface (API). MP2ML exposes two Python interfaces,
one for the server and one for the client. Listing 1 and Listing 2
show the Python3 source code for the server and client, respectively,
to perform inference on a pre-trained CryptoNets-ReLU model
using MP2ML.

The Python3 server interface is nearly identical to standard Ten-
sorFlow inference code. The only changes to native TensorFlow
code are a single ‘import ngraph_bridge‘ line (cf. Line 2 in Listing 1),
as well as creating a TensorFlow Session configuration. To enable
this interface, MP2ML utilizes TensorFlow’s nGraph bridge [16],
which enables TensorFlow code to run on an nGraph backend, as
specified by a TensorFlow Session configuration. The configuration
MP2ML is used to specify the encryption parameters, which tensors
correspond to the client inference input and the inference classifica-
tion result, and whether or not to use plaintext packing. To adhere
to TensorFlow’s interface, the server must still provide inference
inputs, which are treated as dummy values and are unused.

The Python3 client interface is a single class ‘HESealClient‘. An
HESealClient instance is initialized with the hostname and port
of the server, the inference batch size, and a dictionary specifying
the client input tensor name data. Instantiating the HESealClient
connects with the server. The ‘get_results()’ method will block until
the inference has been performed and the client has received the
encrypted results from the server. The client’s integration with
Python enables easy data loading via Keras’ datasets module.

5 EVALUATION
We evaluate MP2ML on small atomic operations (Sect. 5.1) and on
a larger deep learning model (Sect. 5.2).
Evaluation Setup. For the evaluation we use two Intel Xeon®
Platinum-8180 2.5 GHz systems with 112 cores and 376GB RAM,
running Ubuntu 18.04. The local area network (LAN) bandwidth is
9.6 Gbit/s, while the latency is 0.165ms.

5.1 Atomic Operations
Table 3 shows the runtimes of MP2ML for atomic operations. No-
tably, the addition and multiplication operations, which are evalu-
ated using CKKS, require no offline computation and no communi-
cation. In contrast, pure MPC solutions require communication for

every multiplication, and even for additions in the case of Boolean
circuit-based protocols.

Comparing GMW and Yao’s GC protocol, we can see a corre-
lation between required bandwidth and protocol runtime. GMW
outperforms Yao’s GC in the low-latency LAN setting. We expect
the opposite to happen for typical WAN connections with a higher
round trip time, since GMW requires one round of interaction
for each data-dependent layer of non-linear gates (depth) in the
Boolean circuits, while Yao’s protocol always only requires a small
constant number of rounds. Our ReLU circuits that are evaluated
in each non-linear layer have a multiplicative depth of 137, resp.
145 (ReLU6).

Table 3: Runtime and throughput of MP2ML for atomic op-
erations in the LAN setting, averaged across 10 runs. We use
𝑁 = 2048 and a 54-bit ciphertext modulus. ADD and MULT
are offline only, and the use of plaintext packing yields the
same runtime for each batch size up to 𝑁 .

FunctionOutputs MPC
proto.

Time (ms) Bandwidth (MB)
offline online offline online

ReLU 1,000 Yao 161 57 22.3 2.0
ReLU 1,000 GMW 304 18 53.9 0.9
ReLU 2,048 Yao 314 118 45.8 4.1
ReLU 2,048 GMW 533 20 110.4 1.8

ReLU6 1,000 YAO 190 67 27.2 2.0
ReLU6 1,000 GMW 326 20 61.5 1.1
ReLU6 2,048 YAO 370 141 55.8 4.1
ReLU6 2,048 GMW 650 25 125.9 2.1

ADD 1,000 — 0 0.18 0 0
ADD 2,048 — 0 0.19 0 0

MULT 1,000 — 0 1.2 0 0
MULT 2,048 — 0 1.2 0 0

5.2 Neural Networks
We evaluate a deep learning application, the CryptoNets [31] net-
work, to show how our MP2ML framework can be leveraged. Cryp-
toNets is the seminal HE-friendly deep learning network, yielding
∼99% accuracy on the MNIST handwritten digits dataset, which
consists of 28 × 28 pixel images classified into 10 categories. The
CryptoNets network has multiplicative depth of 5, with the full
architecture detailed in as follows, where 𝑛 indicates the batch size:

• CryptoNets, with activation 𝐴𝑐𝑡 (𝑥) = 𝑥2.
(1) Conv. [Input: 𝑛 × 28 × 28; stride: 2; window: 5 × 5; filters:

