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Abstract. An increasing number of lightweight cryptographic primi-
tives have been published recently. Some of these proposals are ARX
primitives, which have shown a great performance in software. Rotational-
XOR cryptanalysis is a statistical technique to attack ARX primitives.
In this paper, a computer tool to speed up and make easier the security
evaluation of ARX block ciphers against rotational-XOR cryptanalysis is
shown. Our tool takes a Python implementation of an ARX block cipher
and automatically finds an optimal rotational-XOR characteristic. Com-
pared to most of the automated tools, which only support a small set of
primitives, our tool supports any ARX block cipher and it is executed
with a simple shell command.
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1 Introduction

Due to the progress of technology, electronic devices have become so cheap and
small that they are being embedded in everyday objects. As a result, the Internet
is evolving into a network of “smart objects” that communicate with each other.
This “Internet of Things” will include about 20 billion devices by 2020 according
to Gartner [16].

The basic function of these devices is to collect and transmit information. In
some cases, sensitive information is collected such as health-monitoring or bio-
metric data [10]. Therefore, there is a high demand to implement cryptographic
algorithms in these devices.

However, some of these new devices have so extreme constraints in compu-
tational power, chip area or memory that they are not powerful enough to use
the same cryptographic algorithms as standard PCs. Example of these types of
devices are RFID (Radio-Frequency IDentification) chips and sensor networks.
For this reason, many cryptographic algorithms tailored to such constrained
environments have been published recently.



Some of these proposals only use three types of operations: modular addition,
cyclic rotation and exclusive-or (XOR). Examples of these Addition-Rotation-
XOR (ARX) primitives are Salsa20 [5], Chaskey [23], or Speck [4]. ARX prim-
itives are among the best performers in software [11].

Differential cryptanalysis [6], one of the most powerful attack against block
ciphers, have been applied to several ARX primitives [7, 24, 27]. On the other
hand, rotational cryptanalysis has become very popular to analyse ARX prim-
itives since it was proposed as a generic attack to ARX structures [18]. Rota-
tional cryptanalysis was improved in [19], where the propagation of rotational
pairs through a sequence of modular additions, especially through consecutive
modular additions, was studied in more detail.

One of the main drawbacks of rotational cryptanalysis is that it can not be
applied to ARX primitives where constants are injected into the state. A com-
bination of differential and rotational cryptanalysis was considered in [18] and
formalized as rotational-XOR cryptanalysis in [1]. Rotational-XOR cryptanaly-
sis removes this restriction and so it can be applied to a bigger subset of ARX
primitives than rotational cryptanalysis.

Recently, automatic search tools have been used for finding characteristics
with high probability. In [24], a method was proposed for finding differential char-
acteristics in ARX primitives using a SAT solver. To the best of our knowledge,
the only application of a SAT solver for finding rotational-XOR characteristics
was done in [2] to attack Speck.

In this paper, we have implemented a computer tool for finding optimal
rotational-XOR characteristics of ARX block ciphers. Our tool, called ArxPy,
takes a Python implementation of an ARX block cipher as input, generates a
set of SAT/SMT problems automatically, and finds an optimal characteristic by
using a SAT/SMT solver. This tool saves cipher designers the trouble of learning
how to write the SAT problem from scratch, the only thing they need to do is
to plug in a Python implementation of the cipher.

The rest of this paper is organized as follows: in Sect. 2, ARX block ci-
phers and rotational-XOR cryptanalysis are introduced. In Sect. 3, a SAT-based
method for finding optimal rotational-XOR characteristic is described. The idea
and process of the tool we have developed is presented in Sect. 4, along with its
usage and implementation. Lastly, Sect. 5 concludes this paper.

2 Preliminaries

2.1 Notations

The notations used in this paper is shown in Table 1.

2.2 ARX Block Ciphers

Block ciphers which only use modular additions, cyclic rotations and exclusive-
or (XOR) operations are called Addition-Rotation-XOR (ARX) block ciphers.



Table 1. Notations used through the paper

� Modular addition.
⊕ XOR.
≪ Left rotation.
≫ Right rotation.
X An n-bit boolean vector.

