
1

Security of Multi-Adjustable Join Schemes:
Separations and Implications

Mojtaba Rafiee, Shahram Khazaei

Abstract—Database management systems (DBMS) are one of cloud services with great interests in industry and business. In such
services, since there is no trust in the cloud servers, the databases are encrypted prior to outsourcing. One of the most challenging
issues in designing these services is supporting SQL join queries on the encrypted database. The multi-adjustable join scheme (M-
Adjoin) [Khazaei-Rafiee 2019], an extension of Adjoin [Popa-Zeldovich 2012 and Mironov-Segev-Shahaf 2017], is a symmetric-key
primitive that supports the join queries for a list of column labels on an encrypted database. In previous works, the following security
notions were introduced for Adjoin and M-Adjoin schemes: 3Partition, M3Partition and M3Pk, for every integer k. Additionally,
simulation-based and indistinguishability-based security notions have been defined by Mironov et al. for Adjoin scheme. In this paper, we
extend their results to M-Adjoin and study the relations between all security notions for M-Adjoin. Some non-trivial relations are proved
which resolve some open problems raised by Mironov et al. [1].

Index Terms—Simulation, Indistinguishability, Transitivity, Intermediate, Separation, Implication.

F

1 INTRODUCTION

DATABASE management systems (DBMS) are one of the
most applicable cloud services in industry and busi-

ness. In such services, since there is no trust in the external
servers, the databases are encrypted prior to outsourcing.
CryptDB, designed by Popa et al. [2], [3], [4], [5], is one of
the popular database management systems that supports a
wide range of SQL queries, such as selections, projections,
joins, aggregates, and orderings, on the encrypted database.

One of the challenges in designing such services is
to support SQL join queries on the encrypted database.
Several research, such as [1], [5], [6], [7], [8], studied and
provided solutions for the secure join queries on the en-
crypted database with various trade-offs between security
and efficiency. In the simplest case, the scenario model for
this functionality includes two parties: a client (or data
owner) and a server (or cloud service provider). The client
first locally encrypts his database, and then outsources it to
the server. A database includes several tables, and each table
contains several data records that they are vertically parti-
tioned into columns. After outsourcing encrypted database
to the server, the client can issue the join queries for his
desired tables at any time. A join query is formulated as a list
of column labels. At the end, the server runs the requested
join query on the encrypted database and returns the result
to the client.

The adjustable join scheme (Adjoin), first proposed by
Popa and Zeldovich [5], is a symmetric-key primitive that
supports the secure join queries for a pair of column labels
on an encrypted database. The security notion introduced
in [5], considers an experiment in which an adversary may
adaptively define two disjoint sets of columns, which we
refer to as a left set L and a right set R. The adversary is
given the ability to compute joins inside L and joins inside
R, but it should not be able to compute the join between
any column in L and any column in R.

Mironov et al. [1] argued that the proposed security
notion in [5] does not capture transitivity leakage, and hence it

is far from the expected security for adjustable join schemes.
An adjustable join scheme suffers from the transitive leak-
age, if for any three column labels li , lj and lk, the join
tokens for computing the joins between li and lk and be-
tween lk and lj , allow to compute the join between li and lj
without having queried the required tokens. They proposed
a strong and intuitive security notion, called 3Partition,
for the adjustable join schemes, and argued that it in-
deed captures the security of such schemes (i.e., no tran-
sitive leakage). Also, they introduced natural simulation-
based and indistinguishability-based notions that capture
the minimal leakage of such schemes, and proved that the
3Partition notion is positioned between their adaptive
and non-adaptive variants with respect to some natural min-
imal leakage. The minimal leakage [1] reveals some accepted
information such as the database dimensions (i.e., the total
number of columns and the length of each column), the
search pattern (i.e., the repetition of columns in different
queries), the result pattern (i.e., the positions in which all
columns of a join query contain identical elements) as well
as the duplication pattern (i.e., the positions in each column
with identical contents for every column in the database).

Recently, Khazaei and Rafiee [9] extended the notion
of adjustable join schemes to the multi-adjustable join
(M-Adjoin) schemes, where the join queries are formulated
as a list of column labels instead of a pair of column
labels. They argued that the proposed security notion in [1]
does not capture the intermediate leakage, and therefore it
is far from the expected security for multi-adjustable join
schemes. We say that an adjustable join scheme suffers
from the intermediate leakage, if the join token for a list of
column labels allows to join a sub-list of column labels. To
model the security of M-Adjoin schemes that do not allow
the intermediate leakage, [9] proposed a family {M3Pk}k∈N

of security notions, where an increase in parameter k re-
duces the intermediate leakage level. This family of security
notions covers a hierarchical sequence of security notions

2

between 3Partition and M3Partition. More precisely,
M3P1 is exactly the 3Partition security, M3Pk positions
between M3Pk−1 and M3Pk+1 but bellow M3Partition.

Additionally, M3Partition can be viewed as M3Pk when
k goes to infinity. Tables 1, 2, and 3 show a simplified
description of the transitive and intermediate leakages.

Let A and B be two tables. A ▷◁ B denotes the join between tables A and B based on columns with the same labels. For
simplicity, we have shown a selection of the join result as the output of the operator ▷◁ on the tables A and B.

TABLE 1: A simplified product database with tables on Orders, Customers and Shippers.

(a) Customers table.
CustID CustName PostalCode PrefShipID

1 Maison Dewey B-1180 100
2 Que Delícia 02389-673 200
3 Vaffeljernet 8200 300
4 Wilman Kala 21240 200

(b) Orders table.
OrdID CustID Date ShipID

10 1 1996-07-04 100
20 2 1996-07-23 200
30 3 1996-08-14 200
40 4 1996-09-13 100

(c) Shippers table.

ShipID ShipName Phone
100 Speedy Express (503) 555-9831
200 United Package (503) 555-3199
300 Federal Shipping (503) 555-9931

TABLE 2: Transitivity leakages for join queries (Customers ▷◁ Orders) and (Orders ▷◁ Shippers) using Adjoin scheme
proposed by Popa and Zeldovich [5].

Expected result

(a) Customers ▷◁ Orders
CustID CustName OrdID Date

1 Maison Dewey 10 1996-07-04
2 Que Delícia 20 1996-07-23

(b) Orders ▷◁ Shippers
OrdID Date ShipID ShipName

10 1996-07-04 100 Speedy Express
20 1996-07-23 200 United Package
30 1996-08-14 200 United Package
40 1996-09-13 100 Speedy Express

Transitive leakage

(c) Customers ▷◁ Shippers
CustID CustName PrefShipID ShipName

1 Maison Dewey 100 Speedy Express
2 Que Delícia 200 United Package
3 Vaffeljernet 300 Federal Shipping
4 Wilman Kala 200 United Package

TABLE 3: Intermediate leakages for join query (Customers ▷◁ Orders ▷◁ Shippers) using Adjoin scheme proposed by
Mironov et al. [1].