5, output: 𝑛 × 845] + Act.
(2) FC. [Input: 𝑛 × 845; output: 𝑛 × 100] + Act.
(3) FC. [Input: 𝑛 × 100; output: 𝑛 × 10].
• CryptoNets-ReLU, with activation 𝐴𝑐𝑡 (𝑥) = 𝑅𝑒𝐿𝑈 (𝑥).
(1) Conv with bias. [Input: 𝑛× 28× 28; stride: 2; window: 5× 5;

filters: 5, output: 𝑛 × 845] + Act.
(2) FC with bias. [Input: 𝑛 × 845; output: 𝑛 × 100] + Act.
(3) FC with bias. [Input: 𝑛 × 100; output: 𝑛 × 10].

As in [10], we modify the network architecture to include biases
and replace the non-standard 𝑥2 activations with ReLU activations.

9

1 import tensorflow as tf

2 import ngraph_bridge

3 import numpy as np

4 from mnist_util import server_argument_parser , \

5 server_config_from_flags , \

6 load_pb_file

7

8 # Load saved model

9 tf.import_graph_def(load_pb_file('./model/model.pb'))

10

11 # Get input / output tensors

12 x_input = tf.compat.v1.get_default_graph ().get_tensor_by_name("import/input:0")

13 y_output = tf.compat.v1.get_default_graph ().get_tensor_by_name("import/output :0")

14

15 # Create configuration to encrypt input

16 FLAGS , unparsed = server_argument_parser ().parse_known_args ()

17 config = server_config_from_flags(FLAGS , x_input.name)

18

19 with tf.compat.v1.Session(config=config) as sess:

20 # Evaluate model (random input data is discarded)

21 y_output.eval(feed_dict ={ x_input: np.random.rand (10000 , 28, 28, 1)})

Listing 1: Python3 source code for a server to execute a pre-trained CryptoNets-ReLUmodel in MP2ML. A server configuration
specifies the encryption parameters and which tensors to obtain from the client. The server passes random dummy values as
input. The encrypted input is provided by the client.

1 import numpy as np

2 from mnist_util import load_mnist_test_data , \

3 client_argument_parser

4 import pyhe_client

5

6 # Parse command -line arguments

7 FLAGS , unparsed = client_argument_parser ().parse_known_args ()

8

9 # Load data

10 (x_test , y_test) = load_mnist_test_data(FLAGS.start_batch , FLAGS.batch_size)

11

12 client = pyhe_client.HESealClient(FLAGS.hostname , FLAGS.port , FLAGS.batch_size ,

13 {FLAGS.tensor_name: (FLAGS.encrypt_data_str , x_test.flatten('C'))})

14 results = np.array(client.get_results ())

15 y_pred = results.reshape(FLAGS.batch_size , 10)

16

17 accuracy = np.mean(np.argmax(y_test , 1) == np.argmax(y_pred , 1))

18 print('Accuracy: ', accuracy)

Listing 2: Python3 source code for a client to execute a pre-trained CryptoNets-ReLU model in MP2ML. The client passes the
encrypted data to the server who runs the private inference.

We achieve 98.60% accuracy, a slight degradation from the 98.64%
of the unencrypted model.

Table 4 shows the performance of MP2ML on CryptoNets in
comparison with previous methods. MP2ML uses encryption pa-
rameters 𝑁 = 8192, 𝐿 = 5, with coefficient moduli (47, 24, 24, 24, 30)
bits, scale 𝑠 = 224, 𝜆 = 128-bit security, and Yao’s GC for the
non-linear layers. Note, Table 4 omits several frameworks from Ta-
ble 2 which do not report performance on the CryptoNets network:
[2, 5, 12, 21, 23, 26, 34, 48, 57, 58, 66].

Chameleon [54] and SecureNN [70] use a semi-honest third party,
which is a different setting than our two-party model. XONN [53]
binarizes the network, which results in high accuracy on the MNIST
dataset, but will reduce accuracy on larger datasets and models.
CryptoNets [31] and CryptoDL [35] use polynomial activations,
which will also reduce accuracy on larger datasets and models.

GAZELLE [37], whose method is most similar to our work, uses
much smaller encryption parameters (𝑁 = 2048, 𝐿 = 1), resulting
in a significantly faster runtime (cf. [10, Tab.9]), albeit at a reduced
20-bit precision. See Sect. 6 for a detailed comparison between
MP2ML and GAZELLE. nGraph-HE [11] uses a client-aided model
to compute non-polynomial activations, which leaks intermediate
values and potentially the model weights to the client.

