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Abstract. In the setting of continual-leakage (CL) — Brakerski et al., Dodis et al., FOCS
2010 — the secret key of a cryptographic scheme evolves according to time periods; the
adversary gets some bounded leakage function of its choice applied to the current secret
key in each time period. This model necessitates a randomized key update procedure, as
otherwise the adversary can leak a future secret key bit by bit over time. Unfortunately,
this is a major source of difficulty, for example in handling leakage on updates. On the other
hand, the above reason why a randomized key update procedure is required is arguably
unsatisfying, since in practice a leakage function will not continually compute the update
procedure and leak a future key in whole.

Our goal is to provide a general security model for continual leakage with deterministic
key updates, and constructions that improve in various respects on prior work. In fact,
as described below we incorporate forward security into our model as well. For our basic
security model we take an entropy-based approach, leading to a model we call entropic
continual leakage (ECL). In the ECL model, the adversary is allowed to make a limited
total number of leakage queries that, as in CL, can depend arbitrarily on other keys (in
particular, we do not completely bar the leakage function from “computing the update
procedure”), but an unlimited total number of what we call “local” leakage queries. The
latter does not decrease computational entropy of other keys. Hence, in some sense, the
local leakage queries do not compute the key update procedure.

Another major benefit of allowing deterministic key updates is that we can more readily
incorporate forward security (FS) in our constructions, recently pointed out by Bellare et
al. (CANS 2017) to be an important security hedge in this context. This is because tech-
niques for achieving FS often require deterministic updates. Accordingly, we also introduce
the FS+ECL model (which is in fact incomparable to the CL model). We target this en-
hanced model for our constructions and provide constructions of public-key encryption
(based on non-interactive key exchange) and digital signatures (based on identification
schemes) that improve over the assumptions or leakage rates of the FS+CL schemes of
Bellare et al.. These results demonstrate the feasibility of improved constructions in our
more realistic model. Finally, as a result of independent interest, we present a public-key
encryption scheme in the FS+CL model (with randomized update) that improves on both
the assumptions and leakage rates compared to the scheme of Bellare et al.

1 Introduction

Continual Leakage Resilience. When a cryptographic algorithm (or any algorithm)
is implemented and run, it must be done on some physical system. This introduces side
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channel attacks where the adversary obtains some leakage about secrets, such as exe-
cution time, power consumption, and even sound waves [28, 33, 34]. The cryptographic
community has responded by extending the attack model, which had previously only
considered black-box access to the algorithms, so that in the extended model the ad-
versary gets some “bounded” leakage about the secrets [3,9,32,38]. Because there is no
inherent reason for the leakage to stay bounded throughout the entire lifetime of the key
(if the adversary can get a large fraction of the key, what prevents it from completely
recovering it?), works further extended the model to consider “continual” leakage (CL)
attacks [10,17]. In this model, the life of a secret key is divided into time periods/epochs,
and in time period t+ 1 one runs an update algorithm on the secret key of time period t
to derive the new secret key for time period t+ 1. (The old secret key is erased.) In each
time period the adversary queries for a function with bounded output length applied to
the current secret key.

Motivation For Deterministic Updates. In the continual leakage model, the update
algorithm needs to be randomized ; otherwise, simply consider an adversary that request
bits of some future secret key, one by one, in earlier rounds (also called future key
pre-computation attack). Randomization seems like a simple enough requirement, but
it leads to a number of issues. For one, a challenging problem has been then handling
leakage on updates (i.e., leakage on the coins of the update algorithm), which has required
complex schemes or heavy-weight tools to address this [15,19,35]. Further, it is difficult
to integrate with machinery for forward security (FS) [6], which is an important hedge
against full key exposure in this context [7], since FS schemes typically have deterministic
update. In particular, looking ahead it will allow us to use non-tree-based techniques to
achieve FS (all constructions in [7] are tree-based), which has various advantages.

However, we observe that the reason above that the update algorithm of a CL resilient
scheme requires randomized update is contrived in that the leakage function not only
repeatedly computes the update algorithm itself, it leaks an entire future key. We assert
that in the real world this would not happen, as exemplified by typical sources of leakage
“controlled by nature.” Could it not be possible to have deterministic update in the
continual leakage setting and achieve reasonable security? What security notion could
one aim for?

Prior Work and Our Approach. One approach is to assume that the leakage function
lies in a strictly less powerful complexity class than the update function of the scheme.
This was previously done for key-evolution schemes by Dziembowski et al. [21], who
assume space-bounded leakage functions. However, such a requirement is hard to guar-
antee in practice. For example, timing or cache attacks may be a function of the entire
memory. Furthermore, it is complicated in the following sense: If leakage is an arbitrary
efficiently computable function of the secret key then leakage from cryptographic oper-
ations like signing and encrypting can be captured directly. However, when the leakage
function is too weak leakage from such computation has to be captured separately.
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1.1 The ECL and the FS+ECL Model.

This motivates us to find an approach that more directly captures the above intuition
about contrived leakage functions. To this end, we classify leakage functions according
to whether, intuitively speaking, they compute the update function or not, limiting the
amount of the former. Namely, we categorize the leakage functions queried by the ad-
versary into (i) local and (ii) non-local queries. The above categorization is based on the
property of entropy loss of the keys due to the leakage functions. In particular, we ask
whether the outcome of a given leakage query (on one key) reduces the entropy of other
keys (which are derived from that key using a (deterministic) key update procedure) or
not. Very roughly, we call a leakage query that does not reduce the entropy of other
keys “local”. Of course, to allow deterministic key updates, such a notion of entropy
must be computational, as each leakage query necessarily reduces information-theoretic
entropy of the other (deterministically defined) keys. The formal definition is given in
Definition 9. On the other hand, as the name suggests, non-local queries may poten-
tially reduce the entropy of the other keys. In our corresponding model, which we call
the “Entropic” Continual Leakage (ECL) model, there is no restriction on the type or
the number of such queries the adversary can make over time. On the other hand, to
guarantee security we place the following restrictions on these queries as: (i) The output
length of each local leakage query is upper bounded by a parameter λ(κ), where κ is the
security parameter, (ii) the set of all non-local leakage queries made by the adversary
should not reduce the min-entropy of any key beyond α(κ), which is also a parameter
of the model. This nevertheless allows the leakage to still have some dependence on fu-
ture keys as a hedge (note that, if the adversary can make unlimited no. of non-local
queries, then achieving security with deterministic update functions is impossible due to
the future key pre-computation attack mentioned before).

Incorporating FS. As enabled to allowing deterministic updates, all of our construc-
tions actually achieve a much stronger definition that incorporates another hedge, namely
forward security (FS). FS was recently studied as a hedge for continual leakage secu-
rity by Bellare et al. [7]. FS refers to the fact that if the full secret key is recovered in
some time period then security in prior time periods is maintained. As argued by [7],
it is important to consider forward security in this context, since the update may not
happen soon enough in some time period to avoid full leakage of the current secret key.
To address this, Bellare et al. proposed the Forward security under Continual Leakage
(FS+CL) model, where the adversary gets bounded leakage on the current secret key in
each time period, and FS in the sense that if full key exposure occurs in one time period
then executions in previous time periods remain secure. Note that the FS+CL model is
actually stronger than either CL or FS individually.

1.2 Our Contributions.

In this work, we propose the “Entropic” Continual Leakage (ECL) and Forward security
under “Entropic” Continual Leakage (FS+ECL) model and present new constructions
of public key encryption (PKE) and digital signature schemes in the FS+ECL model.
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Besides, we also improve upon the construction of PKE scheme in the FS+CL model
(due to [7]) in terms of the required hardness assumptions. We expand on each of these
contributions in greater detail below.

The FS+ECL Model. We propose the FS+ECL model. The FS+ECL model is very
similar to the ECL model (informally discussed above) with the following exception: we
require that the security of the underlying primitive be maintained, given the set of local
and non-local leakage queries asked by the adversary till the period of break-in/exposure
(i.e., when the adversary breaks in and recovers the full secret key of that time period).
This is because, after recovering a key in full the adversary can compute the future keys
by itself. This model raises some interesting questions: Can one construct schemes with
better efficiency or under more standard assumptions in the FS+ECL model compared
to the FS+CL constructs of Bellare et al. [7]? Intuitively, this should be the case because
deterministic updates allow exploiting a host of FS machinery (optimized FS schemes
often have deterministic update) already developed. We show that improvements are
possible in the FS+ECL setting for both signatures and encryption.

PKE scheme in the FS+ECL Model. We define and construct key evolving en-
cryption (KEE) scheme in the FS+ECL model. We obtain these results by considering
an intermediate primitive, namely non-interactive key exchange (NIKE) in the FS+ECL
model, and then show a generic transformation from a FS+ECL-secure NIKE scheme to
a FS+ECL-secure PKE scheme. The resulting PKE scheme inherits the same leakage
rate as of the underlying NIKE scheme. Our security model for FS+ECL NIKE can be
seen as a generalization of the model of forward-secure NIKE (FS-NIKE) of Pointcheval
and Sanders [40]. However, as we discuss later (see Section 1.3), defining an appropriate
model for leakage-resilient NIKE is non-trivial and requires care.

We show a construction of FS+ECL-secure NIKE from indistinguishability obfusca-
tion (iO) and one-way functions, enjoying optimal leakage rate, i.e., 1 − o(1). Similar
to [40], our construction of FS+ECL NIKE supports an a-priori bounded (but an arbi-
trary polynomial) number of time periods. While our current instantiation of FS+ECL
NIKE rely on iO, there is hope that this can also be instantiated under weaker as-
sumptions in the future. However, we remark that, before this work, construction of
even FS-NIKE was not known from iO. The previously known construction of FS-NIKE
by [40] relied on graded multilinear maps. However, the candidate constructions of such
maps are prone to various attacks (see [12, 13, 37]). Moreover, it is not clear how to
effectively leverage this construction to achieve leakage-resilience.

Signature scheme in the FS+ECL Model. We define and construct key evolving
signature (KES) scheme in the FS+ECL model. To this end, we introduce another
intermediate primitive, namely identification (ID) scheme in the FS+ECL model, and
then show how to transform such an ID scheme to a FS+ECL-secure signature scheme.

We show a construction of FS+ECL-secure ID scheme from the hardness of the
(standard) RSA problem, enjoying optimal leakage rate, i.e., 1 − o(1). Our ID scheme
supports an a-priori bounded (but an arbitrary polynomial) number of time periods.
Finally, we show how to use the Fiat-Shamir transform to convert an FS+ECL-secure
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ID scheme to a FS+ECL-secure signature. The resulting signature scheme is secure in
the Random Oracle (RO) model and has leakage rate half as that of the underlying
FS+ECL-secure ID scheme, i.e., 1/2− o(1).

PKE scheme in the FS+CL Model [7]. Finally, as a result of independent interest,
we consider the problem of constructing an FS+CL encryption scheme. Bellare et al. [7]
showed a construction of FS+CL secure encryption scheme from extractable witness
encryption (EWE), which is believed to be a suspect assumption [26]. It was left as an
open problem in [7] to construct a FS+CL-secure PKE scheme from standard assump-
tions. We significantly improve upon the construction of [7] and show how to construct
a FS+CL-secure PKE scheme from standard assumptions (namely, static assumptions
over composite-order bilinear maps). Besides, the leakage rate of our construction is also
optimal, i.e., 1− o(1), whereas the PKE scheme of [7] could only tolerate a leakage rate
of 1/poly(κ), where κ is the security parameter.

1.3 Technical Overview.

Modelling FS+ECL-secure NIKE. We observe that constructing a NIKE scheme
even in the setting of bounded leakage (letting alone CL or ECL model) is impossible in
general. This is because, the adversary while leaking from the secret key of one party
involved in the NIKE protocol can encode the (description of the) shared-key derivation
function along with the public key of the other party hard-coded in the function to leak
directly from the shared key. To bypass this impossibility result, we must impose some
meaningful restrictions on the class of allowable leakage functions.

One way to circumvent the above impossibility result would be to consider the non-
adaptive leakage model, where the adversary needs to specify the leakage functions before
seeing the public parameters params (and hence the public keys of the parties). However,
this leakage model is not satisfactory, as typically one assumes that if a value(s) is public
(public key, parameters), everyone, including the adversary will be able to see it at all
times. Also, as discussed in [42], non-adaptive leakage model is a natural choice for
(stateless) cryptographic schemes that do not allow to evolve the secret state (e.g., PRFs,
PRPs). In this work, we consider key-evolving primitives and hence the non-adaptive
leakage model may not be well suited for these applications. Besides, a construction
of NIKE in the non-adaptive leakage model would also lead to constructions of PKE
scheme in the non-adaptive leakage model.

Instead, we propose an alternate model for leakage-resilient NIKE which provides
a better “middle” ground, in the sense that, the choice of the leakage functions can
be adaptive and can even depend on the public keys of the users, subject to the fol-
lowing restriction. In our model, we impose the restriction that the leakage functions
(queried by the adversary) in any of their invocations cannot take as argument the keys
of both users participating in the NIKE protocol. In other words, the leakage functions
can be of the form f(xi, si, params), or f(xj , sj , params), but not f(xi, sj , params) or
f(xj , si, params) respectively, where (xi, si) and (xj , sj) are the key pairs of any two
(distinct) users i and j respectively. In other words, the leakage functions are allowed
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to work with the keys of a single user at a time. However, we stress that the choice of
the leakage functions can depend on both the public keys. At first glance, it might not
be clear why such a model for NIKE will be useful. However, we show that this leakage
model for NIKE is already powerful enough to construct FS+ECL CCA-secure PKE
scheme (in the adaptive leakage model). Finally, we note that there is no efficient way
for the challenger (in the security game) to check that the leakage functions submitted
by the adversary adheres to the above specification1. Instead, we define a class of ad-
missible adversaries (see Section 4.3) and require that the security of the NIKE protocol
only holds with respect to the adversaries from this class.

Constructing FS+ECL-secure NIKE Scheme. The starting point of our construc-
tion of FS+ECL-secure NIKE scheme is the multi-party NIKE construction of Boneh
and Zhandry [8] (henceforth referred to as the BZ protocol) based on indistinguishabil-
ity obfuscation (iO). The main idea of the (two-party version of the) BZ protocol is as
follows: Each user samples a random seed s of a length-doubling PRG G as its secret
key, and announces x = G(s) as its public key. To generate a shared key with an user j,
user i inputs its own key pair (xi, si) and the public key xj of user j to an obfuscated
program P (which is included as part of the common reference string) which works as

follows: P simply checks if xi
?
= G(si). If so, it runs PRFK(xi, xj) (where the PRF key

K is embedded inside the obfuscated program).
It is easy to see that the BZ protocol is not even forward-secure. This is because, if

the secret key s is updated, the public key also changes. We now describe how to modify
the above construction to achieve FS+ECL security. The main idea of our construction
is as follows: Similar to the BZ protocol, the (initial) secret key of each user i in our
construction is also a random seed si1 of a length doubling PRG G. However, the public
key of each party i is now an obfuscated program Pi, which has the initial/root secret
key si1 (corresponding to time period 1) of that party i and a PRF key K embedded in
it. To generate the shared key with an user j corresponding to some time period (say t),
user i runs the obfuscated program Pj (public key of user j) with input sit (secret key
of i corresponding to time period t), where sit is obtained from si1 using a key update
procedure Upd2. The program Pj does the following: (1) Compute sjt = Updt−1(sj1), where

the root key sj1 of user j is hardwired inside Pj and Updt−1 corresponds to running Upd
sequentially t−1 times, (2) then it applies length doubling PRG on the (updated) secret
keys of both the parties i and j to obtain Xi

t = G(skit) and Xj
t = G(skjt ), and (3) runs

PRFK(Xi
t , X

j
t ) (using the key K embedded inside Pj) to obtain the shared key (for time

period t). A salient feature of our construction is that, it does not require a trusted setup
like a common reference string (unlike the BZ protocol). Also, the size of the public key
of each user is succinct, in the sense that it depends only logarithmically in the number
of time periods supported by the scheme.

The security proof of our construction follows the punctured programming technique
of Sahai and Waters [41]; however, with a more subtle analysis. The main problem is

1 For e.g., if the leakage function f is an obfuscation of some circuit.
2 Looking ahead, in our construction Upd will be an entropic leakage-resilient one-way function (ELR-

OWF) [9,18]
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that, we cannot simply switch the outputs of the PRG G (i.e., the values Xi
t and Xj

t ) to
be uniformly random, since the adversary obtains leakage from each of the keys sit and sjt
via local and non-local queries. However, the entropic condition of the FS+ECL model
ensures that each of the secret keys are entropic, even given the leakage. The application
of the PRG on these entropic keys guarantees that the output of the PRG has certain
computational min-entropy or pseudo-entropy in it (to be precise, metric∗ entropy). By
appropriately setting our parameters, we can ensure that the (computationally) entropy
of the output of this (length doubling) PRG is more than the entropy of its input. The
proof now follows from the standard puncturing technique.