Expected result

(a) Customers ▷◁ Orders ▷◁ Shippers
CustName OrdID Date ShipName

Maison Dewey 10 1996-07-04 Speedy Express
Que Delícia 20 1996-07-23 United Package

Intermediate leakages

(b) Customers ▷◁ Orders
CustID CustName OrdID Date

1 Maison Dewey 10 1996-07-04
2 Que Delícia 20 1996-07-23

(c) Orders ▷◁ Shippers
OrdID CustID ShipID ShipName

10 1 100 Speedy Express
20 2 200 United Package
30 3 200 United Package
40 4 100 Speedy Express

In this paper, we extend the natural simulation-based
and indistinguishability-based security notions for Adjoin to
M-Adjoin. Additionally, we introduce a leakage function to
model the information leaked by the M3Pk security notion.
Then, we study the relations between different security
notions. In this regard, we resolve some open problems
raised by Mironov et al. [1].

It is valuable to know that although the M-Adjoin
scheme is motivated by the secure join queries on the
encrypted database, it is a general and independent cryp-
tographic primitive, and can be used by a variety of real
world applications. For example, the M-Adjoin scheme sup-
ports all of the applications presented in [1] for the Adjoin
scheme, such as: Boolean searchable symmetric encryption
(BSSE) [10], private set intersection in the cloud scenarios
(PSI) [11], privacy preserving data mining [12], and dis-
tributed storage systems [7] with higher performance and
security levels.

1.1 Contributions
In this paper, we first introduce natural simulation-based
and indistinguishability-based notions for the adaptive and
non-adaptive variants with respect to the minimal leakage
function mentioned earlier and a new leakage function that
we refer to as the k-monotonous leakage. We then show
that the family {M3Pk}k∈N of security notions is stronger
than the non-adaptive variant and weaker than the adaptive
variant.
The k-monotonous leakage function. In addition to the
minimal leakage, we introduce the notion of k-monotonous
leakage functions for the M-Adjoin schemes. These leak-
age functions model the information that is reveled when
a database is outsourced and later queried. Recall that
the minimal leakage function reveals some standard and
accepted information that was mentioned earlier. The k-
monotonous leakage function, in addition to the minimal
leakage set, reveals information about the monotonicity pat-
tern. The monotonicity pattern is parameterized by a pos-

3

M-Adjoin security notions

Indistinguishability-based security

Non-adaptive IND Semi-adaptive IND
(
{M3Pk}k∈N

)

3Partition (M3P1) M3Partition (M3P∞)

Adaptive IND

Simulation-based security

Non-adaptive SIM Adaptive SIM

Fig. 1: The security notions of the multi-adjustable join schemes.

itive integer k, and indicates the positions that have the
same elements, for each k-column subset of a join query.
See Section 3 for details.
Natural simulation-based and indistinguishability-based
notions. We introduce natural simulation-based and
indistinguishability-based notions for the adaptive and non-
adaptive variants with respect to the above mentioned leak-
ages. Figure 1 shows all of the M-Adjoin security notions
that we study in this paper. See Sections 2.4, 4 and 5 for
more details on each security notion.
Separations and implications. We determine almost all
relations between different security notions. The obtained
results are summarized in Figures 2 and 3. The relation
"A =⇒ B" indicates that the security notion A implies
the security notion B. The relation "A ≠⇒ B" stands for
a separation between the security notions A and B. That
is, the security notion A does not necessarily imply the
security notion B. See Section 4 and 5 for more details on
our separations and implications results. We remark that
the following relations remained unanswered in [1]:
(Adaptive IND

?
=⇒ Adaptive SIM): We show that these

notions are separated.
(Non− adaptive IND

?
=⇒ 3Partition): We show the

stronger result that non-adaptive IND and M3Partition
are separated.
(3Partition ?

=⇒ Adaptive IND): This case also remains
open in this paper. In particular, it remains open if
M3Partition implies adaptive IND with minimal leakage,
or M3Pk implies adaptive IND with k-monotonous leakage.

1.2 Paper organization
The rest of this paper is organized as follows. In Sec-
tion 2, we present notations and definitions that are used
throughout this paper. We also recall the formal definition
of M-Adjoin and the M3Partition and M3Pk security
notions. We describe the M-Adjoin leakage functions in
Section 3. The indistinguishability-based and simulation-
based security notions of multi-adjustable join schemes are
proposed in Sections 4 and 5, respectively. Our new results
are presented in Sections 4.3, 5.3 and 6. Finally, Section 7
concludes the paper.

2 PRELIMINARIES

In this section, we present the required background. For
further discussion, the reader may refer to [1], [9].

Adaptive SIM Adaptive IND

M3Partition

Non-adaptive SIM Non-adaptive IND

Proposition 19

\

Proposition 20 Proposition
14

\?

Proposition
11

Proposition 17

\

Proposition 18

\

Proposition
12

Fig. 2: Relations between different security notions for min-
imal leakage.

Adaptive SIM Adaptive IND

M3Partition M3Pk M3Pk−1

Non-adaptive SIM Non-adaptive IND

Proposition 19

Proposition
13

\

Proposition 20

Proposition 3 (a)

\

Proposition 4 (b)

\?

Proposition
10

Proposition 3 (b)

\

Proposition 4 (a)

Proposition 17

\

Proposition 18

\Proposition 12

Fig. 3: Relations between different security notions for k-
monotonous leakage.

2.1 Notation
Throughout the paper, we use [m] to denote the set
{1, . . . ,m}, where m is a positive integer. The security
parameter is denoted by λ. Assuming that A is a (possibly)

4

probabilistic algorithm, y ← A(x) means that y is the output
of A on input x. When A is a finite set, x ← A stands
for uniformly selecting an element x from A. We say that
a function is negligible, if it is smaller than the inverse of
any polynomial in λ for sufficiently large values of λ. As a
convention, we denote the output of a defined experiment
by the experiment name itself.

2.2 Computational indistinguishability
Let Xλ, Yλ be distributions over {0, 1}l(λ) for some poly-
nomial l(λ). We say that the families {Xλ} and {Yλ} are
computationally indistinguishable, and write Xλ ≈ Yλ, if
for all probabilistic polynomial-time (PPT) distinguisher D,
there exists a negligible function ε such that

|Pr[t← Xλ : D(t) = 1]− [t← Yλ : D(t) = 1] ≤ ε(λ).

2.3 M-Adjoin scheme
A multi-adjustable join scheme (M-Adjoin), first introduced
in [9] as an extension of Adjoin [1], [5], is a symmetric-key
primitive that enables a user to generate an encoding of any
word relative to any column label, and to generate a tuple
of tokens to compute the join of any list of given columns.

