
Bulletproofs+: Shorter Proofs for Privacy-Enhanced
Distributed Ledger

Heewon Chung1, Kyoohyung Han2?, Chanyang Ju1, Myungsun Kim3, and Jae Hong Seo1??

1 Department of Mathematics & Research Institute for Natural Sciences,
Hanyang University, Seoul 04763, Republic of Korea

{heewonchung, chanyangju, jaehongseo}@hanyang.ac.kr
2 Samsung SDS R&D Center

kh89.han@samsung.com
3 The University of Suwon

msunkim@suwon.ac.kr

Abstract. We present a new short zero-knowledge argument for the range proof and the arithmetic
circuits without a trusted setup. In particular, the proof size of our protocol is the shortest of the
category of proof systems with a trustless setup. More concretely, when proving a committed value
is a positive integer less than 64 bits, except for negligible error in the 128-bit security parameter,
the proof size is 576 byte long, which is of 85.7% size of the previous shortest one due to Bünz et
al. (Bulletproofs, IEEE Security and Privacy 2018), while computational overheads in both proof
generation and verification are comparable with those of Bulletproofs, respectively.
Bulletproofs is established as one of important privacy enhancing technologies for distributed ledger,
due to its trustless feature and short proof size. In particular, it has been implemented and op-
timized in various programming languages for practical usages by independent entities since it
proposed. The essence of Bulletproofs is based on the logarithmic inner product argument with
no zero-knowledge. In this paper, we revisit Bulletproofs from the viewpoint of the first sublin-
ear zero-knowledge argument for linear algebra due to Groth (CRYPTO 2009) and then propose
Bulletproofs+, an improved variety of Bulletproofs. The main ingredient of our proposal is the zero-
knowledge weighted inner product argument (zk-WIP) to which we reduce both the range proof and
the arithmetic circuit proof. The benefit of reducing to the zk-WIP is a minimal transmission cost
during the reduction process. Note the zk-WIP has all nice features of the inner product argument
such as an aggregating range proof and batch verification.

1 Introduction

Distributed ledger is a database that is consensually shared and synchronized across multiple
nodes without a trusted administrator. The blockchain is one type of distributed ledger, where
database consists of linked blocks, called chain, and the cryptocurrency such as Bitcoin [58]
is a representative application of the blockchain. The benefit of distributed ledger is that it is
immutable and any independent observer can verify its validity without the aid of trusted third
party. Transparency of natural realization of distributed ledger often causes an issue of data
privacy since all information is public. For instance, all transaction details including the sender,
the receiver, and the amount transferred are public in Bitcoin.

Non-interactive zero-knowledge proofs (NIZK) enables the data owner to generate a proof
for convincing observers of the validity of the data without disclosing it. Range proofs are a
special NIZK for membership in a predetermined interval. That is, the prover first commits
to a value using a commitment scheme and then prove that a committed value lies in a given
interval. The range proof has broad applications that include blockchain-based cryptocurrencies
in particular. For example, using a range proof, each transaction can be confidentially transferred
without disclosing the amount transferred by including only a zero-knowledge proof validity of
the transaction [56].

? This work is done before this author joins Samsung SDS.
?? Corresponding author

Due to distributed and transparent nature, short NIZK without a trusted setup is highly
desired in the context of distributed ledger. Bünz et al. [20] proposed a short NIZK without
a trusted setup, called Bulletproofs, on the basis of the techniques by Bootle et al. [16]. Bul-
letproofs provides the shortest proof size, which is indeed incomparably shorter than the other
range proof systems, when a trusted setup is undesired. In fact, [16] achieves the first logarithmic
communication complexity and Bulletproofs improves Bootle et al.’s protocol so that the proof
size is reduced by a factor of 3 and the protocol is suitable for proving statements on committed
values. Hoffmann, Klooß, and Rupp [47] improves Bulletproofs to efficiently cover more expres-
sive relations than rank 1 constraint systems. Even though [47] presents more generic approach
than Bulletproofs, it fails to reduce proof size in specific arguments such as range proofs. Re-
cently, Bünz, Fisch, and Szepieniec [21] devise a novel polynomial commitment scheme based on
the class group and propose the first succinct NIZK without trusted setup, called Supersonic,
on the basis of their polynomial commitment scheme. Although Supersonic has a strength in
both low verification costs and short proof size, it requires the proof size at least more than × 6
of that of Bulletproofs for the 128-bit security level and the gap becomes larger when increasing
the security level. Bulletproofs is established as one of important privacy enhancing technolo-
gies for distributed ledger, due to its trustless feature and short proof size. In particular, it
has been implemented and optimized in various programming languages for practical usages by
independent entities since it proposed: Java [18], C [63], C++ [65], Rust [57, 28], Go [60], and
Haskell [49], to name a few.

In this paper, we present Bulletproofs+, an improved variety of Bulletproofs, that has shorter
proof size than Bulletproofs. That is, Bulletproofs+ achieves the shortest proof size in the
category of NIZK without trusted setup. We compare the proof size of the range proof protocol
of Bulletproofs+ with that of Bulletproofs in Table 1 for typical data types on a scale from 8-bit
to 64-bit. As a result, the proof size of our range proof is × 0.8 ∼ 0.857 of that of Bulletproofs.
Note that computational overheads in both proof generation and verification in Bulletproofs+
are comparable with those of Bulletproofs, respectively. To achieve shorter proof size, we revisit
Bulletproofs from the viewpoint of the first sublinear zero-knowledge argument for linear algebra
due to Groth [43]. Bulletproofs employs the inner product argument without zero-knowledge as
the essential ingredient. In [43] and Bulletproofs+, the main ingredient is the zero-knowledge
weighted inner product argument (zk-WIP) to which we reduce both the range proof and the
arithmetic circuit proof. The benefit of reducing to the zk-WIP is a minimal transmission
cost during the reduction process, which makes the overall proof size of Bulletproofs+ smaller
than that of Bulletproofs. Furthermore, like Bulletproofs, Bulletproofs+ also has additional
extensions such as aggregating range proofs and batch verification.

1.1 Our Approach

Why Weighted Inner Product? The inner product argument based on a homomorphic
commitment scheme such as a generalization of Pedersen commitment [61, 43] is employed, as
a core building block, for more complicated relations such as linear algebra equations, range
relation, and circuit satisfiability [43, 16, 20]. More precisely, Groth [43] proposed efficient re-
ductions from the advanced arguments to the inner product argument and Bootle et al. [16]
and Bünz et al. [20] improved Groth’s result in terms of the communication overhead by im-
posing more interactions between the prover and the verifier, which is not a big burden in the
random oracle model [9] since it can be converted into the non-interactive argument through
Fiat-Shamir heuristic [31] in the random oracle model.

In fact, when Groth proposed the reduction from the advanced argument for linear algebra
equations, he used the weighted inner product (WIP) argument as well as the inner product

2

Data Proof Size (bytes) Applicable
Size [20] Ours ratio∗ Data Types

8 bits 480 384 0.800 age

32 bits 608 512 0.842 position, zip code

64 bits 672 576 0.857 balance, transaction amount
∗ Bulletproofs+/Bulletproofs ratio

Table 1: Logarithmic Zero-Knowledge Range Proofs

argument as ingredient protocols. For a constant vector c ∈ Znp , the weighted inner product
with respect to c, denoted by �c, is defined as

�c : Znp × Znp → Zp
(a, b) 7→ 〈a, (c ◦ b)〉,

where 〈 , 〉 denotes the standard inner product and ◦ denotes the component-wise product
(a.k.a. the Hadamard product).

At the heart of the reductions to the weighted inner product argument is to batch several
equations so that the communication overhead is reduced. For example, the Hadamard product
equation between two vectors a and b, denoted by a ◦ b = c ∈ Znp , is a set of n equations, and
it can be converted, by imposing a random integer y, into an equation

〈a,
(
(y, y2, . . . , yn) ◦ b

)
〉 = 〈c, (y, y2, . . . , yn)〉 ∈ Zp. (1)

The prover can convince the verifier of the original Hadamard product equation a ◦ b = c ∈ Znp
by convincing of Eq. (1) for randomly chosen y. The both hand sides of Eq. (1) can be directly
considered as the weighted inner product with respect to the coefficient vector (y, y2, . . . , yn).
Therefore, an efficient proof protocol for the weighted inner product is necessary in this ap-
proach.

Logarithmic Zero-Knowledge Argument for Weighted Inner Product. Groth [43] pro-
poses a zero-knowledge argument for weighted inner product (zk-WIP) with linear communica-
tion overhead, which is an ingredient protocol for more advanced arguments for linear algebra
equations. Subsequent works [16, 20] employ an inner product argument without zero-knowledge
as an ingredient protocol but zero-knowledgeness for the advanced relations such as circuit sat-
isfiability is achieved by the reduction to the inner product argument. Wahby et al. [71] presents
a logarithmic zero-knowledge argument for inner product between a hidden vector and a public
vector, which is distinct from (weighted) inner product between two hidden vectors in [43].
Hoffmann, Klooß, and Rupp [47] propose a zero-knowledge argument for inner product between
two hidden vectors satisfying some constraints, which is called almost zero-knowledge proof
protocol by the authors. In order to blind witness vectors, they use random vectors depending
on the witness, which brings some constraint for the witness. To the best of our knowledge,
there is no concrete construction for logarithmic WIP proof protocol with full zero-knowledge,
where both input vectors of WIP are perfectly hidden.

We begin with logarithmic inner product arguments [16, 20]. We find that at the heart of
logarithmic inner product argument is the following equality as well as the bilinearity of the
inner product. For the sake of simplicity, let n be an even number n = 2n̂ for some integer n̂
and a = (a1,a2), b = (b1, b2) ∈ Zn̂p × Zn̂p . Then, we have

〈a, b〉 = 〈a1, b1〉+ 〈a2, b2〉. (2)

3

That is, an inner product can be represented by sum of two half-length inner products. This
property is essential for reduction to a half-length inner product, which leads logarithmic com-
munications. The WIP is also a bilinear map and satisfies the similar property to Eq. (2) when
c is the Vandermonde vector, e.g., c = (y, . . . , yn) ∈ Znp .

a�(y,...,yn) b = a1 �(y,...,yn̂) b1 + (yn̂ · a2)�(y,...,yn̂) b2. (3)

Let us give an intuition for logarithmic WIP argument w.r.t. (y, . . . , yn) ∈ Znp . Suppose

that the prover commits to vectors a1,a2, b1, b2 ∈ Zn̂p , and integers cL = a1 �(y,...,yn̂) b2, c =

a �(y,...,yn) b, cR = (yn̂ · a2) �(y,...,yn̂) b1 ∈ Zp and the prover aims to convince of the relation
c = a�(y,...,yn) b. The bilinearity of the WIP and Eq. (3) guarantee that the following equation
holds for a random challenge e.

(ea1 + e−1yn̂a2)�(y,...,yn̂) (eb2 + e−1b1) (4)

= e2a1 �(y,...,yn̂) b2 + a�(y,...,yn) b+ e−2(yn̂a2)�(y,...,yn̂) b1

In our protocol, the verifier can calculate the commitments to (ea1+e−1yn̂a2) and (eb2+e−1b1),
inputs of WIP of the left-hand side in Eq. (4), with an aid of the prover. Let ĉ := e2cL+c+e−2cR.
Then, the commitment to ĉ can be publicly calculated using the homomorphic property of an
underlying commitment scheme and it will be used as the result of WIP when taking (ea1 +
e−1yn̂a2) and (eb2 + e−1b1) as input. Thus, the equality between Eq. (4) and ĉ for randomly
chosen e guarantees the equality between each coefficient of power of e of the right-hand side in
Eq. (4) and that of ĉ, so that we have c = a�(y,...,yn) b. Therefore, a WIP proof w.r.t (y, . . . , yn)

between n-dimension vectors is reduced to a WIP proof w.r.t (y, . . . , yn̂) between n̂-dimension
vectors.

The commitment to the hidden vector of length n, which is input of the reduction, and each
transmission sent by the prover during the reduction are blinded by random group elements
chosen by the prover, so that the witness is perfectly hidden from the viewpoint of the verifier.
Using the discrete logarithms of such random group elements, the prover updates the blinding
factor in the commitment to the new hidden vector of length n̂, which is output of the reduction.

Constant communication is sufficient for each reduction step and O(log2(n)) number of
rounds are sufficient for reducing to a dimension 1 WIP proof protocol. For the final step of zero-
knowledge WIP proof protocol, we devise a variant of Schnorr protocol, which requires 2 group
elements and 3 field elements. Therefore, the proposed zk-WIP protocol requires communication
of 2 log2(n) + 5 field or group elements.

One Round Reduction for Bulletproofs-like Protocols. Bünz et al. propose a short zero-
knowledge argument called Bulletproofs, which includes an aggregate range proof protocol with
logarithmic size in the witness size and an arithmetic circuit proof protocol with logarithmic
size in the circuit size. Both aggregate range proof and arithmetic circuit proof protocols are
built on their inner product proof protocol.

We show that when our zk-WIP proof protocol is used as an ingredient protocol, one commit-
and-challenge round is sufficient to reduce from the advanced protocols such as aggregate range
proof and arithmetic circuit proof to the zk-WIP proof protocol. In particular, the prover sends
only a group element in our reductions.

Let us explain the idea of the reduction for our single range proof protocol. The prover’s
goal is to convince the verifier that the witness v belongs to an interval [0, 2n − 1]. The prover
begins with committing to aL,aR ∈ Znp satisfying

aL − aR = 1n ∈ Znp ∧ aL ◦ aR = 0 ∈ Znp ∧ 〈aL,2n〉 = v ∈ Zp, (5)

4

where 1n = (1, . . . , 1) is the vector filled with 1’s in all entries and 2n = (1, 2, . . . , 2n−1) is the
vector consisting of powers of 2. Eq. (5) is sufficient to convince the verifier. Next, the verifier
sends a random challenge y ∈ Zp. Then, 2n+ 1 equations in Eq. (5) will be batched to a WIP
equation. To this end, we put each term of left-hand sides in Eq. (5) into a coefficient of distinct
monomial with variables y and z as follows.(

aL − 1n · z
)
�(y,...,yn)

(
aR + 2n ◦ (yn, yn−1, . . . , y) + 1n · z

)
= aL �(y,...,yn) aR + yn+1〈aL,2n〉+ z · (aL − aR)�(y,...,yn) 1n − ζ(y, z) ∈ Zp,

where ζ(y, z) = yn+1z〈1n,2n〉 + z2〈1n,−→y n〉 and −→y n indicates (y, . . . , yn). Each term of the
right-hand sides in Eq. (5) is either constant or the witness v and appeared as a coefficient of
distinct monomial with variables y and z in

0 + yn+1v + z1n �(y,...,yn) 1n − ζ(y, z). (6)

Therefore, the remaining part of our range proof protocol is to run the zk-WIP protocol w.r.t.
(y, . . . , yn) that convinces(

aL − 1n · z
)
�(y,...,yn)

(
aR + 2n ◦ (yn, yn−1, . . . , y) + 1n · z

)
= yn+1v + z1n �(y,...,yn) 1n − ζ(y, z). (7)

By the homomorphic property of an underlying commitment scheme, the commitments to inputs
and output of WIP in Eq. (7) can be publicly calculated from public parameters and the
commitment sent by the prover at the beginning of our range protocol. Therefore, both the
prover and the verifier can run the zk-WIP protocol. Similarly, aggregate range proof and
arithmetic circuit proof protocols can be reduced to the zk-WIP proof protocol through one
commit-and-challenge round.