From FS+ECL-secure NIKE to FS+ECL-secure PKE scheme. We provide a
generic transformation from a FS+ECL-secure NIKE scheme to a FS+ECL-secure PKE
scheme. The transformation follows the blueprint of [24], who showed how to transform
a secure NIKE scheme (in an appropriate security model) to a CCA-secure PKE scheme,
additionally using one-time signatures. We show how to appropriately modify their proof
technique to deal with forward security and entropic continual leakage simultaneously.

Constructing FS-ECL ID and Signature Schemes. Our definition of FS+ECL-
secure ID schemes generalizes the prior definitions of ID schemes, which were either
forward-secure [1,6] or only leakage-resilient [4]. Conceptually, we view our construction
of FS+ECL-secure ID scheme as a modular combination of two basic steps: (a) prove the
(entropic) leakage-resilience of the generalized Guillou-Quisquater (GQ) identification
scheme [16, 27] based on the hardness of the RSA problem, and (b) use a variant of
the Itkis-Reyzin (IR) transform to convert the generalized GQ scheme to a forward-
secure version of itself. We actually show that the generalized GQ scheme is a secure
3-round public-coin Σ-protocol satisfying two additional properties – (a) each statement
(or theorem) has exponentially many witnesses, and (b) the uncertainty of the witness
conditioned on the statement is high. These properties help us to prove entropic leakage-
resilience.

Finally, we show how to transform the FS+ECL-secure ID scheme to a FS+ECL-
secure signature scheme using the generalized Fiat-Shamir (FS) transform. This shows
the applicability of the FS transform even in the FS+ECL setting.

FS+CL PKE Scheme from Simpler Assumptions As a result of independent
interest, we consider the problem of constructing a FS+CL-secure PKE scheme (as pro-
posed by Bellare et al. [7]). As an intermediate step to achieving this, we abstract out
a new notion of continuous leakage-rate binary tree encryption (CLR-BTE), which is
a continuous leakage-resilient analogue of the notion of binary tree encryption (BTE),
introduced by Canetti, Halevi and Katz (CHK) [11]. We also observe that the construc-
tion of CLR-BTE follows in a straightforward manner from the CLR-HIBE scheme of
Lewko et al. [36] (which is based on static assumptions over composite-order bilinear
groups). For appropriate choice of parameters, the CLR-HIBE scheme achieves the op-
timal leakage rate of 1 − o(1). Finally, we show how to transform a CLR-BTE scheme
to a FS+CL-secure PKE scheme using the Canetti-Halevi-Katz (CHK) transform.

This approach of constructing FS+CL secure encryption scheme was already sug-
gested in [7]. However, it was intuitively claimed in [7] that the above approach does not
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work, due to the following reason: “The problem is that FS+CL security of the resulting
scheme requires that multiple nodes of the BTE construction can be leaked on jointly,
whereas the CL security of HIBE only buys us leakage on each such node individually.”
Surprisingly, we prove the contrary and show that, indeed, it is possible to simulate the
joint leakage by just leaking on a single node. This requires a careful analysis of the
CHK transform in the FS+CL setting.

2 Preliminaries

2.1 Notations

Let x ∈ X denote an element x in the support of X . For a probability distribution X , let
|X | denote the size of the support of X , i.e., |X | =| {x |Pr[X = x] > 0} |. If x is a string
, we denote |x| as the length of x. Let x ← X be the process of sampling x from the
distribution X . With X ∼ Y , we denote that that X and Y have the same distribution.
For n ∈ N, we write [n] = {1, 2, · · · , n}. When A is an algorithm, we write y ← A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a random
variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is
probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗,
the computation of A(x; r) terminates in at most poly(|x|) steps. For a set S, we let US
denote the uniform distribution over S. For an integer α ∈ N, let Uα denote the uniform
distribution over {0, 1}α, the bit strings of length α. Throughout this paper, we denote
the security parameter by κ, which is implicitly taken as input by all the algorithms.
Vectors are written in boldface. For two random variables X and Y drawn from a finite
set X , let δ(X,Y ) = 1

2 |
∑

x∈X Pr(X = x) − Pr(Y = x)| denote the statistical distance
between them. Given a circuit D, define the computational distance δD between X and
Y as δD(X,Y ) = |E[D(X)] − E[D(Y )]|. We denote the size of a circuit D as |D|. We

denote by Ddet,{0,1}
s the class of all deterministic circuits of size s with boolean output

{0, 1}, and Drand,{0,1}
s denote the class of all probabilistic (randomized) circuits of size s

with boolean output.

2.2 Different Notions of Entropy

In this section, we recall some the definitions of information-theoretic and computational
notions of entropy that are relevant to this work and also state the results related to
them.

Unconditional (Information-theoretic) Entropy

Definition 1 (Min-entropy). The min-entropy of a random variable X, denoted as

H∞(X) is defined as H∞(X)
def
= − log

(
maxx Pr[X = x]

)
.

This is a standard notion of entropy used in cryptography, since it measures the worst-
case predictability of X.
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Definition 2 (Conditional Min-entropy [20]). The average-conditional min-entropy
of a random variable X conditioned on a (possibly) correlated variable Z, denoted as
H̃∞(X|Z) is defined as

H̃∞(X|Z) = - log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2−H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a
correlated variable Z.

Lemma 1 (Chain Rule for min-entropy [20]). For any random variable X, Y and
Z, if Y takes on values in {0, 1}`, then

H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− ` and H̃∞(X|Y ) ≥ H̃∞(X)− `.

One may also define a more general notion of conditional min-entropy H̃∞(X|E), where
the conditioning happens over an arbitrary experiment E , and not just a “one-time”
random variable Y [4].

Computational Entropy a.k.a pseudo-entropy

Computational entropy or pseudo-entropy is quantified with two parameters- quality
(i.e., how much distinguishable a random variable is from a source with true min-entropy
to a size-bounded (poly-time) distinguisher)) and quantity (i.e., number of bits of en-
tropy).

Definition 3 (Hill Entropy [29, 31]). A distribution X has HILL entropy at least
k, denoted by HHILL

ε,s (X ) ≥ k, if there exists a distribution Y, where H∞(Y) ≥ k, such

that ∀D ∈ Drand,{0,1}
s , δD(X ,Y) ≤ ε.

For a distribution (X ,Z) we say that X has conditional HILL entropy at least k
conditioned on Y, denoted HHILL

ε,s (X|Y) ≥ k, if there exists a joint distribution (Z,Y)

such that H̃∞(Z|Y) ≥ k, and ∀D ∈ Drand,{0,1}
s , δD

(
(X ,Y), (Z,Y)

)
≤ ε.

In the above definition, if the distinguisher D is drawn from the set Ddet,{0,1}
s , it gives rise

to another notion of HILL entropy, called the “HILL-star” entropy, denoted by HHILL∗
ε,s .

It has been proved in [22,25] that both these notions of HILL and “HILL-star” entropy
are essentially equivalent up to a very small additive loss in the circuit size.

Switching the quantifiers of Y and D in the definition of HILL entropy gives us the
following, weaker notion of “Metric entropy”, as defined in [5].

Definition 4 (Metric entropy [5, 25]). A distribution X has Metric entropy at

least k, denoted by HMetric
ε,s (X) ≥ k, if ∀D ∈ Drand,{0,1}

s , there exists a distribution Y with

H∞(Y) ≥ k, and δD(X ,Y) ≤ ε.
For a distribution (X ,Z) we say that X has conditional metric entropy at least

k conditioned on Y, denoted HMetric
ε,s (X|Y ), if ∀D ∈ Drand,{0,1}

s , there exists a joint dis-

tribution (Z,Y) such that H̃∞(Z|Y) ≥ k, and δD
(
(X ,Y), (Z,Y)

)
≤ ε.

9



Similar to HILL entropy, drawing the distinguisher D from Ddet,{0,1}
s gives the notion of

“metric-star” entropy, denoted by HMetric∗
ε,s (X).

A chain-rule analogous to the chain rule for min-entropy was shown in [25] for Metric*
entropy. Intuitively, the theorem says that the quality and quantity of entropy reduce
by the number of leakage values.

Theorem 1. [25] Let X and Y be discrete random variables. Then:

HMetric∗

ε|̇Y |,s′ (X|Y ) ≥ HMetric∗

ε,s (X)− log |Y |.

Metric vs. HILL. We will use the fact that Metric* entropy implies the same amount
of HILL entropy, albeit with a loss in quality. This was proved for the unconditional case
by [5] and for the conditional case by [25].

Theorem 2. [5] Let X be a discrete distribution over a finite set X . For every ε, εHILL >
0, ε′ ≥ ε + εHILL, k and s if HMetric∗

ε,s (X) ≥ k, then HHILL
ε′,sHILL

(X) ≥ k, where sHILL =

Ω(
ε2HILLs

log |X |)).

Theorem 3. [25] For any joint distribution (X,Z) ∈ X × Z, and every ε, δ > 0,
ε′′ ≥ ε + δ, k and s if HMetric∗

ε,s (X|Z) ≥ k, then HHILL
ε′′,s′HILL

(X|Z) ≥ k, where s′HILL =

Ω
(

sδ2

log |X |+log |Z|)
)
.

2.3 Puncturable Pseudo-Random Functions

In this section, we define the syntax and security properties of a puncturable pseudo-
random function family. We follow the definition given in [30].

A puncturable family of PRF pPRF : K × X → Y is given by a triple of polynomial
time algorithms (pPRF.setup, pPRF.puncture, pPRF.eval) and equipped with an additional
(punctured) key space Kp defined as follows:

• pPRF.setup(1κ) : This is a randomized algorithm that takes the security parameter
κ as input and outputs a description of the key space K, the punctured key space Kp
and the PRF pPRF.

• pPRF.puncture(K,x) : This is also a randomized algorithm that takes as input a
(master) PRF key K ∈ K, and an input x ∈ X , and outputs a key Kx ∈ Kp, often
denoted as the punctured key (punctured at the point x). Without loss of generality,
we can think of F.puncture as a deterministic algorithm also. This is because we can
de-randomize the algorithm by generating its random bits using a PRF keyed by a
part of the master key K and given the point x as input.

• pPRF.eval(Kx, x
′) : This is deterministic algorithm that takes as input the punc-

tured key Kx ∈ Kp, and an input x′ ∈ X . Let K ∈ K, x ∈ X and Kx ←
pPRF.puncture(K,x). The correctness guarantee stipulates that:

pPRF.eval(Kx, x
′) =

{
pPRF(K,x) if x 6= x′

⊥ otherwise

10



Security of Puncturable PRFs: The security of puncturable PRFs is depicted by a
game between a challenger and an adversary. The security game consists of the following
four stages:

1. Setup Phase: The challenger chooses uniformly at random a (master) PRF key
K ∈ K and a bit b ∈ {0, 1}.

2. Evaluation Query Phase: In this phase the adversary A queries a point x ∈ X .
The challenger sends back the evaluation pPRF(K,x) to A. These queries can be
made arbitrarily and adaptively by A polynomially many times. Let E ⊂ X be the
set of evaluation queries.

3. Challenge Phase: In this phase, the adversary A chooses a challenge point x∗ ∈ X .
The challenger computes Kx∗ ← pPRF.puncture(K,x∗). If bit b = 0, C sends back
(Kx∗ , pPRF(K,x∗)). Else, the challenger samples a uniformly random y∗ ← Y, and
sends back (Kx∗ , y

∗) to A.

4. Guess Phase: A outputs a guess b′ for the bit b chosen by the challenger.

The advantage of A in the above game is defined by:

AdvpPRF
A (κ) = Pr

[
b′ = b

∣∣ x∗ ← ApPRF.eval(K,·)(κ,K∗x) ∧ x∗ /∈ E
]
.

Definition 5. The punctured PRF pPRF is said to be secure if for all PPT adversaries
A participating in the above game, AdvpPRF

A (κ) is negligible in κ.

2.4 Indistinguishability Obfuscation

A uniform PPT machine iO is called an indistinguishability obfuscator for a circuit class
{Cκ}κ∈N if it satisfies the following conditions:

• (Functionality Preserving). For all security parameters κ ∈ N, for all C ∈ Cκ, for all
inputs x, we have that:

Pr
[
C ′(x) = C(x) : C ′ ← iO(κ,C)

]
= 1

• (Indistinguishability of Obfuscation). For any (not necessarily uniform) PPT adver-
saries Samp, D, there exists a negligible function negl(·) such that the following
holds: if for all security parameters κ ∈ N, Pr

[
∀x,C0(x) = C1(x) : (C0, C1, st) ←

Samp(κ)
]
> 1− negl(κ), then we have:∣∣∣Pr

[
D(st, iO(κ,C0)) = 1 : (C0, C1, st)← Samp(κ)

]
− Pr

[
D(st, iO(κ,C1)) = 1 : (C0, C1, st)← Samp(κ)

]∣∣∣ ≤ negl(κ).

where the probability is over the coins of D and iO.

We remark that the algorithms Samp and D pass state st, which can equivalently be
viewed as a single stateful algorithm B = (Samp,D).
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2.5 Entropic Leakage-resilient OWF

In this section, we recall the definition of leakage-resilient one-way functions (LR-OWF)
from [9]. Informally, a one-way function (OWF) g : {0, 1}n → {0, 1}m is leakage-resilient
if it remains one-way, even in the presence of some leakage about pre-image. In entropy-
bounded leakage model, instead of bounding the length of the output of leakage functions
(as in bounded leakage model), we bound the entropy loss that happens due to seeing the
output of the leakage functions. We follow the definition of [17] to consider the entropy
loss over the uniform distribution as a measure of leakiness. We follow this definition
since it has nice composability properties as stated below.

Definition 6. [17]. A (probabilistic) function h : {0, 1}∗ → {0, 1}∗ is `-leaky, if for all
n ∈ N, we have H̃∞(Un|h(Un)) ≥ n − `, where Un denote the uniform distribution over
{0, 1}n.

As observed in [17], if a function is `-leaky, i.e, it decreases the entropy of uniform
distribution by at most ` bits, then it decreases the entropy of every distribution by at
most ` bits. Moreover, this definition composes nicely in the sense that, if the adversary
adaptively chooses different `i-leaky functions, it learns only

∑
i `i bits of information.

We now define the security model for weak PRFs in this entropy-bounded leakage model.

Definition 7. (Entropic leakage-resilient one-wayness). Let A be an adversary
against g : {0, 1}n → {0, 1}m. We define the advantage of the adversary A as AdvLR-OWF

A (κ) =

Pr[g(x) = y |x∗ $←− {0, 1}n, y∗ = g(x∗);x← AOLeak(·)(y∗)].

Here OLeak is an oracle that on input h : {0, 1}n → {0, 1}∗ returns f(x∗), subject to
the restriction that h is λ-entropy leaky. We say that g is λ-entropic leakage-resilient
one-way function (λ-ELR-OWF) if not any PPT adversary A its advantage defined as
above is negligible in κ.

As shown in [18], a second-preimage resistant (SPR) function with n(κ) bits input and
m(κ) bits output is also a λ(κ)-entropy leaky OWF for λ(κ) = n(κ)−m(κ)− ω(log κ).

2.6 Σ-Protocols

A Σ-protocol for an NP relation R is a special form of 3-move honest verifier zero
knowledge protocol, that enables a prover to prove knowledge to a witness w associated
to a statement x ∈ LR, without revealing any additional information about the witness
W .

LetR = {(x,w)} be an efficiently computable binary relation, with |w| ≤ p(|x|), for some
polynomial p = p(κ). Also let LR = {x : (w, x) ∈ R} be the language corresponding to
the relation R. A Sigma protocol Π = (P, V ) is a 3-round interactive protocol between
a prover P (holding a private input w corresponding to a statement x ∈ LR) and a
verifier V (holding the statement x). The protocol proceeds as follows: (i) the prover’s
first message (also called commitment) is denoted by a = P (x,w); (ii) the verifier then
chooses a random challenge c ∈R Ch, where Ch denotes the challenge space, (iii) the
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prover’s second message (also called response) is denoted by z = P (x,w, a, c). The tuple
(a, c, z) is known as a transcript/proof. We write V (x, a, c, z) = 1 iff verifier V accepts,
and we say that the transcript (a, c, z) is accepting for x. A Σ-protocol is public-coin,
which means that the challenge c is chosen uniformly at random by the verifier V ,
without having to store any private information about it. We now formally define the
properties to be satisfied by a Σ-protocol.

