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Abstract.
Side-channel analysis and fault-injection attacks are known as serious threats to
cryptographic hardware implementations and the combined protection against both
is currently an open line of research. A promising countermeasure with consider-
able implementation overhead appears to be a mix of first-order secure Threshold
Implementations and linear Error-Correcting Codes.
In this paper we employ for the first time the inherent structure of non-systematic
codes as fault countermeasure which dynamically mutates the applied generator
matrices to achieve a higher-order side-channel and fault-protected design. As a case
study, we apply our scheme to the PRESENT block cipher that do not show any
higher-order side-channel leakage after measuring 150 million power traces.
Keywords: FIA · SCA · combined countermeasure · hiding · reconfiguration.

1 Introduction
Side-Channel Analysis (SCA) and Fault-Injection Attacks (FIAs) are known as significant
threats to any cryptographic implementation exposed to physical attackers, ranging from
passive timing attacks [Koc96], differential power analysis [KJJ99] to active attacks such
as FIA [BS97].

Over the last years, a plethora of countermeasures has been proposed against these
threats. Promising techniques to specifically counteract SCA can be divided into hiding
and masking. While countermeasures based on hiding try to decrease the Signal-to-Noise
Ratio (SNR) in order to harden the extraction of usable information (e.g., from power
traces), masking is based on secret sharing and multi-party computations. Threshold
Implementation (TI) belongs to this type of SCA countermeasure and was originally
designed to provide provable first-order security [NRR06]. However, the principle of TI
can be extended ensuring also higher-order protection [RBN+15,DCBR+15] but with a
drawback of an unacceptable implementation overhead [MW15].

Countermeasures designed to resist FIA are often based on detection schemes which
either withhold a faulty computation [KKG03,AMR+19] or perform an infective com-
putation hampering an attacker to obtain any exploitable information from the out-
puts [GST12,DMAAN+18]. However, recently Dobraunig et al. demonstrated that these
kinds of countermeasures can be broken by using a statistical analysis method called
Statistical Ineffective Fault Analysis (SIFA) [DEK+18]. Therefore, linear Error-Correcting
Codes (ECCs) seem to be a promising method to provide a resilient protection against
fault injections as they can also be used to correct occurred faults which would thwart
SIFA based attacks [SJR+19,SRM20].

Despite of the wealth of countermeasures treating SCA and FIA as a separate problem,
only few works target the combined setting. In 2016, Schneider et al. [SMG16] used
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two already existing countermeasures (TI and linear ECCs), which separately resist SCA
and FIA respectively, and combined the two techniques into one protected design. The
resulting implementation provides first-order security against SCA including protection
against fault injections. However, extending the TI to resist higher-order SCA would
increase the implementation costs significantly and would be impracticable in a real world
environment. In the following years Reparaz et al. [RDMB+18] proposed a concept inspired
by Multi-Party Computation (MPC) protocols that achieved protection against SCA and
FIA. De Meyer et al. [DMAAN+18] discuss a technique based on masking schemes while
the resistance against FIA is achieved by adding Message Authentication Code (MAC)
tags incorporating an information theoretic approach to the design. All proposals, however,
share the unfavorable property of excessive costs in time and/or area in case protection
against higher-order attacks should be considered as well.

Contribution In this work we present an alternative strategy to design a combined
countermeasure against SCA and FIA that is suitable to achieve higher-order protection at
reasonable cost. We therefore revisit existing solutions that successfully combine first-order
secure masking schemes with hiding techniques, such as [SMG15,SMG17]. One strategy in
this regard is to exploit the composition of small S-boxes into affine equivalences in order to
replace the affine functions on the fly. This reconfiguration technique introduces additional
randomness into a running encryption process and hides higher-order leakage. This can
be further improved with encoding the cipher’s state with randomly selected functions
resulting in hiding the higher-order leakage in the introduced noise of the encoding scheme.
The latter approach is inspired by the idea behind White-Box Cryptography.

Based on the observations from previous works, we now come up with the following
original strategy: we compose a first-order secure TI with a randomization technique based
on linear ECCs that augments our fault-injection protection with additional noise. In
contrast to previous works, we do not rely on systematic codes here but rather explic-
itly pick generators producing non-systematic codes. These generators are dynamically
evolved during runtime in order to hide higher-order leakage as a hiding countermeasure.
As shown in our work, we finally achieve a combined hardware countermeasure which
successfully resists higher-order side-channel and fault-injection attacks at very reasonable
implementation costs.

Outline In Section 2 we provide the basic theoretical background of TIs, linear ECCs
and linear algebra required for this manuscript. Starting with Section 3, we first outline
our design considerations and define our adversary model. This is followed by a detailed
description of our novel countermeasure. We implement our design in a case study described
in Section 4. In Section 5 we eventually evaluate our design for Field-Programmable Gate
Arrays (FPGAs). Before we conclude our work in Section 7, Section 6 addresses future
work and additional considerations.

2 Preliminaries
As motivated in the introduction, the presented approach is based on a first-order secure
masking technique, more precisely on TI, and on linear ECCs to achieve resilience against
FIA. In the following we briefly describe both concepts.