M-Adjoin schemes are used as follows. A user wishing to
outsource his database to a server, first generates a secret key
K and public parameters Param using a key generation
algorithm denoted by Gen. Then, the user computes an
encoded-word w̃ for every word w relative to any database
column label l using an encoding algorithm denoted by
Encod and sends them along with the public parameters
Param to the server. Later, when the user wants to send
a join query q = (l1, · · · , lm) to the server, he computes
a list of adjustment tokens (at1, · · · , atm) using a token
generation algorithm denoted by Token. Upon receiving
adjustment tokens (at1, · · · , atm), the server computes an
adjusted word aw for every encoded-word relative to ev-
ery column label in the join query using an adjustment
algorithm denoted by Adjust. Finally, the server computes
the result set from the adjusted words using an evaluation
algorithm denoted by Eval, and sends them to the user.

Definition 1 (M-Adjoin syntax [9]). A multi-adjustable join
scheme is a collection of five polynomial-time algorithms Π =
(Gen,Encod,Token,Adjust,Eval) such that:

• (Param,K) ← Gen(1λ): is a probabilistic key genera-
tion algorithm that takes as input a security parameter
λ, and returns a secret key K and public parameters
Param.

• w̃ ← EncodK(w, l): is a deterministic encoding algo-
rithm that takes as input a secret key K , a word w and a
column label l, and outputs an encoded-word w̃.

• (at1, · · · , atm) ← TokenK(l1, · · · , lm): is a probabilis-
tic token generation algorithm that takes as input a secret
key K and a list of distinct column labels (l1, · · · , lm),
and returns a tuple (at1, · · · , atm) of adjustment tokens.

• aw ← AdjustParam(w̃, at): is a deterministic algorithm
that takes as input the public parameters Param, an
encoded-word w̃ and an adjustment token at, and outputs
an adjusted word aw.

• b← EvalParam(aw1, · · · , awm): is a deterministic eval-
uation algorithm that takes as input the public parameters

Param and a list of adjusted words aw1, · · · , awm, and
outputs a bit b.

Correctness. The M-Adjoin correctness intuitively guar-
antees that no PPT adversary can find a list of column
labels (l1, · · · , lm) ∈ ({0, 1}λ)m and a list of words
(w1, · · · , wm) ∈ ({0, 1}λ)m such that wi ̸= wj for some
distinct i, j ∈ [m] and Eval algorithm returns 1 as its output,
except with a negligible probability.

2.4 {M3Pk}k∈N∪{∞} family of security notions
In this subsection, we review the family {M3Pk}k∈N∪{∞}
of security notions proposed in [9] for M-Adjoin. The
3Partition security notion introduced for Adjoin in [1]
and M3Partition security notion introduced in [9] for
M-Adjoin can be considered as special cases of M3Pk (see
Proposition 3). The M3Pk security notion considers an adver-
sary that defines three disjoint groups of columns, denoted
by L (left), M (middle) and R (right). It can then adap-
tively receive encoded-word of every selected word relative
to any chosen column label. The adversary can also obtain
the join tokens related to allowed queries, adaptively. For
every integer k, a query q = (l1, · · · , lm) is allowed if it is
of one of the following three types:

T1) (l1, · · · , lm) ∈ L ∪ M or,
T2) (l1, · · · , lm) ∈M ∪ R or,
T3) l1, · · · , lm ∈ L ∪M ∪R, {l1, · · · , lm}∩M ̸= ∅
and m ≤ k + 1.

This security notion requires that such an adversary
should not be able to compute the join of any list of
column labels (l1, · · · , lm) such that l1, · · · , lm ∈ L ∪ R,
{l1, · · · , lm} ∩ L ̸= ∅ and {l1, · · · , lm} ∩ R ̸= ∅. This
is modeled by enabling the adversary to output a pair of
challenge words w∗

0 , w
∗
1 , and providing the adversary either

with the encodings of w∗
0 for all columns in R or with

the encodings of w∗
1 for all columns in R. The adversary

must be unable to distinguish these two cases with a non-
negligible advantage, as long as the adversary did not
explicitly ask for an encoding of w∗

0 or w∗
1 relative to some

column label in M ∪ R. Here is the formal definition.

Definition 2 (M3Pk security [9]). Let k ∈ N ∪ {∞}.
An M-Adjoin scheme such as Π = (Gen,Encod,Token,
Adjust,Eval) is M3Pk-secure if for all PPT algorithms A, there
exists a negligible function ε such that

Adv
M3Pk
Π,A (λ) = |Pr[ExpM3Pk

Π,A (λ, 0) = 1]−Pr[Exp
M3Pk
Π,A (λ, 1) = 1]| ≤ ε(λ),

where for each b ∈ {0, 1}, the experiment ExpM3Pk
Π,A (λ, b) is

defined as follows:

1) Setup phase: The challenger Chal samples
(Param,K) ← Gen(1λ), and initialize
L = M = R = ∅. The public parameters Param are
given as input to the adversary A.

2) Pre-challenge query phase: The adversary A may
adaptively issue Addlbl, Encod and Token queries,
which are defined as follows:

a) Addlbl(l,X): adds the column label l to the
group X , where X ∈ {L ,M ,R}. The adver-
sary A is not allowed to add a column label into

5

more than one set (i.e., the groups L ,M and R
must always be pairwise disjoint).

b) Encod(w, l): computes and returns an encoded-
word w̃ ← EncodK(w, l) to the adversary A,
where l ∈ L ∪ M ∪ R.

c) Token(l1, · · · , lm): computes and returns a list
(at1, · · · , atm) ← TokenK(l1, · · · , lm) of ad-
justment tokens to the adversary A, where

• l1, · · · , lm ∈ L ∪ M ,
• or l1, · · · , lm ∈M ∪ R,
• or l1, · · · , lm ∈ L ∪ M ∪ R,
{l1, · · · , lm}∩ M ̸= ∅ and m ≤ k + 1.

3) Challenge phase: The adversary A chooses a pair of
challenge words w∗

0 and w∗
1 subject to the constraint that

the adversary A did not previously issue a query of the
form Encod(w, l) where w ∈ {w∗

0 , w
∗
1} and l ∈M∪R.

As a response, the adversary A obtains an encoded-word
w̃∗ ← EncodK(w∗

b , l) for every l ∈ R.
4) Post-challenge query phase: As in the pre-challenge

query phase, with the restriction that the adversary A is
not allowed to issue a query of the form EncodK(w, l),
where w ∈ {w∗

0 , w
∗
1} and l ∈ M ∪ R. In addition,

for each Addlbl(l,R) query, the adversary A is also
provided with w̃ ← EncodK(w∗

b , l).
5) Output phase: The adversary A outputs a value σ ∈
{0, 1} which is defined as the output of the experiment.

The M3Partition security is defined similar to the
M3Pk security except that the condition m ≤ k + 1 in items
T3 and 2(c) are ignored. Equivalently, it can be consider
as the case k = ∞. Additionally, if k = 1, then the
conditions l1, · · · , lm ∈ L ∪M ∪R, {l1, · · · , lm}∩M ̸= ∅
and m ≤ k + 1 in items T3 and 2(c) are redundant, and
by eliminating them, the 3Partition security notion is
defined. In the following, we review the relations presented
in [1] for the family {M3Pk}k∈N∪{∞} of security notions.