Definition 8. A protocol Π = (P, V ) is a three-round public-coin protocol satisfying
the following properties:

• Completeness: If P and V follow the protocol on input x and private input w to P
where (x,w) ∈ R, then V always accepts.

• Special soundness: There exists a polynomial time algorithm (or knowledge extrac-
tor) K, that on input x and a pair of accepting transcripts (a, c, z), (a, c′, z′) for x,
where c′ 6= c, outputs w such that (x,w) ∈ R.

• Perfect honest verifier zero knowledge (HVZK): There exists a probabilistic
polynomial time simulator Sim such that the following two distributions are identically
distributed: {

Sim(x, c)
}
x∈LR,c∈RCh

≡
{
〈P (x,w), V (x, c)〉

}
x∈LR,c∈RCh

where Sim(x, c) denotes the output of the simulator upon input x and c, and 〈P (x,w), V (x, c)〉
denotes the output transcript of an execution between P and V , where P has input
(x,w), V has input x, and V ’s random tape (challenge) equals c.

As shown in [14], HVZK implies witness indistinguishability. The authors in [4] rephrased
this property in a slightly different way. In particular, they showed that the oracle access
to a prover P (x,w) does not decrease the min-entropy of w in any experiment in which
x is given to the predictor. We also follow this formulation in our work.

Lemma 2. [4]. Let (P, V ) be a HVZK protocol for the relation R, (X,W ) be random
variables over R, and let A be a PPT adversary. Let E1 be an arbitrary experiment
in which A is given X at the start of the experiment, and let E2 be the same as E1,
except that A is also given oracle access to P (x,w) throughout the experiment. Then
H̃∞(W |E2) = H̃∞(W |E1).

2.7 Representation problem.

Let L ∈ NP be a language with an efficiently computable binary relation R ⊂ {0, 1}∗ ×
{0, 1}∗, i.e, x ∈ L if and only if there exists w such that (x,w) ∈ R and |w| = poly(|x|).
The value w is called a witness for the statement/theorem x ∈ L. We say that a repre-
sentation problem for the relation R is (t, ε)-hard if for all PPT adversaries running in
time t, we have:

Pr[w 6= w′ ∧ (x,w), (x,w′) ∈ R : (x,w,w′)← A(1κ)] ≤ ε
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In most of the cases, the hardness of the representation problem for R is equivalent
to the hardness of the underlying relation R. We will require the hardness of the RSA
representation problem as defined below:

RSA Representation problem. Let N = p · q, where p and q are prime numbers. Let
(e, d) be chosen in such a way that e·d = 1 mod φ(N), and e is a prime. Consider the lan-
guage LRSA = {(g1, · · · , g`, h) : ∃ (ρ, ω1, · · · , ω`) ∈ Z∗N×Z`e s.t. h =

∏`
i=1 g

ωi
i ·ρe mod N},

where (g1, · · · , g`) are generators of a prime-order cyclic subgroup of Z∗N . We say that
the tuple w = (ρ, ω1, · · · , ω`) is a representation of h. The `-representation problem asks
to compute two different representations w,w′ for some x = (g1, · · · , g`, h) ∈ LRSA. As
shown in [39], the `-representation problem is hard for LRSA if and only if the RSA
problem3 is hard in Z∗N .

3 The Entropic Continual Memory Leakage (ECL) Model

As discussed before, no cryptographic primitive can be secure against continual leakage if
it has deterministic update/ key-evolution procedure. To this end, we introduce a variant
of continual memory leakage (CL) model, which we call the entropic continual memory
leakage (ECL) model. Similar to the CL model, the ECL model also follows a key-
evolving paradigm where the secret key is periodically updated, keeping the public key
unchanged. We assume that when the secret key evolves to the next time period, the prior
keys are securely erased from the system. Indeed, given the choice of different security
models, it might be prudent to look at them through the lens of adversarial classes. In
particular, we first present a unified security model that guarantees different levels of
security by considering different classes of adversaries. Our unified security framework is
powerful enough to capture the existing leakage security models, for e.g., the bounded
leakage, continual leakage and entropy bounded leakage models. In addition, this gives
rise to some natural intermediate notions, one of which we call the entropic continual
leakage (ECL) model. Looking ahead, we will present this approach for the primitives of
Key Evolving Signature Schemes (KES) and Key Evolving Encryption (KEE) schemes.

We will now proceed to describe classes of adversaries that capture not only existing
notions but allow us to define new intermediate ones as well. These classes are defined via
types of leakage functions. These are classified as local and non-local leakage functions.
Informally, a leakage function is local when the adversary does not compute the update
function as a part of the function. We find this to be a natural requirement in practice
and it is critical in the scenario of deterministic update. This is formally defined in
Definition 9.

Before we proceed with the definition, we will introduce some additional notations.
We will define the random variable representing the secret key at time i as SKi. Clearly,
SK1, . . . , SKT are the random variables representing the secret keys at time periods
1, . . . , T respectively defined by a key update scheme, i.e., for all 1 ≤ i ≤ T − 1, SKi+1

is obtained from SKi by using the key update algorithm. Let Li be the leakage query

3 The RSA problem is: Given (N,u, e), such that u = ρe mod N , compute ρ.
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issued by the adversary at time i. Let Li denote the random variable which represents the
leakage Li(SKi). Also, let RLi denote the random coins of the adversary corresponding to
the function Li. Further, it is helpful to define Σi as the random variable representing the
state of the adversary. This captures the cumulative knowledge of the adversary based on
all leakage queries and responses, except the query at time period i, and also includes the
random coins of the adversary. In other words, Σi = {{Lj}Tj=1 \Li} ∪ {{RLj}Tj=1 \RLi}.

Definition 9 (Local Leakage). A leakage query Lt acting on a key skt, at time period
t is a local leakage query if any key SKj 6= SKt does not lose its entropy due to Lt =
Lt(skt). In other words,

H(SKj |Σt,Lt = Lt(skt), RLt) = H(SKj |Σt)

Here, H is a suitable notion of computational entropy.

In other words, the above definition says that: If the entropy of a key at a time period
j is the same with and without conditioning on the leakage from time t 6= j, then the
key and the leakage are independent. A local leakage query is one which is independent
of every other key.

Remark 1. Before we proceed, we would like to point out that while the above definition
of “local leakage” is defined for computational entropy, it can be generalized to include
information-theoretic notions of entropy. However, for our application of deterministic
update, it is not hard to see that the notion of entropy needs to be computational to
avoid a trivial reduction to the bounded leakage model (as explained later).

Now, we present a unified definition of leakage security models based on the allowed
adversarial classes.

Admissible adversaries: It is prudent to define different classes of adversaries based
on the nature of their leakage queries - based on the length of the output of the leakage
functions or the residual entropy of the key(s). More formally, let us denote the maximum
number of time periods to be T . Let κ denote the security parameter, and let α = α(κ),
and λ = λ(κ). We define the following classes of adversaries:

• Aα: It is the class of α-entropic adversaries where all the leakage queries made by B
satisfy the following condition:

∀j ∈ [T ], H
(
SKj |L1, · · · ,LT , RL1 , · · · , RLT

)
≥ α,

for some parameter α, and H being a suitable notion of entropy (either
information-theoretic or computational). The random variables Li represents the leak-
age from the ith secret key ski, i.e., Li = Li(ski), and RLi denotes the random coins
of the adversary. Next, we look at conditioning on a subset of these queries such as
the set of non-local leakage queries, as defined below.
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• AαN : The class α-entropic non-local adversaries is the class of PPT adversaries B such
that the non-local leakage queries made by B satisfy the following definition:

∀j ∈ [T ],H
(
SKj |La1 , · · · ,Lai , RLa1 , · · · , RLai

)
≥ α (1)

where (RLa1 , · · · , RLai ) are random coins of the adversary corresponding to the subset
(La1 , . . . , Lai) ⊆ (L1, . . . , LT ) of non-local leakage queries. Note that this does not
restrict the local leakage queries in any way.

• Aλ: The class of λ-length adversaries is the set of PPT adversaries B making leakage
queries such that ∀j ∈ [T ], |Li(ski)| < λ.
We now look at imposing this length bound condition only on a subset of the leakage
queries. We get,

• AλL: The class of λ-length local adversaries is the set of all PPT adversaries B making
leakage queries such that, for all local leakage queries Li we have that, |Li(ski)| < λ.
This does not restrict the output length of the non-local leakage queries.

In the above definitions, the L and N in subscript indicate local and non-local respec-
tively. In addition, the presence of a 1 or 0 in the superscript indicates the number
of queries the adversary can make. By default, the adversary can make a polynomial
number of queries. From the above notations, it is it is easy to recover the class of adver-
saries for the Continual Leakage Model, Bounded Leakage Model and Entropy Bounded
Leakage Model as follows.

• Continual Leakage (CL) Model : The adversary is not constrained by the number or
the type of queries. The only constraint is on the length of the output of the leakage
functions in each time period. Let this be denoted by λ < |sk|. Therefore, ACL = Aλ.
Note that, in this context the right notion of entropy that must be considered in the
definition of local leakage (see Def. 9) is average conditional min-entropy, since the
update function is randomized.

• Bounded Leakage (BL) Model : Let us recall that the BL model is envisioned for
the setting where there is a single secret key and there is no key update procedure.
Cast in our setting, this can be thought of as a scheme over multiple time periods
where the key evolves to itself, i.e the update is the identity function. Note that,
the only constraint is that the length of the leakage cannot exceed λ. Therefore,
ABL = Aλ,1L ∩ A0

N .

• Entropic Bounded Leakage (EBL) Model : This is a generalization of the BL model
where the constraint is on residual entropy of the secret key conditioned on the
leakage. Thus, AEBL = Aα,1L ∩A

α,0
N , and the right notion of entropy to be considered

in Def. 9 is average conditional min-entropy.

The Entropic Continual Leakage Model. This brings us to the definition of the
Entropic Continual Leakage (ECL) model.

An initial attempt. Recall that in the CL model the update function is randomized.
In contrast, in the ECL model, we want to consider deterministic update functions.
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As a first attempt, suppose we impose the following restriction: there are a maximum
of T time periods and the keys need to have residual entropy of α conditioned on the
leakage information, at each time period. In other words, this model considers the class
of adversary AECL′ = Aα.

However, it is not hard to see that this model actually reduces to the one-time
entropy-bounded leakage (EBL) model (without any key updates). To see this, consider
a trivial scheme where the update function is simply the identity function. This, along
with the requirement that each of the keys be entropic implies that any key-evolving
scheme that is secure against one-time entropic leakage (i.e, in the EBL model) is also
secure in this model. We thus seek something stronger.

Defining the ECL model. Our approach is as follows:

1. We allow the adversary to make local leakage queries, provided it leaks only a max-
imum of λ bits per time period. This rules out the existence of the trivial scheme
(where the update function is an identity function), because there exists an adversary
which leaks λ physical bits from the keys in each time period and thereby recovering
the entire key sk in |sk|/λ time periods.

2. In addition, we allow the adversary to make non-local leakage queries, provided that
the keys have minimum residual entropy of α conditioned on the leakage information
at each time period. Since the update function is deterministic, the notion of entropy
we consider is computational, namely average conditional HILL entropy.

Thus, from the above we get that, AECL = AλL∩AαN . The notion of entropy considered
while defining the classesAλL andAαN is HHILL

ε,s . HereAECL denote the class of adversary
for the ECL model. When a scheme is secure against AECL, we call that scheme to be
(α, λ)-ECL-secure.

The next question is the relation between λ and α. By our ECL model, the keys at each
time periods are guaranteed to have (computational) entropy at least α, even conditioned
on the leakage. Let us fix one such key. At some point, a local leakage can reduce its
entropy further by at most λ bits. In other words, the secret key would have a residual
entropy of at least (α−λ) and we need this to satisfy the relation: α−λ = ω(log(κ)). In
other words, a scheme which is (αECL, λECL)-ECL-secure is also αECL′-ECL

′-secure where
αECL′ = αECL − λECL. This shows us that αECL′ < αECL.

3.1 Forward Security under Entropic Continual Memory Leakage (FS +
ECL) Model

One of the key advantages of considering continuous leakage-resilient cryptographic prim-
itives with deterministic update function is that, they can be seamlessly amalgamated
with the notion of forward security (FS). To this end, we provide a unified model that
captures both these aspects simultaneously– forward security and resilience to entropic
continual leakage. We call this model as forward-security under entropic continual leak-
age (“FS+ECL”), motivated by the FS+CL model of [7]. In simpler terms, we also
require FS to hold under the ECL model.
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The key difference from the weaker ECL model is that an adversary also has access
to the oracle Exp which allows it to break into the system at some point in time (say
time period t∗ ∈ [T ]) and obtain the secret key skt∗ in full. The access to oracle Lk allows
it to obtain leakage from the secret keys of all the time periods prior to the break-in
period t∗, subject to the validity of the attacker4.

The security under this model is guaranteed against the class of “valid/admissible
adversaries” AFS+ECL, which we define next. Recall that, for the ECL model the class
of admissible adversaries was defined as AECL = AλL ∩ AαN . However, before formally
defining the class AFS+ECL of adversaries, we will need to modify the definitions of “local
leakage” (see Def. 9) and the α-entropic condition of the ECL model (see Eq. 1) for the
FS+ECL model as follows:

Definition 10 (Local Leakage - FS+ECL Model). We will define the random vari-
able representing the secret key at time i as SKi, then SK1, . . . , SKT are the random
variables representing the secret keys at time periods 1, . . . , T respectively defined by a
Key Update scheme. Let t∗ ∈ [T ] denote the period of break-in. Let Li be the leakage query
issued by the adversary at time i. Let Li denote the random variable which represents the
leakage Li(SKi). Also, let RLi denote the random coins of the adversary corresponding
to the function Li We can then define the leakage query Lt acting on a key skt, at time
period t as a local leakage query if any key SKj 6= SKt does not lose its entropy due to
Lt = Lt(skt). In other words,

H(SKj |Σt,Lt = Lt(skt), RLt) = H(SKj |Σt)

where we let Σt represent the other queries and the respective responses, i.e, Σi =
{Lj}t

∗−1
j=1 \ Lt ∪ {RLj}

t∗−1
j=1 \RLt.

Note that, as remarked before, we only include the leakage queries until time period
t∗ − 1 in this definition4. This is a subtle difference from the definition of local leakage
in Definition 9.

Definition 11 (λ-length, local adversary - FS+ECL Model). The class of λ-
length, local adversary in the FS+ECL model (AλL,t∗) is the class of all PPT adversaries
such that: for all local leakage queries Li where i ∈ [t∗−1], |Li(ski)| < λ. This adversary
does not have any constraints on the non-local queries, by definition.

Note that, this is similar to the definition AλL defined in the ECL model.

Definition 12 (α-entropic, non-local adversary - FS+ECL Model). The class
of α-entropic non-local adversaries in the FS+ECL model (AαN,t∗) is the class of PPT
adversaries such that the leakage functions satisfy the following condition:

∀j ∈ [t∗ − 1],H
(
SKj |La1 , · · · ,Lai , RLa1 , · · · , RLai

)
≥ α (2)

4 It is vacuous to look at leakage queries starting from time t∗ as the adversary has the secret key skt∗

in full and can compute future keys under the regime of deterministic updates.
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where where (RLa1 , · · · , RLai ) are random coins of the adversary corresponding to the
subset (La1 , . . . ,Lai) ⊆ (L1, . . . ,L(t∗−1)) of non-local leakage queries made by the adver-
sary before the time period t∗. This adversary does not have any constraints on the local
queries, by definition.

Remark 2. Note that, both the definitions above use computational notions of entropy,
namely average conditional HILL entropy. This is needed, since the update function is
deterministic.

Defining the FS+ECL model. Combining Definitions 11 and 12 we define the class
of admissible adversaries AFS+ECL in the FS+ECL model as:

AFS+ECL = AλL,t∗ ∩ AαN,t∗

Remark 3. Finally, we note that, we model the adversary by classifying types of leakage
functions rather than providing different oracles (corresponding to local and non-local
queries) because it sidesteps the issues of entropy estimation which is currently not
known to be doable in polynomial time.