SHL(X) A non-cyclic left shift of X by one bit.
(I ⊕ SHL)(X) X ⊕ SHL(X).

1X�Y A characteristic function which evaluates
to 1 if Xi ≤ Yi for all i.

X|Y The vector bitwise OR operation.
|X| The hamming weight of X.
L(X) The n− 1 most significant bits of X.

The usage of these operations in modern block ciphers is not new; the first one
dates back to 1987: the FEAL cipher [26]. The term ARX is more recent; it was
proposed in 2009 by Weinmann [30].

Many ARX block ciphers have been proposed since 2009. Some examples
are: LEA [17], the underlying permutation for the message authentication code
Chaskey [23], SPARX [12], Speck [4], and the underlying block cipher Threefish
of the hash function Skein [13].

ARX block ciphers are among the best performers in software. In a compar-
ison of software implementations of block ciphers for small processors [11], the
most efficient ones were ARX block ciphers. Furthermore, ARX block ciphers
are simple and easy to describe, which results in implementations with small
code size. As shown in [11], the implementations with the smallest code size
were achieved by ARX block ciphers.

In [18], it was shown that any function can be realized with modular ad-
ditions, rotations, XORs and a single constant. Furthermore, removing one of
these operations results in a dramatic loss of security. Without the modular ad-
dition, an XR block cipher is easily broken by describing each output bit and
solving the resulting system of linear equations modulo 2 (which can be done
efficiently). Without the rotation, it is also possible to break an AX block cipher
with low complexity [18]. Without the XOR, an AR block cipher needs a larger
number of rounds than an ARX block cipher for the same level of security [25].

2.3 Rotational-XOR Cryptanalysis

Rotational-XOR cryptanalysis is a recent technique to analyse ARX block ci-
phers. Ashur and Liu formalized it and applied it to Speck [1]. This technique
studies the propagation of rotational-XOR (RX) differences through the encryp-
tion function of ARX block ciphers. First, some notation is introduced.



Definitions and Notation. A pair of variables (X,X ′) has RX difference
(α, γ) if

X ⊕ (X ′≪ γ) = α.

To simplify the notation, the rotational offset γ will be fixed,
←−
X will denote

X ≪ γ and
−→
X will denote X ≫ γ. In this case, we will say that the RX

difference of a pair (X,X ′) is α if X ⊕
←−
X ′ = α.

If γ = 0, an RX difference is just an XOR-difference and if α = 0, the pair

(X,X ′) = (X,
−→
X ) is just a rotational pair. Therefore, rotational-XOR cryptanal-

ysis can be seen as a generalization of differential cryptanalysis and rotational
cryptanalysis.

In rotational-XOR cryptanalysis, the attacker can obtain the encryption of
plaintexts under a pair of keys (k, k∗) where the RX differences of the pairs of
round keys (ki, k

∗
i ) are known to the attacker.

The RX difference α of a plaintext pair (P, P ′) is called an input RX dif-
ference. The output RX difference is the RX difference β of its corresponding
ciphertext (C,C ′) = (Ek(P ), Ek∗(P )), where Ek denotes the encryption function
using key k. An RX characteristic is a sequence of intermediate RX differences
along with the input RX difference and RX output difference.

Rotational-XOR Attack. Rotational-XOR cryptanalysis is a distinguishing
attack that exploits input RX differences which produce output RX differences
with a probability higher than for a random permutation. To the best of our
knowledge, the only application of rotational-XOR cryptanalysis (as described
in [1]) is a distinguishing attack on Speck [1, 2].

In the rest of this section, the propagation of RX differences through the
ARX operations will be studied. The results about the propagation of RX dif-
ferences will be used in Sect. 3 to describe a method to search for optimal RX
characteristics.

Propagation of RX Differences. The propagation of RX differences through
rotation or XOR is deterministic. Table 2 contains the resulting RX differences
after rotation or XOR given two pairs (X,X ′) and (Y, Y ′) with RX differences
α and β respectively and a constant c.