1.2 Applications

Blockchain: Confidential Transactions, Smart Contracts, and More. Although Bit-
coin [58] supports pseudonymity, it does not guarantee perfect privacy [3, 66]. To address con-
fidentiality kkissue, Maxwell [56] proposed the concept of the confidential transaction, where
every information except the validity is hidden, in the UTXO model. Here, the UTXO is an
unspent transaction output and the UTXO model means that each transaction should fully
spend the outputs of previously unspent transactions. A confidential transaction consists of
commitments to a set of inputs and a set of outputs with Pedersen commitment scheme [61].
Although the homomorphic property of Pedersen commitment enables the verifier to check if
the sum of inputs is equal to the sum of outputs, the verifier cannot verify if a sender has enough
balance to involved amounts, and thus a sender should provide an additional evidence for this.
The range proof exactly resolves this problem and thus essential in confidential transactions.

Monero [69, 74] is one of well-known privacy-enhanced blockchain projects which employ con-
fidential transactions in the UTXO model. Each transaction in the UTXO model has 2.5 outputs
on average. The range proof should be attached for each output of transaction in Monero, so
that on average 2.5 range proofs required for each transaction. The size of each transaction
with two outputs has been reduced from 13kB to 2.5kB since Bulletproofs for aggregate range
proof was integrated with Monero in 2018. Bulletproofs+ for aggregate range proof is 96 bytes
smaller than Bulletproofs in 128-bit security, so that when applying Bulletproofs+ instead of
Bulletproofs to Monero two output transaction can be further reduced and finally obtained 2.4
kB. Recently, each block of Monero contains 15 transactions on average and is generated per 2

5

minutes so that 10,800 transactions are produced on a day. Therefore, Bulletproofs+ can save
more than 1 MB for every day. In addition, our improved range proofs can impact on transac-
tions per second (TPS) and a transaction fee which are major criteria for evaluating scalability
since a node can handle more transaction as much as reduced size and it eases the burden to
propagate a transaction. We can obtain a similar affect to the other privacy cryptocurrencies
beside Monero, e.g., QuisQuis due to Fauzi et al. [30]. Compared to Monero, QuisQuis makes
UTXO sets non-monotomic growing by introducing new notion, called updatable public keys,
however, Bulletproofs still plays an essential role in QuisQuis. Thus Bulletproofs+ can also
affect to QuisQuis by reducing the transaction size.

Mimblewimble aims to resolve privacy and scalability problem in Bitcoin. Like Bitcoin, it was
proposed by an anonymous named Jedusor [51] on Bitcoin IRC channel and Poelstra [62] released
a revised version. In the last year, Fuchsbauer et al. [33] provided a provable-security analysis
for Mimblewimble. In UTXO model, sums of input transaction values and output transaction
values should be the same, apart from a transaction fee, and anyone can get a commitment to
0 from the valid transaction. Then, a sender signs a transaction under the commitment to 0 (as
the public key) which implies that no money vanished and none was created. Through this, they
simplify the structure of a confidential transaction, however, they still require sender’s balance
check for the validity of the transaction and thus a range proof is indispensable. To resolve
scalability issue, Mimblewimble only requires to store necessary transaction with cut-through
while Bitcoin should store the entire transaction history, which implies the entire blockchain
size is significantly reduced and it makes bootstrapping more faster. Grin [40] and Beam [8]
are major implementations of Mimblewimble. For a million blocks, 10 million transactions (2
inputs, 2.5 outputs average) and 100,000 unspent outputs, UTXO size is nearly 520 MB and
among them almost 517 MB is allocated to the range proofs [40]. UTXO size can be significantly
reduced to about 90 MB (100 MB, respectively) with Bulletproofs+ (Bulletproofs, respectively).

Besides a confidential transaction, there are several attempts to employ range proofs in
smart contract. A confidential transaction is first proposed based on the UTXO model, however,
a smart contract platform usually takes an account-based model. To construct a confidential
transaction for the smart contract, it should support not only range proofs, but also statements
on algebraically-encoded values to execute arbitrary smart contract securely. Zether [19] suggests
a confidential transaction compatible with a smart contract platform, especially Ethereum [72],
called confidential transfers. Additionally, Findora [32] is also one of projects employing Bul-
letproofs on a smart contract. The main feature of [32] is supporting audits on a confidential
transaction and it enables to prove more nuanced statements with selective disclosure. Both [19]
and [32] support a confidential asset transfer and range proofs and arithmetic circuit proofs are
necessary. Thus, Bulletproofs+ can enhance the efficiency of account-based model.

Both the range proofs and the arithmetic circuit proofs can be used for confidential trans-
action between different assets to ensure that a balance for each asset is preserved, in zero-
knowledge manner. Another popular cryptocurrency Stellar [68] proposed a project for this
purpose and implemented a confidential asset protocol, called Cloak [50, 67], using Bulletproofs.
In [50], a transaction consists of the number of asset transfers and to preserver the secrecy of
the values, each transfer is blended by merging, shuffling, and splitting with other transfers in
a transaction. Every function can be proven by Bulletproofs+ and thus the verifier can confirm
correctness of the execution with smaller communication overhead than Bulletproofs.

The sidechains also employs Bulletproofs to reflect sidechain’s transactions in the main-
chain [36]. Each sidechain node should provide a signature on the transactions in the sidechains
to convince the mainchain nodes and it is quite burden for mainchain nodes to verify all sig-
natures as many as the number of sidechain nodes. For alleviating burden, Gazi, Kiayias and
Zindros [36] employ multisignature and Merkle-tree hashing for verification key aggregation and

6

Bulletproofs is used for further storage optimization. Since Bulletproofs+ can also support the
membership proof and it can save more storage than Bulletproofs, our suggestion can further
optimize their construction.

Range Proofs. The range proof is an essential tool for resolving privacy issues in the digital
financial technology including distributed ledger, e.g., [59]. Banks performs the process of iden-
tifying and verifying the identity of the client when opening an account. Due to regulations such
as the anti-money laundering and know-your-customer, this process becomes mandatory and at
the same time privacy issues cause. The zero-knowledge proofs enables to perform this process
without disclosing the customer’s private information. Using the range proofs, the client can
convince the banks of some relations on the age, the zip codes, and the GPS position without
disclosing the actual information. For instance, the client can prove that the customer’s age is
over the legal age and the zip codes and the GPS information are contained in specific ranges
to validate the location where the customer stays.

Verifiable Shuffles. Bulletproofs+ for the arithmetic circuit can be employed to reduce the
proof size of applications beyond distributed ledgers. For example, it can be applied to the
verifiable shuffle [2, 41, 45, 7, 20] that takes a list of committed values as input and outputs a
permuted list along with the proof of correctness of permuted list. Although the verifiable shuffle
is an important stand-alone protocol, it is also a good building block for many other applications
like e-voting protocols [34, 2], mix-net [24], privacy-preserving advertisement delivery [5], and
solvency proofs [27]. In terms of the proof size, Bulletproofs has the most efficient scheme
that increases the proof size logarithmically in the size of the input list. The shuffle can be
implemented either by the sorting circuit using O(n log2(n)) multiplications, where n is the size
of input list [20], or by the permutation circuit and the multi-exponentiation circuits in [7].4

Although Bulletproofs+ reduces only constant term (e.g., 96 bytes for the 128-bit security),
for practically large n (e.g., n < 232) the improvement of Bulletproofs+ makes a meaningful
difference like the range proof case due to logarithmic increasing speed of Bulletproofs’ proof
size in n.

1.3 Other Related Works

For better understanding and positioning out results, we give a brief survey about ZK arguments
for range and arithmetic circuits.

Range proofs. A tons of researches have been done into the range proof since Brickell et
al. [17] presented the first proposal. The range proof plays an essential building block in lots of
cryptographic applications: to name a few, anonymous credentials [23], anonymous e-cash [22],
auction protocols [53], e-voting [42], privacy-preserving certificate transparency [29].

Lipmaa [52] presents a range proof protocol that relies on Lagrange’s four-square theorem
(a.k.a., Bachet’s conjecture), which states that any positive integer can be written as a sum
of four squares. Groth [42] improved Lipmaa’s proposal by exploiting Legendre’s three-square
theorem, which states that a positive integer α can be written as a sum of three squares if and
only if α is not of the form 4n1(8n2+7) for n1, n2 ∈ Z. More recently, Couteau et al. [26] proposed
a range proof solution based on a weaker assumption than the strong RSA assumption [6]. All
these proposals rely on the the hardness of factoring large numbers, so that a trusted setup is
required to generate the RSA modulus. .

NIZK for Arithmetic Circuits. Zero-knowledge proof was first introduced as interactive
protocol [39]. In many applications, prover and verifier may not be online at the same time or

4 One can use Bulletproofs to design the permutation argument and the multi-exponentiation argument in [7]
to achieve the logarithmic proof size of verifiable shuffles.

7

prover might want to preprocess multiple proofs. Blum et al.[13] introduced NIZK proofs in the
common reference string model.

In recent years, a lot of improvement on NIZK for the circuit satisfiability has been made [37,
11, 44]. SNARKs are arguments of knowledge that have succinct proofs and efficient veri-
fiers. Even though SNARKs provides high performance that can meet practical requirements,
SNARKs inherently and inevitably require a trusted setup to generate the structured reference
string (SRS). In order to mitigate this problem, Groth et al. [46] and many subsequent works [55,
35, 25, 73] proposed proof systems relying on the SRS, where SRS is efficiently updatable. Nev-
ertheless, these proof systems with the updatable SRS still requires at least one trusted setup
at the beginning of the proof system.

NIST has announced and prepared the transition to post-quantum secure cryptography in
the near future [64], and thus achieving post-quantum secure NIZKs with suitable performance
is a desired goal as well. Toward this goal, several NIZK schemes have been proposed: ZK-
Boo [38], Ligero [1], Aurora [12], STARKs [10], Virgo [75], to name a few. Even though much
improvements has been made in recent years, the performance of post-quantum secure NIZKs in
specialized circuits (e.g. range proof) is hard to compete with NIZKs from classical assumptions
such as RSA and discrete logarithms.

1.4 Concurrent Works

There are two independent and concurrent works that improve Bulletproofs [14, 4]. Boneh, Fisch,
Gabizon and Williamson [14] propose a simple range proof from hiding polynomial commitment
scheme. To prove 0 ≤ v < 2n with zero-knowledge property, it requires two polynomials of degree
n + 1 and executing three polynomial evaluation protocols and the prover should transmit 2 ·
dlog2(n+2)e+2 elements in G and 5 elements in Zp. Definitely, its communication costs less than
Bulletproofs, however, still requires at least one more element than our range proof. Moreover,
since the construction is based on a polynomial commitment scheme which needs to choose a
prime p larger than n, a prover can only claim the same interval once a polynomial commitment
scheme is determined, otherwise a prover should renew the polynomial commitment scheme if
the prover wants a new range. On the contrary, our range proof scheme supports an arbitrary
n and thus there is no restriction for a prover. Attema and Cramer [4] focus on reconciling
Bulletproofs with theory of Σ-Protocols. A prover needs to prove quadratic equations for a
range proof, however, Σ-Protocols are appropriate for proving arbitrary linear relations and thus
Bulletproofs requires reinvention with the quadratic constraint and it may causes some technical
difficulties. To resolve this issue, they employ an arithmetic secret sharing based technique
which enables to linearize all non-linear statements, while preserving the same communication
reduction. More precisely, a communication cost for their range proof is 2·dlog2(2n+3)e elements
in G and 5 elements in Zp and thus Bulletproofs+ still remains as a transparent range proof
with the smallest proof size.

1.5 Organization

We provide definitions of assumptions, homomorphic commitment scheme, and zero-knowledge
argument in Section 2. In Section 3, we present a main building block protocol, the zero-
knowledge argument for weighted inner product without a trusted setup. We propose short zero-
knowledge arguments for the range proof and the arbitrary arithmetic circuits in the subsequent
sections, Section 4 and Section 5, respectively. Finally, we provide performance of proposed
protocols for the concrete parameters in Section 6.

8

2 Preliminaries

We begin with defining some basic notations to be used when defining the preliminary concepts
in the following subsections. More specific notations that are useful for describing and analyzing
the proposed proof systems are provided in Section 2.5. For any algorithm A, y = A(x; r) denotes
that y is the output of A on input x with randomness r. When using uniform randomness, we
use a shorten notation y ← A(x) meaning that randomness r is chosen at random outside A

and we set y = A(x; r). For any set S, x
$←S means uniform sampling of x at random from

S. Throughout the paper, λ denotes the security parameter and it is written unary when it is
used as the input of algorithms. For a function f : N → [0, 1], we say that f is negligible if
f(λ) = λ−ω(1) and that f is overwhelming when f(λ) = 1−λ−ω(1). negl(λ) denotes a negligible
function.

2.1 Discrete Logarithm Assumption

Let G be a group generation algorithm that takes the security parameter with the unary form
1λ and outputs a prime p of λ bits, a cyclic group G of order p, and a generator g of G.

Definition 1 (Discrete Logarithm Assumption). We say that the discrete logarithm as-
sumption holds relative to G if for all non-uniform polynomial-time adversaries A, there exists
a negligible function negl(λ) such that

Pr

[
gx = h

∣∣∣ (G, p, g)← G(1λ); h
$←G;

x← A(G, p, g, h)

]
< negl(λ).

The discrete logarithm assumption can be generalized to the following equivalent assumption.
When we mention the discrete logarithm assumption in the paper, it always means the discrete
logarithm relation assumption.

Definition 2 (Discrete Logarithm Relation Assumption). We say that the discrete loga-
rithm relation assumption holds with respect to G if for all n ≥ 1 and all non-uniform polynomial-
time adversaries A, there exists a negligible function negl(λ) such that

Pr

∃ai 6= 0, i ∈ [0, n]
∧
∏n
i=0 g

ai
i = 1

∣∣∣∣∣∣∣
(G, p, g0)← G(1λ);

g1, ..., gn
$←G;

{aj}nj=0 ← A(G, p, {gi}ni=0)

 < negl(λ).

If there exists ai 6= 0 for some i while satisfying
∏n
i=0 g

ai
i = 1, then we call it is a non-trivial

discrete logarithm relation.

2.2 Homomorphic Commitments

A (non-interactive) commitment scheme consists of two algorithms Gen and Com. Gen is called
the key generation algorithm that takes the security parameter and outputs the commitment
key ck. The message space Mck, the randomness space Rck, and the commitment space Cck

are specified in ck. The commitment algorithm Com combined with the commitment key ck
specifies a commitment function Comck : Mck × Rck → Cck that takes m ∈ Mck and outputs a
commitment com ∈ Cck using randomness r ∈ Rck. To commit to a message m ∈ Mck, the sender

selects r
$←R and computes the commitment com = Comck(m; r). We define several properties

of the commitment scheme.

9

Definition 3 (Homomorphic Commitments). A homomorphic commitment scheme is a
(non-interactive) commitment scheme that has a homomorphic property such that

Com(m1; r1) +Cck
Com(m2; r2) = Com(m1 +Mck

m2; r1 +Rck
r2),

for all m1,m2 ∈ Mck and r1, r2 ∈ Rck, where +Cck
,+Mck

and +Rck
define operations in Cck,Mck

and Rck, respectively.

Definition 4 (Hiding Commitments). A commitment scheme is hiding if for all non-uniform
polynomial-time interactive adversaries A, there exists a negligible function negl(λ) such that∣∣∣∣∣∣∣

1

2
− Pr

b′ = b |
ck← Gen(1λ); (m0,m1)← A(ck);

b
$←{0, 1} ; r

$←Rck;

com = Com(mb; r); b
′ $←A(com)

∣∣∣∣∣∣∣ ≤ negl(λ),

where the probability goes over the randomness used in A and Gen and the choice of b and r.
We say the scheme is perfectly hiding if negl(λ) = 0.

Definition 5 (Binding Commitments). A commitment scheme is binding if for all non-
uniform polynomial-time interactive adversary A, there exists a negligible function negl(λ) such
that

Pr

 Com(m0; r0)
= Com(m1, r1)
∧m0 6= m1

∣∣∣∣∣∣ ck← Gen(1λ);
(m0,m1, r0, r1)← A(ck)

 ≤ negl(λ).

where the probability goes over the randomness used in A and Gen. We say the commitment
scheme is perfectly binding if negl(λ) = 0.