3.2 Modelling Signature Schemes in the FS+ECL Model.

Any signature scheme in the FS+ECL model must follow a key-evolving paradigm.
A key-evolving signature (KES) scheme consists of the following algorithms (KES.Kg,
KES.Upd, KES.Sign, KES.Vfy). The key generation algorithm KES.Kg takes as input the
security parameter 1κ (in unary), and outputs a key pair (vk, sk1), where sk1 is the base
signing key (corresponding to time period 1). The deterministic key update algorithm
KES.Upd takes as input (1κ; vk, t, skt) and outputs skt+1, the secret key for the next
time period t+ 1 ∈ [T ]. Here T denotes the total number of time periods supported by
the scheme. We stress that the update algorithm is deterministic. The signing algorithm
KES.Sign takes as input (1κ, vk, t, skt) and a message m ∈M (where M is the message
space) and outputs a signature σt for the tth time period. The verification algorithm
KES.Vfy takes as input (1κ, vk,m, (t, σt)) to return a decision in {true, false} regarding
whether σt is a valid signature of m relative to vk in time period t ∈ [T ].

Correctness: The correctness requirement for a KES scheme states that: for all κ ∈ N,
all (vk, sk1, ) ← KES.Kg(1κ), all i ∈ [T ], all m ∈ M , all sk2, · · · , ski satisfying skj ←
KES.Upd(1κ, vk, j − 1, skj−1), ∀ 2 ≤ j ≤ i, and all σi ← KES.Sign(1κ, vk, i, ski,m), it
should hold that KES.Vfy(1κ, vk,m, (i, σi)) = true.

Forward unforgeability under entropic continual leakage (FUFECL). Given a

key evolving signature scheme KES, consider the experiment FUFECL
Asig

KES(κ, α, λ, T )
as defined in Figure 1 running between a challenger C and a PPT adversary Asig,
parametrized by the security parameter κ, an entropy parameter α (maximum leak-
age bound), a length parameter λ, and the total number of time periods T that can be
supported by the scheme. To achieve a definition devoid of trivial attacks, we define the
validity of an adversary in Definition 13.
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Game FUFECL
Asig

KES (κ, α, λ, T )

S ← ∅ ; t← 1 ; t∗ ← T + 1

(vk, sk1)←$ KES.Kg(1κ)

(i,m, σ)←$AUp, Exp,Sign
sig (1κ, vk)

win1 ← (1 ≤ i < t∗) ∧ ((i,m, σ) 6∈ S)

win2 ← KES.Vfy(1κ, vk,m, (i, σ))

Return (win1 ∧ win2)

Up()

If t < T then

skt+1 := KES.Upd(1κ, vk, t, skt)

t← t+ 1

Lk(L)

Return L(skt)

Exp()

t∗ ← t ; Return skt

Sign(t,m)

(t, σ)←$ KES.Sign(1κ, vk, t, skt,m)

S ← S ∪ {(t,m, σ)} ; Return (t, σ)

Game FINDECL
Apke

KEE (κ, α, λ, T )

t← 1 ; t∗ ← T + 1

(pk, sk1)←$ KEE.Kg(1κ)

(i,m0,m1, state)←$AUp,Lk,Exp,Dec
1 (1κ, pk)

b←$ {0, 1} ; (i, c)←$ KEE.Enc(1κ, pk, i,mb)

b′←$AUp,Exp,Dec
2 (1κ, state, (i, c))

If not (1 ≤ i < t∗) then return false

If |m0| 6= |m1| then return false

Return (b′ = b)

Up()

If t < T then

skt+1 := KEE.Upd(1κ,pk, t, skt)

t← t+ 1

Lk(L)

Return L(skt)

Exp()

t∗ ← t ; Return skt

Dec(t, ct)

If (t, ct) 6= (i, c)

Return KEE.Dec(1κ, pk, (t, skt), ct)

Fig. 1. Games defining forward unforgeability of key-evolving signature scheme KES under entropic
continual leakage, and forward indistinguishability of key-evolving encryption scheme KEE under entropic
continual leakage.

Definition 13 (Valid Adversary against the FUFECL Game). We call an ad-
versary Asig “ valid” if the following holds true: (i) it makes at most one query to its
Exp oracle and this is the last query, (ii) the adversary Asig belongs to the class AFS+ECL

of admissible adversaries (see Section 3.1 for the definition of the class AFS+ECL.), and
(iii) it does not invoke KES.Sign in its leakage functions.

Definition 14. (Forward unforgeability under entropic continual leakage). We
say that KES = (KES.Kg,KES.Upd,KES.Sign,KES.Vfy) is (λ, α)-forward unforgeable un-
der entropic continual leakage ((λ, α)-FUFECL) with respect to the class AFS+ECL of ad-

versaries, if the advantage defined as Advfufecl
KES,Asig

(κ) = Pr
[
FUFECL

Asig

KES(κ, α, λ, T ) = 1
]

(see Figure 1) is negligible for all “ valid” PPT adversaries Asig (as defined in Defini-
tion 13).

3.3 Modelling Public Key Encryption in the FS+ECL Model.

A key-evolving encryption (KEE) scheme consists of the following algorithms (KEE.Kg,
KEE.Upd, KEE.Enc, KEE.Dec). The key generation algorithm KEE.Kg takes as input the
security parameter 1κ (in unary), and output a public-secret key pair (pk, sk1), where sk1
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is secret key corresponding to the base time period. The key update algorithm KEE.Upd
takes as input (1κ, pk, i) and secret key ski for time period i, and outputs a secret key
ski+1 for the next time period. Assume that the total number of time period supported
by the scheme is T ∈ N. The encryption algorithm KEE.Enc takes as input (1κ, pk, i)
and a message m to return ci, where ci is the ciphertext encrypting m under pk for time
period i ∈ [T ]. The decryption algorithm KEE.Dec takes (1κ, pk, i, ski, ci) as input to
return an output in m ∪ {⊥}.

Correctness: The correctness requirement for a KEE scheme states that: for all κ ∈
N, for all (pk, sk1) ← KEE.Kg(1κ, T ), all m ∈ M, all sk2, · · · , ski satisfying skj ←
KEE.Upd(1κ, pk, j − 1, skj−1), ∀ 2 ≤ j ≤ i, and all ci ← KEE.Enc(1κ, pk, i,m), it should
hold that KEE.Dec(1κ, pk, i, ski, ci) = 1.

Forward Indistinguishability under entropic continual leakage (FINDECL). Given
a key-evolving encryption scheme KEE, consider the experiment FINDECLAKEE(κ, α, λ, T )
as defined in Figure 1, running between a challenger C and a PPT adversary Apke =
(A1,A2), parametrized by the security parameter κ, the maximum leakage bound λ in
a single time-period, an entropy parameter α, and the total number of time periods T
that can be supported by the scheme. To achieve a definition devoid of trivial attacks,
we define the validity of an adversary in Definition 15.

Definition 15 (Valid Adversary against the FINDECL Game). We call an ad-
versary Apke = (A1,A2) “ valid” if the following holds true: (i) it makes at most one
query to its Exp oracle and this is the last query, (ii) the adversary Apke belongs to the
class AFS+ECL of admissible adversaries (see Section 3.1 for the definition of the class
AFS+ECL.).

Remark 4. Note that, in our FINDECL
Apke

KEE(κ, α, λ, T ) game, the adversary A2 does not
get access to the leakage oracle. This is related to after-the-fact leakage, where the adver-
sary, after receiving the challenge ciphertext c, can use the leakage oracle to specifically
leak the challenge bit b hidden by c. To address this impossibility due to after-the-fact
leakage, one can consider weaker leakage models, like the split-state leakage model. How-
ever, in this case the machinery would become significantly more complex and take away
from our core focus.

Definition 16. (Forward indistinguishability under entropic continual leak-
age). We say that KEE = (KEE.Kg,KEE.Upd,KEE.Enc,KEE.Dec) is (λ, α)-forward in-
distinguishable under entropic continual leakage ((λ, α)-FINDECL) with respect to the
class AFS+ECL of adversaries, if the advantage defined as

Advfindecl
KEE,Apke

(κ) = Pr[FINDECL
Apke

KEE(κ, α, λ, T ) = 1] (see Figure 1) is negligible for all

“ valid” PPT adversaries Apke = (A1,A2) (as defined above).

4 Construction of FS+ECL Encryption Scheme.

In this section, we present our construction of key-evolving encryption scheme in the
FS+ECL model. To this end, we first introduce and formalize a notion of forward-secure
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entropic leakage-resilient non-interactive key exchange (FS-ECLR-NIKE) protocol (see
Section 4.1). In Section 4.5, we show how to construct a FS-ECLR-NIKE protocol from
indistinguishability obfuscation and one-way functions. Finally, in Section 4.7, we show
a generic transformation from a FS-ECLR-NIKE protocol to a FINDECL secure en-
cryption scheme. We view our security model and construction of FS-ECLR-NIKE as a
result of independent interest, that may find more useful applications beyond the one
shown in this work.

4.1 NIKE in FS+ECL Model.

Non-interactive key exchange (NIKE) protocols allow two (or more) parties to establish
a shared key between them, without any interaction. It is assumed that the public
keys of all the parties are pre-distributed and known to each other. In this work, we
consider two-party NIKE protocols and extend them to the setting of forward-security
and entropic continual leakage model. We provide the definition of forward secure (FS)
non-interactive key exchange (NIKE) protocol in the entropic continual leakage model
(dubbed as “FS-ECLR-NIKE”). Our security model for FS-ECLR-NIKE can be seen
as a leakage-resilient adaptation of the model of forward-secure NIKE (FS-NIKE) of
Pointcheval and Sanders (PS model) [40]. We call our model of NIKE as the ECL-PS
model to emphasize that our model is entropic leakage-resilient version of the original
PS model.

4.2 Syntax.

A FS-ECLR-NIKE scheme FS-ECLR-NIKE, consists of the tuple of algorithms (NIKE.Setup,
NIKE.Gen, NIKE.Upd, NIKE.Key). We associate to FS-ECLR-NIKE a public key space PK,
a secret key space SK, a shared key space SHK, and an identity space IDS. Identities
are used to track which public keys are associated with which users; we are not in the
identity-based setting.

• NIKE.Setup(1κ, (α, λ)) : On input the security parameter κ (expressed in unary), and
leakage parameters (α, λ) of the ECL model, the setup algorithm outputs a set of
global parameters of the system denoted by params. The current time period t is
initially set to 1. In case, the system supports a maximum of T time periods, the
setup additionally takes T as argument to generate params.

• NIKE.Gen(1κ, IDA) : On input an identity IDA ∈ IDS, the key generation outputs
a public-secret key pair (pkA, skA1 ) for IDA corresponding to the base time period.
We assume that the secret keys implicitly contain the description of the appropriate
time periods.

• NIKE.Upd(skAt ) : The update algorithm takes as input the secret key skAt of some
user IDA corresponding to time period t ≥ 1 and outputs the updated secret key
skAt+1 for the next time period t + 1. They key skAt is then securely erased from
memory.
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• NIKE.Key(IDA, pk
A, IDB, sk

B
t ) : On input an identity IDA ∈ IDS associated with

public key pkA, and another identity IDB ∈ IDS with secret key skBt corresponding
to the current time period t, output the shared key shkABt ∈ SHK or a failure symbol
⊥. If IDA = IDB, the algorithm outputs ⊥. Since the secret key skBt is associated
with time period t, the shared key shkABt between the two users IDA and IDB also
corresponds to the same time period t.

Correctness: The correctness requirement states that the shared keys computed by any
two users IDA and IDB in the same time period are identical. In other words, for any
time period t ≥ 1, and any pair (IDA, IDB) of users having secret keys skAt and skBt
respectively, it holds that:

NIKE.Key(IDA, pk
A, IDB, sk

B
t ) = NIKE.Key(IDB, pk

B, IDA, sk
A
t ).

4.3 On the leakage-resilience of NIKE protocols.

A closer inspection into the model of NIKE will suggest that achieving leakage-resilience
for NIKE protocols in its most generic form is impossible. To illustrate this, let us con-
sider two parties IDA (with key pair (pkA, skAt )) and IDB (with key pair (pkB, skBt ))
who wants to establish a shared key for some time period, say t. Since the leakage
functions can be arbitrary PPT functions, they can, in particular, be the session-key
derivation function also! The adversary A, while leaking from the secret key of IDB

(resp. IDA), can set the leakage function to be f = NIKE.Key(IDA, pk
A, IDB, ·) (resp.

f = NIKE.Key(IDB, pk
B, IDA, ·)). This allows the adversary to leak directly from the

shared key shkAB established between IDA and IDB. Hence, with very high probability
shkAB will no longer be indistinguishable from a random session key.

Admissible Adversaries. The above observation suggests that, if the leakage function
(while leaking from the secret key of any one of the parties involved in the shared key
derivation in the same time period) is allowed to simultaneously access the keys of both
the parties (involved in the shared key derivation), then constructing a leakage-resilient
NIKE protocol is impossible. Hence, we need to enforce some meaningful restrictions on
the class of leakage functions. We bypass the above impossibility result by considering
security of NIKE protocols with respect to an admissible class of adversary ANIKE. Before
defining the class of admissible adversaries for NIKE, we explain the restrictions that
we impose on the class of leakage functions that the adversary Anike is allowed to query.
These are:

• We assume that the leakage functions (queried by Anike), in any of their invocations,
cannot embed as input the keys corresponding to both the (distinct) parties partici-
pating in a NIKE protocol in the same time period (say t). In other words, invoking
the leakage function fi as fi(pk

A, skAt , params) or fi(pk
B, skBt , params) is permit-

ted; while invoking fi as fi(sk
A
t , pk

B, params) or fi(sk
B
t , pk

A, params) is not allowed
(since the arguments inside the leakage function fi involves the keys corresponding to
both IDA and IDB). That is, the leakage functions fi are allowed to work only with
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keys associated with a single user at a time. Let us denote the class of adversaries
which respect the above constraint to be A.

• The leakage queries asked by the adversary Anike must satisfy the FS+ECL require-
ments, i.e., Anike must belong to the class AFS+ECL of adversaries (see Section 3.1 for
the definition of the class AFS+ECL).

We define the admissible class ANIKE of adversary for the ECL-PS model as ANIKE =
AFS+ECL∩A, where AFS+ECL and A are defined as above. In defining the security model
for leakage-resilient NIKE protocols, we only consider security against adversaries that
belong to this admissible class ANIKE.

Remark 5. At first glance, it may not be clear why this leakage model for NIKE should
be useful. Interestingly, we show that this leakage model for NIKE is already strong
enough to construct a FS+ECL PKE scheme (where the leakage functions can be adap-
tively chosen by the adversary). Indeed, constructing such a PKE scheme was the main
objective of our work, and hence this leakage model of NIKE suffices for our purpose!

Remark 6. Lastly, one may note that the above impossibility result (of constructing
leakage-resilient NIKE protocols) does not carry forward to the setting of (interactive)
key exchange protocols. This is because, the session key established between two parties
in a key exchange protocol depends not only on the long term key pairs of both the
parties, but also on the ephemeral key pairs (randomnesses) of both of them.

4.4 Security Model for FS+ECL NIKE.

Our security model for NIKE generalizes the model of forward-secure NIKE of [40] (called
the PS model). We refer to our model as the ECL-PS model. The ECL-PS model allows
the adversary Anike = (A1,A2) to do the following:

• Similar to [23, 40], our ECL-PS model also allows for both “honest key registra-
tion” (HKR) and “dishonest key registration” (DKR) queries (modeled by giving
Anike access to the RegHon, RegCor oracles respectively). The DKR query allows the
adversary to register public keys of his choice in the system. This models real-life
situations where minimal trust must be placed on the certification authority (CA).
In particular, the CA is not assumed to check whether a registered public key already
belongs to the system, and also does not check if the party registering the public key
knows the corresponding private key.

• The adversary Anike may also ask to reveal shared keys between these “corrupt” users
and the honest (non-adversarially controlled) users. This is modeled by giving the
adversary access to the oracle Reveal.

• It may also break into the system and obtain the secret key of an honest party at
any particular time period t∗. This is modeled by giving the adversary access to the
oracle Exp.
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Game ECL-PS
Anike
NIKE (κ, α, λ, T )

params← NIKE.Setup(1κ, (α, λ), T ) ; S,Q← ∅
(IDA, IDB , t̃)← ARegHon,RegCor,Reveal,Lk,Exp

1 (params)

b←$ {0, 1}
If b = 0 then

shkABt̃ ← NIKE.Key(IDA, pkA, IDB , sk
B
t̃ )

Return shkABt̃
Else Return shkABt̃ ←$ SHK
b′←$ARegHon,RegCor,Reveal,Lk,Exp

2 (shkABt̃ )

If (IDA,−,−, corrupt) ∈ S or

(IDB ,−,−, , corrupt) ∈ S, then return ⊥
If (IDA, t

∗) ∈ Q and t∗ ≤ t̃, then return ⊥
If (IDB , t

∗) ∈ Q and t∗ ≤ t̃, then return ⊥
If (IDA, IDB , t̃) was made, then return ⊥
Return (b′ = b)

Reveal(IDA, IDB , t)

If (IDA,−,−, corrupt) ∈ S and

(IDB ,−,−, , corrupt) ∈ S, then return ⊥
If (IDB ,−,−, corrupt) 6∈ S
shkABt ← NIKE.Key(IDA, pkA, IDB , sk

B
t )

Return shkABt

Else If (IDB ,−,−, corrupt) ∈ S

shkABt ← NIKE.Key(IDA, sk
A
t , IDB , pkB)

Return shkABt

RegHon(ID)

(pk, sk1)← NIKE.Gen(1κ, ID)

Add (ID, sk1, pk, honest) to S

Return pk

RegCor(ID,pk)

Add (ID,−−, pk, corrupt) to S

Lk(L, ID, t)

Return L(skt)

Exp(ID, t∗)

If (ID, sk1, pk, honest) ∈ S
Add (ID, t∗) to Q

Return skt∗

Else Return ⊥

Fig. 2. Game defining ECL-PS of NIKE scheme NIKE under entropic continual leakage.