Table 2. Propagation of RX differences through rotation and XOR

Pair RX difference

((X≫ c), (X ′≫ c)) (α≫ c, γ)
((X≪ c), (X ′≪ c)) (α≪ c, γ)
((X ⊕ Y ), (X ′ ⊕ Y ′)) (α⊕ β, γ)
((X ⊕ c), (X ′ ⊕ c)) (α⊕ c⊕ (c≪ γ), γ)



The propagation of RX differences through modular addition is not deter-
ministic, but its probability can be computed when the rotational offset γ is
fixed to 1 [1].

Theorem 1. Let X, Y and Z be n-bit words sampled uniformly at random over
the n-bit strings {0, 1}n and let (X,X ′), (Y, Y ′) and (Z,Z ′) be three pairs with
RX differences α, β and ζ respectively and with rotational offset γ = 1. Then,

P [(X � Y,X ′ � Y ′) = (Z,Z ′)]

= 1(I⊕SHL)(δα⊕δβ⊕δζ)⊕1�SHL((δα⊕δζ)|(δβ⊕δζ)) × 2−|SHL((δα⊕δζ)|(δβ⊕δζ))| × 2−3

+ 1(I⊕SHL)(δα⊕δβ⊕δζ)�SHL((δα⊕δζ)|(δβ⊕δζ)) × 2−|SHL((δα⊕δζ)|(δβ⊕δζ))| × 2−1.415

where δα = L(α), δβ = L(β) and δζ = L(ζ).

In the case that α = β = ζ = 0, Theorem 1 predicts the probability that the

rotational property is preserved after a modular addition P (
−−−−→
X � Y =

−→
X �

−→
Y ).

3 Automatic Search for Rotational-XOR Characteristics

Characteristics can be used to estimate the success probability of differential and
rotational-XOR cryptanalysis. The higher the probability of the characteristic,
the higher the success probability of the distinguishing attack (and the lower the
complexity of the corresponding key recovery attack).

Different automatic tools have been proposed to search for characteristics
of ARX systems [7, 14, 24]. The technique proposed by Mouha et al. [24] has
the advantage that it finds the optimal characteristics. In [24], it was applied to
search for differential characteristics of the ARX stream cipher Salsa20 [5]. An
improvement of this technique was considered in [27] to search for differential
characteristics of Speck and LEA. Recently, it was applied to search for RX
characteristics of Speck [2].

Basically, this technique consists of rewriting the search problem as a SAT
(Boolean Satisfiability) problem. A similar approach was taken in [14], but the
search problem was formulated as a Mixed-Integer Linear Program instead.

The rest of this section focuses on the SAT approach. First, the SAT problem
is introduced and then a SAT-based method for finding optimal rotational-XOR
characteristics is explained.

3.1 The Boolean Satisfiability Problem

A boolean formula is an expression which consists of boolean variables, which can
take the values TRUE or FALSE, and the logic operators AND, OR and NOT. A
boolean formula is satisfiable if there exists an assignment of the variables that
makes the formula TRUE. For example the boolean formula a AND (NOT b)
is satisfiable since the assignment (a, b) = (TRUE, FALSE) evaluates the entire
formula to TRUE.



The boolean satisfiability (SAT) problem is the problem of determining
whether a boolean formula is satisfiable. In general, the SAT problem is NP-
complete [9], which implies that no known algorithm solves SAT in polynomial
time (with respect to the number of variables). In other words, solving a SAT
problem is infeasible if the number of variables is high enough. In practice, SAT
solvers can handle instances with thousands (and sometimes even millions) of
variables [31].

A generalization of the SAT problem is the satisfiability modulo theories
(SMT) problem. Basically, SMT formulas can be expressed with richer languages
(theories) than boolean formulas. In particular, a formula in the bit-vector theory
can contain bit-vectors (a vector of boolean variables) and the usual operations
of bit-vectors such as bitwise operations (XOR, OR, AND, etc) arithmetic op-
erations (addition, multiplication, etc), cyclic operations and so on. A common
approach in SMT solvers [8, 15] is to translate the SMT instance to a SAT in-
stance and solve using a SAT solver.

3.2 A SAT-based Method for Searching Optimal Rotational-XOR
Characteristics

In [2], a SAT solver was used for finding optimal characteristics of the ARX
block cipher Speck. In this section, the method used in [2] will be explained in
detail. First, a similar notation to [24] is introduced.