6 DISCUSSION
Given the similarity of our approach to GAZELLE [37], we next
highlight key differences and themotivations for our design choices,
as well as limitations of our framework.

10

Table 4: MNIST inference performance comparisons. The network topologies are not identical across previous work, resulting
in variations in accuracy.

Framework Limitation Accuracy (%) Latency (s) Throughput (images/s)

Chameleon [54] 3-party 99 2.24 1.0
XONN [53] binarized network 98.64 0.16 6.25
CryptoNets [31] polynomial activation 98.95 250 16.4
GAZELLE [37] hand-optimized 98.951 0.03 33.3
CrypTFlow [43] leaks model architecture 99.312 0.03 33.3
CryptoDL [35] polynomial activation 99.52 320 45.5
SecureNN [70] 3-party 99 3 0.08 49.23
nGraph-HE2 [10] reveals intermediate values 98.62 0.69 2,959

MP2ML (This work) — 98.60 6.79 33.3
1 Accuracy not reported, but network topology matches that of CryptoNets.
2 Accuracy not reported, but network topology matches that of MiniONN [46].
3 Accuracy not reported, but network topology matches that of Chameleon.

6.1 Plaintext Packing
Plaintext packing (cf. Sect. 2.2) is a key design choice in developing
efficient frameworks for DL with HE. Harnessing the simultane-
ous computation enabled by plaintext packing of 𝑁 values poten-
tially reduces the memory and runtime overhead by a factor of 𝑁 .
MP2ML uses batch-axis packing, which maximizes the throughput
for a given latency. GAZELLE, on the other hand, uses inter-axis
packing, which encrypts multiple scalars from the same datapoint
or weight matrix to a single ciphertext. The simultaneous computa-
tion enabled by plaintext-packing minimizes the latency on small
batch sizes. One limitation to inter-axis packing is the difficulty of
supporting several common DL operations. For instance, operations
such as Reshape, Transpose, and Flatten typically require expensive
rotation operations.

Table 4 demonstrates the latency-throughput trade-off between
existing privacy-preserving ML frameworks GAZELLE uses inter-
axis packing, while nGraph-HE and MP2ML use batch-axis packing.
Notably, nGraph-HE andMP2ML have significantly higher through-
put than the inverse of the latency.

6.2 Encryption Scheme
The CKKS encryption scheme [20] is a recent optimization to the
BFV HE scheme [13, 29]. Whereas BFV computation is exact, the
CKKS scheme is inherently approximate. The CKKS scheme is sig-
nificantly faster than the BFV scheme–∼12× for the multiply-plain
operation and ∼20× for the multiply operation. However, the intro-
duction of the rescaling operation, and the approximate arithmetic
pose difficulties in adopting CKKS. While existing work [10, 11]
has demonstrated the efficacy of CKKS on DL, to our knowledge,
ours is the first work to demonstrate the use of CKKS in a hybrid
HE-MPC framework.

6.3 HE-MPC Protocol
While the core idea of our HE-MPC protocol is similar to that of
GAZELLE, there are two key differences:

• Our conversion from HE to MPC rescales to the lowest ci-
phertext modulus. Whereas GAZELLE considers only param-
eter choices with a single ciphertext modulus, our approach
is more general. Our choice to rescale to the lowest level
reduces the communication requirement by a factor of up to
𝐿 compared to not rescaling.

• Our conversion from MPC to HE performs the additive un-
masking at a different level 𝑞𝐿 than the original masking,
which was performed at level 𝑞0. GAZELLE’s choice of en-
cryption parameter has just one level, so the masking and
unmasking is performed at the same level.

6.4 Limitations of MP2ML
6.4.1 Model Extraction. In ML model extraction attacks, an adver-
sary attempts to deduce the ML model without prior knowledge
using black-box access to inferences on the model. The feasibility
of ML model extraction has been demonstrated on a variety of
ML models [52, 65]. Existing HE-based and MPC-based privacy-
preserving ML frameworks protect user data from the model owner,
or the model weights from the data owner. However, these frame-
works fail to protect against model extraction attacks, since the
adversary has black-box access to the inferences.We considermodel
extraction attacks an orthogonal issue to private DL inference using
cryptographic primitives. Indeed, all the frameworks in Table 2 are
vulnerable to model extraction attacks.