• The adversaryAnike may also query the oracle Lk to leak from the secret keys of honest
parties, subject to constraint that Anike belongs to the class ANIKE of admissible
adversaries (defined above).

• Finally, in the challenge phase, the adversary Anike has to distinguish the shared key
established between two honest users from a random key for any time period prior to
the period of exposure (break-in) t∗. Note that, in the ECL-PS game the adversary
is also allowed to leak from the secret keys of the challenge parties for all the time
periods prior to t∗.

The formal details of our ECL-PS game is given in Figure 2.

Definition 17 (Forward Secure Entropic Continual Leakage Resistant NIKE).
A NIKE protocol is (λ, α)-entropic forward-secure and resilient to entropic continual
leakage ((λ, α)-FS-ECLR) with respect to the class Anike of adversaries, if the advantage
defined as Advfs-ecl

AECL
(κ) = |Pr[ECL-PSAECL(κ, α, λ, T ) = 1]−1/2| (see Figure 2) is negligible

in κ for all “valid” PPT adversaries Anike (as defined above).
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In other words, the adversary Anike succeeds in the above experiment if it is able to
distinguish a valid shared key between two users from a random session key. To avoid
trivial win, some restrictions are enforced, namely: (i) both the targeted users needs to be
honestly registered (ii) the adversary Anike is not allowed to corrupt any of the targeted
users prior to the challenge time period t̃, (iii) Anike is not allowed to obtain the shared
key between the targeted users at the time period t̃, (iv) Anike is allowed to leak on the
secret keys of both the targeted users, as long as it satisfies all the restrictions given
above (namely it belongs to the class ANIKE of admissible adversaries). We emphasize
that the adversary is allowed to corrupt any user other than the targeted users before
the time period t̃, and it can even corrupt the targeted users after t̃.

4.5 Construction of FS + ECL NIKE scheme

In this section, we present our construction of forward-secure NIKE protocol resilient
to entropic continual leakage. Our construction of FS-ECLR NIKE can only support
an a-priori bounded (yet any polynomial) number of time periods, say T . Let PRF :
K × {0, 1}∗ → SHK be a puncturable PRF, iO be an indistinguishability obfuscator
for circuits, and PRG2 : {0, 1}κ → {0, 1}2κ be a length-doubling PRG. We build our
FS-ECLR-NIKE as below.

• NIKE.Setup(1κ, T ) : Choose a random key K to obtain an instance of a pseudorandom
function PRF. Set params = (H,PRG2, iO).

• NIKE.Gen(1κ, params, IDi) : To compute the key pair of an user IDi, sample ski1
$←−

{0, 1}κ. Create the public key as pki = iO(Pi), where the program Pi is defined in
Figure 3.

• NIKE.Upd(1κ, skit) : On input of the user ID′is secret key skit at time period t, com-
putes skit+1, the secret key for the next time period t + 1. The instantiation of the
update function is mentioned below.

• NIKE.Key(IDi, pk
i = iO(Pi), IDj , sk

j
t ) : The user IDj runs the program iO(Pi) on

inputs the secret key skjt and the time period t to obtain the shared key shkijt at
time period t.

Note on Update Function: The update function NIKE.Upd is one which takes a secret key
of the current period and produces a new secret key. As defined in the security model,
the adversary can issue leakage queries provided the keys are α-entropic conditioned
on the set of non-local leakage queries. It is not hard to see that the update function
should necessarily satisfy the one-wayness property, essentially guaranteeing the non-
invertibility of the earlier keys once the secret key is exposed. Interestingly, for the
above construction, we can abstract away the update function to any entropic leakage
resilient one-way function, i.e., NIKE.Upd(·) = g(·), where g : {0, 1}κ → {0, 1}κ be a
`-entropic leakage-resilient one-way function (`-ELR-OWF).
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Constants: ski1, K, T .

Inputs: skjt , t.

1. Check if t ≤ T . If not, output ⊥.

2. Update skit = NIKE.Updt−1(ski1).

3. Compute: Xi
t = PRG2(sk

i
t) and Xj

t = PRG2(sk
j
t ).

Output the shared key shkijt = pPRF(K, (Xi
t , X

j
t )).

Fig. 3. The program Pi. This program is appropriately padded to the maximum of the size of itself and
the programs P ∗i , P ∗∗i and P final

i defined in Figures 4, 5 and 6 respectively. . The programs P ∗i , P ∗∗i and
P final
i are only used in the security proof.

It is not hard to see that both the parties IDi and IDj end up with the same shared

key. The correctness of the computation of the shared key shkijt by both the parties is
shown below:

NIKE.Key(IDj , pk
j = iO(Pj), IDi, sk

i
t) = pPRF(K, (Xi

t , X
j
t , T ))

= pPRF
(
K,
(
PRG2(sk

i
t),PRG2(NIKE.Upd

t−1(skj1)),PRG2(t)
))

= pPRF
(
K,
(
PRG2(NIKE.Upd

t−1(ski1)),PRG2(NIKE.Upd
t−1(skj1)),PRG2(t)

))
.

NIKE.Key(IDi, pk
i = iO(Pi), IDj , sk

j
t ) = pPRF(K, (Xi

t , X
j
t , T ))

= pPRF
(
K,
(
PRG2(NIKE.Upd

t−1(ski1)),PRG2(sk
j
t ),PRG2(t)

))
= pPRF

(
K,
(
PRG2(NIKE.Upd

t−1(ski1)),PRG2(NIKE.Upd
t−1(skj1)),PRG2(t)

))
.

Remark 7. One nice feature of our construction of FS+ECL NIKE is that, it does not
require any trusted setup assumptions, like a common reference string (CRS). This is
in contrast to the Boneh-Zhandry NIKE protocol [8] which required a CRS. Besides,
the public keys of each user in our construction are succinct, in the sense that it scales
only logarithmically in the number of time periods T supported by the scheme (since
the obfuscated programs only need to remember the counter till T , which takes only up
to log T bits of information).

4.6 Security Proof of our FS-ECLR-NIKE construction.

Theorem 4. Let κ be the security parameter. Let, PRG2 be a secure length-doubling
pseudo-random generator, pPRF be a secure punctured PRF, the FK be a family of
secure `-ELR-OWF, and iO be a secure indistinguishability obfuscator for circuits, then
the construction shown in section 4.5 is a (α, λ)-forward-secure entropic leakage-resilient
NIKE in the ECL-PS model, where α =

(
(1 − 1

log κ) · κ
)
∈ (1 − o(1))κ and λ = α − `

denotes the leakage per time period.
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Proof sketch. The proof of our NIKE protocol uses the punctured programming paradigm
of Sahai and Waters [41]. In the proof, the values Xi

t and Xj
t are chosen uniformly at

random, instead of being computed by a length doubling PRG PRG2. Note that, at this
point, we cannot directly invoke the security of PRG2 to argue that these values are
indistinguishable from the output of the PRG. This is because, the inputs to the PRG
are not random, and are only entropic. However, as we show, the output of the PRG
still has sufficient HILL entropy (actually the outputs have Metric∗ entropy, which can
be converted to HILL entropy with some loss in quality and quantity), and in particular
has much larger HILL entropy than the entropy of its input. Now, it can be shown
that, with overwhelming probability these values will not have a pre-image under PRG2.
At this point, we change the functionality of our program as follows: If there exists
an input that maps to any of these values, we abort. The indistinguishability of the
obfuscator ensures that this change in the functionality of the program is not detected
by a PPT adversary. Finally, we can puncture the PRF pPRF at the point (Xi

t , X
j
t ), and

include only the punctured key inside the obfuscated program (i.e., the public key). The
indistinguishability of the obfuscator again ensures that this modification is undetectable
to an adversary, and we can simulate the view of the adversary using the punctured key.
The security of pPRF finally allows us to switch the real shared key to a random key.
In our case, the adversary also gets leakage from each of the (updated) NIKE secret
keys. However, the entropic continual leakage model ensures that each of the NIKE keys
retain some min-entropy, even given all the leakage information. Hence, as discussed
above, we can replace the shared key with a random key. We now give the detailed proof
of Theorem 4.

Proof. We prove the security of Theorem 4 via a sequence of hybrid experiments. Let Si
be the probability that AECL wins in Game i.

Hybrid0 : This corresponds to the original security game in the experiment Expfs-ecl
AECL

(κ).
The challenger first chooses a time period t̃ as a guess for the break-in period of the
adversary AECL. If AECL chooses any period other than t̃, the challenger aborts. It then
chooses two random seeds ski1 and skj1 and computes Xi

t = PRG2(sk
i
t), X

j
t = PRG2(sk

j
t ).

It also creates the obfuscated programs pki = iO(Pi) and pkj = iO(Pj) respectively,

and gives the challenge key as shkijt = pPRF(K, (Xi
t , X

j
t )) to AECL. All the leakage

information that AECL asks can also be answered by the challenger with the knowledge
of the secret keys ski1 and skj1. According to the definition of AECL, we have:

Advfs-ecl
AECL

(κ) = Pr[S0].

Hybrid1 : This is similar to Hybrid0, except that the challenger chooses the values Xi
t ,

and Xj
t uniformly at random from {0, 1}2κ. The leakage from all the secret keys till time

period t̃ are still simulated using the original secret keys skk1 , · · · , skkt̃ , where k ∈ {i, j}.

Claim. |Pr[S1]− Pr[S0]| ≤ negl(κ).

Proof. Note that, the above proof does not follow in a straightforward way from the
security of PRG2, since the inputs to PRG2 are not uniformly random. Instead, each of
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the secret keys are (α−λ)-entropic. This follows from our adversarial modeling because
we require each key to have at least α entropy conditioned on the non-local leakage and
the local leakage (of output length λ) can at most reduce the entropy by λ. We now
estimate the computational entropy left in the output of PRG2, given the leakage. Let
F be a class of functions that leaks at most (α− λ) bits from any secret key. Hence, for
any function f ∈ F , the chain rule for Metric∗ entropy gives us the following:

HMetric∗

ε·2(κ−α),s′
(
PRG2(sk

i
t)|f(skit) ∈ F

)
≥ HMetric∗

ε,s (PRG2(sk
i
t))− (α− λ)

≥ 2κ− (α− λ)

≥ 2κ− α+ λ

≥ 2κ− α

The second inequality comes from the fact that the output of a PRG has full HILL
entropy (and hence Metric∗ entropy) when the input is random. Hence, the output of
PRG2 has 2κ bits of Metric∗ entropy.

This implies the following: For every εHILL > 0, ε′ ≥ ε · 2(2κ−α) + εHILL, we have:

HHILL∗

ε′,sHILL

(
(PRG2(sk

i
t)|f(skit) ∈ F)

)
≥ 2κ− α,

where sHILL = Ω(
ε2HILLs
2κ ).

The above result implies that the output of PRG2 is indistinguishable from a random
variable that has (2κ − α) bits of min-entropy. Hence, if we sample a random 2κ bit
string Xi

t , the probability that any input of PRG2 maps to the random string Xi
t is at

most 2κ

22κ−α = 2α−κ. Now, if we set, α =
(
(1− 1

log κ) · κ
)
∈ (1− o(1))κ, we get that 2α−κ

is negligible. The claim follows. ut

Hybrid2 : Similar to Hybrid1, except that the challenger now changes the obfuscation
of the program Pi to an obfuscation of a related program P ∗i , as shown in Figure 4.

The program P ∗i additionally checks if there exists an input skjt∗ for which it holds that

PRG2(sk
j
t∗) = Xj

t . If this is the case, the challenger aborts. Similar modification is also
done for the other party IDj .

Claim. |Pr[S2]− Pr[S1]| ≤ negl(κ).

Proof. Note that, at the end of Hybrid1, with overwhelming probability, none of the
values Xi

t or Xj
t will have a pre-image under PRG2, since the size of the image of PRG2

is much larger than its domain. Therefore, with overwhelming probability, there is no
input to the program Pi that will cause pPRF to be evaluated at the point (Xi

t , X
j
t ). The

indistinguishability of the obfuscator ensures that the difference of the advantage of the
adversary AECL between Hybrid1 and Hybrid2 is negligible. Hence, the claim follows.

Hybrid3 : Similar to Hybrid2, except that in this hybrid, we modify the program P ∗i
to obtain the program P ∗∗i , as shown in Figure 5. In particular, we puncture the PRF

key K at the point (Xi
t , X

j
t ), and use the punctured key in the obfuscated program.
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Constants: K, T .

Inputs: skjt , t.

Compute the following:

1. Check if t ≤ T . If not, output ⊥.

2. Sample Xi
t , X

j
t

$←− {0, 1}2κ.

3. If there exists an input skjt∗ , for which PRG2(skjt∗) = Xj
t , output ⊥.

Output the shared key shkijt = pPRF(K, (Xi
t , X

j
t )).

Fig. 4. The program P ∗i .

Claim. |Pr[S3]− Pr[S2]| ≤ negl(κ).

Proof. At the end of Hybrid2, we know that the PRF will never be evaluated on the
point (Xi

t , X
j
t ). Hence the functionality of both the programs P ∗i and P ∗∗i are identical.

The indistinguishability of the obfuscation thereby guarantees that an obfuscation of
P ∗∗i is indistinguishable from the obfuscation of the program P ∗i . The claim follows.

Constants: K
(Xit ,X

j
t )

, T .

Inputs: skjt , t.

Compute the following:

1. Check if t ≤ T . If not, output ⊥.

2. Sample Xi
t , X

j
t

$←− {0, 1}2κ.

3. If there exists an input skjt∗ , for which PRG2(skjt∗) = Xj
t , output ⊥.

Output the shared key shkijt = pPRF(K, (Xi
t , X

j
t )).

Fig. 5. The program P ∗∗i .

Hybrid4 : Similar to Hybrid2, except that we modify the program P ∗∗i to obtain the

program P final
i , as shown in Figure 6. Here, we sample the shared key shkijt uniformly at

random from the shared key space.

Claim. |Pr[S4]− Pr[S3]| = negl(κ).

Proof. We will show that if there exists an adversary Anike that can distinguish between
Hybrid3 and Hybrid4, we can build an adversary APRF that can break the security
of the punctured PRF. The adversary APRF acts as a challenger for Anike. Whenever
Anike makes a register honest user query to RegHon(IDA), APRF sample skA1 uniformly
at random, and return the obfuscated program as the public key pkA to Anike. On a
register corrupt user query to RegCor(IDA, pk

A) with public key pkA, APRF records
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(IDA,−, pkA, corrupt). When Anike queries the oracle Exp(IDA, t), the challenger APRF
computes skAt and returns it to Anike. For a reveal query Reveal(IDA, IDB, t), the chal-
lenger APRF asks the pPRF oracle for the correct shared key and thus always reveals
the correct key. For the challenge query corresponding to the tuple (IDi, IDj , t̃), APRF
asks its challenger for a real or random value, and returns the resulting output to the
adversary Anike. The leakage queries of the Anike are also answered using the knowledge
of the appropriate secret keys . Thus, APRF perfectly simulates the view of Anike. If the
returned value is the actual PRF value, we are in Hybrid3, else if it a random value we
are in Hybrid4. Hence, the claim follows.

Constants: K
(Xit ,X

j
t )

, T .

Inputs: skjt , t.

Compute the following:

1. Check if t ≤ T . If not, output ⊥.

2. Sample Xi
t , X

j
t

$←− {0, 1}2κ.

3. If there exists an input skjt∗ , for which PRG2(skjt∗) = Xj
t , output ⊥.

Output the shared key shkijt
$←− SHK.

Fig. 6. The program P final
i .