A triplet of RX differences (α, β, ζ) is valid if α and β propagate to ζ after

a modular addition with non-zero probability, that is, P (α, β
�−→ ζ) 6= 0. Using

theorem 1, the triplet (α, β, ζ) is valid if and only if one of the following conditions
holds

(I ⊕ SHL)(δα ⊕ δβ ⊕ δζ)⊕ 1 � SHL((δα ⊕ δζ)|(δβ ⊕ δζ)) (1)

(I ⊕ SHL)(δα ⊕ δβ ⊕ δζ) � SHL((δα ⊕ δζ)|(δβ ⊕ δζ)). (2)

The weight ω of a valid triplet (α, β, ζ) is defined as

ω(α, β, ζ) = − log2(P (α, β
�−→ ζ)).

Using Theorem 1, the weight can be calculated as follows

ω(α, β, ζ) =

{
|SHL((δα ⊕ δζ)|(δβ ⊕ δζ))|+ 3, if (1) holds

|SHL((δα ⊕ δζ)|(δβ ⊕ δζ))|+ 1.415, if (2) holds
(3)

The weight W of an RX characteristic is defined as the sum of the weights of
each of its modular additions. As in [24], it is assumed that the probability of a
characteristic is the multiplication of the probabilities of each modular addition.
In this case, the probability of an RX characteristic p can be calculated as
p = 2−W .

The main idea of this technique is to use a SAT solver to determine whether
there exists an RX characteristic up to a certain weight W . If the SAT solver



obtains that this problem is satisfiable, a lower weight is chosen. Otherwise,
a higher weight is chosen. This is repeated until the minimal weight is found,
that is, a weight Ŵ such that there exists an RX characteristic up to weight
Ŵ but not up to weight Ŵ − ε, where ε is a value fixed from the start (usually
ε = 1 [2,24]).

Different strategies have been used to obtain the minimal weight. In [24], the
search starts with a low weight and it is incremented by one until a satisfiable
formula is found. In [20], the search starts with a high weight and it is decre-
mented by one until an unsatisfiable formula is found. In [2], a binary search
strategy is used to find the minimal weight.

SAT solvers not only determine whether a formula is satisfiable or unsat-
isfiable, but also obtain an assignment that makes the formula TRUE if it is
satisfiable. Therefore, the result of this method is a minimal weight Ŵ , an RX
characteristic with probability in the interval (Ŵ−ε, Ŵ ] and the knowledge that

there is no RX characteristic with probability lower that Ŵ − ε.
Since the RX differences of the round keys are necessary to propagate the RX

differences through the encryption function, a pair of characteristics is actually
considered: one for the key-schedule and one for the encryption. The RX dif-
ferences predicted by the key-schedule characteristic are used in the encryption
characteristic for the RX differences of the round keys. Similar to [2], the weight
related to the encryption characteristic is minimized first, and then the weight
related to the key-schedule characteristic is minimized.

An important step of this technique is the formulation of the decision prob-
lem of whether there exists a pair of RX characteristic up to a certain pair of
weights as an SMT problem. The operations of an ARX cipher are performed on
n-bit vectors, whereas the formula of a SAT problem can only contains boolean
variables and the operations AND, NOT and OR. Therefore, an SMT problem
in the bit-vector theory, which supports bit-vectors variables and the usual op-
erations of bit-vectors, is used instead. Once the SMT problem is written, an
SMT solver translates it into a SAT problem and solves it using a SAT solver.
An example of an SMT solver is STP [15]. STP is built from a SAT solver and
was used in [2, 24].

The SMT problem is written as follows:

– For every pair of n-bit input words of the key schedule and the encryption,
an n-bit vector is used to represent the RX difference of such pair.

– Additional n-bit vectors are used to represent the RX difference after the
addition, XOR and rotation operation when required.

– For every XOR and every bit rotation of the ARX block cipher, Table 2 is
used to propagate properly the RX differences.

– For every modular addition of the ARX block cipher, (1) and (2) are used
to ensure that the RX differences are propagated with non-zero probability
and (3) is used to calculate the weight of the modular addition.