In this paper, we will use a generalized Pedersen commitment scheme. We explain here
how generalized Pedersen commitment implemented. Let Mck = Znp , Rck = Zp and Cck = G

where ck = (G, p, g, g1, ..., gn) and g, gi
$←G for i = 1, ..., n. To commit to a message vector

m = (m1, ...,mn) ∈ Znp , we compute Comck(m; r) := gr
∏n
i=1 g

mi
i where r

$←Zp. The generalized
Pedersen commitment scheme is perfectly hiding since g is a generator of the cyclic group and
thus the random blinding factor gr is uniformly distributed over the cyclic group. If the discrete
logarithm assumption holds on G, then the Pedersen commitment scheme is computationally
binding [61, 43]. An important fact is that the generalized Pedersen commitment is an homo-
morphic commitment,i.e., for all m,m′ ∈ Znp and r, r′ ∈ Zp, Comck(m; r) · Comck(m

′; r′) =
Comck(m+m′; r + r′) holds.

2.3 Zero-Knowledge Arguments of Knowledge

We consider arguments consisting of three interactive probabilistic polynomial-time algorithms
(K,P,V) in the common random string model. K is called the common reference string generator
that takes the security parameter 1λ as input and outputs the common reference string σ. In this
paper, the common reference string is a public key for the generalized Pedersen commitment
scheme, that is, uniformly chosen group elements.5 P and V are called the prover and the
verifier, respectively. For the sake of simplicity, in this paper, we do not explicitly describe K
but assume the commom reference string is given as common input to both P and V. At the end

5 The public key (or commitment key) of Pedersen commitment scheme can be chosen as a random string.
Therefore, we are in the common random string model, and even in the plain model if we let the verifier
chooses the random string.

10

of interaction, the verifier V accepts (equivalently outputs 1) or rejects (equivalently outputs
0).

We will prove that the proposed protocol, Bulletproofs+, is a zero-knowledge argument
of knowledge. Informally, the goal of the prover in this protocol is to convince the verifier of
knowledge of witness that guarantees some statement holds, without disclosing the witness. Due
to space constraint, we provide the formal definition of zero-knowledge arguments of knowledge
in Appendix A.

2.4 Non-Interactive Argument without Trusted Setup in the Random Oracle
Model

A protocol in the common random string model can be converted into a protocol without a
trusted setup in the random oracle model [9]. In particular, if the common reference string
consists of random group generators of a group G, then we can use a hash function modeled
as a random oracle to map from {0, 1}∗ to G, as in [15] and the common reference string is
replaced by the output of the hash function from a small seed.

The public coin argument (Definition 9) protocol can be converted into a non-interactive
argument protocol in the random oracle model by replacing all random challenges chosen by the
verifier with hash values of the transcript up to that point. That is, the Fiat-Shamir heuristic [31]
is used in this conversion.

2.5 Notation

Let p denote a prime of length λ. In our protocol, we use several sets G,Zp,Z∗p,Gn,Znp and several
binary operations over them. Let G denote a group of order p, Zp denote the ring of integers
modulo p, and Z∗p denote Zp\{0}. For a group F, Fn denotes the n-dimensional product group,
and hence it also denotes vector spaces of dimension n over F. Zn×mp denotes the set of matrices
with n rows and m columns over Zp. An element in cartesian product set F ∈ {Gn,Znp ,Zn×mp }
is denoted by bold letters, i.e. g = (g1, ..., gn) ∈ Gn, a = (a1, ..., an) ∈ Znp , and B ∈ Zn×mp . We
often consider a vector a in Znp as a row matrix in Z1×n

p and its transpose vector, which is the

corresponding column vector, is denoted by a>.
We define notations for several binary operators among the above defined sets. For two

vectors a, b ∈ Znp , the inner-product between a and b is defined as a · b> =
∑n

i=1 ai · bi ∈ Zp
and also denoted by 〈a, b〉. The component-wise multiplication (a.k.a the Hadamard product)
between a and b is denoted by a ◦ b, i.e., a ◦ b = (a1 · b1, . . . , an · bn) ∈ Znp . For a ∈ Znp and
g ∈ Gn, the multi-exponentiation

∏n
i=1 g

ai
i ∈ G is denoted by ga. For a scalar c ∈ Zp and a

vector a ∈ Znp , the scalar multiplication is denoted by c · a ∈ Znp , i.e., c · a = (c · a1, . . . , c · an).
For an integer y ∈ Z∗p, we use two vector notations −→y n and←−y n to denote (y, y2, . . . , yn), and

(yn, yn−1, . . . , y1), respectively. In addition, we use two constant vectors (1, . . . , 1), (1, 2, . . . , 2n−1) ∈
Znp , denoted by 1n and 2n, respectively. Then, an interesting equality

−→y n ◦←−y n = yn+1 · 1n (8)

holds.
For a ternary relation R, we use the format {(Public Input; Witness) : R} to denote the

relation R using specific Public Input and Witness.

3 Weighted Inner Product Argument

Groth [43] proposed the zero-knowledge argument for the weighted inner product (zk-WIP) and
used it to build square-root zero-knowledge arguments for linear algebra equations. We propose

11

an improved zk-WIP argument and use it to build short zero-knowledge arguments for range
proofs and arithmetic circuits.

For a constant vector c, the weighted inner product (WIP) with respect to c is defined as

�c : Znp × Znp → Zp
(a, b) 7→ 〈a, (c ◦ b)〉.

The most interesting special case is that c = −→y n for an integer y ∈ Z∗p, which is also mainly
used in [43], since it has useful properties. We design arguments for range proofs and arithmetic
circuits on the basis of the zk-WIP argument with respect to −→y n. For simplicity, we use the
notation �y instead of �−→y n . Note that if y = 1, then �y is equivalent to the inner-product.
Even after the map is defined with y > 1, we can utilize it like the inner-product by computing
a�y (b ◦←−y n). One can verify that

a�y (b ◦←−y n) = yn+1 · 〈a, b〉 (9)

and we use this property in our protocols when we need to perform the inner product between
a and b after fixing y > 1.

We propose a zero-knowledge argument for the WIP w.r.t. −→y n relation. In particular, we
employ group-based homomorphic commitment schemes as a building block, so that the relation
necessarily involves group elements. In addition, we use compressed representation, in the sense
that the witness and the WIP result are committed together into a group element.6 More
precisely, we propose a zero-knowledge proof system for the following relation:{

(g,h ∈ Gn, g, h, P ∈ G;a, b ∈ Znp , α ∈ Zp) : P = gahbga�ybhα
}

The WIP w.r.t −→y n as well as its simplest case, inner-product have an interesting property,
which leads to logarithmic communication cost when combining with homomorphic commitment
schemes. The WIP w.r.t −→y n can be replaced with a sum of two WIPs with half-lengths. When
n is an even number, say n = 2n̂, let a = (a1,a2), b = (b1, b2) ∈ Zn̂p × Zn̂p . Then, we have

a�y b = a1 �y b1 + (yn̂ · a2)�y b2 (10)

Roughly speaking, using the homomorphic property of homomorphic commitment scheme and
Eq. (10), we can reduce from the zk-WIP w.r.t. −→y n to two zk-WIPs w.r.t. −→y n̂. However, this
reduction does not lead to the proof size diminution and we need to a more trick to batch two
n̂-length arguments to an n̂-length argument. To ensure this end, we impose an additional round
and use a random challenge given from the verifier, so that we obtain logarithmic communication
cost in the length of vector n. More precisely, the prover of the zk-WIP w.r.t. −→y n transmits
2 · dlog2(n)e+ 2 elements in G and 3 elements in Zp. Computational cost of both the prover and
the verifier are linear in n.

3.1 Zero-Knowledge Argument for WIP

We describe the zero-knowledge argument for WIP w.r.t. −→y n, denoted by zk-WIP−→y n(x;y),
where x is the input of V and (x;y) is the input of P. In the proposed protocol, the verifier
starts with the public parameters including group generators g, h ∈ Gn, g, h ∈ G as well as a
commitment P = gahbgchα, where a, b, and α consist of witness satisfying c = a �y b. The
prover takes as input g,h, g, h, P and a, b, α.

6 The witness and the inner-product result are separately committed in [43, 16], but those are committed together
in [20]. For short proof size, we follow the representation of [20].

12

zk-WIP−→y n(g,h, g, h, P ;a, b, α)

Relation
{

(g,h ∈ Gn, g, h, P ∈ G;a, b ∈ Znp , α ∈ Zp) : P = gahbga�ybhα
}

P’s input: (g,h, g, h, P ;a, b, α)
V’s input: (g,h, g, h, P)
P’s output: none
V’s output: Accept or Reject

If n = 1:

P : r, s, δ, η
$←Zp and computes

A = grhsgr�yb+s�yahδ ∈ G,
B = gr�yshη ∈ G.

P → V : A,B

V : e
$←Z∗p

P ← V : e

P : computes
r′ = r + a · e ∈ Zp
s′ = s+ b · e ∈ Zp
δ′ = η + δ · e+ α · e2 ∈ Zp

P → V : r′, s′, δ′

V : outputs Accept iff the following equality holds

P e
2

AeB = gr
′·ehs

′·egr
′�ys

′
hδ
′
∈ G

else (n > 1): Let n̂ = n
2

, a = (a1,a2), b = (b1, b2), g = (g1, g2), and h = (h1,h2),

where ai’s, bi’s, gi’s, and hi’s are of the same length n̂.

P : dL, dR
$←Zp and computes
cL = a1 �y b2 ∈ Zp
cR = (yn̂ · a2)�y b1 ∈ Zp
L = g

(y−n̂·a1)
2 hb2

1 g
cLhdL ∈ G

R = g
(yn̂·a2)
1 hb1

2 g
cRhdR ∈ G

P → V : L,R

V : e
$←Z∗p

P ← V : e

P and V : compute

ĝ = ge
−1

1 ◦ ge·y
−n̂

2 ∈ Gn̂

ĥ = he1 ◦ he
−1

2 ∈ Gn̂

P̂ = Le
2

PRe
−2

∈ G
P : computes

â = a1 · e+ (a2 · yn̂) · e−1 ∈ Zn̂p
b̂ = b1 · e−1 + b2 · e ∈ Zn̂p
α̂ = dL · e2 + α+ dR · e−2 ∈ Zp

P and V : run zk-WIP−→y n̂(ĝ, ĥ, g, h, P̂ ; â, b̂, α̂).

Fig. 1: Zero Knowledge Argument for WIP relation

For the sake of simplicity, we assume that n is a power of 2 and let n̂ = n/2. When n > 1,
the protocol zk-WIP−→y n(g,h, g, h, P ;a, b, α) is a reduction from length-n argument to n̂-length

13

argument. The prover chooses random integers dL, dR
$←Zp, computes

cL = a1 �y b2 ∈ Zp
cR = (yn̂ · a2)�y b1 ∈ Zp

L = g
(y−n̂·a1)
2 hb21 g

cLhdL ∈ G

R = g
(yn̂·a2)
1 hb12 g

cRhdR ∈ G,

and sends L and R to the verifier. Next, the verifier sends a random challenge e to the prover.
Then, both the prover and the verifier compute

ĝ = ge
−1

1 ◦ ge·y
−n̂

2 ∈ Gn̂, ĥ = he1 ◦ he
−1

2 ∈ Gn̂, P̂ = Le
2
PRe

−2 ∈ G,

and the prover additionally computes

â = a1 · e+ (a2 · yn̂) · e−1 ∈ Zn̂p ,

b̂ = b1 · e−1 + b2 · e ∈ Zn̂p ,
α̂ = dL · e2 + α+ dR · e−2 ∈ Zp.

Then, the above n̂-length vectors â and b̂ have a relation with cL, cR, and c as follows:

â�y b̂
= a1 �y b2e

2 + a1 �y b1 + (yn/2 · a2)�y b2 + yn̂a2 �y b1e
−2

= cL · e2 + c+ cR · e−2

Using this result, one can verify the following equality through a simple calculation.

P̂ = Le
2
PRe

−2
= ĝâhb̂gâ�y b̂hα̂

Therefore, (ĝ, ĥ, g, h, P̂ ; â, b̂, α̂) is composed of the same zk-WIP argument with a half length
n̂, which is the desired reduction from an argument related to a and b ∈ Znp to an argument

related to â and b̂ ∈ Zn̂p . Here, the prover sends only two group elements for each reduction, so
that totally it requires only logarithmic communication cost in n.

When n = 1, we design a variant of Schnorr protocol such that logarithms of input bases
fulfill a specific quadratic relation, which yields both constant communication and computation
costs.

We provide the security statement for our zk-WIP protocol in Theorem 1 and its proof is
relegated to Appendix C.

Theorem 1. Let y be a constant in Z∗p. The zero-knowledge argument for WIP presented
in Fig.1. has perfect completeness, perfect honest verifier zero-knowledge and computational
witness-extended emulation.

4 Range Proofs

This section describes our zero-knowledge argument protocols for single range proof in Sec-
tion 4.1 and aggregate range proof in Section 4.2.

14

4.1 Single Range Proof Protocol

We consider the following group-based range relation such that witeness is committed using the
Pedersen commitment scheme.{

(g,h ∈ Gn, g, h, V ∈ G; v, γ ∈ Zp) : V = gvhγ ∧ v ∈ [0, 2n − 1]
}

Here, V is a commitment to the witness v that lies in an interval [0, 2n−1]. g and h are vectors
of generators of the group G, but their usage is yet ambiguous in the above relation. In fact,
those are parameters of the generalized Pedersen commitment scheme. v can be represent as
an n-bit string aL and it will be committed using g and h in our range proof protocol. Then,
the goal of the range protocol is to prove the knowledge of aL and an additional vector aR
satisfying

aR = aL − 1n ∧ aL ◦ aR = 0 ∧ 〈aL,2n〉 = v (11)

Eq. (11) consists of 2n + 1 equations. To handle multiple equations at once with sublinear
manner in n, we follow the technique dating back to Groth [43] such that it batches equations
by computing inner-product with −→y n for a random challenge y given from the verifier.

Applying the batching technique, Eq. (11) becomes a product relation between three values,
the witness aL,aR and the challenge y used in batching technique. Bünz et al. [20] presented a
proof system for the relations in Eq. (11) on the basis of their inner-product argument. Their
inner-product protocol does not support the zero-knowledgeness property, so that the openings
of the Pedersen commitments are revealed to the verifier. Hence, the reduction process should
introduce exponentiation-level blinding factors to hide openings, which is rather cumbersome
to handle, so that it requires several interactions and transmission of 5 elements in Zp and 2
group elements in G.

Our zk-WIP protocol w.r.t. −→y n is a tailored protocol for proving a product relation between
two hidden vectors aL and aR and the challenge −→y n with zero-knowledge. Consequently, we
obtain an optimal reduction to zk-WIP protocol in the sense that the prover transmits only a
group element in one move during the reduction phase.

Let us explain our reduction to the WIP protocol. The prover begins with sending A =
gaLhaRhα ∈ G and the verifier returns random challenges y, z ∈ Zp. Next, both the prover and
the verifier can compute

Â = Ag−1
nzh2n◦←−y n+1nzV yn+1

g〈1
n,−→y n〉z−〈1n,2n〉yn+1z−〈1n,−→y n〉z2 (12)

Here, all the exponents are combinations of the challenges y and z, so that Â is publicly com-
putable. Finally, both the prover and the verifier run the WIP argument w.r.t −→y n on input
(g,h, g, h, Â; âL, âR, α̂), where

âL = aL − 1n · z ∈ Znp
âR = aR + 2n ◦←−y n + 1n · z ∈ Znp
α̂ = α+ γ · yn+1 ∈ Zp.