Finally, note that, the probability Pr[S4] = 0, since the shared key is sampled randomly.
Putting all the above together, the proof of Theorem 4 immediately follows. ut

4.7 FINDECL secure PKE from FS-ECLR-NIKE scheme

As a central application of forward-secure entropic leakage-resilient NIKE (FS-ECLR-
NIKE), we show how to construct a IND-CCA secure key-evolving key encapsulation
mechanism (KEM) resilient to ECL attacks, generically starting from any FS-ECLR-
NIKE. From such a FINDCL-secure KEM it is easy to construct a FINDECL-secure
PKE scheme using standard techniques. Hence, we focus on the construction of the
FINDECL-secure KEM scheme. Our generic transformation essentially adapts the ideas
of Freire et al. [24] to deal with forward security and entropic continual leakage.

The main idea of our transformation is as follows: the base public-secret key pair
(pk, sk1) of the FINDECL-secure KEM scheme is sampled using the key generation
algorithm of the underlying FS-ECLR-NIKE scheme. The secret keys of the KEM scheme
is updated using the key update algorithm of the FS-ECLR-NIKE scheme. To encrypt
a message m for time period t, independently sample another base key pair (pk′, sk′1)
of the FS-ECLR-NIKE scheme and the secret key sk′1 is updated (using the key-update
algorithm of FS-ECLR-NIKE) to the time period t, resulting in the key sk′t. The public
key pk′ is also signed using a one-time signature scheme that binds the public key
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to its identity. The encapsulation key K is then generated by running the shared key
generation algorithm of the FS-ECLR-NIKE with input (pk, sk′t). The ciphertext consists
of the randomly sampled public key pk′ and the signature σ. The receiver can compute
the same encapsulated key by running the shared key generation algorithm of the FS-
ECLR-NIKE with the inputs (pk′, skt) (where skt is the updated version of sk1 to time
period t), assuming the one-time signature verifies.

We now show the detailed construction of our key-evolving KEM scheme KEM =
(KEM.Kg,KEM.Upd,KEM.Enc,KEM.Dec). Before proceeding with the construction we
present the syntax and security model for a forward-secure entropic leakage-resilient
KEM scheme.

Modelling KEM in the FS+ECL Model. A key-evolving KEM scheme consists
of the following algorithms KEM = (KEM.Kg,KEM.Upd,KEM.Enc,KEM.Dec). The key
generation algorithm KEM.Kg takes as input the security parameter 1κ (in unary) and
optionally the parameters of the scheme (e.g., the maximum number of time periods
supported by the scheme), and output a public-secret key pair (pk, sk1), where sk1 is
secret key corresponding to the base time period. The key update algorithm KEM.Upd
takes as input (1κ, pk, i) and secret key ski for time period i, and outputs a secret key
ski+1 for the next time period. Assume that the total number of time period supported
by the scheme is T ∈ N. The encapsulation algorithm KEM.Enc takes as input (1κ, pk, i)
to return (ci,Ki), where Ki is the encapsulated key and ci is the ciphertext encrypt-
ing Ki under pk for time period i ∈ [T ]. The decapsulation algorithm KEM.Dec takes
(1κ, pk, i, ski, ci) as input to return an output in Ki∪{⊥}. Let us denote the encpasulated
key sapce by K.

Correctness: The correctness requirement for KEM states that: for all κ ∈ N, for all
(pk, sk1)← KEM.Kg(1κ, T ), all sk2, · · · , ski satisfying skj ← KEM.Upd(1κ, pk, j−1, skj−1),
∀ 2 ≤ j ≤ i, and all ci,Ki ← KEM.Enc(1κ, pk, i), it holds that KEM.Dec(1κ, pk, i, ski, ci) =
Ki.

Forward Indistinguishability under entropic continual leakage (FINDECL).
Given a KEM scheme, consider the experiment FINDECLAkem

KEM(κ, α, λ, T ) as defined
in Figure 7, running between a challenger C and a PPT adversary Akem = (A1,A2),
parametrized by the security parameter κ, the maximum leakage bound λ in a single
time-period, an entropy parameter α, and the total number of time periods T that can
be supported by the scheme. Similar to Definition 15, we define what it means for an
adversary Akem to be “valid”.

Definition 18 (Valid Adversary against the FINDECL Game of KEM). We
call an adversary Akem = (A1,A2) “ valid” if the following holds true: (i) it makes at
most one query to its Exp oracle and this is the last query, (ii) the adversary Akem belongs
to the class AFS+ECL of admissible adversaries (see Section 3.1 for the definition of the
class AFS+ECL.).

Definition 19. (Forward indistinguishability under entropic continual leak-
age). We say that KEM = (KEM.Kg,KEM.Upd,KEM.Enc,KEM.Dec) is (λ, α)-forward
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Game FINDECL
Akem
KEM (κ, α, λ, T )

t← 1 ; t∗ ← T + 1

(pk, sk1)←$ KEM.Kg(1κ)

(i, state)←$AUp,Lk,Exp,Dec
1 (1κ, pk)

b←$ {0, 1} ; (i, c,K0)←$ KEM.Enc(1κ, pk, i) ;

K1←$K ;

b′←$AUp,Exp,Dec
2 (1κ, state, (i, c,Kb))

If not (1 ≤ i < t∗) then return false

Return (b′ = b)

Up()

If t < T then

skt+1 := KEM.Upd(1κ, pk, t, skt)

t← t+ 1

Lk(L)

Return L(skt)

Exp()

t∗ ← t ; Return skt

Dec(t, ct)

If (t, ct) 6= (i, c)

Return KEM.Dec(1κ, pk, (t, skt), ct)

Fig. 7. Game defining forward indistinguishability of key-evolving KEM scheme KEM under entropic
continual leakage.

indistinguishable under entropic continual leakage ((λ, α)-FINDECL) with respect to the
class AFS+ECL of adversaries, if the advantage defined as

Advfindecl
KEM,Akem

(κ) = Pr[FINDECL
Apke

KEM(κ, α, λ, T ) = 1] (see Figure 7) is negligible for all
“ valid” PPT adversaries Akem = (A1,A2) (as defined above).

The Construction. Let FS-ECLR-NIKE = (NIKE.Setup,NIKE.Gen,NIKE.Upd,NIKE.Key)
be a forward-secure entropic leakage-resilient NIKE secure in the ECL-PS model, with
shared key space SHK, and let OTS = (OTS.Gen,OTS.Sign,OTS.Vfy) be a strong exis-
tentially unforgeable one-time signature scheme. The construction of FINDECL KEM
is shown in Figure 8.

4.8 Security proof.

Theorem 5. Let FS-ECLR-NIKE be a (α, λ)-entropic continual leakage-resilient forward-
secure NIKE ((α, λ)-FS-ECLR-NIKE) secure in the ECL-PS model, and OTS be a
strong existentially unforgeable one-time signature scheme. Then KEM = (KEM.Kg,KEM.Upd,
KEM.Enc,KEM.Dec) is a (α, λ)-FINDECL-secure KEM scheme.

Proof. Let Akem be an adversary against the FINDECL-secure KEM scheme KEM. We
now show how to use Akem to construct another adversary Anike against FS-ECLR-NIKE,
thereby contradicting its ECL-PS security. Anike simulates the environment to Akem in
the following way:

Anike on input params picks one identity IDi uniformly at random and runs OTS.Gen
to obtain a key pair (signk, vk). It then sets IDj = vk and makes two queries to its
RegHon oracle, namely RegHon(IDi) and RegHon(IDj) queries to receive the public keys
pki and pkj respectively. Anike then returns pkKEM = (params, IDi, pk

i) to Akem. When
Akem makes an update query, Anike forwards the query to its own challenger and answers
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1. KEM.Kg(1κ, (λ, α), T ) : Run NIKE.Setup(1κ, (λ, α), T ) algorithm to obtain the system parameters
params. It then chooses ID ∈ IDS uniformly at random, and runs NIKE.Gen(1κ, ID) to obtain a
(base) key pair (pk, sk1). It then sets pkKEM = (params, ID, pk), and skKEM = (ID, sk1).

2. KEM.Upd(1κ, pk, t, skt) : The key update algorithm of KEM runs NIKE.Upd(skt) (where skt is the
secret key for the current time period t) to obtain the updated key skt+1 for the next time period
t+ 1.

3. KEM.Enc(1κ, pkKEM, t) : This algorithm does the following:

• Parses pkKEM as (params, ID, pk).

• Runs (signk, vk)← OTS.Gen(1κ), and repeats this until vk 6= ID.

• Runs NIKE.Gen(1κ, vk = ID′) to obtain another key pair (pk′, sk′1), and computes σ ←
OTS.Sign(signk, pk′) to obtain a signature σ on pk′.

• Runs sk′t = NIKE.Updt−1(sk′1) to obtain the updated key corresponding to time period t.

• It then runs NIKE.Key(ID, pk, ID′, sk′t) to obtain a shared key K ∈ SHK.

The output is the tuple
(
K,CKEM = (pk′, vk, σ)

)
.

4. KEM.Dec(1κ, pkKEM, t, sk1, CKEM) : This algorithm does the following:

• Parse pkKEM as (params, ID, pk) and CKEM as (pk′, vk, σ).

• Run OTS.Vfy(vk, pk′, σ). If the signature does not verify, output ⊥. Also, if vk = ID, output ⊥.

• Run skt = NIKE.Updt−1(sk1) to the time period t.

• Finally, run NIKE.Key(vk = ID′, pk′, ID, skt) to obtain a shared key K′ ∈ SHK ∪ {⊥}. (note
that K′ can also be ⊥)

Fig. 8. Construction of FINDECL-secure KEM scheme.

Akem. On input a leakage query f(·, t) on ID1 from Akem, the adversary Anike queries it
leakage oracle Lk(f, IDi, t). It then forwards the answer to Akem. When the adversary
Akem enters into the the challenge phase for some time period t̃ (before the break-in
period t∗), the adversary Anike also enters its own challenge phase and queries the tuple
(IDi, IDj , t̃) to its challenger to receive a shared key shkij

t̃
for time period t̃. The key

shkij
t̃

can either be a real key or a random key. Anike then sets the encapsulated key

K∗ = shkij
t̃

, and computes the signature σ∗ ← OTS.Sign(signk, pkj). Finally, Anike sets
CKEM = (IDj , pkj , σ

∗), and returns the challenge tuple (K∗, CKEM) to Akem. When the
adversary Akem decides to break-in to some time period say t∗, Anike makes a query to
its oracle Exp for the same time period t∗ and returns the answer to Akem.

Akem also makes Dec queries which can are handled by Anike as follows: For each
decryption query of the form (t, Ct), parse Ct as (ID′, pk′, σ′). If ID′ = IDj , and
(pk′, σ′) 6= (pkj , σ

∗), then it is easy to see that we can build another adversary AOTS

that breaks the strong existential unforgeability of the OTS scheme. If ID′ = IDi, it
returns ⊥. If ID′ /∈ {IDi, IDj}, Anike makes a call to its oracle RegCor(ID′, pk′) and
then makes a call to the oracle Reveal(IDi, ID

′, t) to get a shared key K ∈ SHK or ⊥.
It then returns the key K to Akem.
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This completes the description of Anike’s simulation. Note that, the view of Akem is
identical when playing either against Anike in this simulation or against a real IND-CCA
secure FINDECL KEM challenger. When Akem outputs a guess b′, Anike also outputs
the same bit b′ as guess for the shared key (whether it is real or random). Also, note
that, the leakage tolerated by the KEM scheme is exactly the same as the amount of
leakage tolerated by the underlying FS-ECLR-NIKE NIKE scheme. This concludes the
proof. ut

5 Signatures Schemes in the FS+ECL Model

In this section, we present our construction of a key-evolving signature scheme in the
FS+ECL model. To this end, we first define and construct a new notion of forward-secure
entropic continual leakage-resilient identification (FS-ECLR-ID) scheme in Sections 5.1
and 5.2 respectively. Our notion of FS-ECLR-ID schemes generalizes the prior definitions
of ID schemes, which were either leakage-resilient or forward-secure, but not both. Later,
in Section 5.3, we show how to transform such a FS-ECLR-ID scheme into a FUFECL-
secure signature scheme using (generalized) Fiat-Shamir (FS) transform. This shows
the applicability of FS transform even in the FS+ECL setting. The FUFECL signature
scheme obtained via the FS-transform is secure in the RO model and can tolerate a
leakage rate of 1/2−o(1). However, one drawback of our construction is that, the resulting
signature scheme can support an a-priori bounded (but arbitrary polynomial) number
of time periods.

5.1 Forward-secure Entropic Leakage-resilient Identification schemes

An identification scheme is an interactive protocol that enables a client (or prover) to
prove its identity to a server (or verifier). In a forward-secure identification scheme, the
time is divided into discrete time periods, such that the secret key for period i + 1 can
be computed from the secret key of period i. The public key remains the same in every
time period. More formally, a forward-secure identification scheme consists of the five
algorithms (ParamGenID,GenID,UpdateID,P,V) as described below:

1. ParamGenID(1κ) : The parameter generation algorithm takes as input the security
parameter κ (in unary) and outputs a set of system parameters params, and the
maximum number of time periods T supported by the system. The parameters params
are taken as implicit input by all the algorithms.

2. GenID(1κ, T ) : The key generation algorithm outputs a pair (pk, sk1) containing the
public key pk and a base secret key sk1 for the first time period.

3. UpdateID(pk, skt) : The deterministic key update algorithm takes the secret key skt
of the current time period t and outputs the secret key skt+1 for the next time period
t + 1, if skt is a secret key for time period t < T . We assume that the secret keys
implicitly contain the information about the time periods they are associated with.

4. P(pk, skt) : The prover algorithm takes as input the secret key skt for the current time
period t, the current conversation transcript and the associated state and outputs
the next message (if any) to be sent to the verifier.
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5. V(pk, t) : The deterministic verification algorithm takes the public key and the pe-
riod t and outputs a decision in {accept, reject} at the end of the protocol execu-
tion. We denote the interaction between P and V corresponding to time period t as
{P(pk, skt) 
 V(pk, t)}.

FS-IDPREκ,λ,α,Tent (Aid), FS-IDANYκ,λ,αT
ent (Aid)

1. Key Stage. Let (params, T ) ← ParamGenID(1κ), (pk, sk1) ← GenID(1κ); give (params, pk) to the
adversary Aid.

2. Learning Stage. The adversary A
Oλ,α
skt

,P(pk,skt),OUpd(pk,skt)

id gets access to (a) leakage oracle pro-
vided that Aid belongs to the admissible class AFS+ECL of adversaries (see Section 3.1 for the definition
of the class AFS+ECL), (b) an honest prover P(pk, skt) modeled as an oracle that runs (arbitrarily
many) proofs upon request for each time period t ∈ [T ], and (c) update oracle OUpd(pk, skt).

3. Break-in Stage. The adversary Aid may provide the description of a time period t∗ in which it
wants to break into the system. Set t∗ ← t, and return skt to Aid.

4. Impersonation Stage. This stage is defined separately for the two games:

• The adversary Aid looses access to all the oracles and runs a protocol {Aid 
 V(pk, t)} with
an honest verifier with respect to some time period t < t∗. This notion is called forward-secure
pre-impersonation entropic leakage security game, and is denoted by FS-IDPREκ,λ,α,Tent .

• The adversary A
Oλ,α
skt

id maintains access to only the leakage oracle Oλ,αskt , but not the prover oracle,

and runs a protocol {A
Oλ,α
skt

id 
 V(pk, t)} with an honest verifier with respect to some time period
t < t∗. This notion is called forward-secure anytime entropic leakage game, and is denoted by
FS-IDANYκ,λ,αT

ent .

Fig. 9. Attack games for FS-ECLR-ID scheme.

An ID scheme should satisfy the standard completeness property, i.e., if the prover
is honest the (honest) verifier will accept the transcript generated by the interaction
{P(pk, skt) 
 V(pk, t)}. We now define the security of forward-secure entropic leakage-
resilient ID schemes. Informally, in the learning stage the adversary is given access to
polynomially many “copies of the prover”, and also access to the leakage and update
oracles. The adversary can obtain leakage on each of the secret keys corresponding to
each time period i ∈ [T ], provided the leakage functions satisfy the constraints of the
FS+ECL model. The adversary may also break into the system and obtain the secret
key skt∗ for any time period t∗. After the learning stage, the adversary enters into an
impersonation stage in which it either looses access to all the oracles (called forward-
secure pre-impersonation entropic leakage security) or retains access to only the leakage
oracle (forward-secure anytime entropic leakage security). In this stage, the adversary
tries to impersonate the prover to the honest verifier with respect to a time period t prior
to the break-in period t∗, and wins the game if it succeeds. The attack game is defined
in Figure 9. The advantage of an adversary Aid in the games FS-IDPREκ,λ,Tent (Aid) and

FS-IDANYκ,λ,Tent (Aid) is the probability that the verifier V accepts in the impersonation
stage.
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Definition 20. Let FS-ECLR-ID = (ParamGenID,GenID,UpdateID,P,V) be a forward se-
cure identification scheme parametrized with the security parameter κ, leakage parameter
(α, λ), number of time periods T , and satisfying perfect completeness. We say that the
scheme is secure with forward-secure pre-impersonation entropic leakage-resilient with
respect to the class AFS+ECL of adversaries, if the advantage of any PPT adversary Aid

in the game FS-IDPREκ,λ,α,Tent (Aid) is negligible in κ. Similarly, we say that the scheme
is secure with forward-secure anytime entropic leakage-resilient with respect to the class
AFS+ECL of adversaries, if the advantage Aid in the game FS-IDANYκ,λ,α,Tent (Aid) is neg-
ligible in κ.