Proposition 3 (Trivial implications [9, Corollary 8]). Let k be
an integer. Then,

(a) (M3Partition =⇒ M3Pk) Any M3Partition-
secure M-Adjoin scheme is M3Pk-secure, too.

(b) (M3Pk+1 =⇒ M3Pk) Any M3Pk+1-secure M-Adjoin
scheme is M3Pk-secure, too.

(c) (Limit cases) M3P1 ≡ 3Partition and M3P∞ ≡
M3Partition.

Proposition 4 (Separations [9, Proposition 10]). Let k be an
integer. Then,

(a) (M3Pk ≠⇒ M3Pk+1) An M3Pk-secure M-Adjoin
scheme is not necessarily M3Pk+1-secure.

(b) (M3Pk ≠⇒ M3Partition) An M3Pk-secure
M-Adjoin scheme is not necessarily M3Partition-
secure.

3 M-ADJOIN LEAKAGE FUNCTIONS

The indistinguishability-based and simulation-based secu-
rity notions are parameterized with respect to an auxil-
iary deterministic polynomial-times function Leak, called
the leakage function [13]. The leakage function models the

information that is reveled when a database is outsourced
and later queried.

A typical leakage function, studied in the literature, is
the minimal leakage function. Since M-Adjoin schemes are an
extension of Adjoin schemes, we adapt the minimal leakage
function of Adjoin schemes [1] for M-Adjoin schemes. This
leakage function includes information about the database
dimensions (i.e., the total number of columns and the length
of each column), the search pattern (i.e., the repetition of
columns in different queries), the result pattern (i.e., the
positions in which all columns of a join query contain
identical elements) as well as the duplication pattern (i.e.,
the positions in each column with identical contents for
every column in the database).

We also consider another leakage function called the k-
monotonous leakage function. This leakage, in addition to the
minimal leakage set, includes the monotonicity pattern. The
monotonicity pattern is parameterized by a positive integer
k, and indicates the positions that have the same elements,
for each (k + 1)-column subset of a join query. Intuitively,
the k-monotonous leakage function models the information
that the family {M3Pk}k∈N of security notions allows to be
revealed.

In the following, we first present some notations, and
then formalize the above mentioned leakage functions.
Database and join query. A database DB =

(
(ℓi, Ci)

)
i∈[n]

is a list of label/column pairs, where n is the number of
columns, L = (ℓi)i∈[n] is a list of distinct column labels
with ℓi ∈ {0, 1}λ, and Ci = (wi

1, · · · , wi
ni
) ∈

(
{0, 1}λ

)ni is
the column with label ℓi. It is assumed that the total size
of the database, i.e., N = n +

∑
i∈[n] ni, is polynomial in

the security parameter λ. A join query is essentially a list
q = (l1, · · · , lm) ∈ Lm of column labels, for some integer
m ≥ 2.
Equality pattern and index pattern. We define the equality
pattern and index pattern of a join query q = (ℓi1 , · · · , ℓim),
respectively, as follows

EQ(q) = EQ(ℓi1 , · · · , ℓim) =
(
(k1, · · · , km) | wi1

k1
= · · · = wim

km

)
,

and
I(q) = (i1, . . . , im) .

Also, for a tuple x = (i1, . . . , im), we let I−1(x) =
(
q :

I(q) = x
)
.

Below, we formally define the minimal and k-
monotonous leakage functions, where k is an integer pa-
rameter.

Definition 5 (leakage functions). For a database DB =(
(ℓi, Ci)

)
i∈[n]

, a list of join queriesQ and an integer k, we define
the minimal leakage and the k-monotonous leakage function,
respectively, as follows:

(SP,DIM,DP,RP)← MinLeak(DB,Q) ,

(SP,DIM,DP,RP,MPk)← MonLeakk(DB,Q) ,

where the leakage profile includes:

• Search pattern. SP = I =
(
I(q)

)
q∈Q is the search

pattern that specifies the repetition of columns in different
queries,

6

• Dimension. DIM = (|Ci|)i∈[n] is the database dimen-
sions that determines the total number of columns and the
length of each column,

• Duplication pattern. DP =
(
EQ

(
I−1(i, i)

))
i∈[n]

is

the duplication pattern that specifies the positions in each
column with identical contents for every column in the
database,

• Result pattern. RP =
(
EQ(I−1(x))

)
x∈I is the result

pattern that shows the positions in which all columns of a
join query contain identical elements,

• Monotonicity pattern. MPk =
(
EQ(I−1(x′))

)
x′∈Ik

is
the monotonicity pattern, where Ik includes every subset
of size k + 1 of every indexed query; that is, Ik = (y :
y ⊆ x, |y| = k + 1, x ∈ I).

Remark 6 (Label-hiding v.s. label-leaking profile). Our leak-
age functions do not reveal the column labels. One may also con-
sider a label-leaking variant of the above leakage functions where
the label set L is also included in the leakage profile. Hiding labels,
however, is not a big burden in practice since it can be handled
using standard techniques; e.g., see [1, Section 4.4]. Nevertheless,
as we will see in Section 5 (Proposition 18), the label-hiding
property is crucial for proving separation between non-adaptive
simulation-based security and non-adaptive indistinguishability-
based security definitions.

4 INDISTINGUISHABILITY-BASED SECURITY NO-
TIONS

Mironov et al. [1] proposed two indistinguishability-based
security notions for Adjoin schemes, a non-adaptive variant
and an adaptive variant. In this section, we propose similar
definitions for M-Adjoin schemes. First, we introduce the
following notation.
Extended algorithms of the M-Adjoin scheme. In this pa-
per, based on the real applications of M-Adjoin schemes, as
well as its security notions, we consider extensions of some
algorithms of M-Adjoin scheme. To this end, we extend
the Token algorithm such that it outputs TokenK(Q) =(
TokenK(q)

)
q∈Q on a list Q of queries. Similarly, we

extend the encoding algorithm to take a column C =
(w1, · · · , wt) and a label l, and compute an encoded col-
umn C̃ ← EncodK(C, l) where C̃ = (w̃1, · · · , w̃t) and
w̃i ← EncodK(wi, l), for i = 1, · · · , t. Finally, we allow
the encoding algorithm to take a key K and a database
DB =

(
(ℓi, Ci)

)
i∈[n]

and output an encoded database

D̃B ← EncodK(DB) where D̃B =
(
(i, C̃i)

)
i∈[n]

and C̃i =

EncodK(Ci, ℓi).

4.1 Non-adaptive IND security

The non-adaptive indistinguishability-based security notion
is one of the simplest and most natural security notions.
This notion considers an adversary that receives the public
parameters of an M-Adjoin scheme. It then chooses a pair
of challenge databases DB0,DB1, and a challenge query
list Q such that Leak(DB0,Q) = Leak(DB1,Q). Such an
adversary is called a valid adversary. This security no-
tion requires that such an adversary should not be able
to distinguish between

(
EncodK(DB0),TokenK(Q)

)
and

(
EncodK(DB1),TokenK(Q)

)
with a non-negligible advan-

tage. The formal definition is as follows.