2.1 Threshold Implementations
TI as originally proposed by Nikova et al. is known as a provable secure and widely used
masking-scheme to protect digital circuits against SCA [NRR06]. Since it is based on
secret sharing and on methods from multi-party computation, a vector x ∈ Fm

2 of m single
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bits 〈x1, ..., xm〉 can be split up into s shares xi ∈ Fm
2 . Then, using Boolean masking, it

holds for the shared representation x̄ = (x1, ..., xs) that

x =
s⊕

i=1
x̄ =

s⊕
i=1

xi.

To provide the desired security, the target implementation has to fulfill the following
properties.

Correctness Given a function y = F(x) from Fm
2 to Fn

2 , the TI realization of F requires
a shared representation F̄ = (F1, ..., Ft) where the Fi are called component functions.
Correctness is ensured if ȳ = F̄ (x̄) satisfies y =

⊕t
i=1 Fi(x̄) for x =

⊕s
i=1 x̄.

Non-Completeness To ensure a secure TI implementation in the presence of glitches,
each function F̄ has to be non-complete. Particularly, for a first-order secure implementation
of a function F each component function Fi∈{1,...,t} must be independent of at least one
input share xj∈{1,...,s}.

Uniformity Since the security of TI is based on Boolean masking, a uniform distribu-
tion of the shared representation is essential. However, the results of a shared function F̄
are used as input to subsequent functions such that uniformly distributed outputs of F̄ are
required. In other words, the set of all possible output sharings F = {F1, ..., Ft|x̄ ∈ X}
must be uniformly drawn from the set Y = {ȳ|

⊕t
i=1 ȳ = y} assuming a given set of all

possible input sharings X = {x̄|
⊕s

i=1 x̄ = x}. Violating the uniformity property would
lead to a biased sharing and first-order leakage.

2.2 Basic Notations of Linear Error Codes and Linear Algebra
In the first part of this paragraph we briefly summarize important properties of linear
ECCs which are mainly known from communication theory. The second part covers basic
definitions from linear algebra which are required to implement and optimize our approach.

Linear Codes The description for the background of linear ECCs follows the notations
of [vT04] and [MS77].

Definition 1. A linear code C of length n is defined as any linear subspace of Fn
q .

Note, since we intend to apply the linear error codes to symmetric block ciphers implemented
in digital hardware circuits, we only consider binary fields Fn

2 .

Definition 2. A generator matrix G of an [n, k]-code C is a k × n matrix whose k rows
form a basis of C. The basis vectors of length n allow to generate all codewords of C.

Hence, a codeword c ∈ Fn
q is generated by a target message m ∈ Fk

q calculating the vector-
matrix product m ·G = c ∈ C.

Definition 3. A parity check matrix H of an [n, k]-code C is an (n− k)×n matrix which
satisfies

0 = H · cT ∀c ∈ C.

As a result, a given c′ ∈ Fn
q can be easily checked for a valid codeword of C. The output

s = H · c′T is called syndrome.

Definition 4. The minimum distance d of a linear code C is the smallest Hamming
distance (HD) between all codewords and is defined as

d = min ({HD(c1, c2)|c1, c2 ∈ C, c1 6= c2}) .
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The minimum distance d is an essential property of linear error codes since it determines
error detection and correction capabilities. To this end, such codes are commonly called
[n, k, d]-codes.

Corollary 1. A code C with minimum distance d can detect u = d− 1 errors and correct
v =

⌊
d−1

2
⌋
errors. If d is even, this implies C can simultaneously detect u = d

2 errors and
correct v = d−2

2 errors.

A faulted codeword c′ = c⊕ e, where e ∈ Fn
q denotes an error vector, can be detected by

an [n, k, d]-code as long as HW(e) ≤ u.

Definition 5. Two linear codes over Fq are equivalent if one can be obtained from the
other by a combination of operations of the following two types:

(a) an arbitrary permutation of its coordinate positions

(b) multiplication of symbols appearing in a fixed position by a non-zero scalar.

Hence, equivalent codes have the same properties, i.e., the same minimum distance d.

Definition 6. A code C is called systematic code if and only if G = [Ik|P ] where Ik

denotes the identity matrix of size k.

Note that every generator matrix G of a non-systematic code C can be transformed to
another generator matrix G̃ of a systematic code based on Definition 5 [Bla03].

Linear Algebra Following the definitions from [BV18], we now recap important
properties from linear algebra.

Lemma 1. The determinant of a quadratic matrix A is non-zero if and only if A−1 exists.

Lemma 2. If two matrices A and B are invertible the product A ·B is invertible as well
and the product’s inverse is calculated by

(A ·B)−1 = B−1 ·A−1.

Definition 7. A quadratic k × k matrix Q is called orthogonal matrix if and only if

QT = Q−1

and the columns are unit vectors.

This includes that Q ·QT = QT ·Q = Ik holds for all orthogonal matrices.

Definition 8. A quadratic k× k matrix P is called permutation matrix if and only if one
entry per row and column is one and the rest is zero.