5.2 Construction of FS-ECLR-ID scheme.

In this section, we present our construction of forward-secure entropic continual leakage-
resilient ID scheme.

The Scheme. We show that a forward-secure version of the generalized GQ identifi-
cation scheme is secure against entropic continual key leakage attacks (see Figure 10).
To analyze the scheme, we use the relation R = {(pk, sk) : sk = (ρ, ω1, · · · , ω`), pk =
(g1, · · · , g`, h), s.t. h =

∏`
i=1 g

ωi
i · ρe mod N}, where N = p · q (p and q are prime num-

bers), e and d are chosen such that e · d = 1 mod φ(N), and e is a prime number.

Remark 8. Note that, in our construction the sizes of the keys are linear in the number
of time periods. This is because we store the exponents e1, · · · , eT in the public and
the secret key. However, it is possible to have constant sized keys by computing the
exponents using a random oracle, using techniques similar to [2, Sec. 5.1]. We refer the
reader to [2] for the details.

Theorem 6. Assuming the hardness of the RSA representation problem, the construc-
tion of our identification scheme FS-ECLR-ID as shown in Figure 10 is

(
(` log ei +

log φ(N)−λ), λ
)
-forward-secure pre-impersonation entropic leakage-resilient, where λ =

` log e − κ. It is forward-secure anytime entropic leakage-resilient tolerating leakage up
to λ′ = 1

2λ bits.

Proof. To prove the above theorem, we first prove the following lemma:

Lemma 3. The following three properties hold for our FS-ECLR-ID construction:

1. It is difficult to find a public key pk and two different secret keys ski and sk′i for pk for
any time period i ∈ [T ]. In particular,

Pr[sk′i 6= ski and (pk, ski), (pk, sk
′
i) ∈ R| (pk, ski, sk′i)← A(params);

params← ParamGenID(1κ))] ≤ negl(κ).

2. The protocol P, V is a Σ protocol for R.
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ParamGenID(1κ, 1T ) : Let N = p·q, where p and q are two distinct `N -bit primes, and let e1, · · · , eT
be distinct `e-bit primes, co-prime to φ(N) = (p− 1)(q − 1), chosen uniformly at random. Here,

T denote the number of time periods supported by the system. Also, let g1, · · · , g`
$←− (Z∗N )` be

generators of a prime-order cylic subgroup of Z∗N . Set params :=
(
N, (e1, · · · , eT ), (g1, · · · , g`), T

)
.

Also, let us denote fi = ei+1 · · · eT , fT = 1.

GenID(params, T ) : This is the initial key generation algorithm. Choose ρ, ω1, · · · , ω`
$←− Z∗N ×Z`e1 ,

and set pk =
(
N, (e1, · · · , eT ), (g1, · · · , g`), h

)
, where h =

∏`
j=1 g

ωj
j ·ρE mod N , and E =

∏T
j=1 ej .

Let ρ1 = ρE/e1 and ρ′1 = ρE/f1 . The secret key for the base time period is sk1 =
(
N, e1, ρ1, ρ

′
1

)
.

UpdateID(pk, ski) : Parse pk =
(
N, (e1, · · · , eT ), (g1, · · · , g`), h

)
and ski =

(
N, ei, ρi, ρ

′
i

)
, where

ρi = ρE/ei and ρ′i = ρE/fi . Compute, ρi+1 = ρ
′fi+1

i and ρ′i+1 = ρ
′ei+1

i . Set ski+1 =(
N, ei+1, ρi+1, ρ

′
i+1

)
.

P(pk, ski),V(pk, i) : The prover and the verifier run the following protocol corresponding to some

time period i. The public key is pk = (N, ei, (g1, · · · , g`), h), and the secret key ski =
(
N, ei, ρi, ρ

′
i

)
.

The goal of the prover P is to prove that h is a ei-residue. Observe that,
∏`
j=1 g

ωj
j ·ρ

ei
i mod N = h.

P : Randomly chooses ~ai = (a
(1)
i · · · , a

(`)
i )← Z`ei , and si ← Z∗N .Then compute comi :=

∏`
j=1 g

a
(j)
i
j ·

seii mod N . Output (~a, comi), and send comi to V.

V : Chooses a random chi ← Zei and send chi to P.

P : Compute ~zi =
(
chi · w1 + a

(1)
i , · · · , chi · w` + a

(`)
i

)
, and ui = (si · ρchi

i ) mod N . Output

respi =
(
~zi = (z

(1)
i , · · · , z(`)i ), ui

)
and send respi to V.

The verifier V accepts if and only if ueii ·
∏`
j=1 g

z
(j)
i
j = hchi · comi mod N .

Fig. 10. Construction of forward-secure entropic continuous leakage-resilient ID scheme FS-ECLR-ID.

3. Let PK, SKi are random variables defined over the key pairs (pk, ski) for any time period
i. Then it holds that H̃∞(SKi|PK) ≥ ` log min{e1, · · · , eT }.

Using the properties of Lemma 3, we will complete the proof of Theorem 6.

Proof of Lemma 3. We now prove the three properties stated in Lemma 3.

Proof of property 1: The proof of property 1 follows in a straightforward manner
from the RSA assumption. The secret key in our construction of the FS-ECLR-ID
scheme for a particular time period is actually a RSA `-representation of the public
key pk. Property 1 then follows immediately from the hardness of finding two distinct
representations for the same public key.

Proof of property 2: We now show that FS-ECLR-ID is a Σ protocol. In particular,
we need to show that FS-ECLR-ID satisfies completeness, special-soundness and HVZK
properties. The completeness is trivial to see.

Special soundness: We will show that given two accepting transcripts (comi, chi, respi)
and (comi, ch

′
i, resp

′
i) with chi 6= ch′i for some time period i ∈ [T ], we can find another

representation sk′i corresponding to pk as follows.
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Parse comi =
∏`
j=1 g

a
(j)
i
j ·seii mod N , respi =

(
~zi = (z

(1)
i , · · · , z(`)i ), ui

)
and resp′i =

(~z′i =

(z
′(1)
i , · · · , z′(`)i ), u′i

)
, where z

(j)
i = chi · wi + a

(j)
i , z

′(j)
i = ch′i · wi + a

(j)
i , ui = (si · ρchi

i )

mod N and u′i = (si · ρ
ch′i
i ) mod N . Also, assume that chi < ch′i. Then it is possible

to extract all the values (w1, · · · , w`) by solving the above systems of linear equations,

namely by computing wj =
(z
′(j)
i −z(j)i )
∆chi

, where ∆chi = (ch′i− chi). Similarly, another ei-th

residue can be extracted by computing ρ′i =
(u′i
ui

)1/(∆chi). Note that, the inverse exists
since ∆chi > 0.

Honest Verifier Zero Knowledge: To prove this, we need to design a simulator Sim who is
only given the public key and the challenges corresponding to each time period and has to
produce transcripts that are identically distributed to the original transcripts for all the
time periods. Without loss of generality, let us show the simulation for any time period i ∈
[T ]. The simulator Sim is first given the public key pk =

(
N, (e1, · · · , eT ), (g1, · · · , g`), h

)
,

and has to produce a simulated transcript identical to (comi, chi, respi). Sim then samples

~zi = (z
(1)
i , · · · , z(`)i )

$←− Z`ei and ui
$←− Z∗N . The simulator then receives the challenge

chi ∈ Zei , and computes comi =
u
ei
i ·

∏`
j=1 g

z
(j)
i
j

hchi
mod N . It is trivial to see that the

simulated transcript is identically distributed to the original transcript.

Proof of property 3: The length of a secret key ski is |ski| = ` log ei + log φ(N), and
the public key pk ∈ Z∗N . Hence we have:

H̃∞(ski|pk) ≥ H̃∞(ski)− log φ(N) = ` log ei ≥ ` log min{e1, · · · , eT }.

The proofs of these properties proves Lemma 3. ut

We now continue with the proof of Theorem 6. The proof of this part is similar to the
proof of the leakage-resilient ID scheme, as shown in [4]. Suppose there is an adversary

Aid running in time t and having advantage ε in the game FS-IDPREκ,λ,Tent (A). Then, we
can construct another adversary B that runs in time ≈ 2t and

Pr[sk′i 6= ski and (pk, ski), (pk, sk
′
i) ∈ R| (pk, ski, sk′i)← B(params);

params← ParamGenID(1κ))] ≤ ε2 − 1

log φ(N)
− 2−κ

The adversary B chooses a random base key pair (pk, sk1) ← GenID(params) and sim-
ulates the environment for the adversary Aid. B then gives pk to Aid and uses sk1 to
simulate the leakage queries from the secret keys corresponding to each time period and
also the prover oracle P(pk, ski). When Aid reaches the impersonation stage correspond-
ing to some time period t, B choose a fresh random challenge cht ← Zet , and receives
the transcript (comt, cht, respt). Then B rewinds Aid and sends a fresh random challenge
ch′t ← Zet , which results in the transcript (comt, ch

′
t, resp

′
t). If both the conversations are

accepting and ch′t 6= cht, then the special soundness property guarantees the existence
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of an extractor which can find a secret key sk′t such that (pk, sk′t) ∈ R. Let Et1 be the
event that the above happens and Et2 denote the event that ch′t = cht.

Claim. Pr[Et1] ≥ ε2 − 1
log φ(N)

Proof. This follows from a rather straightforward probabilistic argument.

Claim. Pr[Et2] ≤ 2−κ

Proof. Let us think of an experiment E0 where the adversary Aid gets access to all the

oracles, namely Oλ(κ)skt
, P(pk, skt) and OUpd(pk, skt). Let E1 denote the same experiment

as E0, except that the adversary Aid is not given access to the prover oracle P(pk, skt),
and let E2 be the experiment in which Aid has access to only the public key pk. so, we
have:

H̃∞(SKt|E0) ≥ H̃∞(SKt|E1)− λ ≥ H̃∞(SKt|E2)− λ = H̃∞(SKt|PK)− λ
≥ ` log et − λ ≥ κ.

where the first inequality follows from chain rule for min-entropy, the second inequality
follows from Lemma 2, and the last inequality follows from property (3) of Lemma 3.
The final inequality holds since λ ≤ ` log min{e1, · · · , eT } − κ.

Note that, the secret keys for each of the time periods retain enough min-entropy
in them, even given the leakage in that particular time period. Now, by the entropic
continual leakage assumption, all the keys are unpredictable, even given the leakage
across all the time periods.

Finally, observe that Pr[Et2] ≤ 2H̃∞(SK|E0)

Combining the above two claims, the first part of the theorem follows as:

Pr[Et1 ∧ ¬Et2] ≥ ε2 −
1

log φ(N)
− 2−κ ≥ ε2 + negl(κ.)

The proof for forward-secure anytime entropic leakage security is similar to above, with
a subtle difference. In this setting, the leakage functions of the adversary Aid may also
depend on the challenge cht. Hence, while rewinding the adversary to fresh random
challenge ch′t the leakage functions may also depend on the new challenge ch′t. Hence,
for anytime leakage security the allowed leakage is half of the original leakage tolerated
for pre-impersonation security. ut

5.3 FUFECL signatures from FS-ECLR-ID schemes

In this section, we show how to transform any public-coin FS-ECLR-ID scheme into a
FUFECL signature scheme using a generalized version of Fiat-Shamir (FS) transform [2].
More precisely, the signature in period i is just the signature obtained via FS transform
using the secret key of the ith period ski = UpdateID

i−1(pk, sk1) (with period i included
in the random oracle input). The amount of leakage tolerated by the signature scheme
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is exactly the same as the leakage tolerated by the underlying identification scheme. We
now present the details of the construction.

The Construction. Let FS-ECLR-ID =
(
ParamGenID,GenID,UpdateID,P,V

)
be a forward-

secure entropic leakage-resilient identification scheme. Let H be a hash function modeled
as a random oracle, and let KES = (KES.Kg,KES.Upd,KES.
Sign,KES.Vfy) be the signature scheme obtained via Fiat-Shamir transform applied to
FS-ECLR-ID as shown in Fig. 11.

KES.Kg(1κ, 1T ) : Run params← ParamGenID(1κ, 1T ); return params.

KES.Sign(1κ, vk, ski,m) : Compute: (1) comi
$←− P(vk, ski); (2) chi ← H(comi,m, i); and

(3) respi ← P(vk, ski, comi, chi). Finally, return the signature σi ← (comi, respi, i)

KES.Upd(1κ, vk, i, ski) : Run ski+1 ← UpdateID(vk, ski); return ski+1.

KES.Vfy(1κ, vk,m, i, σi) : Parse (comi, respi, i) ← σi; compute chi ← H(comi,m, i), and
d← V(vk, comi, chi, respi). Return d.

Fig. 11. Generalized Fiat-Shamir transform for forward-secure entropic leakage-resilient signature

Theorem 7. Let FS-ECLR-ID =
(
ParamGenID,GenID,UpdateID,P,V

)
be a three-round

public-coin (α, λ)-forward-secure anytime entropic leakage-resilient identification scheme.
Then the signature scheme KES = (KES.Kg,KES.Upd,KES.Sign,KES.Vfy) obtained by
the generalized Fiat-Shamir transform applied to FS-ECLR-ID is (α, λ2 )-FUFECL-secure.

Proof Sketch. The main idea of the proof follows the original proof of the FS paradigm.
In our case, however, we need to guess the time period i of the signature output by the
adversary, in order to embed the challenge correctly, hence resulting in a loss of factor
T in the security reduction. The leakage queries of the FUFECL adversary can be easily
handled by the adversary of the FS-ECLR-ID scheme by querying its own leakage oracle.
This concludes the proof.

6 Encryption scheme in the FS+CL model

In the section, we consider the problem of constructing forward-secure encryption scheme
in the continual leakage model (dubbed as FS+CL as in [7]). In the FS+CL model, the
update process is randomized and the leakage happens according to the CL model (i.e.,
bounded leakage between two successive invocations). We refer to the reader to [7] for the
details of the FS+CL model. To construct such a forward-indistinguishable encryption
scheme secure in the CL model (FINDCL-secure PKE), we first introduce a notion of
continual leakage-resilient binary tree encryption (CLR-BTE) (see below), which can
be seen as a restricted version of CLR hierarchical identity-based encryption (CLR-
HIBE). The construction of CLR-BTE follows in a straightforward manner from the
CLR-HIBE scheme of Lewko et al. [36] (which is based on static assumptions over
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composite-order bilinear groups). For appropriate choice of parameters, the CLR-HIBE
scheme achieves the optimal leakage rate of 1− o(1). Hence, our CLR-BTE scheme also
achieves the same leakage rate. Finally, we show how to transform such a CLR-BTE
scheme to a FINDCL-secure encryption scheme using the Canetti-Halevi-Katz (CHK)
transform. This approach of constructing FINDCL-secure encryption scheme was already
suggested in [7]. However, it was intuitively claimed in [7] that the above approach does
not work, due to the following reason: “The problem is that FS+CL security of the
resulting scheme requires that multiple nodes of the BTE construction can be leaked
on jointly, whereas the CL security of HIBE only buys us leakage on each such node
individually.” Surprisingly, we prove the contrary and show that, indeed, it is possible
to simulate the joint leakage by leaking on a single node. This requires a careful analysis
of the CHK transform in the FS+CL setting.

6.1 Continual Leakage-resilient Binary Tree Encryption

In this section, we introduce the notion of continual leakage-resilient binary tree encryp-
tion (CLR-BTE). Our security model of CLR-BTE generalizes the definition of binary
tree encryption (BTE) (as proposed by Canetti et al. [11]) in the setting of continual
leakage. A BTE can be seen as a restricted version of HIBE, where the identity tree is
represented as a binary tree.5 In particular, as in HIBE, a BTE is also associated with
a “master” public key MPK corresponding to a tree, and each node in the tree has
their respective secret keys. To encrypt a message for a node, one specifies the identity
of the node and the public key MPK. The resulting ciphertext can be decrypted using
the secret key of the target node. Moreover, the secret key of any node can be used to
derive the secret keys of its children.