Definition 7 (Non-adaptive IND security). An M-Adjoin
scheme such as Π = (Gen,Encod,Token,Adjust,Eval) is called
non-adaptively indistinguishable-based secure with respect to the
leakage function Leak (abbreviated Leak-naIND-secure) if for all
PPT valid adversary A, there exists a negligible function ε such
that

AdvnaIND
Π,A (λ) = |Pr[ExpnaIND

Π,A (λ, 0) = 1]−Pr[ExpnaINDΠ,A (λ, 1) = 1]| ≤ ε(λ),

where for each b ∈ {0, 1}, the experiment ExpnaINDΠ,A (λ, b) is
defined as follows.

1) Setup phase: The challenger Chal samples
(Param,K) ← Gen(1λ) and sends the public
parameters Param to the adversary A.

2) Challenge phase: The adversary A chooses two
databases DB0, DB1, and a list of queries Q such that
Leak(DB0,Q) = Leak(DB1,Q). As a response, the
adversary A obtains EncodK(DBb) and TokenK(Q).

3) Output phase: The adversary A outputs a value σ ∈
{0, 1} which is defined as the output of the experiment.

4.2 Adaptive IND security

In this subsection, we introduce an adaptive variant of
Definition 7. This definition considers an adversary that
receives the public parameters of the M-Adjoin scheme. It
can then adaptively issue a pair of challenge words w0, w1

and a column label l, and obtain an encoding EncodK(wb, l),
for some fixed bit b ∈ {0, 1}. In this type of query, the adver-
sary gradually constructs two databases DB0,DB1 with the
same dimension and the same column label set. The adver-
sary can adaptively issue a list of column labels, and obtain a
token for computing their join. LetQ be a list of queries that
the adversary has obtained their tokens at a given point of
time. Such an adversary is called valid if after having made
each query it holds that Leak(DB0,Q) = Leak(DB1,Q). The
adaptive indistinguishability-based security notion requires
that such an adversary should not be able to distinguish
between the game in which b = 0 and the game with b = 1,
with a non-negligible advantage.

The formal definition is given below. In order to be
precise, we present the following definition, before giving
the formal security definition.

Definition 8 (Inserting into a database). Let DB =(
(ℓi, Ci)

)
i∈[n]

be a database and (w, l) ∈ {0, 1}λ × {0, 1}λ be
a word/label pair. By insertion of (w, l) into DB we get a new
database as follows. If l already exists in the column label set,
i.e., l = ℓi for some i ∈ [n], then w is appended to the end
of Ci; otherwise, a single-word column Cn+1 = (w) with label
ℓn+1 = l, i.e., the pair (l, (w)) is appended to the database.

Definition 9 (Adaptive IND security). An M-Adjoin scheme
such as Π = (Gen,Encod,Token,Adjust,Eval) is called adap-
tively indistinguishable-based secure with respect to the leakage
function Leak (abbreviated Leak-aIND-secure) if for all PPT valid
adversary A, there exists a negligible function ε such that

AdvaIND
Π,A(λ) = |Pr[ExpaIND

Π,A(λ, 0) = 1]− Pr[ExpaINDΠ,A(λ, 1) = 1]| ≤ ε(λ),

7

where for each b ∈ {0, 1}, the experiment ExpaINDΠ,A (λ, b) is defined
as follows.

1) Setup phase: The challenger Chal samples
(Param,K) ← Gen(1λ) and sends the public
parameters Param to the adversary A. In addition, two
empty databases DB0,DB1 and an empty list Q for the
queries are initialized.

2) Challenge phase: The adversary A may adaptively
issue Encod′K(·, ·, ·) and TokenK(·) queries, which are
defined as follows:

• Encod′K(w0, , w1, l): The pairs (w0, l) and
(w1, l) are inserted into the databases DB0 and
DB1, respectively. Then, the challenger sends an
encoded-word EncodK(wb, l) to the adversary A.

• TokenK(q): The query q = (l1, · · · , lm) is
inserted into the list Q, and the challenger
sends the adjustments tokens (at1, · · · , atm) ←
TokenK(q) to the adversary A.

It is required that, after issuing each query, the equality
Leak(DB0,Q) = Leak(DB1,Q) holds.

3) Output phase: The adversary A outputs a value σ ∈
{0, 1} which is defined as the output of the experiment.

4.3 Relation with M3Pk security notion

In this subsection, we show that the family {M3Pk}k∈N

of security notions is stronger than the non-adaptive IND
security and weaker than the adaptive IND security for both
MonLeakk and MinLeak leakage functions. Recall that the
M-Adjoin scheme and the M3Partition security notion
are extensions of the Adjoin scheme and the 3Partition
notion, respectively. For the case of Adjoin, the relations
between the 3Partition security and the non-adaptively
IND security with respect to the minimal leakage function
have been studied in [1, Claims 4.3]. Their proofs extend to
the case of M-Adjoin in a straightforward way, giving rise
to the following two propositions.

Proposition 10 (M3Pk =⇒ MonLeakk-naIND). Any M3Pk-
secure scheme is MonLeakk-naIND-secure, too.

Proposition 11 (M3Partition =⇒ MinLeak-naIND). Any
M3Partition-secure scheme is MinLeak-naIND-secure, too.

Additionally proving/refuting equivalence between the
3Partition security and naIND-security (with minimal
leakage) was left unexpressed for the case of Adjoin in [1].
The following proposition, which is proved using standard
techniques for separating non-adaptive and adaptive secu-
rity notions, shows that they are indeed inequivalent.

Proposition 12 (naIND ≠⇒ 3Partition). For any leakage
function Leak, the Leak-naIND-security of an M-Adjoin scheme
does not necessarily imply its 3Partition security.

Proof. Let Π = (Gen,Encod,Token,Adjust,Eval) be some
naIND-secure M-Adjoin scheme. We construct an M-Adjoin
scheme Π̃ = (G̃en, Ẽncod, T̃oken, Ãdjust, Ẽval) which is yet
naIND-secure, with the same leakage function, however it
is not 3Partition secure. The scheme Π̃ is as follows:

• G̃en(1λ): It runs (Param,K) ← Gen(1λ) and
chooses a random word w∗ ∈ {0, 1}λ, and outputs
(Param, K̃), where K̃ = (K,w∗) .

• ẼncodK̃(w, l): It computes an encoded-word w̃ as

w̃ = Ẽncod
K̃
(w, l) =

{
(EncodK(w, l), w∗) w ̸= w∗

w∗ w = w∗ .