– Finally, two constraints are used to ensure that the sum of the weights related
to the modular additions of the key schedule (encryption) is at most WK

(WE).



4 The ArxPy Tool

ArxPy is a tool for finding optimal rotational-XOR characteristics of ARX
block ciphers. Basically, ArxPy takes a Python implementation of an ARX
block cipher as input and applies the SAT-based method described in Sect. 3.2.
ArxPy is a generalization of [2] for finding optimal RX characteristics in Speck.

To the best of our knowledge all automated tools [2, 21, 28, 29] searching for
characteristics with high probability are implemented specifically for a particular
cipher or for a small set. In order to use such tools with an arbitrary cipher, a
significant effort is required.

Given a Python implementation of an ARX block cipher, ArxPy is exe-
cuted with a simple shell command. Therefore, the only effort to use ArxPy
is implementing the ARX block cipher in Python, which is negligible due to
the low development time and code complexity of the Python programming lan-
guage. On top of that, ArxPy is open source and has a modular architecture.
Therefore, it can be easily adapted for specific needs.

ArxPy expects a certain structure in the Python implementation of an ARX
block cipher. The first part of this section will explain this structure. Then, the
shell command to run ArxPy and the implementation will be described.

4.1 Structure of Python Implementations of ARX Block Ciphers

A Python implementation of an ARX block cipher following the structure re-
quired by ArxPy will be called an ARX implementation. Any iterated ARX
block cipher can be considered, as long as all its operations are performed on
words of the same size.

A minimal ARX implementation contains a global variable, wordsize, and
two functions, key schedule and encryption. The global variable wordsize

contains the word size (in bits) of the ARX block cipher.
The function key schedule implements the key scheduling algorithm of the

ARX block cipher. This function has m arguments representing the m words of
the key. It has no return value; the round keys are stored into the list-like object
round keys.

The function encryption implements the encryption algorithm of the ARX
block cipher. The arguments of this function represent the words of the plaintext.
The output of each round is stored in the list-like object rounds, except the last
one, that is used as the return value. This function can obtain the round keys
from the list-like object round keys.

In order to implement the encryption and the key schedule, the Python oper-
ators +, >>, << and ^ are used as the modular addition, right and left rotation and
XOR, respectively. Augmented assignments , such as += or ^=, are not allowed.

Apart from the variable wordsize and the functions key schedule and
encryption, additional variables and functions can be defined to improve the
readability and the modularity of the implementation. Figure 1 contains an ARX
implementation of Speck with 32-bit block size (Speck32).

There are several considerations about the objects rounds and round keys:



wordsize = 16

number_of_rounds = 22

alpha = 7

beta = 2

# round function

def f(x, y, k):

x = ((x >> alpha) + y) ^ k

y = (y << beta) ^ x

return x, y

def key_schedule(l2, l1, l0, k0):

l = [None for i in range(number_of_rounds + 3)]

round_keys[0] = k0

l[0:3] = [l0, l1, l2]

for i in range(number_of_rounds - 1):

l[i+3], round_keys[i+1] = f(l[i], round_keys[i], i)

def encryption(x0, y0):

rounds[0] = f(x0, y0, round_keys[0])

for i in range(1, number_of_rounds):

x, y = rounds[i - 1]

round_output = f(x, y, round_keys[i])

if i < number_of_rounds - 1:

rounds[i] = round_output

else:

return round_output

Fig. 1. An ARX implementation of Speck32. The total length of the required code is
23 lines.

– They are not created or declared in the ARX implementation. They are
created by the parser of ArxPy.

– They only support the operator [] to access their elements (slices and neg-
ative indices are not supported).

– They can store either single values or lists of values, but each position can
only be assigned once. Furthermore, storing a list of values must be done
with one assignment and not element-wise.