One can easily check that the above defined âL, âR, and α̂ are the exponents with the base g,
h, and h of Â, respectively. See the proof of Theorem 2 for the completeness.

Now, let us explain the intuition why the above reduction correctly works. Let β be the
exponent with the base g in A, which is set to be 0 by the honest prover. Then, the WIP
argument guarantees that the exponent with the base g of Â, which is defined as

β + vyn+1 + 〈1n,−→y n〉z − 〈1n,2n〉yn+1z − 〈1n,−→y n〉z2 (13)

15

Relation{
(g,h ∈ Gn, g, h, V ∈ G; v, γ ∈ Zp) : V = gvhγ ∧ v ∈ [0, 2n − 1]

}
P’s input: (g,h, g, h, V ; v, γ)
V’s input: (g,h, g, h, V)
P’s output: none
V’s output: Accept or Reject

P : α
$←Zp, sets aL ∈ {0, 1}n such that 〈aL,2n〉 = v and aR = aL − 1n ∈ Znp , and

computes A = gaLhaRhα ∈ G.

P → V : A

V : y, z
$←Zp

V → P : y, z

P and V : compute

Â = A · g−1n·z · h2n◦←−y n+1n·z · V y
n+1

·g〈1
n,−→y n〉·z−〈1n,2n〉·yn+1z−〈1n,−→y n〉·z2 ∈ G

P : computes
âL = aL − 1n · z ∈ Znp
âR = aR + 2n ◦←−y n + 1n · z ∈ Znp
α̂ = α+ γ · yn+1 ∈ Zp

P and V : run zk-WIP−→y n(g,h, g, h, Â; âL, âR, α̂).

Fig. 2: Zero Knowledge Argument for Range Proof v ∈ [0, 2n − 1]

by Eq. (12), is equal to âL �y âR. In fact, it can be written as

(aL − 1n · z)�y (aR + 2n ◦←−y n + 1n · z)
= aL �y aR + aL �y (2n ◦←−y n + 1n · z)− (1n · z)�y aR
−(1n · z)�y (2n ◦←−y n + 1n · z)

= aL �y aR + yn+1 · 〈aL,2n〉+ (aL − aR)�y (1n · z)
−〈1n,2n〉yn+1z − 〈1n,−→y n〉z2 (14)

where the fourth equality holds due to Eq. (9). Then, since aL, aR, and v are committed to
before seeing the challenges y and z, we expect that each coefficient of distinct monomial in
Eq. (13) is equal to the corresponding coefficient in Eq. (14). Therefore, Eq. (11) should satisfy.

The full description of our range proof protocol is provided in Figure 2. The prover sends
only one group element A ∈ G for this reduction to the WIP argument of length-n vectors.
Totally, the prover in the aggregate range proof protocol transmits 2 · dlog2(n)e+ 3 elements in
G and 3 elements in Zp. Computational cost of both the prover and the verifier is linear in n.

We provide the security statement for our range proof protocol in Theorem 2 and its proof
is relegated to Appendix D.

Theorem 2. The zero-knowledge argument for range proof presented in Figure 2 has perfect
completeness, perfect honest verifier zero-knowledge and computational witness extended emu-
lation.

4.2 Aggregating Range Proofs

We show that our range proof can be extended to support aggregate range proof as in [20].
That is, when the prover needs to perform m > 1 range proofs at the same time, the proof size

16

increases only logarithmically in m, so that we achieve the shortest proof size even in performing
multiple range proofs. More precisely, we present a proof system for the following relation.{

(g,h ∈ Gm·n, g, h ∈ G,V ∈ Gm;v,γ ∈ Zmp)

: Vj = gvjhγj ∧ vj ∈ [0, 2n − 1] for j ∈ [1,m]

}
For j ∈ [1,m], let dj := (0, . . . , 0︸ ︷︷ ︸

(j−1)·n

,2n, 0, . . . , 0︸ ︷︷ ︸
(m−j)·n

). The prover commits to aL ∈ {0, 1}m·n, which

is the concatenation of all of the bits for vj ’s and satisfies 〈aL,dj〉 = vj for all j ∈ [1,m], and
aR := aL − 1mn. More precisely, the prover sends A = gaLhaRhα ∈ G. Then, the prover’s goal
is to prove the knowledge of aL and aR satisfying following relations:

aR = aL − 1n ∧ aL ◦ aR = 0 ∧ 〈aL,dj〉 = vj for all j ∈ [1,m].

Although the aggregate range proof requires more relations to convince the verifier than the sin-
gle range proof, the batching technique used in the single range proof can be suitably extended.
For the challenge z given from the verifier, we let d :=

∑m
j=1 z

2j · dj , and then m relations

〈aL,dj〉 = vj ∀j ∈ [1,m] can be batched to a single relation 〈aL,d〉 =
∑m

j=1 z
2j · vj . Here, we

use even powers of z since z is already reserved for convincing the other equations. All the other
parts of the protocol are essentially the same as the single range proof protocol.

The full description of our aggregate range proof protocol is provided in Figure 3. The prover
sends only one group element A ∈ G for this reduction to the zk-WIP argument of length-mn
vectors. Totally, the prover in the aggregate range proof protocol transmits 2 · dlog2(m) +
log2(n)e + 3 elements in G and 3 elements in Zp. Computational cost of both the prover and
the verifier is linear in mn.

We provide the security statement for our aggregate range proof protocol in Theorem 3 and
its proof is relegated to Appendix D.

Theorem 3. The zero-knowledge argument for range proof presented in Figure 3 has perfect
completeness, perfect honest verifier zero-knowledge and computational witness extended emu-
lation.

5 Zero-knowledge Argument for Arithmetic Circuits

As another application of the zk-WIP argument, we present a zero-knowledge proof system for
arbitrary arithmetic circuits. Bootle et al. [16] presents a conversion from an arbitrary arithmetic
circuit with n multiplication gates into a certain relation containing a Hadamard-prodct with
some linear constraints, which is formally described below. Bünz et al. [20] slightly generalizes
the relation to include committed values as inputs to the arithmetic circuit, so that the converted
relation contains the committed values as well. We present a zero-knowledge argument for the
following relation, which is exactly the same as that in [20].

(
g1, g2,h1,h2 ∈ Gn,V ∈ Gm, g, h ∈ G,W L,WR,WO ∈ ZQ×np ,

W V ∈ ZQ×mp , c ∈ ZQp ;aL,aR,aO ∈ Znp ,v,γ ∈ Zmp

)
:

Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧W L · a>L +WR · a>R +WO · a>O = W V · v> + c>

Here, we restrict W V ∈ ZQ×mp to be of rank m, as in Bulletproofs [20].

Like our range proof protocol, our goal for arithmetic circuit proof is to reduce to the zk-WIP
argument and we show that one move with one group element (in terms of the prover) is sufficient

17

Relation
{

(g,h ∈ Gm·n, g, h ∈ G,V ∈ Gm;v,γ ∈ Zmp) : Vj = gvjhγj ∧ vj ∈ [0, 2n −
1] for j ∈ [1,m]

}
P’s input: (g,h, g, h,V ;v,γ)
V’s input: (g,h, g, h,V)
P’s output: none
V’s output: Accept or Reject

P : for j ∈ [1,m], let dj := (0, . . . , 0︸ ︷︷ ︸
(j−1)·n

,2n, 0, . . . , 0︸ ︷︷ ︸
(m−j)·n

), chooses α
$←Zp,

sets aL ∈ {0, 1}m·n such that 〈aL,dj〉 = vj and aR = aL − 1mn ∈ Zmnp , and
computes A = gaLhaRhα ∈ G.

P → V : A

V : y, z
$←Z∗p

V → P : y, z

P and V : let d :=
∑m
j=1 z

2j · dj , and computes

Â = A · g−1mn·zhd◦←−ymn+1mn·z ·
(∏m

j=1 V
z2j

j

)ymn+1

·g〈1
mn,−→ymn〉·z−〈1mn,d〉·ymn+1z−〈1mn,−→ymn〉·z2 ∈ G

P : computes
âL = aL − 1mn · z ∈ Zmnp
âR = aR + d ◦←−y mn + 1mn · z ∈ Zmnp
α̂ = α+

∑m
j=1 z

2j · γj · ymn+1 ∈ Zp
P and V : run zk-WIP−→ymn(g,h, g, h, Â; âL, âR, α̂).

Fig. 3: Zero Knowledge Argument for Aggregate Range Proof vj ∈ [0, 2n − 1] for j ∈ [1,m]

for our reduction. The whole description of our arithmetic circuit proof is given in Fig. 4. For a
concise description, we introduce notation used in Fig. 4. For an integer z ∈ Zp, z̃Q denotes a

vector (z, z3, z5, . . . , z2Q−1) ∈ ZQp consisting of odd powers of z. For matrices W ∈ ZQ×np , T
(y,z)
W

denotes (y−1, y−2, . . . , y−n) ◦ (z̃QW). That is, when y, z are challenges given from the verifier,

T
(y,z)
W is a publicly computable value.

First, the prover sends A = gaL1 gaO2 haR1 hα that is a commitment to aL,aO,aR. Then, the
prover’s goal is to convince that aL,aO,aR as well as vj ’s satisfy the following relations.

Vj = gvjhγj∀j ∈ [1,m]

∧ aL ◦ aR = aO

∧W L · a>L +WR · a>R +WO · a>O = W V · v> + c>

Next, both the prover and the verifier compute

Â = Ag
T
(y,z)
WR

1 h
T
(y,z)
WL

1 h
y−n(T

(y,z)
WO
−1n)

2 V z̃QW V g
z̃Q·c>+T

(y,z)
WR
�yT(y,z)

WL (15)

and run the protocol for the zk-WIP w.r.t. −→y 2n on input ((g1, g2), (h1,h2), g, h, Â; âL, âR, α̂),
where

âL = (aL + T
(y,z)
WR

, aO) (16)

âR = (aR + T
(y,z)
WL

, y−n(T
(y,z)
WO
− 1n)) (17)

α̂ = α+ z̃QW V γ
>

18

One can easily check that the above defined âL, âR, and α̂ are the exponents with the base
(g1, g2), (h1,h2), and h of Â, respectively. See the proof of Theorem 4 for the completeness.

Now, let us explain the intuition why the above reduction correctly works. Let β be the
exponent with the base g in A, which is set to be 0 by the honest prover. Similarly, let aP be
the exponent with base h2 in A, which is set to be 0 by the honest prover. Then, the WIP
argument guarantees that the exponent with the base g of Â, which is defined as

β + z̃QW V v
> + z̃Q · c> + T

(y,z)
WR
�y T(y,z)

WL
(18)

by Eq. (15), is equal to âL �y âR and so is equal to

(aL + T
(y,z)
WR

, aO)�y (aR + T
(y,z)
WL

, aP + y−n(T
(y,z)
WO
− 1n)) (19)

by Eq. (16) and (17). aL, aR, and v are committed to before disclosing the challenges y and z, so
that we expect that each coefficient of distinct monomial in Eq. (18) is equal to the corresponding
coefficient in Eq. (19). This enables to convince the verifier of several relations given in Eq. (11)
at a time. For example, there is no y only terms in Eq. (18), but aL�yaR+yn·aO�yaP−aO�y1n
is y only terms in Eq. (19), so that we have a relation

aL �y aR + yn · aO �y aP − aO �y 1n = 0

and it implies the desired relation aL ◦ aR = aO. We relegate the detailed calculations for
checking the soundness to the proof of Theorem 4.

The full description of our arithmetic circuit proof protocol is provided in Figure 4. The
prover sends only one group element A ∈ G for this reduction to the zk-WIP argument of length-
2n vectors. Totally, the prover of the aggregate range proof protocol transmits 2 · dlog2(n)e+ 5
elements in G and 3 elements in Zp. Computational cost of the prover and the verifier is linear
in n.

We provide the security statement for our zero-knowledge proof protocol for arithmetic
circuits in Theorem 4 and its proof is relegated to Appendix E.

Theorem 4. The zero-knowledge argument presented in Figure 4 has perfect completeness,
perfect honest verifier zero-knowledge and computational witness extended emulation.

6 Evaluation

In this section, we report our experimental results for our protocols discussed in the previous
sections and present a comparison with Bulletproofs [20].
Experimental Setup. Except where noted, our experimental results were conducted on an
Intel i5-9600K CPU @ 3.70GHz and 32GB DDR4 memory. For fair comparison with optimized
implementation for Bulletproofs, our protocols are implemented in Rust using the curve25519-
dalek library for ECC operations [54] and compared with the January 2020 git version of
Bulletproofs implementation in by Valence et al. [28], which is, to the best of our knowledge, one
of the most optimized implementations for Bulletproofs. For more details, we use Fp = F2255−19

and point arithmetic in affine Niels coordinates and both implementations for Bulletproofs and
Bulletproofs+ are expected to have 128-bit security [48].

6.1 Practical Optimizations

We implement several optimizations to make producing and verifying the proofs in our protocols
faster.

19

Relation
{

(g1, g2,h1,h2 ∈ Gn, V ∈ Gm, g, h ∈ G,WL,WR,WO ∈ ZQ×np ,

W V ∈ ZQ×mp , c ∈ ZQp ;aL,aR,aO ∈ Znp ,v,γ ∈ Zmp)
: Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧ WL · a>L +WR · a>R +WO · a>O = W V · v> + c

}
P’s input: (g1, g2,h1,h2 V , g, h, WL,WR,WO, W V , c; aL,aR,aO,v,γ)
V’s input: (g1, g2,h1,h2 V , g, h, WL,WR,WO, W V , c)
P’s output: none
V’s output: Accept or Reject

P : chooses α
$←Zp and computes

A = gaL
1 gaO

2 haR
1 hα ∈ G.

P → V : A

V : y, z
$←Zp

V → P : y, z

P and V : compute

Â = A · g
T
(y,z)
WR

1 · h
T
(y,z)
WL

1 · h
y−n(T

(y,z)
WO

−1n)

2 · V z̃Q·WV

·gz̃
Q·c>+T

(y,z)
WR

�yT
(y,z)
WL ∈ G.

P : computes

âL = (aL + T
(y,z)
WR

, aO) ∈ Z2n
p

âR = (aR + T
(y,z)
WL

, y−n(T
(y,z)
WO
− 1n)) ∈ Z2n

p

α̂ = α+ z̃QW V γ
> ∈ Zp

P and V : run zk-WIP−→y 2n((g1, g2), (h1,h2), g, h, Â; âL, âR, α̂)

Fig. 4: Zero Knowledge Argument for Arithmetic Circuit

Reduction to Single Multi-Exponentiation. Let g and h be the generators used in the
final round of the protocol and ei be the challenge from the i-th round. At the last round, the
verifier should compute gr

′·ehs
′·e. To avoid computing ĝ and ĥ at every round, we rewrite these

final generators g, h as the single multi-exponentiation, using recursion unrolling like [20]. This
quite reduces computational overhead on the verifier side since a single multi-exponentiation
can be done much faster than multiplying the results of of individual exponentiations.

g =
n∏
i=1

gsii ∈ G and h =
n∏
i=1

h
s′i
i ∈ G,

where s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n) ∈ Znp depend on only the challenges (e1, . . . , elog2(n)).