It is easy to see that Π̃ is still naIND-secure without any
change in the leakage function, since the adversary’s advan-
tage only increases by 1

2λ
due to his ability to guess w∗. It

is also easy to construct a 3Partition-attacker for Π̃ with
advantage one, since the adversary learns w∗ after issuing
the first query. He will then use it as one of his challenge
words.

Proposition 13 (MonLeakk-aIND =⇒ M3Pk). Any
MonLeakk-aIND-secure M-Adjoin scheme is M3Pk-secure, too.

Proof. The proof is simple and straightforward because the
adaptive IND security experiment with respect to the k-
monotonous leakage function MonLeakk has fewer restric-
tions than the M3Pk security experiment. Let A be an ad-
versary for the M3Pk security experiment, we can construct
an adversary B for the adaptive IND security experiment
with the same advantage. The adversary B acts as follows
for the issued queries in variant phases of the M3Pk security
experiment:

- All queries of the form Addlbl(l,X) are ignored.
However, the adversary B keeps a log of group
X = R.

- Any query of the form Encod(w, l) is converted into
a query Encod(w,w, l).

- Any query of the form Token(l1, · · · , lm) is sent
without any modification.

- The challenge (w∗
0 , w

∗
1 , l

∗) is converted into a query
Encod(w∗

0 , w
∗
1 , l

∗).
- Any query of the form Addlbl(l,R) in the

post-challenge phase is converted into a query
Encod(w∗

0 , w
∗
1 , l).

The proof of the following proposition is exactly like
proof of Proposition 13, and hence we omitted it.

Proposition 14 (MinLeak-aIND =⇒ M3Partition). Any
MinLeak-aIND-secure M-Adjoin scheme is M3Partition-
secure, too.

For the case of Adjoin in [1, Page 641, Section 1.4], it has
been argued that for databases with a logarithmic number
of columns the 3Partition security and aIND-security
with minimal leakage are equivalent. The same argument
also applies here to show that, for the M-Adjoin schemes,
the M3Partition (resp. M3Pk) security is equivalent to the
aIND-security with regards to the minimal leakage (resp.
k-monotonous leakage). However, it remains open if this
is true for databases with a super-logarithmic number of
columns.

8

5 SIMULATION-BASED SECURITY NOTIONS

Mironov et al. also proposed simulation-based security no-
tions for Adjoin scheme, which again has an adaptive and a
non-adaptive variant. These notions extend to M-Adjoin in
a straightforward way. In the following, we first formalize
the non-adaptive simulation-based security notion, and then
generalize it to the adaptive variant.

5.1 Non-adaptive SIM security

Our non-adaptive simulation-based security notion consid-
ers an adversary, a simulator and two worlds called real
and ideal. In the real-world, the adversary interacts with the
M-Adjoin scheme and receives the public parameters. Then,
it chooses a database DB and a list Q of queries and obtains
an encoded database and a list of join tokens for each query
q ∈ Q. In the ideal-world, the adversary, however, interacts
with a simulator. It gets the public parameters produced by
the simulator and chooses a database DB and a list Q of
queries. It then obtains an encoded database and a list of
join tokens for each q ∈ Q, produced by the simulator using
the leakage profile Leak(DB,Q), without having access to
the key. The non-adaptive simulation-based security notion
requires that such an adversary should not be able to dis-
tinguish whether he interacts with the M-Adjoin scheme or
with the simulator, unless with a negligible advantage. The
formal definition is given below.

Definition 15 (Non-adaptive SIM security). An M-Adjoin
scheme such as Π = (Gen,Encod,Token,Adjust,Eval) is said
to be non-adaptively simulation-based secure with respect to the
leakage function Leak (abbreviated Leak-naSIM-secure) if for
every PPT adversary A there exist a PPT simulator S and a
negligible function ε such that

AdvnaSIMΠ,A (λ) = |Pr[ExpReal,naSIMΠ,A (λ) = 1]−
Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1]| ≤ ε(λ),

where the experiments ExpReal,naSIMΠ,A (λ) and ExpIdeal,naSIMΠ,A,S (λ) are
defined as follows.
Real-world (ExpReal,naSIMΠ,A (λ)):

1) Setup phase: The challenger samples (Param,K) ←
Gen(1λ), and returns the public parameters Param to
the adversary A.

2) Challenge phase: The adversary A takes the security
parameter λ, chooses a database DB and a list of queries
Q, and sends them to the challenger.

3) Response phase: The challenger computes D̃B ←
EncodK(DB) and AT ← TokenK(Q), and returns
them to the adversary A.

4) Output phase: The adversary A outputs a value σ ∈
{0, 1} which is defined as the output of the experiment.

Ideal-world (ExpIdeal,naSIMΠ,A,S (λ)):

1) Setup phase: The simulator S produces the public
parameters Param∗, which are given as input to the
adversary A.

2) Challenge phase: The adversary A takes the security
parameter λ, chooses a database DB and a list of queries
Q, and sends them to the challenger.

3) Response phase: The challenger computes the leakage
profile L ← Leak(DB,Q), and gives L as input to the
simulator. The simulator S produces an encoded database
D̃B∗ and a list of tokens AT ∗, which are then given to
the adversary A.

4) Output phase: The adversary A outputs a value σ ∈
{0, 1} which is defined as the output of the experiment.

5.2 Adaptive SIM security

In this subsection, we introduce an adaptive variant of
Definition 15. This definition, similar to the non-adaptive
variant, considers an adversary, a simulator and the real and
ideal worlds. In the real-world, the adversary interacts with
the M-Adjoin scheme and receives the public parameters.
It can then adaptively issue a pair of word/label (w, l),
and obtain an encoding EncodK(w, l). The adversary can
also adaptively issue a query, and obtain a token for com-
puting the join. In the ideal-world, the adversary, however,
interacts with the simulator. It obtains the public param-
eters produced by the simulator. Then, the adversary can
adaptively issue a pair of word/label (w, l), and obtain an
encoding EncodK(w, l), produced by the simulator using
the leakage profile L ← Leak(DB,Q). It can also adap-
tively issue a query, and obtain a token for computing the
join, produced by the simulator using the leakage profile
L← Leak(DB,Q).

The adaptive simulation-based security notion requires
that such an adversary should not be able to distinguish
whether it interacts with the M-Adjoin scheme or with the
simulator, unless with a negligible advantage. The formal
definition is as follows.

Definition 16 (Adaptive SIM security). An M-Adjoin scheme
such as Π = (Gen,Encod,Token,Adjust,Eval) is said to be
adaptively simulation-based secure with respect to the leakage
function Leak (abbreviated Leak-aSIM-secure) if for every PPT
adversary A there exist a PPT simulator S and a negligible
function ε such that

AdvaSIMΠ,A (λ) = |Pr[ExpReal,aSIMΠ,A (λ) = 1]−
Pr[ExpIdeal,aSIMΠ,A,S (λ) = 1]| ≤ ε(λ),

where the experiments ExpReal,aSIMΠ,A (λ) and ExpIdeal,aSIMΠ,A,S (λ) are
defined as follows.
Real-world (ExpReal,aSIMΠ,A (λ)):

1) Setup phase: The challenger samples (Param,K) ←
Gen(1λ), and returns the public parameters Param to
the adversary A.