6.4.2 Fully-Private DL Inference. PPML inference solutions differ
by their privacy guarantees. While the inference data is typically
kept private, aspects of the DL model may leak. Pure HE solutions
don’t leak any information about the model (subject to model ex-
traction attacks), though at the cost of large runtime overhead.
Pure MPC approaches such as XONN [53] reveal the entire struc-
ture/functional form (i.e., Boolean circuit) of the DL model, though
yielding the lowest runtime overhead. Hybrid HE-MPC solutions
such as GAZELLE [37] and MP2ML leak the type (i.e., ReLU or
MaxPool) and dimension of each activation function.

11

7 CONCLUSION
HE and MPC have emerged as two candidate solutions for privacy-
preserving DL inference. Hybrid HE-MPC protocols combine the
advantages of HE and MPC to provide better efficiency and model
privacy than each method individually. In this paper we presented
MP2ML, the first user-friendly mixed-protocol framework for pri-
vate DL inference. MP2ML is compatible with popular DL frame-
works such as TensorFlow, enabling data scientist to perform secure
neural network inference with ease. In addition, MP2ML is com-
patible with multiple activation functions and offers direct support
for many operations and transformations that are common in the
ML domain. The privacy guarantees of MP2ML are stronger than
those of related work because it hides the topology of the classi-
fier, while it achieves comparable performance compared to the
state-of-the-art work CrypTFlow [43].

AVAILABILITY
The open source code of MP2ML is freely available under the per-
missive Apache license at https://ngra.ph/he.

ACKNOWLEDGMENTS
We thank Casimir Wierzynski, Amir Khosrowshahi, and Naveen
Rao for their unconditional support. This project has received fund-
ing from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded by the Deutsche
Forschungsgemeinschaft (DFG) — SFB 1119 CROSSING/236615297
and GRK 2050 Privacy & Trust/251805230, and by the German Fed-
eral Ministry of Education and Research and the Hessen State Min-
istry for Higher Education, Research and the Arts within ATHENE.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, and
Michael Isard. 2016. TensorFlow: A system for large-scale machine
learning. In USENIX Operating Systems Design and Implementation
(OSDI’16).

[2] David W Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Mal-
ozemoff, Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. 2019. RAM-
PARTS: A Programmer-Friendly System for Building Homomorphic
Encryption Applications. InWAHC’19.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, andMichael Zohner.
2013. More efficient oblivious transfer and extensions for faster secure
computation. In CCS’13.

[4] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti,
Ahmad-Reza Sadeghi, and Thomas Schneider. 2009. Secure evaluation
of private linear branching programs with medical applications. In
ESORICS’09.

[5] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi,
and Thomas Schneider. 2011. Privacy-Preserving ECG Classification
with Branching Programs and Neural Networks. TIFS’11.

[6] Mauro Barni, Claudio Orlandi, and Alessandro Piva. 2006. A privacy-
preserving protocol for neural-network-based computation. In Work-
shop on Multimedia and Security.

[7] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round
complexity of secure protocols. In STOC’90.

[8] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rog-
away. 2013. Efficient garbling from a fixed-key blockcipher. In S&P’13.

[9] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schnei-
der, and Hossein Yalame. 2020. MP2ML: A Mixed-Protocol Machine
Learning Framework for Private Inference. In ARES’20.

[10] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir
Wierzynski. 2019. nGraph-HE2: A High-Throughput Framework for
Neural Network Inference on Encrypted Data. InWAHC’19.

[11] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzyn-
ski. 2019. nGraph-HE: a graph compiler for deep learning on ho-
momorphically encrypted data. In ACM International Conference on
Computing Frontiers.

[12] Christina Boura, Nicolas Gama, and Mariya Georgieva. 2018. Chimera:
a unified framework for B/FV, TFHE and HEAAN fully homomorphic
encryption and predictions for deep learning. IACR Cryptology ePrint
Archive 2018/758.

[13] Zvika Brakerski. 2012. Fully homomorphic encryption without modu-
lus switching from classical GapSVP. In CRYPTO’12.

[14] Justin Brickell, Donald E Porter, Vitaly Shmatikov, and EmmettWitchel.
2007. Privacy-preserving remote diagnostics. In CCS’07.

[15] CEA-LIST. 2019. Cingulata. https://github.com/CEA-LIST/Cingulata.
[16] Avijit Chakraborty and Adam Proctor. 2018. Intel(R) nGraph(TM)

Compiler and runtime for TensorFlow. https://github.com/tensorflow/
ngraph-bridge.