The scalars s1, . . . , sn and s′1, . . . , s
′
n can be computed by the following simple calculations:

si = (1/yi−1) ·
log2(n)∏
j=1

e
b(i,j)
j and s′i =

log2(n)∏
j=1

e
−b(i,j)
j

where

b(i, j) =

{
1 the j-th bit of i− 1 is 1

−1 otherwise

20

Then the entire verification check in zk-WIP argument protocol given in Figure 1 reduces to a
single multi-exponentiation as follows:

gr
′e·shs

′e·s′gr
′�s′hδ

′ ?
=

P · log2(n)∏
j=1

L
e2j
j R

e−2
j

j

e2

·Ae ·B

= P e
2 ·

log2(n)∏
j=1

L
e2·e2j
j R

e2·e−2
j

j

 ·Ae ·B.
Reuse in Scalars. As an additional optimization, our implementation uses the dynamic pro-
gramming paradigm to reduce the number of exponentiations in Fp that cover a large part of

computing scalars. For example, consider an exponent of base g while computing Â in our range
proof protocol (see Figure 2). We inductively obtain yi by multiplying y by yi−1 and this result
will be reused in computing the last term of exponent of base g. In consequence, we can get
a resulting scalar for the g only with n + 5 multiplications in Fp where we do not count the
exponentiations of base 2 as 2 � y. We apply the same technique to the implementations of
other argument protocols.

Batch Verification. Batch verification technique in [20] is applicable to Bulletproofs+. Infor-

mally, batch verification collapses two independent exponentiations ga
?
= 1 and gb

?
= 1 into a

single exponentiation ga·r+b
?
= 1 by picking a random value in Fp. Similarly, in our WIP-based

argument protocols, the verifier needs to test whether Â is correctly computed and to invoke
the WIP verifier with a reduced proof. Because the bases in both computations are equiva-
lent, we can utilize batch verification technique so as to reduce CPU-times at the verifier as in
Bulletproofs.

6.2 Experimental Results

We implement our protocols with the above optimizations and in what follows, we present the
results. The experimental results of range arguments are summarized in Table 2 for each of
our metrics. We use three metrics: 1) the size of a proof in bytes; 2) the total CPU time at
the prover in milliseconds, and 3) the total CPU time at the verifier. For this purpose, we use
Rust’s benchmark tests that runs our benchmark a number of times and takes the average.
When demonstrating CPU times, we omit the total number of iterations made by the test

crate.

Proof Size. As shown in the previous sections, the prover of Bulletproofs+ for range proof
transmits 2 · dlog2(m) + log2(n)e + 6 field or group elements which is 3 elements smaller than
that of Bulletproofs. In general, the prover of Bulletproofs+ for arbitrary arithmetic circuit sends
2 · dlog2(n)e + 8 field or group elements which is 5 elements smaller than that of Bulletproofs.
In our experimental parameter setting, Bulletproofs+ for range proof and arithmetic circuit
proof always save 96 bytes and 160 bytes, respectively, compared with Bulletproofs, regardless
of input size.

Prover’s CPU time on Aggregate Range Proof. Table 2 and its graph on the prover’s time
in Figure 5(a) show that a prover of Bulletproofs+ is slightly faster than that of Bulletproofs.
When aggregating more proofs, the ratio between speeds tends to increase in our experimenta-
tion. For instance, in the case of range argument for a single 32-bit secret, our range argument
protocol runs 9.7% faster than that of Bulletproofs; on the other hand, in the case of 64×32-bit
secrets our protocol runs 26.8% faster than that of Bulletproofs.

21

Parameters
Proof size (bytes) Prover time (msec) Verifier time (msec)

Bulletproofs Ours Bulletproofs Ours Bulletproofs Ours

32x1 608 512 6.050174 5.939959 0.888529 0.905392
32x8 800 704 48.539556 40.602728 4.514268 4.552336
32x16 864 768 90.876456 78.086673 7.557350 8.136567
32x32 928 832 181.853941 144.960432 13.477161 14.235688
32x128 1,056 960 704.885309 588.255902 49.228749 52.147692

64x1 672 576 11.820812 10.449486 1.518970 1.524615
64x8 864 768 91.297399 77.096859 7.774852 8.060279
64x32 992 896 349.924111 301.339810 25.211956 26.216368
64x64 1056 960 691.087248 591.986488 49.274442 51.575539

64x128 1,120 1,024
1,382.2809201,158.273015

96.373233 101.762113

Table 2: Comparison summary of proof size and timing in aggregate range proofs with Bullet-
proofs

32x1 32x4 32x1632x64

0

200

400

600

Secret size × Agg. size

Time in msec

64x1 64x4 64x1664x64

0

500

1,000

1,500

Secret size × Agg. size

Ours Bulletproofs

(a) CPU-times for proving proofs

32x1 32x4 32x1632x64

0

20

40

Secret size × Agg. size

Time in msec

64x1 64x4 64x1664x64

0

50

100

Secret size × Agg. size

Ours Bulletproofs

(b) CPU-times for verifying proofs

Fig. 5: Timing comparisons in aggregation range proofs with Bulletproofs

Comparing our WIP prover with a prover in the inner product argument of Bulletproofs, our
WIP prover has to perform more operations, exponentions for blinding factor, in order to achieve
zero-knowledgeness. These computational overhead is insignificant compared to heavy multi-
exponentiations performed in the two provers. The most influential computation is performed
during the process of reduction from the aggregate range proof to ingredient protocols (WIP for
ours and inner product for Bulletproofs). In fact, the benefit of using WIP is a simpler process
in the reduction than the approach used in Bulletproofs. More precisely, Bulletproofs requires
more multi-exponentiations in the reduction process, contrary to a single multi-exponentiation
in Bulletproofs+.

Verifier’s CPU time on Aggregate Range Proof. Figure 5(b) shows that our proposal is
comparable to Bulletproofs in terms of the verifier’s computational cost. Both of the verification
costs in Bulletproofs and Bulletproofs+ are dominated by a single multi-exponentiation. In fact,
Bulletproofs+ requires a multi-exponentiation for computing Â during the resuction process. We
note that Â is taken as input of the WIP protocol so that it eventually becomes a component in
the multi-exponentiation performed in the WIP argument protocol. Thus, the verifier can delay
the computation of Â and extend the technique for reduction to single multi-exponentiation in
Section 6.1. Finally, we obtain a single multi-exponentiation.

22

Further Results on Proof for Matrix Multiplication. Now we demonstrate the perfor-
mance of Bulletproofs+ for the knowledge of two matrices whose product equals a public matrix.
Matrix multiplication arguments are often used for benchmarks of proof systems [70, 71, 73]. We
use Bulletproofs+ for arithmetic circuit in Figure 4. Table 3 shows a benchmark result on ma-
trix multiplication with different sizes from 2 × 2 to 8 × 8. We will release our solution as an
open-source implementation later.

Prover time (msec) Verifier time (msec)

Size
2x2 3.283881 0.856449
4x4 20.820100 4.961256
8x8 157.151009 39.029444

Table 3: CPU times in our matrix multiplication argument

Acknowledgement. This work was supported by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2016-6-
00600, A Study on Functional Encryption: Construction, Security Analysis, and Implementa-
tion) and by the National Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. 2020R1C1C1A01006968). Myungsun Kim was supported by the Insti-
tute for Information and Communication Technology Promotion (IITP) grant funded by the
Korean government (MSIT) (2018-0-00251, Privacy-Preserving and Vulnerability Analysis for
Smart Contract).

References

1. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments without
a trusted setup. In Proceedings of the 2017 ACM sigsac conference on computer and communications security,
pages 2087–2104. Association for Computing Machinery, 2017.

2. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Proceedings of the 8th ACM con-
ference on Computer and Communications Security, pages 116–125. Association for Computing Machinery,
2001.

3. E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating user privacy in bitcoin. In
Financial Cryptography and Data Security - FC 2013, volume 7859 of Lecture Notes in Computer Science,
2013.

4. T. Attema and R. Cramer. Compressed σ-protocol theory and practical application to plug & play secure
algorithmics. Cryptology ePrint Archive, Report 2020/152, 2020. https://eprint.iacr.org/2020/152.

5. M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably secure and practical online behavioral
advertising. In 2012 IEEE Symposium on Security and Privacy, pages 257–271. IEEE, 2012.

6. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In
EUROCRYPT ’97, volume 9696 of LNCS, pages 480–494. Springer, 1997.

7. S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In EUROCRYPT
2012, volume 7237 of LNCS, pages 263–280. Springer, 2012.

8. Beam. https://beam.mw.
9. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In

Proceedings of the 1st ACM conference on Computer and communications security, pages 62–73. Association
for Computing Machinery, 1993.

10. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable zero knowledge with no trusted setup. In
Annual International Cryptology Conference, pages 701–732. Springer, 2019.

11. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c: Verifying program executions
succinctly and in zero knowledge. In CRYPTO 2013, pages 90–108. Springer, 2013.

12. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent succinct
arguments for r1cs. In EUROCRYPT 2019, pages 103–128. Springer, 2019.

13. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 103–112. Association for Computing
Machinery, 1988.

23

14. D. Boneh, B. Fisch, A. Gabizon, and Z. Williamson. https://hackmd.io/@dabo/B1U4kx8XI.
15. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. Journal of Cryptology,

17(4):297–319, 2004.
16. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for arithmetic

circuits in the discrete log setting. In EUROCRYPT 2006, LNCS, pages 327–357. Springer, 2016.
17. E. F. Brickell, D. Chaum, I. B. Damg̊ard, and J. van de Graaf. Gradual and verifiable release of a secret. In

CRYPTO’87, LNCS, pages 156–166. Springer, 1988.
18. B. Bünz. https://github.com/bbuenz/BulletProofLib.
19. B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in a smart contract world.

Cryptology ePrint Archive, Report 2019/191, 2019. https://eprint.iacr.org/2019/191.
20. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for

confidential transactions and more. In IEEE Symposium on Security and Privacy 2018, pages 315–334.
IEEE, 2018.

21. B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from dark compilers. In EUROCRYPT 2020,
volume 12105 of LNCS, pages 677–706. Springer, 2020.

22. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EUROCRYPT 2005, volume 3494
of LNCS, pages 302–321. Springer, 2005.

23. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, 2001.

24. D. Chaum. Blind signatures for untraceable payments. In Advances in cryptology, pages 199–203. Springer,
1983.

25. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. Marlin: Preprocessing zksnarks with
universal and updatable srs. In EUROCRYPT 2020, volume 12105 of LNCS, pages 738–768. Springer, 2020.

26. G. Couteau, T. Peters, and D. Pointcheval. Removing the strong rsa assumption from arguments over the
integers. In EUROCRYPT 2017, volume 10211 of LNCS, pages 321–350. Springer, 2017.

27. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh. Provisions: Privacy-preserving proofs of solvency for
bitcoin exchanges. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 720–731. Association for Computing Machinery, 2015.

28. H. de Valence, C. Yun, and O. Andreev. A pure-rust implementation of Bulletproofs using ristretto, 2018.
https://github.com/dalek-cryptography/Bulletproofs.

29. S. Eskandarian, E. Messeri, J. Bonneau, and D. Boneh. Certificate transparency with privacy. PoPETs,
2017(4):329–344, 2017.

30. P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi. Quisquis: A new design for anonymous cryptocurrencies.
In ASIACRYPT 2019, volume 11921 of LNCS, pages 649–678. Springer, 2019.

31. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In CRYPTO 1986, volume 263 of LNCS, pages 186–194. Springer, 1987.

32. Findora. https://findora.org.
33. G. Fuchsbauer, M. Orrù, and Y. Seurin. Aggregate cash systems: A cryptographic investigation of mim-

blewimble. In EUROCRYPT 2019, volume 11476 of LNCS, pages 657–689. Springer, 2019.
34. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In CRYPTO 2001, pages 368–387.

Springer, 2001.
35. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over lagrange-bases for oecumenical

noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https://eprint.
iacr.org/2019/953.pdf.

36. P. Gazi, A. Kiayias, and D. Zindros. Proof-of-stake sidechains. In 2019 IEEE Symposium on Security and
Privacy, pages 139–156. IEEE, 2019.

37. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct nizks without
pcps. In EUROCRYPT 2013, pages 626–645. Springer, 2013.

38. I. Giacomelli, J. Madsen, and G. Orlandi. Zkboo: Faster zero-knowledge for booean circuits. In USENIX
Security Symposium 2016, pages 1069–1083. USENIX Association, 2016.

39. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on computing, 18:186–208, 1989.

40. Grin. https://grin.mw.
41. J. Groth. A verifiable secret shuffe of homomorphic encryptions. In PKC 2009, LNCS, pages 145–160.

Springer, 2003.
42. J. Groth. Non-interactive zero-knowledge arguments for voting. In Applied Cryptography and Network

Security, pages 467–482, 2005.
43. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO 2009, LNCS, pages 192–208.

Springer, 2009.
44. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, pages 305–326.

Springer, 2016.

24

45. J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a shuffle. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages 379–396. Springer,
2008.

46. J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and universal common refer-
ence strings with applications to zk-snarks. In Annual International Cryptology Conference, pages 698–728.
Springer, 2018.

47. M. Hoffmann, M. Klooß, and A. Rupp. Efficient zero-knowledge arguments in the discrete log setting,
revisited. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications, pages
2093–2110, 2019.

48. IEFT. Rfc 7748, 2016.
49. A. Inc. https://github.com/adjoint-io/bulletproofs.
50. Interstellar. https://interstellar.com.
51. T. E. Jedusor. Mimblewimble, 2016.
52. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In ASIACRYPT 2003,

volume 2894 of LNCS, pages 398–415. Springer, 2003.
53. H. Lipmaa, N. Asokan, and V. Niemi. Secure vickrey auctions without threshold trust. In Financial Cryp-

tography, volume 2357 of LNCS, pages 87–101. Springer, 2003.
54. I. A. Lovecruft and H. de Valence. curve25519-dalek version 2.0.0, 2019. https://docs.rs/

curve25519-dalek/2.0.0/curve25519_dalek/.
55. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge snarks from linear-size uni-

versal and updatable structured reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications, pages 2111–2128. Association for Computing Machinery, 2019.

56. G. Maxwell. Confidential transactions, 2016. https://people.xiph.org/~greg/confidential_values.txt.
57. Mimblewimble. https://github.com/mimblewimble/rust-secp256k1-zkp.
58. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.
59. I. open-source projects. https://csrc.nist.gov/projects/post-quantum-cryptography.
60. I. open-source projects. https://github.com/ing-bank/zkrp/tree/master/bulletproofs.
61. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO 1991,

volume 576 of LNCS, pages 129–140. Springer, 1991.
62. A. Poelstra. Mimblewimble, 2016.
63. A. Poelstra, P. Wuille, and G. Maxwell. https://github.com/apoelstra/secp256k1-mw/tree/

bulletproofs.
64. N. P. Q. C. Project. https://csrc.nist.gov/projects/post-quantum-cryptography.
65. T. M. Project. https://github.com/monero-project/monero/tree/master/src/ringct.
66. D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph. In Financial Cryptography

and Data Security - FC 2013, volume 7859 of Lecture Notes in Computer Science, 2013.
67. C. specification. https://github.com/stellar/slingshot/blob/main/spacesuit/spec.md.
68. Stellar. https://www.stellar.org.
69. S.-F. Sun, M. Au, J. Liu, and T. Yuen. Ringct 2.0: A compact accumulator-based (linkable ring signature)

protocol for blockchain cryptocurrency monero. In ESORICS 2017, volume 10493 of LNCS, pages 456–474.
Springer, 2017.

70. J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYTPO (2) 2013, volume 8043 of
LNCS, pages 71–89. Springer, 2013.

71. R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-efficient zkSNARKs without trusted
setup. In IEEE Symposium on Security and Privacy 2018, pages 926–943. IEEE, 2018.

72. G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow paper,
151:1–32, 2014.

73. T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct zero-knowledge proofs with
optimal prover computation. In CRYPTO (3) 2019, volume 11694 of LNCS, pages 733–764. Springer, 2019.

74. T. H. Yuen, S. feng Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and D. Gu. Ringct 3.0 for blockchain
confidential transaction: Shorter size and stronger security. IACR Cryptology ePrint Archive, 2019:508, 2019.

75. J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and its applications to zero
knowledge proof. Cryptology ePrint Archive, Report 2019/1482, 2019. https://eprint.iacr.org/2019/

1482.