2) Challenge phase: The adversaryAmay adaptively issue
EncodK(·, ·) and TokenK(·) queries and receive back the
output.

3) Output phase: The adversary A outputs a value σ ∈
{0, 1} which is defined as the output of the experiment.

Ideal-world (ExpIdeal,aSIMΠ,A,S (λ)):

1) Setup phase: The simulator S produces the public
parameters Param∗, which are given as input to the
adversary A. An empty database DB and an empty list
Q of column labels are initialized.

9

2) Challenge phase: The adversaryAmay adaptively issue
Encod(·, ·) and Token(·) queries, which are defined as
follows:

• Encod(w, l): The pair (w, l) is inserted into the
database DB, and the simulator S obtains the
leakage profile L ← Leak(DB,Q). Finally, the
simulator S sends an encoded-word w̃∗ to the
adversary A.

• Token(q): The query q = (l1, · · · , lm) is inserted
into the list Q, and the simulator S obtains the
leakage profile L ← Leak(DB,Q). Finally, the
simulator S sends a list of adjustment tokens (at∗1,
· · · , at∗m) to the adversary A.

3) Output phase: The adversary A outputs a value σ ∈
{0, 1} which is defined as the output of the experiment.

5.3 Relation with indistinguishability-based definition

In this subsection, we study the relations between the
indistinguishability-based and simulation-based security
notions.

Proposition 17 (naSIM =⇒ naIND). Let Leak be any of
the leakage functions defined in Definition 5 (i.e, MinLeak or
MonLeakk). If an M-Adjoin scheme is Leak-naSIM-secure, then
it is Leak-naIND-secure too.

Proof. Let A be an adversary for the naIND security ex-
periment, we can construct an adversary B for the naSIM
experiment as follows:

- The adversary B gives the security parameter λ to the
adversary A, and receives two databases DB0,DB1,
and a list of queries Q such that Leak(DB0,Q) =
Leak(DB1,Q).

- The adversary B samples c ← {0, 1} and outputs
(DBc,Q),

- Finally, the adversary B receives the output of naIND
security experiment (i.e., σ), and outputs σ ⊕ c.

Therefore, for any simulator S we have

AdvnaINDΠ,B (λ) = |Pr[ExpnaIND
Π,B (λ, 0) = 1]− Pr[ExpnaINDΠ,B (λ, 1) = 1]|

= |Pr[ExpReal,naSIMΠ,A (λ) = 1|c = 0]−

Pr[ExpReal,naSIMΠ,A (λ) = 0|c = 1]|.

Also, since Leak(DB0,Q) = Leak(DB1,Q), we have

Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1|c = 0] = Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1|c = 1],

and hence for AdvnaINDΠ,B (λ) we have

AdvnaINDΠ,B (λ) = |Pr[ExpReal,naSIMΠ,A (λ) = 1|c = 0]−
Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1|c = 0]+

Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1|c = 1]−
Pr[ExpReal,naSIMΠ,A (λ) = 0|c = 1]|.

Finally, since the adversary B inverts the output of adver-
sary A in case that c = 1, we have

AdvnaINDΠ,B (λ) = |Pr[ExpReal,naSIMΠ,A (λ) = 1|c = 0]−
Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1|c = 0] +

Pr[ExpReal,naSIMΠ,A (λ) = 0|c = 1]| −
Pr[ExpIdeal,naSIMΠ,A,S (λ) = 1|c = 1]

= 2 · AdvnaINDΠ,A,S(λ).

Using the assumption that the scheme Π is Leak-naSIM-
secure, there exists a simulator S such that AdvnaINDΠ,A,S(λ)

is negligible. Therefore, AdvnaINDΠ,B (λ) is negligible, and the
proof is finished.

The naIND and naSIM security definitions have shown
to be equivalent in [1], assuming that the leakage function
is label-leaking. The below proposition shows that this does
not hold true for the label-hiding function of our interest in
Definition 5.

Proposition 18 (naIND ≠⇒ naSIM). Let Leak be any of
the leakage functions defined in Definition 5 (i.e, MinLeak or
MonLeakk). Then, the Leak-naIND security does not necessarily
imply the Leak-naSIM security.

Proof. Let Π be some Leak-naIND-secure M-Adjoin scheme.
We construct an M-Adjoin scheme Π̃ which is still Leak-
naIND-secure, but it is not Leak-naSIM-secure. All algo-
rithms of Π̃ are the same as Π except the encoding al-
gorithm. Denote these algorithms by Encod and Ẽncod,
respectively. On a key K and a word/label pair (w, l), the
modified encoding algorithm outputs

ẼncodK(w, l) =
(
EncodK(w, l), l

)
.

That is, the label is revealed to the adversary. It is easy
to see that Π̃ is still Leak-naIND-secure, because the adver-
sary already knows the labels as he chooses them himself.
Therefore, his advantage in attacking Π̃ is the same as that
of attacking Π.

However, the modified scheme is not Leak-naSIM-
secure, because the leakage profile does not contain any
information about the label set. Therefore, the simulator has
no way to simulate the output of Ẽncod except to guess. But
this will be detected by an adversary who constructs the
databases with random labels. We conclude that there exists
an attacker that can distinguish the real and ideal worlds for
every given simulator.

Proposition 19 (aSIM =⇒ aIND). For any leakage function
Leak, if an M-Adjoin scheme is Leak-aSIM-secure, then it is
Leak-aIND-secure too.

Proof. The proof idea of this proposition is similar to the
non-adaptive variant (i.e., Proposition 17). In a general
and intuitive way, the idea is that the adversary cannot
distinguish between encoded database DB0 and encoded
database generated by the simulator, and between encoded
database generated by the simulator and encoded database
DB1. Similar to Proposition 17, letA be an adversary for the
aIND security experiment, we can construct an adversary B
for the aSIM experiment as follows:

10

- The adversary B samples c← {0, 1},
- The adversary B converts each query of the form

Encod(w0, w1, l) into a query Encod(wc, l),
- Finally, when the adversary A halts and outputs σ,

then the adversary B outputs σ ⊕ c.

Using a similar argument to Proposition 17, we can show
that AdvnaIND

Π,B (λ) is negligible.

The following proposition—which was left unanswered
for the case of Adjoin in [1]– separates the aIND and
aSIM security definitions with respect to leakage functions
defined in Definition 5. The point that we take advantage of
is that we consider the leakage functions to be label-hiding.
It remains open if the separation still holds for label-leaking
leakage functions. The proof of this proposition is exactly
like proof of Proposition 18, and hence we omitted it from
here.

Proposition 20 (aIND ≠⇒ aSIM). Let Leak be any of
the leakage functions defined in Definition 5 (i.e, MinLeak or
MonLeakk). Then, the Leak-aIND security does not necessarily
imply the Leak-aSIM security.