Definition 21. (Continual leakage-resilient BTE). A continual leakage-resilient binary
tree encryption (CLR-BTE) is a tuple of the PPT algorithms (Gen,Der,
Enc,Dec) such that:

1. The key generation algorithm Gen takes as input the security parameter κ and a value
` for the depth of the tree. It returns a master public key MPK and an initial (root)
secret key SKε.

2. The key derivation algorithm Der takes as input MPK, the identity of a node w ∈
{0, 1}≤`, and its secret key SKw. It returns secret keys SKw0 , SKw1 for the two children
of w.

3. The encryption algorithm Enc takes as input MPK, the identity of a node w ∈ {0, 1}≤`
and a message M to return a ciphertext C.

4. The decryption algorithm Dec takes as input MPK, the identity of a node w ∈ {0, 1}≤`,
its secret key SKw, and a ciphertext C. It returns a message M or ⊥ (to denote decryp-
tion failure).

5 Recall that, in HIBE the tree can have arbitrary degree.
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We require the standard correctness requirement, i.e., for all (MPK,SKε) output by
Gen, any node w ∈ {0, 1}≤`, and secret key SKw correctly generated for this node, and
any message M , we have M = Dec(MPK,w, SKw,Enc(MPK,w,M)).

We now present our security model for CLR-BTE. Our model generalizes the notion of
selection-node chosen-plaintext attacks (SN-CPA) put forward by Canetti et al. [11] to
define the security of BTE. In our model, the adversary first specifies the identity of the
target node6 w∗ ∈ {0, 1}≤`. The adversary receives the public key MPK and the secret
keys of all the nodes that do not trivially allow him/her to derive the secret key of w∗7.
Besides, the adversary is also allowed to leak continuously from the secret keys of all the
nodes that lie on the path from the root node and w∗ (including both). The goal of the
adversary is then to win the indistinguishability game with respect to the target node
w∗.

Definition 22. A CLR-BTE scheme is secure against continual leakage selective-node,
chosen-plaintext attacks (λ(κ)-CLR-SN-CPA) if for all polynomially-bounded functions
`(·), and leakage bound λ(κ), the advantage of any PPT adversary A in the following
game is negligible in the security parameter κ:

1. The adversary A(1κ, `) outputs the name of a node w∗ ∈ {0, 1}≤`. We will denote the
path from the root node to the target node w∗ by Pw∗ .

2. The challenger runs the algorithm Gen(1κ, `) and outputs (MPK,SKε). In addition, it
runs Der(·, ·, ·) to generate the secret keys of all the nodes on the path Pw∗ , and also the
secret keys for the two children w∗0 and w∗1. The adversary is given MPK and the secret
keys {SKw} for all nodes w of the following form:

– w = w′b̄, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of some node
in Pw∗).

– w = w∗0 or w = w∗1 (i.e., w is a child of w∗; this is only when |w∗| < `).

The challenger also creates a set T that holds tuples of all the (node) identities, secret
keys and the number of leaked bits from each key so far.

3. The adversary Aclr-bte may also ask leakage queries. The adversary A provides the
description of a probabilistic leakage function h with constant output size acting on
the set of keys, and an identity of a node w in the path Pw∗ (that may also include
both the root note and the target node w∗). The challenger scans T to find the tuple
with identity w. It should be of the form (w, SKw, L). The challenger then checks if
L+ |h(SKw)| ≤ λ(κ). If this is true, it responds with h(SKw) and updates the L in the
tuple with L = L+ |h(SKw)|. If the check fails, it returns ⊥ to the adversary.

6 Note that, this model where the adversary specifies the target node w∗ ahead of time is weaker than
the model where the adversary may choose the target adaptively (analogous to the adaptive security of
HIBE schemes). However, as we will show, this model already suffices to construct of a forward-secure
CLR encryption scheme.

7 In particular, the adversary receives the secret keys of all the nodes that are siblings of all the nodes
that are on the path from the root node to the target node w∗.
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4. The adversary A then sends two messages M0 and M1 to the challenger such that

|M0| = |M1|. The challenger samples a random bit b
$←− {0, 1}, and computes C∗ ←

Enc(MPK,w∗,Mb). It then returns C∗ to the adversary A. The adversary is not allowed
to ask any further leakage queries after receiving the challenge ciphertext C∗.8

At the end of this game, the adversary outputs a bit b′ ∈ {0, 1}; it succeeds if b′ = b. The
advantage of the adversary is the absolute value of the difference between its success
probability and 1/2.

Construction of CLR-BTE scheme. Our construction of the CLR-BTE scheme
essentially follows in a straightforward manner from the continuous leakage-resilient
HIBE (CLR-HIBE) construction of Lewko et al. [36], tuned to the setting of a binary
tree. The resulting CLR-BTE is adaptively secure, since the CLR-HIBE of [36] enjoys
security against adaptive adversaries employing the dual-system encryption technique.
The security of the CLR-BTE scheme can be proven under static assumptions over
composite-order bilinear groups. We refer the readers to [36] for the details of the CLR-
HIBE construction and its proof. For appropriate choice of parameters, the CLR-HIBE
scheme achieves the optimal leakage rate of 1− o(1).

6.2 FINDCL encryption from CLR-BTE scheme

In this section, we show that a generic construction of a FINDCL-secure encryption
scheme from any CLR-BTE scheme. The main idea of our construction is very simple:
use the Canetti-Halevi-Katz (CHK) transform [11] to the underlying CLR-BTE scheme
to construct a FINDCL encryption scheme. In particular, we show the applicability of
the CHK transform9 even in the setting of continuous leakage. However, as we show
later, the analysis of the CHK transform in the setting of leakage turns out to be quite
tricky.

Let (Gen,Der,Update,Enc,Dec) be a CLR-BTE scheme. We construct our FINDCL
PKE scheme (KEE.Kg, KEE.Upd, KEE.Enc, KEE.Dec) as shown below. The construction
is identical to the CHK transform, with the underlying building blocks appropriately
changed.

Some additional notations: To obtain a FINDCL-secure encryption scheme with T =
2` − 1, time periods (labeled through 1 to T ), we use a CLR-BTE of depth `. We
associate the time periods with all nodes of the tree according to a pre-order traversal.
The node associated with time period i is denoted by wi. In a pre-order traversal, w1 = ε
(the root node), if wi is an internal node then wi+1 = wi0 (i.e., left child of wi). If wi is
a leaf node and i < T − 1 then wi+1 = w′1 , where w′ is the longest string such that w′0
is a prefix of wi.

8 If the adversary is allowed to ask leakage queries after receiving the challenge ciphertext, it can encode
the entire decryption algorithm of C∗ as a function on a secret key, and thus win the game trivially.

9 The original CHK transform [11] is used to construct a forward-secure PKE scheme starting from a
BTE scheme.
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1. KEE.Kg(1κ, T ) : Run Gen(1κ, `), where T ≤ 2` − 1, and obtain (MPK,SKε). Set
pk = (MPK,T ), and sk1 = SKε.

2. KEE.Upd(1κ, pk, i, ski) : The secret key ski organized as a stack of node keys, with
the secret key SKwi on top. We first pop this key off the stack. If wi is a leaf node,
the next node on top of the stack is SKwi+1 . If wi is an internal node, compute
(SKwi0, SKwi1) ← Der(pk,wi, SKwi) and push SKwi1 and then SKwi0 onto the
stack. In either case, the node SKwi is erased.

3. KEE.Enc(pk, i,m) : Run Enc(pk,wi,m). Note that wi is publicly computable given i
and T .

4. KEE.Dec(1κ, pki, ski, ci) : Run Dec(pk,w, SKwi , ci). Note that, SKwi is stored as part
of ski.

Theorem 8. Let λ : N → [0, 1]. Let Π = (Gen,Der,Update,Enc,Dec) be a λ(κ)-CLR-
SN-CPA continual leakage-resilient binary-tree encryption (CLR-BTE) scheme. Let ` :
N→ N be a polynomial such that T ≤ 2`−1. Then Π ′ = (KEE.Kg,KEE.Upd,KEE.Enc,KEE.Dec)
is a λ(κ)-FINDCL secure encryption scheme supporting up to T time periods.

Proof Sketch. Our proof follows the template of the CHK transformation for converting
a BTE scheme to forward-secure encryption scheme, with the crucial difference in sim-
ulating the leakage queries. In particular, we show that if there exists a λ(κ)-bounded
valid adversary Akee that breaks the λ(κ)-FINDCL security of Π ′, we can build another
λ(κ)-bounded valid adversary Aclr-bte breaking the λ(κ)-CLR-SN-CPA security of Π.
The adversary Aclr-bte uses Akee in a black-box manner. It is very easy for Aclr-bte to
simulate key generation, update and encryption queries asked by Akee. The adversary
Aclr-bte knows the secret keys of all the nodes that are right siblings of the nodes that lie
in the path Pw∗ from the root node to w∗ (the target node). Besides, it also knows the
secret keys of both the children of w∗10. Hence, Aclr-bte can itself simulate the update
queries asked by Akee.

However, Akee may also ask leakage queries. We partition the nodes of the binary
tree into two disjoint sets and simulate the leakage queries on each of these two sets
differently. In particular, Akee may ask a leakage query on a node w such that w does
not lie in the path Pw∗ , i.e, w /∈ Pw∗ , or it may ask leakage query on a node w that lie
on the path Pw∗ (including the root node and w∗), i.e, w ∈ Pw∗ . Simulation of leakage
queries on all the nodes w /∈ Pw∗ is trivial, since Aclr-bte already knows the secret keys
of all such nodes. Hence, for these nodes it can simulate the leakage queries by itself.
However, for all nodes w ∈ Pw∗ , Aclr-bte does not know their secret keys. Let us denote
the path from the root to node w as Pw, which is certainly a prefix of the path Pw∗ .
One may think that the leakage on such nodes w ∈ Pw∗ can be simulated by Aclr-bte by
simply querying the leakage oracle of the challenger of the CLR-BTE scheme. However,
this is not true, since the challenger of the CLR-BTE scheme expects a function that
leaks on each node of the tree individually, rather than leaking jointly on multiple nodes
of the tree. In particular, the secret key skw of any node w in the PKE scheme is a

10 Recall, in the CLR-SN-CPA security game (please see Def. 22) the adversary gets all these secret keys.
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tuple of key components, namely skw = (SKw, {SKrs(Pw)}), rather than a single key
component11, where {SKrs(Pw)} denote the secret keys corresponding to all the right
siblings of the nodes that lie on the path Pw. However, at this point, the key observation
is that the adversary Aclr-bte already knows all the secret key components {SKrs(Pw)},
except the key component SKw. This is because it knows the secret keys of all the right
siblings of the nodes that lie in the path Pw∗ , and hence also the secret keys of all the
right siblings of the nodes that lie in the path Pw. To simulate the leakage f on skw,
the adversary Aclr-bte now modifies the function f into a related leakage function f ′ that
acts only on the secret key component SKw of skw, and at the same time is consistent
with the output of f . Thus, the joint leakage on all the nodes is transformed to a leakage
on the single node w. The way that we accomplish this is that: when Aclr-bte receives the
leakage function f from Akee, it hardwires the secret keys {SKrs(Pw)} into the function
f .12 Aclr-bte then sends this modified function f ′ to its own challenger. Hence, with
this leakage information and the full knowledge of the other keys of skw, Aclr-bte can
consistently simulate the joint leakage by just leaking on a single node. The formal proof
follows.

Proof. Assume that we have an adversary Akee with advantage ε(κ) in an λ(κ)-FINDCL
security game of Π ′ = (KEE.Kg,KEE.Upd,KEE.Enc,KEE.Dec). We construct an adver-
sary Aclr-bte that obtains an advantage ε(κ)/T in the corresponding attack against the
underlying the CLR-BTE scheme Π = (Gen,Der,Update,Enc,Dec). The leakage rate
tolerated by Π is exactly the same as Π ′. We now describe how Aclr-bte simulates the
environment for Akee:

1. Aclr-bte chooses uniformly at random a time period i∗ ∈ [T ] and outputs wi
∗

(the identity
of the node corresponding to i∗). Aclr-bte then obtains MPK and {SKw} for all the ap-
propriate nodes w13 from its challenger. Aclr-bte then sets pk = (MPK,T ), and forwards
the public key pk to the adversary Akee.

2. When Akee decides to break into the system, it provides the time period, say j. If j ≤ i∗,
thenAclr-bte outputs a random bit and halts. Otherwise,Aclr-bte computes the appropriate
secret key skj and gives it to Akee. Note that, Aclr-bte can efficiently compute the secret
keys skj for any j > i∗ from the knowledge of {SKw} (the set of secret keys received in
Step 1).

3. Akee may ask leakage queries on the secret key of any node w in the tree.14 This node
can either be of any one of the following types: (1) w /∈ Pwi∗ or (2) w ∈ Pwi∗ , where Pwi∗

11 Recall that, the secret key of any node w in our construction contains the secret key of w, i.e., SKw,
and also the keys corresponding to all right siblings of the nodes on the path Pw.

12 Note that this is possible to do since Aclr-bte has full knowledge of the secret key component {SKrs(Pw)}
of skw.

13 Recall that Aclr-bte receives the secret keys of all the nodes that are right siblings of the nodes that lie
on the path P from the root node to wi

∗
.

14 Practically, it will only ask for leakage on ski for any i < j, where j is the period of break-in. This
is because, for any i > j, the adversary can itself compute the secret key. However, we consider the
general case, where all the node are prone to leakage.
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is the path containing the nodes from the root node to the target node wi
∗

(including
both).
For the first case, Aclr-bte repeatedly runs the algorithm Der with the appropriate secret
keys in the set {SKw} to derive the secret key ski (corresponding to node wi). Hence, any
leakage query asked on ski for i > i∗ can be simulated by Aclr-bte by simply computing
the corresponding secret key and answering the leakage function. For the second case,
i.e, when the leakage function is asked on a node wi ∈ Pwi∗ 15, the adversary Aclr-bte does
not know ski or the secret key of any of the ancestors of wi. The secret key ski can be
seen a stack of node keys (derived using the underlying CLR-BTE scheme) with the key
SKwi on top of the stack. The other node keys in the stack are secret keys corresponding
to the right siblings of all the nodes in the path Pwi from the root node to wi. Note that,
the adversary Aclr-bte already knows all of these node keys, since the path Pwi is a prefix
of Pwi∗ . Let us denote ski = (SKwi , {SK}rs(Pwi )), where {SK}rs(Pwi ) denote the secret
keys of the right siblings of all nodes in path Pwi . The adversary now does the following:

– Receive as input the leakage function f from Akee. Modify the description of the
function as h = f{SK}rs(P

wi
)
(·) = f

(
·, {SK}rs(Pwi )

)
. In other words, Aclr-bte hardwires

the secret keys {SK}rs(Pwi ) in the function f , and forwards h as the leakage function
to its challenger.

– On input the answer h(SKwi , {SK}rs(Pwi )) from its challenger, Aclr-bte forwards this
answer as the output of the leakage function f to Akee.

It is clear that Aclr-bte perfectly simulates the answers to the leakage queries of the
adversary Akee, regardless of which node w the leakage query is asked.

4. When Akee asks a challenge query with input (i,m0,m1), if i 6= i∗ then Aclr-bte outputs
a random bit and halts. Otherwise, it forwards the tuple (m0,m1) to its challenger and
obtains the challenge ciphertext C∗. It then gives C∗ to Akee.

5. When Akee outputs b′, A outputs b′ and halts.

It is easy to see that, if i = i∗, the above simulation by Aclr-bte is perfect. Since, Aclr-bte

guesses i∗ with probability 1/T , we have that Aclr-bte correctly predicts the bit b with
advantage ε(κ)/T . ut

7 Conclusion

In this work, we propose the ECL and FS+ECL models as means to construct crypto-
graphic primitives in the continual leakage model with deterministic key update proce-
dures. Some of the key open problems left by our work are:

• Construct FS+ECL-secure NIKE and ID schemes that can support unbounded num-
ber of time periods (currently our constructions can handle only bounded (but an
arbitrary polynomial) number of time periods).

15 Note that, in this case i < i∗, since we follow a pre-order traversal.
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• Construct efficient FS+ECL-secure NIKE schemes from standard assumptions. Cur-
rently, our FS+ECL NIKE scheme relies on iO and one-way functions. The reliance
on iO does not seem to be inherent; yet there does not seem to be straightforward
way to get a construction without using it.

• Finally, one could also propose alternative security models that capture deterministic
key updates and at the same time enable secure and efficient constructions of different
cryptographic primitives in these models.
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