25

A Zero-Knowledge Arguments

We consider arguments consisting of three interactive probabilistic polynomial-time algorithms
(K,P,V) in the common random string model. K is called the common reference string generator
that takes the security parameter 1λ as input and outputs the common reference string σ. In this
paper, the common reference string is a public key for the (generalized) Pedersen commitment
scheme, that is, uniformly chosen group elements.7 P and V are called the prover and the
verifier, respectively, and the transcript produced by P and V when interacting on inputs x and
y is denoted by tr ← 〈P(x),V(y)〉. At the end of transcript, the verifier V accepts (equivalently
outputs 1) or rejects (equivalently outputs 0). To explicitly denote V’s final output, we use the
notation 〈P(x),V(y)〉 = b, where b = 1 if V accepts and b = 0 if V rejects.

Let R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a polynomial time verifiable ternary relation. Given
the common reference string σ, we call w a witness for a statement x if (σ, x, w) ∈ R. We define
a corresponding reference string dependent language Lσ as the set of statements x that has a
witness w such that (σ, x, w) ∈ R. That is,

Lσ = { x | ∃w such that (σ, x, w) ∈ R }

and if σ = ∅, then this is the same as the standard notion of an NP-languages.

Definition 6 (Argument of Knowledge). The triple (K,P,V) is called an argument of
knowledge for relation R if it satisfies Completeness and Witness-Extended Emulation as defined
below.

Definition 7 (Perfect Completeness). (K,P,V) has perfect completeness if for all non-
uniform polynomial-time interactive adversaries A,

Pr

[
〈P(σ, x, w),V(σ, x)〉 = 1
∨ (σ, x, w) /∈ R

∣∣∣∣ σ ← K(1λ);
(x,w)← A(σ)

]
= 1.

Definition 8 (Computational Witness-Extended Emulation). We say that (K,P,V) has
witness-extended emulation if for all deterministic polynomial prover P∗ if there exists an ex-
pected polynomial time emulator E such that for all non-uniform polynomial time interactive
adversaries A, there exists a negligible function negl(λ) such that the gap between the following
two probabilities is smaller than negl(λ).

Pr

[
A(tr) = 1

∣∣∣ σ ← K(1λ); (x, s)← A(σ);
tr ← 〈P∗(σ, x, s),V(σ, x)〉

]
and

Pr

 A(tr) = 1 ∧
if tr is accepting,
then(σ, x, w) ∈ R

∣∣∣∣∣∣ σ ← K(1λ); (x, s)← A(σ);

(tr, w)← E〈P∗(σ,x,s),V(σ,x)〉(σ, x)

 ,
where E has access to the oracle 〈P∗(σ, x, s),V(σ, x)〉 that permits rewinding to a specific round
and rerunning with with V using fresh randomness.

In the definition of witness-extended emulation, the value s can be regarded to be the state of
P∗, including the randomness. Therefore, whenever P∗ is able to make a convincing argument
when in state s, E can extract a witness, and so we call an argument (K,P,V) satisfying Def. 8
and Def. 7 argument of knowledge (of witness w).

7 The public key (or commitment key) of Pedersen commitment scheme can be chosen as a random string.
Therefore, we are in the common random string model, and even in the plain model if we let the verifier
chooses the random string.

26

Definition 9 (Public Coin). An argument (K,P,V) is called public coin if all verifier’s
challenges are chosen uniformly at random and independently of the prover’s messages, i.e., the
challenges correspond to the verifier’s randomness.

Definition 10 (Perfect Special Honest Verifier Zero-Knowledge). A public coin argu-
ment (K,P,V) is perfect special honest verifier zero-knowledge (SHVZK) for R if there exists
probabilistic polynomial time simulator S such that for all non-uniform polynomial time inter-
active adversaries A,

Pr

[
A(tr) = 1 ∧
(σ, x, w) ∈ R

∣∣∣∣ σ ← K(1λ); (x,w, ρ)← A(σ);
tr ← 〈P(σ, x, w),V(σ, x; ρ)〉

]
= Pr

 A(tr) = 1 ∧
(σ, x, w) ∈ R

∣∣∣∣∣
σ ← K(1λ);

(x,w, ρ)← A(σ);
tr ← S(x, ρ)

 ,
where ρ is the public coin randomness used by V.

B Lemmas

B.1 General Forking Lemma

Consider a public coin interactive argument system that has (2m+1)-move between P and V.
We view some accepting transcripts used in the argument form a (n1, ..., nm)-tree and depict
the tree has (m+ 1)-depth and root of the tree is labelled with a statement. We label each node
in depth i as an message from prover aij and each edge from the prover’s message as a challenge
from verifier xik where the index j and k identify the values in the same depth i ∈ [1,m].
Because each node in depth i has ni branches, there are

∏m
i=1 ni accepting transcripts and

that correspond to paths from root(statement) to leave. For example, a (2,2)-tree of accepting
transcripts for 5-move public coin interactive argument can be represented as in Fig. 6.
We state the general forking lemma [16] that we will use for the security proof of Bulletproofs+.

statement

a11

a21 a22

x11 x12

a31 a32

x21 x22

a33 a34

x23 x24

Fig. 6: An example image of (2,2)-tree

Lemma 1 (General Forking Lemma [16]). Let (K,P,V) be a (2m + 1)-move, public coin
interactive protocol. Let χ be a witness extraction algorithm that succeeds with overwhelming
probability in extracting a witness from an (n1, . . . , nm)-tree of accepting transcripts in proba-
bilistic polynomial time. Assume that

∏m
i=1 ni is bounded above by poly(λ) where λ is the security

parameter. Then (Setup,P,V) has computational witness-extended emulation.

27

B.2 Supplementary Mathematics

Lemma 2. Let f(X1, . . . , X`) be a multivariate polynomial in Zp[X1, . . . , X`] of degree at most
di in the variable Xi for i ∈ [1, `]. If we have sets Si of distinct integers xi,ji’s for i ∈ [1, `] and
ji ∈ [1, di + 1] such that

f(x1,j1 , . . . , x`,j`) = 0,

then f is identical to the zero polynomial.

Proof. We prove the statement by using the mathematical induction in `. The case of ` = 1 is
trivial due to the polynomial interpolation. That is, we have degree plus one number of roots,
so that f must be the zero polynomial. Assume that the statement is true for ` = k−1 for some
k ≥ 2. When considering variables X1, . . . , Xk−1 as if constants, we can think of f as a single
variable polynomial in Xk. That is, we can re-write f as follows.

f(X1, . . . , Xk) = f0 + f1 ·Xk + · · ·+ fdk ·X
dk
k

for some f0, . . . , fdk ∈ Zp[X1, . . . , Xk−1]. For each (s1, . . . , sk−1) ∈ S1×· · ·×Sk−1, f(s1, . . . , sk−1, Xk)
is polynomial of degree at most dk and by the definition of f , f(s1, . . . , sk−1, Xk) must be
the zero polynomial since it has degree plus one roots. Hence, all coefficients of polynomial
f(s1, . . . , sk−1, Xk) should be zero, equivalently, fi(s1, . . . , sk−1) = 0. Since fi(X1, . . . , Xk−1)’s
are polynomials with k − 1 variables and for all i, fi(X1, . . . , Xk−1) becomes zero at all points
in S1 × · · · × Sk−1, we can apply the induction hypothesis to all fi’s and obtain that all
fi(X1, . . . , Xk−1)’s are the zero polynomials. Since all coefficients are zeros, f(X1, . . . , Xk) is
indeed the zero polynomial.

By the mathematical induction, we conclude that the statement in the lemma is true for all
` ≥ 1.

By extending the above result, we can consider polynomials containing negative powers of
degree at most d̄i, where i is the index for the number of variables. In this case, we can derive
a similar result by considering (d̄i + di) distinct roots instead of di distinct roots. The proof

is straightforward. We can consider f(x) ·
∏`
i=1X

d̄i
i , which contains only positive powers of

variables, and apply Lemma 2 to f(x) ·
∏`
i=1X

d̄i
i . As a result, we have f(x) ·

∏`
i=1X

d̄i
i = 0,

which means that all coefficients of f(x) ·
∏`
i=1X

d̄i
i are zeros, so that f(X) = 0.

C Proof of Theorem 1

Proof. (perfect completeness) We show that the WIP argument has perfect completeness. First,
we assume that P = gahbga�ybhα and show that the case n = 1 satisfies the perfect com-
pleteness. That is, we show that the verification equation holds. It is sufficient to show that the
corresponding four equations with bases g,h, g, h, respectively, are holds.

ae2 + re = (ae+ r)e = r′e ∈ Zp
be2 + se = (be+ s)e = s′e ∈ Zp

aybe2 + (ryb+ sya)e+ rys = (be+ s)(aye+ ry) = r′ �y s′ ∈ Zp
αe2 + δe+ η = δ′ ∈ Zp

From the above four equalities, the perfect completeness for the case n = 1 is proven.

Next, we move to the case n > 1. For every end of recursive step, if the parameters

(ĝ, ĥ, g, h, P̂ ; â, b̂, α̂) that will be used for the next call satisfy the relation P̂ = ĝâĥ
b̂
gâ�y b̂hα̂

28

when P = gahbga�ybhα then we can be sure that the protocol will drive to end up with
a correct input for the last step of n = 1. Therefore we show that if the input P is of the
form gahbga�ybhα and P̂ , ĝ, ĥ, â, b̂ are computed as the protocol, then P̂ has the desired form

ĝâĥ
b̂
gâ�y b̂hα̂.

Let P, P̂ , ĝ, ĥ, â ,b̂ be the form in the protocol description for the case n > 1. If L and R
are computed as the description of the protocol, then P̂ is computed by P̂ = Le

2
PRe

−2
and we

can write P̂ according to the corresponding bases.

a1 + yn̂a2e
−2=(a1e+ yn̂a2e

−1)e−1 = âe−1 ∈ Zp
y−n̂a1e

2 + a2=(a1e+ yn̂a2e
−1)ey−n̂ = âey−n̂ ∈ Zp

b2e
2 + b1=(b2e+ b1e

−1)e = b̂e ∈ Zp
b2 + b1e

−2=(b2e+ b1e
−1)e−1 = b̂e−1 ∈ Zp

cLe
2 + a�y b+ cRe

−1=a1 �y b2e
2 + a�y b+ yn̂a2 �y b1e

−2 ∈ Zp
dLe

2 + α+ dRe
−2=̂α ∈ Zp

Furthermore, from the defintion of â and b̂, we see that

â�y b̂
= (a1e+ (a2y

n̂)e−1)�y (be−1 + b2e)

= a1 �y b1 + a1 �y b2e
2 + (yn̂a2)�y b1e

−2 + (yn̂a2)�y b2

= a1 �y b2e
2 + a�y b+ (yn̂a2)�y b1e

−2 ∈ Zp,

which is equal to the g-base exponent of P̂ . Using the above observation, we can easily check
that the following holds.

P̂ = gâe
−1

1 gâey
−n̂

2 hb̂e1 h
b̂e−1

2 gâ�y b̂hα̂

=
(
ge
−1

1 gey
−n̂

2

)â(
he1h

e−1

2

)b̂
gâ�y b̂hα̂

= ĝâĥ
b̂
gâ�y b̂hα̂ ∈ G

This completes the proof of the perfect completeness.

(perfect SHVZK) To prove the argument system is perfect special honest verifier zero-knowledge,
we construct a simulator, given only the public input, it outputs a simulated transcript that is
identical to the valid transcript produced by the prover and verifier in the real interaction.

We first describe our simulator construction, and then analyze it. The simulator begins with
taking the statement and the randomness ρ of the verifier as input. Using ρ, the simulator can
generates all challenges whose distribution is identical to that of the real argument. We describe
how the simulator generates a non-challenge part. For each n > 1, the simulator chooses two
random group elements and set those Ln, Rn. For the case of n = 1, the simulator chooses

As
$←G and r′s, s

′
s, δ
′
s

$←Zp at random and computes

Bs = (P e
2
Aeg−r

′
s·eh−s

′
s·eg−r

′
s�ys′sh−δ

′
s)−1 ∈ G.

Next, we analyze the distribution of the simulated transcript for the non-challenge part
({(Li, Ri)}i, As, Bs, r′s, s′s, δ′s). In the protocol description, ∀i, (Li, Ri) distributes uniformly and
independently due to blinding factors dLi and dRi and all (Li, Ri)’s contribute to generate P
used in the case n = 1. The simulator generates uniformly (Li, Ri)’s at random, so that its’

29

distribution is identical to that of the real argument. From now, we analyze the distribution of
(As, Bs, r

′
s, s
′
s, δ
′
s) for given P in the case n = 1.

Before analyzing the simulated transcript (As, Bs, r
′
s, s
′
s, δ
′
s), we first analyze the real tran-

script (A,B, r′, s′, δ′) and then show two distributions are identical. For the sake of simplicity,
we consider the non-challenge part of the transcript in the case n = 1 as a vector in Z5

p instead
of G2×Z3

p, by taking discrete logarithms with base h for elements in the cyclic group G of prime
order. It does not mean we can find discrete logarithms, but we just analyze the distributions
of group elements in the transcript. Let ζg = logh g, ζh = logh h, and ζg = logh g. Then, the
non-challenge part in the real argument is as follows:

loghA =
(
rζg + sζh + (r �y b+ s�y a)ζg + δ

)
,

loghB = (r �y s)ζg + η,
r′ = r + a · e,
s′ = s+ b · e,
δ′ = η + δ · e+ α · e2,

 ∈ Z5
p,

where r, s, δ, η ∈ Zp are choosen at random by the real prover, and a, b, α are witnesses of
given P in the case n = 1. Here, we focus on (loghA, r

′, s′, δ′) and claim that it is uniformly
distributed in Z4

p when (r, s, δ, η) is uniformly distributed in Z4
p. To this end, it is sufficient to

prove the following claim.

Claim. There exists a one-to-one correspondence between (r, s, δ, η) and (loghA, r
′, s′, δ′).

Proof. First, consider the following function mapping from (r, s, δ, η) to (loghA, r
′, s′, δ′).

ζg ζh 1 0
1 0 0 0
0 1 0 0
0 0 e 1

r
s
δ
η

+

(r �y b+ s�y a)ζg

a · e
b · e
α · e2

=

rζg + sζh + (r �y b+ s�y a)ζg + δ

r + a · e
s+ b · e

η + δ · e+ α · e2

 =

loghA
r′

s′

δ′

Assume that we have another tuple (r̃, s̃, δ̃, η̃) whose image via the above function is also
(loghA, r

′, s′, δ′). Then, subtracting two function values we obtain
0
0
0
0

 =

ζg ζh 1 0
1 0 0 0
0 1 0 0
0 0 e 1

r − r̃
s− s̃
δ − δ̃
η − η̃

+

(r �y b+ s�y a− r̃ �y b− s̃�y a)ζg

0
0
0

 .

From two intermediate rows, we have r − r̃ = 0 and s − s̃ = 0, and then putting those two
equalities into the above equation again, we obtain δ− δ̃ = 0 and η− η̃ = 0. This completes the
one-to-one correspondence and so does the proof of the claim. ut

In the generation of the real transcript (loghA, loghB, r
′, s′, δ′), only four random integer

r, s, δ, and η are used. Therefore, the above result implies that the distribution of (loghA, loghB, r
′, s′, δ′)

is identical to the distribution that (loghA, , r
′, s′, δ′) is uniformly distributed and loghB is

30

uniquely defined by the others and the verification equation. In fact, the latter process is ex-
actly same as the simulated transcript. Therefore, the simulated transcript is identical to that
of the real transcript for given P in the case n = 1. Overall, we complete the proof of the perfect
special honest verifier zero-knowledge.