6 THE HIERARCHY OF LEAKAGE FUNCTIONS

In this section, we prove the relation between the minimal
and k-monotonous leakage functions. The reader can re-
call these definitions (Definition 5) before continuing this
section. The following “figurative” relation in terms of the
amount of leakage

MinLeak ≨ MonLeakk+1 ≨ MonLeakk ,

is formally proved by the following propositions. The first
one is trivial. We only prove the second one.

Proposition 21 (Leakage implications). Let
X ∈ {aSIM,naSIM,aIND,naIND} and k be an integer.

(a) (MinLeak =⇒ MonLeakk) If an M-Adjoin scheme is
MinLeak-X-secure scheme, it is MonLeakk-X-secure, too.

(b) (MonLeakk+1 =⇒ MonLeakk) If an M-Adjoin scheme
is MonLeakk+1-X-secure scheme, it is MonLeakk-X-
secure, too.

Proposition 22 (Leakage separation). Let X ∈
{aSIM,naSIM,aIND,naIND} and k be an integer. Then,

(a) (MonLeakk ≠⇒ MonLeakk+1) A MonLeakk-X-secure
scheme is not necessarily MonLeakk+1-X-secure.

(b) (MonLeakk ≠⇒ MinLeak) A MonLeakk-X-secure
scheme is not necessarily MinLeak-X-secure.

Proof. The proof idea is the same for both Part (a) and (b).
Therefore, in the following we present only the proof for
Part (a). Let Π be an MonLeakk-X-secure M-Adjoin scheme.
We modify Π to get a scheme Π̃ which is not MonLeakk+1-
X-secure but retains its MonLeakk-X-security.

The key generation algorithms of Π and Π̃ are the same.
Let q = (l1, . . . , lm) be a query that is given to the token
generation algorithm of Π̃. A token (at1, . . . , atm) for q is
first computed using the token generation algorithm of Π
which will be the output of if m ≤ k+1. Otherwise, a token

(at′1, . . . , at
′
k+1) is also generated for q′ = (ℓ1, . . . , ℓk+1)

using Π and the adjustment token of q in Π̃ will be(
(at1, at

′
1), . . . , (atk+1, at

′
k+1), atk+2, · · · , atm

)
.

The other algorithms are modified accordingly. Clearly,
the M-Adjoin scheme Π̃ is not MonLeakk+1-X-secure.

It remains to prove that the modified scheme remains
MonLeakk-X-secure. To see this, recall the monotonicity
pattern leakage in the MonLeakk leakage function (see
Definition 5). It indicates the positions that have the same
elements, for each (k + 1)-column subset of a join query.
Therefore, our modification (i.e., including an adjustment
token for the sub-query q′ = (ℓ1, . . . , ℓk+1) when m ≥ k+2)
does not provide anything new to adversary since he was
already allowed to get such a leakage.

7 CONCLUSIONS

In this paper, we first reviewed the syntax and security
notions of the multi-adjustable join schemes as a cryp-
tographic primitive that allows a client to outsource his
database to a server, and to privately issue his join queries
for a list of columns on it. We then introduced the natural
simulation-based and indistinguishability-based notions for
the adaptive and non-adaptive variants with respect to two
leakage functions: minimal, and k-monotonous. We proved
that the family {M3Pk}k∈N of security notions is stronger
than the non-adaptive variant and weaker than the adaptive
variant for both leakage functions. We also studied and
proved the relation between the minimal and k-monotonous
leakage functions. The relations between different security
notions have been determined except two cases, which are
left for future: "M3Partition ?

=⇒ MinLeak-aIND" and
"M3Pk

?
=⇒ MonLeakk-aIND".

REFERENCES

[1] I. Mironov, G. Segev, and I. Shahaf, “Strengthening the security of
encrypted databases: non-transitive joins,” in Theory of Cryptogra-
phy Conference. Springer, 2017, pp. 631–661.

[2] R. A. Popa, “Building practical systems that compute on encrypted
data,” Ph.D. dissertation, Massachusetts Institute of Technology,
Department of Electrical Engineering , 2014.

[3] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query pro-
cessing,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 85–100.

[4] ——, “Cryptdb: processing queries on an encrypted database,”
Communications of the ACM, vol. 55, no. 9, pp. 103–111, 2012.

[5] R. A. Popa and N. Zeldovich, “Cryptographic treatment of
cryptdb’s adjustable join,” 2012.

[6] J. Furukawa and T. Isshiki, “Controlled joining on encrypted
relational database,” in International Conference on Pairing-Based
Cryptography. Springer, 2012, pp. 46–64.

[7] I. Hang, F. Kerschbaum, and E. Damiani, “Enki: access control
for encrypted query processing,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 183–196.

[8] S. Kamara and T. Moataz, “Sql on structurally-encrypted
databases,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2018, pp. 149–180.

[9] S. Khazaei and M. Rafiee, “Multi-adjustable join scheme,” 2019.
[10] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and

M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Advances in cryptology–
CRYPTO 2013. Springer, 2013, pp. 353–373.

11

[11] A. Abadi, S. Terzis, and C. Dong, “Vd-psi: Verifiable delegated
private set intersection on outsourced private datasets,” in In-
ternational Conference on Financial Cryptography and Data Security.
Springer, 2016, pp. 149–168.

[12] C. C. Aggarwal and S. Y. Philip, Privacy-preserving data mining:
models and algorithms. Springer Science & Business Media, 2008.

[13] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient con-
structions,” Journal of Computer Security, vol. 19, no. 5, pp. 895–934,
2011.

Mojtaba Rafiee obtained his M.Sc. degree in
computer science from Shahid Beheshti Univer-
sity, Tehran, Iran, in 2014. He is currently a Ph.D.
student of computer science at Sharif Univer-
sity of Technology. His research interest areas
include applied cryptography, database security
and forensics, verifiable and secure computa-
tion.

Shahram Khazaei is an assistant professor at
the Department of Mathematical Sciences at
Sharif University of Technology, Iran, since 2012.
He received his Ph.D. in computer science from
EPFL, Switzerland, in 2010 and was a postdoc-
toral researcher at KTH Royal Institute of Tech-
nology, Sweden, from 2011 to 2012. His main
research interests is theoretical and practical as-
pects of cryptography.

	Introduction
	Contributions
	Paper organization

	Preliminaries
	Notation
	Computational indistinguishability
	M-Adjoin scheme
	{M3Pk}kN{} family of security notions

	M-Adjoin leakage functions
	Indistinguishability-based security notions
	Non-adaptive IND security
	Adaptive IND security
	Relation with M3Pk security notion

	Simulation-based security notions
	Non-adaptive SIM security
	Adaptive SIM security
	Relation with indistinguishability-based definition

	The hierarchy of leakage functions
	Conclusions
	References
	Biographies
	Mojtaba Rafiee
	Shahram Khazaei