[17] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. 2019. SgxPectre attacks: Stealing Intel secrets from
SGX enclaves via speculative execution. EUROS&P’19 (2019).

[18] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015.
MXNet: A flexible and efficient machine learning library for heteroge-
neous distributed systems. arXiv preprint arXiv:1512.01274.

[19] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, LeyuanWang, Yuwei Hu, and Luis
Ceze. 2018. TVM: An automated end-to-end optimizing compiler for
deep learning. InUSENIXOperating Systems Design and Implementation
(OSDI’18).

[20] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017.
Homomorphic Encryption for Arithmetic of Approximate Numbers.
In ASIACRYPT’17.

[21] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabach-
ene. 2016. Faster fully homomorphic encryption: Bootstrapping in less
than 0.1 seconds. In ASIACRYPT’16.

[22] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram
Bobba, Matthew Brookhart, Avijit Chakraborty, Will Constable, Chris-
tian Convey, Leona Cook, and Omar Kanawi. 2018. Intel nGraph: an
intermediate representation, compiler, and executor for deep learning.
arXiv preprint arXiv:1801.08058.

[23] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Gi-
raud, Ian Livingstone, Justin Patriquin, and Gavin Uhma. 2018. Private
machine learning in TensorFlow using secure computation. arXiv
preprint arXiv:1810.08130.

[24] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2019. Secure
Evaluation of Quantized Neural Networks. IACR Cryptology ePrint
Archive, Report 2019/131.

[25] Data61. 2019. MP-SPDZ - Versatile framework for multi-party compu-
tation. https://github.com/data61/MP-SPDZ.

[26] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter,
Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET:
an optimizing compiler for fully-homomorphic neural-network infer-
encing. In PLDI’19.

[27] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY -
A Framework for Efficient Mixed-Protocol Secure Two-Party Compu-
tation. In NDSS’15.

12

https://ngra.ph/he
https://github.com/CEA-LIST/Cingulata
https://github.com/tensorflow/ngraph-bridge
https://github.com/tensorflow/ngraph-bridge
https://github.com/data61/MP-SPDZ

[28] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas
Schneider, Shaza Zeitouni, and Michael Zohner. 2017. Pushing the
Communication Barrier in Secure Computation using Lookup Tables.
In NDSS’17.

[29] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully
Homomorphic Encryption. IACR Cryptology ePrint Archive 2012/144.

[30] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford
University PhD Thesis.

[31] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. 2016. Cryptonets: Applying
neural networks to encrypted data with high throughput and accuracy.
In ICML’16.

[32] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2,
Basic Applications. Cambridge University Press.

[33] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play
any mental game. In STOC’87.

[34] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider,
and Immo Wehrenberg. 2010. TASTY: Tool for Automating Secure
Two-party Computations. In CCS’10.

[35] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N.
Wright. 2018. Privacy-preserving Machine Learning as a Service.
PETS’18 (2018).

[36] Mohamad Javadi, Hossein Yalame, and Hamid Mahdiani. 2020. Small
Constant Mean-Error Imprecise Adder/Multiplier for Efficient VLSI
Implementation of MAC-based Applications. TC’20 (2020).

[37] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
2018. 𝐺𝐴𝑍𝐸𝐿𝐿𝐸: A Low Latency Framework for Secure Neural Net-
work Inference. In USENIX Security’18.

[38] Ágnes Kiss, Masoud Naderpour, Jian Liu, N Asokan, and Thomas
Schneider. 2019. SoK: Modular and efficient private decision tree
evaluation. PETS’19 (2019).

[39] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT ex-
tension for transferring short secrets. In CRYPTO’13.

[40] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved garbled
circuit: Free XOR gates and applications. In ICALP’08.

[41] Vladimir Kolesnikov and Thomas Schneider. 2008. A practical universal
circuit construction and secure evaluation of private functions. In
FC’08.

[42] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10
dataset. http://www.cs.toronto.edu/kriz/cifar.html.

[43] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta,
Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow: Secure Tensor-
Flow Inference. In S&P’20.

[44] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/.

[45] Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s
Protocol for Two-Party Computation. Journal of Cryptology (2009).

[46] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious
neural network predictions via MiniONN transformations. In CCS’17.

[47] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004.
Fairplay — A Secure Two-Party Computation System. (2004).

[48] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol
Framework for Machine Learning. In CCS ’18.

[49] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for
scalable privacy-preserving machine learning. In S&P’17.

[50] Claudio Orlandi, Alessandro Piva, and Mauro Barni. 2007. Oblivious
neural network computing via homomorphic encryption. Journal on
Information Security (2007).