(witness-extended emulation) For witness extended emulation, we construct an expected poly-
nomial time extractor χ that extracts a witness using a poly(λ)-bounded tree of accepting
transcripts, so that to meet the requirements of the general forking lemma. Consider the case
n = 1. At the first move, the prover sends A and B to verifier. By rewinding the oracle 〈P∗,V〉
four times with five distinct challenges e1, e2, e3, e4, and e5 while using the same A and B, the
extractor obtains five tuples (r′i, s

′
i, δ
′
i) satisfying the following verification equation.

P e
2
iAeiB = gr

′
i·eihs

′
i·eigr

′
i�ys′ihδ

′
i for i = 1, ..., 4 (20)

Using the first three challenges and the corresponding valid responses, we can interpret the
exponents as a product of 3 × 3 matrix with each row vectors (e2

i , ei, 1) for i = 1, 2, 3 and are
the Vandermonde matrix that is invertible in Z3×3

p since ei’s are distinct. The other exponents
in the right hand side of Eq. (20) are public as well. Thus, from those three challenges and
responses, we can obtain the exponents aP , bP , cP , dP , aA, bA, cA, dA, aB, bB, cB, dB such that

P = gaPhbP gcP hdP ,

A = gaAhbAgcAhdA ,

B = gaBhbBgcBhdB .

Using the above three equations and the verification equation, we obtain for each ei ∈ {e1, e2, e3, e4, e5},

gr
′
iei−aP e2i−aAei−aBhs

′
iei−bP e2i−bAei−bB

· gr′i�ys′i−cP e2i−cAei−cBhδ′i−dP e2i−dAei−dB = 1G.

Thus, under the discrete logarithm relation assumption, we have four equations of exponents
according to the bases g,h, g, h,

r′iei − aP e2
i − aAei − aB = 0

s′iei − bP e2
i − bAei − bB = 0

r′i �y s′i − cP e2
i − cAei − cB = 0

δ′i − dP e2
i − dAei − dB = 0

and, equivalently,

r′i = aP ei + aA + aBe
−1
i (21)

s′i = bP ei + bA + bBe
−1
i (22)

r′i �y s′i = cP e
2
i + cAei + cB (23)

δ′i = dP e
2
i + dAei + dB.

By eliminating r′i and s′i from Eq. (21), Eq. (22), and Eq. (23), we have for i ∈ {1, . . . , 5}

aP �y bP · e2
i + (aP �y bA + bP �y aA) · ei

+(aP �y bB + bP �y aB + aA �y bA) + (aA �y bB + bA �y aB)e−1
i

+aB �y bB · e−2
i

=cP e
2
i + cAei + cB ∈ Zp (24)

31

This equation can be considered as an inner-product with (e2
i , ei, 1, e

−1
i , e−2

i) and constants vec-
tor. Since Eq. (24) holds for all five distinct challenges ei ∈ {e1, . . . , e5} and so (e2

i , ei, 1, e
−1
i , e−2

i)’s
are linearly independent, each coefficient in the left hand side of Eq. (24) must be equal to the
corresponding coefficient in the right hand side of Eq. (24). As we intended, the extractor either
extracts a witness (aP , bP) satisfying aP �y bP = cP , or a discrete logarithm relation between
the generators.

Next, we move to the case n > 1. We prove the case n > 1 recursively. That is, we construct
an extractor χ2k for the case n = 2k using an extractor χk and let χ1 be the extractor χ we
constructed for the case n = 1. We start with input (g,h, g, h, P) for the case n = 2k. Assume
that we have the extractor χk for the case n = k. The extractor χ2k runs the prover to get L and
R. At this point, the extractor χ2k rewinds the oracle four times, uses four distinct challenges
ei for i = 1, . . . , 4, and sets

ĝi = g
e−1
i

1 ◦ gei·y
−k

2 , ĥi = hei1 ◦ h
e−1

2 , P̂i = Le
2
iPRe

−2
i ∈ G for i = 1, . . . , 4.

Then, for each i, it feeds (ĝi, ĥi, g, h, P̂i) to χk and obtain the corresponding witness âi, b̂i and
α̂ that satisfy

Le
2
iPRe

−2
i

=
(
g
e−1
i

1 ◦ gei·y
−k

2

)âi(hei1 ◦ he−1
i

2

)b̂igâi�y b̂ihα̂i , i ∈ [1, 4] (25)

For the first three challenges e1, e2, e3, (e2
i , 1, e

−2
i)’s are linearly independent and so compose of

a 3× 3 invertible matrix in Z3×3
p . We can see that all exponents are constants known to the ex-

tractor. Thus, by applying the elementary linear algebra in the public exponent of the first three
equations of Eq. (25), we can find the exponents aP , bP , cP , dP , aL, bL, cL, dL, aR, bR, cR, dR
satisfying

P = gaPhbP gcP hdP ∈ G,
L = gaLhbLgcLhdL ∈ G,
R = gaRhbRgcRhdR ∈ G.

From now, we prove that those exponents satisfy the desired relation cP = aP�ybP . Putting
the above representations of P,L,R into Eq. (25) for each i, we have the following equations
with bases g,h, g, h under the discrete logarithm relation assumption.

gaLe
2
i gaP gaRe

−2
i =

(
g
e−1
i

1 ◦ gei·y
−k

2

)âi (26)

hbLe
2
ihbPhbRe

−2
i =

(
hei1 ◦ h

e−1
i

2

)b̂i (27)

gcLe
2
i gcP gcRe

−2
i = gâi�y b̂i (28)

hdLe
2
i hdP hdRe

−2
i = hα̂i

That is, Eq. (25) is separated into the above four equations according to the bases g,h, g, h.
If we find exponents satisfying Eq. (25) but not the above four equations, it directly implies
a non-trivial relation between the generators and so break the discrete logarithm assumption.
We use the above four equations to prove aP �y bP = cP . To this end, we first find a relation

between âi and aP from Eq. (26), second find another relation between b̂i and bP from Eq. (27),
and then finally use Eq. (28) containing cP , âi, b̂i variables in order to show the desired relation
between cP , aP , and bP .

First, we show that relation between âi and aP from Eq. (26). By the discrete logarithm
assumption, it is infeasible to find relation between g1 and g2, so that Eq. (26) induces two

32

equations with the base g1 and g2, which are equivalent to the following equations.

aL,1e
2
i + aP,1 + aR,1e

−2
i = e−1

i âi

aL,2e
2
i + aP,2 + aR,2e

−2
i = y−keiâi,

where aP = (aP,1,aP,2),aL = (aL,1,aL,2),aR = (aR,1,aR,2) ∈ Zkp ×Zkp. By eliminating âi from
the above two equations, we obtain

aL,1e
3
i + aP,1ei + aR,1e

−1
i = aL,2y

kei + aP,2y
ke−1
i + aR,2y

ke−3
i (29)

Eq. (29) holds for all four challenges e1, . . . , e4 and there are four variable terms ei, e
3
i , e
−1
i , e−3

i .
This implies that the following must holds.

aL,1 = 0 ∈ Zkp,
aP,1 = aL,2y

k ∈ Zkp,
aR,1 = aP,2y

k ∈ Zkp,
aR,2 = 0 ∈ Zkp.

Using the above result with Eq. (26), we obtain that the exponent of the base g1 in Eq. (26) is

aP,1 + aP,2y
ke−2
i = e−1

i âi,

so that we have a relation between âi and aP ,

âi = aP,1ei + aP,2y
ke−1
i . (30)

Second, we show that relation between b̂i and bP from Eq. (27). Under the discrete logarithm
assumption, we extract the exponent of the base h1 and h2 from Eq. (27).

bL,1e
2
i + bP,1 + bR,1e

−2
i = eib̂i

bL,2e
2
i + bP,2 + bR,2e

−2
i = e−1

i b̂i

where bP = (bP,1, bP,2), bL = (bL,1, bL,2), bR = (bR,1, bR,2) ∈ Zkp × Zkp. By eliminating b̂i from
the above two equations, we obtain

bL,1 · ei + bP,1 · e−1
i + bR,1·e

−3
i = bL,2y

k · e3
i + bP,2 · ei + bR,2 · e−1

i (31)

Eq. (31) holds for all four challenges e1, . . . , e4 and there are four variable terms ei, e
3
i , e
−1
i , e−3

i .
This implies that the following must holds.

bL,1 = bP,2 ∈ Zkp,
bP,1 = bR,2 ∈ Zkp,
bR,1 = 0 ∈ Zkp,
bL,2 = 0 ∈ Zkp

Using the above result with Eq. (27), we obtain that the exponent of the base h1 in Eq. (27) is

bP,2e
2
i + bP,1 = eib̂i,

so that we have a relation between b̂i and bP ,

b̂i = bP,2ei + bP,1e
−1
i (32)

33

Finally, we use Eq. (28) in order to show relation between cP , aP , and bP . Taking the WIP
�y on Eq. (30) and Eq. (32), we have

âi �y b̂i
= (aP,1 �y bP,2)e2

i + (aP,1 �y bP,1 + aP,2 �y bP,2 · yk)
+(aP,2 �y bP,1 · yk)e−2

i

Combining this result with Eq. (28), we have

(
aP,1 �y bP,2 − cL,aP,1 �y bP,1 + aP,2 �y bP,2yk − cP ,aP,2 �y bP,1yk − cR

)
·

 e2
i

1

e−2
i

 = 0

The above equation holds for three distinct challenges e1, . . . , e3. Since the vectors (e2
i , 1, e

−2
i)’s

are linear independent, this implies that the following must holds.

aP �y bP = aP,1 �y bP,1 + aP,2 �y bP,2 · yk = cP

For each recursive step, the extractor χ2k uses 4 transcripts and χ1 uses 5 transcripts, so that
the final extractor χn uses 5 · 4log2(n) transcripts in total and this runs in expected polynomial
time in λ since n is polynomial in λ. Then, by the general forking lemma, we conclude that the
proposed WIP argument system has computational witness extended emulation.

D Proof of Theorem 2 and Theorem 3

Theorem 2 is a special case of Theorem 3. Thus, we omit its proof and refer to the proof of
Theorem 3 given below.

Proof. (perfect completeness) Since the proposed range proof argument runs the WIP argument
as a subprotocol, we prove the perfect completeness by showing that if A = gaLhaRhα is
correctly computed, then Â satisfies the WIP relation such that

Â = gâLhâRgâL�yâRhα̂ ∈ G (33)

From the computation

Â = A · g−1mn·zhd◦
←−y mn+1mn·z(m∏

j=1

V z2j

j

)ymn+1

g〈1
mn,−→y mn〉·z−〈1mn,d〉·ymn+1z−〈1mn,−→y mn〉·z2 ,

one can easily check the exponents of bases g,h and h are equal to âL, âL and α̂, respectively.
Only the thing that remains to confirm is whether the exponent of the base g is equal to âL�y âR
that can be checked as follows.

âL �y âR
= (aL − 1mn · z)�y (aR + d ◦←−y mn + 1mn · z)
= aL �y aR + aL �y (d ◦←−y mn) + aL �y 1mn · z − 1mn �y aR · z − 1mn �y (d ◦←−y mn) · z − 1mn �y 1mn · z2

= 〈aL,d〉 · ymn+1 + 〈1mn,−→y mn〉 · z − 〈1mn,d〉 · z · ymn+1 − 〈1mn,−→y mn〉 · z2 (34)

The first component in the far right hand side in Eq. (34) is equal to

〈aL,
m∑
j=1

z2j · dj〉 · ymn+1 =

m∑
j=1

z2j · 〈aL,dj〉 · ymn+1 =

m∑
j=1

z2j · vj · ymn+1,

34

which is the g-base exponent of
(∏m

j=1 V
z2j
j

)ymn+1

. Then, Eq. (34) is exactly equal to the g-

base exponent of Â, so that Eq. (33) holds. Since Eq. (33) has the correct format of the bilinear
argument, we can utilize the perfect completeness of the WIP argument, so that we conclude
that the proposed aggregatable range proof argument has perfect completeness.

(perfect SHVZK) For perfect special honest verifier zero-knowledge, we construct a simulator.

The simulator samples A
$←G and sets the input of the WIP argument according to the descrip-

tion of the range protocol. Then, the simulator runs the simulator for the perfect SHVZK of
the WIP argument as a subalgorithm. In the real transcript, A is uniformly distributed due to
the blinding factor α, and it, along with y and z, contributes to define the input of the bilinear
argument. In the simulated transcript, A is also uniformly generated and for fixed input of the
WIP argument, we have already proved that the simulator for the perfect SHVZK of the WIP
argument can perfectly simulate the real transcript. Therefore, we conclude that the distribution
of simulated transcript is identical to that of the real transcript.

(witness-extended emulation) We prove that the proposed protocol has witness-extended emu-
lation. To this end, we construct the extractor χR that extracts a witness of the range proof
argument by using 3n+ 3 distinct y challenges and 2m+ 2 distinct z challenges. In the proof,
we first explain how the extractor extracts opening vj ’s of the Pedersen commitments and next
prove that it satisfies the desired relation vj ∈ [0, 2n − 1].

In order to extract openings of the Pedersen commitments, the extractor uses another extrac-
tor χB for the bilinear arguments whose existence is already proved in the proof of Theorem 1.
More precisely, after fixing the first message A sent by the prover, χR rewinds the prover by
using one y challenge and m+ 1 distinct z challenges, computes the corresponding Â, calls χB
by giving (g,h, g, h, Â) as input, and then obtains the corresponding values âL, âR and α̂ such
that

gâLhâRgâL�yâRhα̂

= A · g−1mn·zhd◦
←−y mn+1mn·z(m∏

j=1

V z2j

j

)ymn+1

g〈1
mn,−→y mn〉·z−〈1mn,d〉·ymn+1z−〈1mn,−→y mn〉·z2 (35)

Here, χR knows all exponents of both hand sides in Eq. (35) and so we can efficiently perform
any linear operations among the exponents in Eq. (35). The tuple of exponents of A and Vj ’s
in Eq. (35) is the (m+ 1)-dimensional vector (1, ymn+1z2, . . . , ymn+1z2m). We know that a set
of vectors (1, z2, . . . , z2m) for m + 1 distinct z’s is linearly independent since it composes the
Vandermonde matrix with distinct rows. By multiplying the inverse of such the Vandermonde

matrix to the exponents in Eq. (35), the extractor can compute A and V ymn+1

j ’s decompositions

with base g,h, g and h, and so do Vj for j = 1, . . . ,m by exponentiation with y−mn−1. Therefore,
now the extractor χR has values aL,aR, α, β,vL,vR, vj ’s, and γj ’s such that A = gaLhaRgβhα

and Vj = gvLhvRgvjhγj for j = 1, . . . ,m. In particular, we successfully extract vj ’s for j =
1, . . . ,m opening of the Pedersen commitments.

Next, we show that the extracted values aL,aR,vL,vR, and vj for j = 1, . . . ,m satisfy the
desired relations vj ∈ [0, 2n − 1] for j = 1, . . . ,m and vL = vR = 0. To this end, it is sufficient
to show that these values satisfy five equations, aR = aL − 1mn, aL ◦ aR = 0, 〈aL,dj〉 = vj for
j ∈ [1,m], vL ◦ vR = 0, and vL + vR = 0. First, we consider Eq. (35). Although âL, âR, α̂ are
computed by using only the m+1 challenges zj ’s, these are fixed exponents for the commitment
A and public Vj for j = 1, . . . ,m regardless of challenges. That is, if we find a challenge pair
that does not satisfy Eq. (35), then we directly obtains a non-trivial discrete logarithm relation
between the 2n+2 generators g,h, g, h of G. If Eq. (35) holds for all challenge pairs (y, z), again

35

under the discrete logarithm relation assumption, we can change Eq. (35) with the following
four equations according to the bases g,h, g, and h.