Apart from the functions encryption and key schedule, an ARX implemen-
tation contains two more special functions: the function test and the function
fix differences.



def test():

key = (0x1918, 0x1110, 0x0908, 0x0100)

plaintext = (0x6574, 0x694c)

ciphertext = (0xa868, 0x42f2)

key_schedule(*key)

assert ciphertext == encryption(*plaintext)

def fix_differences():

for i in range(number_of_rounds):

round_keys.fix_difference(i, 0)

Fig. 2. A test function and a fix differences function for Speck32

Test vectors can be added to an ARX implementation by using the Python
statement assert inside the function test. On the other hand, it is possible
to fix the RX differences of the round keys and the outputs of each round by
using the method fix difference of round keys and rounds inside the function
fix differences. Figure 2 shows an example of these functions for Speck32,
where the RX differences of the round keys are fixed to 0.

4.2 Running The Program

ArxPy uses the Python library SymPy [22] and the SMT solver STP. They,
together with Python3, must be installed in order to execute ArxPy.

The shell command to run ArxPy is the following:

python3 arxpy.py <ARX_implementation> <output>

where <ARX_implementation> is the name of the file containing an ARX im-
plementation and <output> is the name of the file where the output will be
written.

To find an optimal RX characteristic, ArxPy searches for characteristics
up to many weights. During an execution of ArxPy, these intermediate char-
acteristics are written to the output file. After the execution finishes, the last
characteristic in the output file is the optimal one.

ArxPy actually searches for a pair of characteristics: the encryption char-
acteristic, which contains the RX differences of the output of each round, and
the key schedule characteristic, which contains the RX differences of the round
keys. When a pair of characteristics is found by ArxPy, their RX differences
are printed in the output file, along with information about their probabilities.

4.3 Implementation

ArxPy have been implemented in three modules: the ARX block cipher parser,
the SMT writer and the characteristic finder. The parser module has been written



from scratch and the other two modules are based on the tool proposed in [2].
This section explains briefly these three modules.

The parser module takes an ARX implementation and generates symbolic
expressions of the output values of each round and the round keys. This is
done by modifying the source code of the ARX implementation dynamically
and executing the functions key schedule and encryption symbolically. The
Abstract Syntax Tree (AST) of the ARX implementation is used to modify
the source code dynamically, whereas SymPy, a Python library for symbolic
mathematics, is used to generate and handle the symbolic expressions.

The writer module takes the symbolic expressions generated by the parser
module and writes the SMT problem. The SMT problem is written in the SMT-
LIB v2 [3] language, an input format supported by many SMT solvers such as
STP, the SMT solver used by ArxPy. This is done by extracting the sequence
of ARX operations of the encryption and the key schedule and translating these
operations to equations according to the steps described in Sect. 3.2. The se-
quence of operations is obtained from the symbolic expressions by traversing
them as trees and extracting their nodes with the methods provided by Sympy.

The finder module implements the search strategy to find the optimal RX
characteristic. A binary search strategy, based on [2], is used to minimize the
weight of the characteristic.

5 Conclusion

Recently, several ARX block ciphers have been proposed, along with cryptan-
alytic techniques to analyse their security. The ArxPy tool was developed to
provide a way to speed up and make easier the security evaluation of these
ciphers.

This tool automatizes the search for optimal RX characteristics in ARX block
ciphers. Given a Python implementation of an ARX block cipher, ArxPy finds
an optimal RX characteristic with a simple shell command. Therefore, ArxPy
can be used with any ARX block cipher with minimal effort.

On top of that, ArxPy can be easily adapted thanks to its modular ar-
chitecture. For example, another SMT solver which supports the SMT-LIB v2
language can be used instead of STP just by modifying a few lines of code. As
another example, a different search strategy can be considered by modifying only
the characteristic finder module.

The generation of SMT problems from an ARX implementation is done in
a few seconds. However, a high-end computer is required to solve the SMT
problems in a reasonable time.

5.1 Future Work

There are several ideas to continue this work. One option could be to adapt
ArxPy for other cryptanalytic techniques. Furthermore, ArxPy could be ex-
tended to accept software implementations in other languages. Since many au-



thors of ARX block ciphers [4,12,17] draw a diagram to illustrate their ciphers,
another possibility would be to use a data flow diagram as input.

Another option could be to improve ArxPy by finding all the characteristics
that share the input RX difference and the output RX difference of the optimal
characteristic. This can be done with a SAT solver, as shown in [20], and the
sum of the probabilities of all these characteristics provides a better estimation
on the success probability.
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