[51] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differentiation in PyTorch. In Neural
Information Processing Systems (NIPS’17).

[52] Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko.
2019. Efficiently Stealing your Machine Learning Models. InWPES’19.

[53] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E
Lauter, and Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious
Deep Neural Network Inference. In USENIX Security’19.

[54] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M
Songhori, Thomas Schneider, and Farinaz Koushanfar. 2018.
Chameleon: A hybrid secure computation framework for machine
learning applications. In ASIACCS’18.

[55] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. 1978. On
Data Banks and Privacy Homomorphisms. Foundations of Secure Com-
putation, Academia Press (1978).

[56] Kurt Rohloff. 2019. The PALISADE Lattice Cryptography Library.
https://git.njit.edu/palisade/PALISADE.

[57] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Man-
cuso, Daniel Rueckert, and Jonathan Passerat-Palmbach. 2018. A
generic framework for privacy preserving deep learning. arXiv
preprint arXiv:1811.04017.

[58] Ahmad-Reza Sadeghi and Thomas Schneider. 2008. Generalized Uni-
versal Circuits for Secure Evaluation of Private Functions with Appli-
cation to Data Classification. In ICISC’08.

[59] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Computer Vision and Pattern Recognition (CVPR’18).

[60] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. MobileNetV2: Inverted residuals and lin-
ear bottlenecks. In Computer Vision and Pattern Recognition (CVPR’18).

[61] Amartya Sanyal, Matt J Kusner, Adria Gascon, and Varun Kanade. 2018.
TAPAS: Tricks to accelerate (encrypted) prediction as a service. arXiv
preprint arXiv:1806.03461.

[62] Thomas Schneider and Michael Zohner. 2013. GMW vs. Yao? Efficient
secure two-party computation with low depth circuits. In FC’13.

[63] SEAL 2019. Microsoft SEAL (release 3.4). https://github.com/Microsoft/
SEAL. Microsoft Research, Redmond, WA.

[64] Raymond KH Tai, Jack PK Ma, Yongjun Zhao, and Sherman SM Chow.
2017. Privacy-preserving decision trees evaluation via linear functions.
In ESORICS’17.

[65] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. 2016. Stealing machine learning models via prediction
APIs. In USENIX Security’16.

[66] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, verifiable and pri-
vate execution of neural networks in trusted hardware. In International
Conference on Learning Representations (ICLR’19).

[67] Amos Treiber, AlejandroMolina, ChristianWeinert, Thomas Schneider,
and Kristian Kersting. 2020. CryptoSPN: Privacy-preserving Sum-
Product Network Inference. ECAI’20 (2020).

[68] Leslie G Valiant. 1976. Universal circuits (preliminary report). In
STOC’76.

[69] Paul Voigt and Axel Von dem Bussche. 2017. The EU General Data
Protection Regulation (GDPR). Springer (2017).

[70] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN:
3-Party Secure Computation for Neural Network Training. PETS’19
(2019).

[71] Casimir Wierzynski and Abigail Wen. 2018. Advancing both A.I. and
privacy is not a zero-sum game. http://fortune.com/2018/12/27/ai-
privacy.

[72] David J Wu, Tony Feng, Michael Naehrig, and Kristin Lauter. 2016.
Privately evaluating decision trees and random forests. PETS’16 (2016).

[73] Hossein Yalame, Hossein Farzam, and Siavash Bayat-Sarmadi. 2017.
Secure Two-Party Computation Using an Efficient Garbled Circuit by
Reducing Data Transfer. In ATIS’17.

13

http://www.cs.toronto.edu/kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://git.njit.edu/palisade/PALISADE
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
http://fortune.com/2018/12/27/ai-privacy
http://fortune.com/2018/12/27/ai-privacy

[74] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets.
In FOCS’86.

[75] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two halves make
a whole: Reducing data transfer in garbled circuits using half gates. In
EUROCRYPT’15.

14

	Abstract
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Cryptographic Preliminaries

	3 Related Work
	4 The MP2ML Framework
	4.1 Private ML Workflow
	4.2 Security
	4.3 Source Code Example

	5 Evaluation
	5.1 Atomic Operations
	5.2 Neural Networks

	6 Discussion
	6.1 Plaintext Packing
	6.2 Encryption Scheme
	6.3 HE-MPC Protocol
	6.4 Limitations of MP2ML

	7 Conclusion
	Acknowledgments
	References