âL = aL − 1mn · z + vL · ymn+1 ∈ Znp

âR = aR + d ◦←−y mn + 1mn · z + vR · ymn+1 ∈ Znp , where d =

m∑
j=1

z2j · dj

âL �y âR = β +

m∑
j=1

vj · z2j · ymn+1 + 〈1mn,−→y mn〉 · z − 〈1mn,d〉 · ymn+1z − 〈1mn,−→y mn〉 · z2 ∈ Zp

α̂ = α+
m∑
j=1

γj · z2j · ymn+1 ∈ Zp

The right hand sides of the above equations can be considered as polynomials in variables y
and z. By eliminating aL and aR in the left hand sides of the first three equations, we obtain
the following equation in y and z.

âL �y âR
= aL �y aR︸ ︷︷ ︸

y,...,ymn terms

+ ymn+1 · 〈aL,d〉︸ ︷︷ ︸
ymn+1z2,...,ymn+1z2m terms

+ z · aL �y 1mn︸ ︷︷ ︸
yz,...,ymnz terms

+ ymn+1 · aL �y vR︸ ︷︷ ︸
ymn+2,...,y2mn+1 terms

− z · 1mn �y aR︸ ︷︷ ︸
yz,...,ymnz terms

− ymn+1z · 〈1mn,d〉︸ ︷︷ ︸
ymn+1z2+1,...,ymn+1z2m+1 terms

− z2 · 1mn �y 1mn︸ ︷︷ ︸
yz2,...,ymnz2 terms

− ymn+1z · 1mn �y vR︸ ︷︷ ︸
ymn+2z,...,y2mn+1z terms

+ ymn+1 · vL �y aR︸ ︷︷ ︸
ymn+2,...,y2mn+1 terms

+ y2mn+2 · 〈vL,d〉︸ ︷︷ ︸
y2mn+2z2,...,y2mn+2z2m terms

+ ymn+1z · vL �y 1mn︸ ︷︷ ︸
ymn+2z,...,y2mn+1z terms

+ y2mn+2 · vL �y vR︸ ︷︷ ︸
y2mn+3,...,y3mn+2 terms

= β︸︷︷︸
constant term

+

m∑
j=1

vj · z2j · ymn+1

︸ ︷︷ ︸
ymn+1z2,...,ymn+1z2m terms

+ 〈1mn,−→y mn〉 · z︸ ︷︷ ︸
yz,...,ymnz terms

− 〈1mn,d〉 · ymn+1z︸ ︷︷ ︸
ymn+1z2+1,...,ymn+1z2m+1 terms

−〈1mn,−→y mn〉 · z2︸ ︷︷ ︸
yz2,...,ymnz2 terms

(36)

The above equation holds for all y, z challenges, which are 3n + 3 distinct y challenges and
2m + 2 distinct z challenges, and thus the following equations must holds. (See Lemma 2 in
Appendix B.2 for a rigorous proof for this argument.)

Variables in Eq. (36) Left Hand Side Right Hand Side

y, . . . , ymn aL �y aR = 0 ⇒ aL ◦ aR = 0

ymn+1z2, . . . , ymn+1z2m 〈aL,
∑m

j=1 z
2jdj〉ymn+1 =

∑m
j=1 vj · z2jymn+1 ⇒ 〈aL,dj〉 = vj∀j

yz, . . . , ymnz z · aL �y 1mn − z · 1mn �y aR = 〈1mn,−→y mn〉z ⇒ aL − aR = 1mn

y2mn+3, . . . , y3mn+2 y2mn+2 · vL �y vR = 0 ⇒ vL ◦ vR = 0

ymn+2z, . . . , y2mn+1z ymn+1z · (vL �y 1mn − ·1mn �y vR) = 0 ⇒ vL − vR = 0

Therefore, the extracted values vj and γj satisfy the desired relations vj ∈ [0, 2n − 1] and
Vj = gvjhγj for all j = 1, . . . ,m.

Finally, the extractor χR runs the prover with 3n + 3 distinct y challenges and 2m + 2
distinct z challenges and also invokes χB on each of the transcripts, so that in total χR uses
(3n+ 3) · (2m+ 2) · (5 · 4log(n)) valid transcripts, which is polynomial in λ since both n and m

36

are polynomial in λ. The extractor χR rewinds the prover (3n+ 3) · (2m+ 2) · (5 · 4log(n)) times,
so that it runs in expected polynomial time in λ. Combining the result of the general forking
lemma, we conclude that the proposed protocol has witness-extended emulation. ut

E Proof of Theorem 4

For the readers who are not familiar with our notation T
(y,z)
W , we note that the equality

a�y T(y,z)
W = z̃QWa> for any vector a ∈ Znp

holds and is frequently used in the following proof.

Proof. (perfect completeness) As in case of the range proof, the proposed arithmetic circuit
argument uses the WIP argument. Since the WIP argument has the perfect completeness, for
the perfect completeness, it is sufficient to prove the following equality holds.

Â = Ag
T
(y,z)
WR

1 h
T
(y,z)
WL

1 h
y−n(T

(y,z)
WO
−1n)

2 V z̃Q·W V g
z̃Q·c>+T

(y,z)
WR
�yT(y,z)

WL

= gâLhâRgâL�yâRhα̂

Let âL = (âL,1, âL,2) and âR = (âR,1, âR,2), where âL,i, âR,i ∈ Znp for i = 1, 2. To avoid complex
expression, we will check the equality base-by-base.

(Exponent with g1 base) âL,1 = aL + T
(y,z)
WR
∈ Znp

(Exponent with g2 base) âL,2 = aO ∈ Znp
(Exponent with h1 base) âR,1 = aR + T

(y,z)
WL
∈ Znp

(Exponent with h2 base) âR,2 = y−n(T
(y,z)
WO
− 1n) ∈ Znp

(Exponent with g base) âL �y âR = z̃QW V v
> + z̃Qc> + T

(y,z)
WR
�y T(y,z)

WL
∈ Zp

(Exponent with h base) α̂ = α+ z̃QW V γ
> ∈ Zp

The bases of g,h and h can be checked directly from the definition of âL, âL and α̂. For the
equality of exponent of the base g, we show the equality holds as follows.

âL �y âR = (aL + T
(y,z)
WR

, aO)�y (aR + T
(y,z)
WL

, y−n(T
(y,z)
WO
− 1n))

= (aL + T
(y,z)
WR

)�y (aR + T
(y,z)
WL

) + aO �y (T
(y,z)
WO
− 1n)

= aL �y aR + aL �y T(y,z)
WL

+ T
(y,z)
WR
�y aR + T

(y,z)
WR
�y T(y,z)

WL
+ aO �y T(y,z)

WO
− aO �y 1n

= z̃QW La
>
L + z̃QWRa

>
R + z̃QWOa

>
O + T

(y,z)
WR
�y T(y,z)

WL

= z̃QW V v
> + z̃Qc> + T

(y,z)
WR
�y T(y,z)

WL

This completes the proof of the perfect completeness.

(perfect SHVZK) For the perfect SHVZK of the proposed protocol, we construct a simulator. The

simulator samples A
$←G and sets the input of the WIP argument according to the description

of the range protocol. Then, the simulator runs the simulator for the perfect SHVZK of the
WIP argument given in the proof of Theorem 1.

In the real transcript, A is uniformly distributed due to the blinding factor α, and it, along
with y and z, contributes to define the input of the bilinear argument. In the simulated tran-
script, A is also uniformly generated and for fixed input of the WIP argument, we have already

37

proved that the simulator for the perfect SHVZK of the WIP argument can perfectly simulate
the real transcript in the proof of Theorem 1. Therefore, we conclude that the distribution of
simulated transcript is identical to that of the real transcript.

(witness-extended emulation) We prove that the proposed protocol has witness-extended em-
ulation. The overall strategy is almost same as that of the proof of Theorem 3. We construct
the extractor χC that extracts a witness of the the proposed argument by using 3n+ 1 distinct
y challenges and 4Q − 1 distinct z challenges. In the proof, we first explain how the emulator
extracts opening vj ’s of the Pedersen commitments and next prove that it satisfies the desired
relations aL ◦ aR = aO and W L · a>L +WR · a>R +WO · a>O = W V · v> + c

In order to extract openings of the Pedersen commitments, the extractor uses another extrac-
tor χB for the bilinear arguments whose existence is already proved in the proof of Theorem 1.
More precisely, after fixing the first message A sent by the prover, χC rewinds the prover by
using one y challenge and 2Q distinct z challenges, computes the corresponding Â, calls χB by
giving ((g1, g2), (h1,h2), g, h, Â) as input, and then obtains the corresponding values âL, âR,
and α̂ such that

(g1, g2)âL(h1,h2)âRgâL�yâRhα̂ = Ag
T
(y,z)
WR

1 h
T
(y,z)
WL

1 h
y−n(T

(y,z)
WO
−1n)

2 V z̃Q·W V g
z̃Q·c>+T

(y,z)
WR
�yT(y,z)

WL .(37)

Here, χC knows all exponents of both hand sides in Eq. (37) and so we can efficiently perform
linear operations on the exponents of Eq. (37). The tuple of exponents of A and Vj ’s in Eq. (37)

is the (m+ 1)-dimensional vector (1, z̃Qi ·W V) ∈ Zm+1
p for 2Q distinct z’s. One can easily find

(m+1) z challenges such that for such z’s the set of vectors (1, z̃Qi ·W V) is linearly independent.
More precisely, first we can always efficiently find (Q + 1) z challenges such that (1, z̃Q) =
(1, z, z3, . . . , z2Q−1)’s ∈ ZQ+1

p are linearly independent. Consider the following equality.

1 z̃Q1
1 z̃Q2
...

...

1 z̃QQ+1

∈Z(Q+1)×(Q+1)

p

·

1 0 . . . 0
0
... W V

0

∈Z(Q+1)×(m+1)

p

=

1 z̃Q1 ·W V

1 z̃Q2 ·W V
...

...

1 z̃QQ+1 ·W V

∈Z(Q+1)×(m+1)

p

Since W V is of rank m + 1, we know that the matrix in the left hand side is of rank m + 1.
Thus, the remaining part of algorithm is to find (m + 1) linearly independent rows from the
matrix, so that we have linearly independent (m + 1) vectors (1, z̃Qi ·W V)’s. Now, using this
linear independence and elementary linear algebra, χC can extract values aL,aO,aR,aP ∈
Znp , α, β ∈ Zp,Bg,Bh ∈ Zm×2n

p ,v,γ ∈ Zmp satisfying A = gaL1 gaO2 haR1 haP2 gβhα ∈ G and V =

gBghBhgvhγ ∈ Gm. Note that although we used 2Q challenges in order to find these exponents
of A and V , these values are fixed regardless of used challenges if the discrete logarithm is
computationally infeasible.

From the above result, we know that v is the opening of V with base g. Now, we show
that the desired circuit relations satisfy. That is, the extracted values v,aL,aR, aO satisfy
aL ◦ aR = aO and W La

>
L + WRa

>
R + WOa

>
O = W V v

> + c>. For all challenge pairs (y, z),
those satisfy Eq. (37) and we will use this equation in our analysis. Since it is computationally
infeasible to find a non-trivial relation between the generators g = (g1, g2),h = (h1,h2), g, h
under the discrete logarithm relation assumption, we can change Eq. (37) with the following

38

four equations according to bases g,h, g, h.

âL = (aL,aO) + (T
(y,z)
WR

,0) + z̃QW VBg ∈ Z2n
p

âR = (aR,aP) + (T
(y,z)
WL

, y−n(T
(y,z)
WO
− 1n)) + z̃QW VBh ∈ Z2n

p

âL �y âR = β + z̃QW V v
> + z̃Qc> + T

(y,z)
WR
�y T(y,z)

WL
∈ Zp

α̂ = α+ z̃QW V γ
> ∈ Zp

Removing âL and âR from the first three equations, we obtain

aL �y aR + yn · aO �y aP + aL �y T(y,z)
WL

+ aO �y (T
(y,z)
WO
− 1n) + (aL,aO)�y z̃QW VBh

+ T
(y,z)
WR
�y aR + T

(y,z)
WR
�y T(y,z)

WL
+ (T

(y,z)
WR

,0)�y z̃QW VBh

+ z̃QW VBg �y
(

(aR,aP) + (T
(y,z)
WL

, y−n(T
(y,z)
WO
− 1n)) + z̃QW VBh

)
= β + z̃QW V v

> + z̃Qc> + T
(y,z)
WR
�y T(y,z)

WL
.

Using the bilinearity and the property of T(y,z), we can further simplify the equality as follows.

aL �y aR + yn · aO �y aP + z̃QW La
>
L + z̃QWOa

>
O − aO �y 1n + (aL,aO)�y z̃QW VBh

+ z̃QWRa
>
R + T

(y,z)
WR
�y T(y,z)

WL
+ (T

(y,z)
WR

,0)�y z̃QW VBh

+ z̃QW VBg �y
(

(aR,aP) + (T
(y,z)
WL

, y−n(T
(y,z)
WO
− 1n)) + z̃QW VBh

)
= aL �y aR + yn · aO �y aP − aO �y 1n︸ ︷︷ ︸

y,...,y2n terms

+ z̃QW La
>
L + z̃QWOa

>
O + z̃QWRa

>
R︸ ︷︷ ︸

z,z3...,z2Q−1 terms

+ (aL,aO)�y z̃QW VBh︸ ︷︷ ︸
(y,...,y2n)×(z,z3,...,z2Q−1) terms

+ T
(y,z)
WR
�y T(y,z)

WL︸ ︷︷ ︸
(y−1,...,y−n)×(z2,z4,...,z4Q−2) terms

+ (T
(y,z)
WR

,0)�y z̃QW VBh︸ ︷︷ ︸
z2,z4...,z4Q−2 terms

+ z̃QW VBg �y (aR,aP)︸ ︷︷ ︸
(y,...,y2n)×(z,z3,...,z2Q−1) terms

+ z̃QW VBg �y (T
(y,z)
WL

, y−n(T
(y,z)
WO
− 1n))︸ ︷︷ ︸

z2,z4,...,z4Q−2 & (y,...,yn)×(z,z3,...,z2Q−1) terms

+ z̃QW VBg �y z̃QW VBh︸ ︷︷ ︸
(y,...,y2n)×(z2,z4,...,z4Q−2) terms

= β︸︷︷︸
constant terms

+ z̃QW V v
> + z̃Qc>︸ ︷︷ ︸

z,z3,...,z2Q−1 terms

+ T
(y,z)
WR
�y T(y,z)

WL︸ ︷︷ ︸
(y−1,...,y−n)×(z2,z4,...,z4Q−2) terms

(38)

The above equation holds for all y, z challenges, which are 3n + 1 distinct y challenges and
4Q − 1 distinct z challenges, and thus the following equations must holds. (See Lemma 2 and
the explanation below Lemma 2 in Appendix B.2 for a rigorous proof for this argument.)

Variables in Eq. (38) Left Hand Side Right Hand Side

y, . . . , y2n terms aL �y aR + yn · aO �y aP − aO �y 1n = 0

⇒ aL ◦ aR = aO

z, z3, . . . , z2Q−1 terms z̃QW La
>
L + z̃QWOa

>
O + z̃QWRa

>
R = z̃QW V v

> + z̃Qc>

⇒ W La
>
L +WOa

>
O +WRa

>
R = W V v

> + c>

Therefore, the extracted values aL,aR,aO,v, and γ satisfy the desired relations aL ◦ aR = aO
and W La

>
L +WOa

>
O +WRa

>
R = W V v

> + c>.
Finally, the extractor χC runs the prover with 3n + 1 distinct y challenges and 4Q − 1

distinct z challenges and also invokes χB on each of the transcripts, so that in total χC uses

39

(3n+ 1) · (4Q− 1) · (5 · 4log(n)) valid transcripts, which is polynomial in λ since both n and Q
are polynomial in λ. The extractor χR rewinds the prover (3n+ 1) · (4Q− 1) · (5 · 4log(n)) times,
so that it runs in expected polynomial time in λ. Combining the result of the general forking
lemma, we conclude that the proposed protocol has witness-extended emulation.

40