Thus, due to Definition 7, each permutation matrix is also an orthogonal matrix. Note,
however, that not every orthogonal matrix is a permutation matrix.

3 Methodology
This section describes our general design considerations and defines our adversary model.
Based on these information we introduce our generic principle and describe our implemen-
tation strategy. Eventually, we deduce suitable codes for lightweight ciphers.
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3.1 General Considerations
We now introduce our combined countermeasure that aims to resist both side-channel
attacks and fault-injection attacks. The fundamental (first-order-only) concept is inspired
by [SMG16] and relies on a design which combines TI and linear ECCs. As evaluated
in [AMR+19, SRM20], linear ECCs provide terrific properties protecting cryptographic
implementations on hardware against fault-injection attacks. However, instantiating first-
order secure TI as only countermeasure against SCA, higher-order attacks can be still
successfully applied to the combined countermeasure. Note that the ideas of TI can
generally be extended to higher orders at – unfortunately – significant costs [MW15]. To
provide higher-order protection against SCA without excessive cost overhead, we therefore
utilize the existing properties provided by linear ECCs in a continuous randomized update
process as hiding countermeasure.

We picked an FPGA as target platform for our case-study. They inherently provide
a perfect environment for implementing reconfigurable systems realizing the dynamic
exchange of the ECCs.

3.2 Adversary Model
First, we assume an attacker that characterizes a target device by acquiring the power
consumption or the electro-magnetic radiation. Here, we follow the well-known d-probing
model where an implementation is assumed to be secure under a d-order attack [ISW03].
Furthermore, our adversary model includes glitches which will be considered in our security
evaluation.

Second, we assume an adversary that additionally is able to inject faults into the target
implementation. We model occurring faults by additive errors and instead of assuming an
uniform error distribution, we follow the biased fault distribution EBb

from [SMG16] where
the attacker can inject up to b faults into a target codeword c. This approach considers
biased fault injections which seems to be more realistic considering an attacker trying to
recover the cryptographic secret. In this work we only consider faults occurring in the
data depended path of the design since this kind of faults are more important regarding
the design of countermeasures thwarting physical attacks.

3.3 Design Strategy
As introduced before we employ a first-order secure threshold implementation combined
with linear ECCs as fundamental building block. Inspired by previous work [SMG16], we
decided to choose n=2 · k such that each word of k bits is separately encoded by a generator
matrix G. However, instead of relying on systematic linear error codes – as it was mainly
done in the past (e.g., in [AMR+19]) – we explicitly want to apply non-systematic codes.
By dynamically exchanging the applied linear codes, we generate additional algorithmic
noise in order to hide any exploitable higher-order side-channel leakage given the presence
of a provably-secure first-order secure masking scheme. This way we achieve an increased
security level exploiting the already existing properties of the FIA countermeasure, i.e., of
the underlying ECC.

The fundamental principle of our approach is depicted in Figure 1 and expects a shared
input p with s-shares. Due to the selected parameters for the linear ECCs (n=2 · k), the
target cipher C is duplicated, and a redundancy is created processing the same input data
as the original cipher. However, since we apply non-systematic codes to the target cipher
C, both instantiations have to be adapted in order to process the encoded states. Generally,
each word m of k bits of the cipher’s state is encoded by a generator matrix G= [G1|G2].
To ensure the maximum possible security level against FIA, the selection of a code should
be made with regard to maximize to minimum distance d. Given a subfunction F of the
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Instantiation C1

of Cipher C

Instantiation C2

of Cipher C

Error
Handling

Reconfiguration
Controller

(p1, p2, ..., ps)

/ state_width · s

(c1, c2, ..., cs) (r1, r2, ..., rs)

Figure 1: Generic principle of protecting a target cipher C.

target cipher C and i ∈ {1, 2}, each subfunction Fi of the cipher’s instantiation Ci has to
be adapted so that

Fi = Gi ◦ F ◦G−1
i (1)

holds. Equation 1 also reveals another important requirement to the generator matrix G:
the sub-matrices G1 and G2 have to be non-singular in order to calculate their inverses
G−1

1 and G−1
2 , respectively.

The protection against higher-order side-channel attacks should be achieved by dy-
namically exchanging the linear ECC, i.e., the generator matrix G and therewith the
sub-matrices G1 and G2. This task is accomplished by a reconfiguration controller which
adapts on the one hand the ciphers’ subfunctions and on the other hand the module being
responsible for the error handling. Depending on the properties of the applied ECCs, the
error handling module can either be implemented to detect or to correct occurring faults.

3.4 Suitable Codes for Lightweight Ciphers
In this section we describe the procedure of finding suitable codes implementing our
approach for lightweight ciphers. Additionally, we investigate the total number of different
variations that can be generated using dynamic ECCs. For lightweight symmetric ciphers
we assume a nibble-oriented state such that k=4 and n=8. Selecting these parameters, the
maximum minimum distance d that can be achieved is d=4. We performed an exhaustive
search over all possibilities of [8, 4, 4] linear ECCs and identified the set

K1 =
{

G ∈ F4×8
2
∣∣ d = 4 for C =

{
m ·G|m ∈ F4

2
}}

which contains 596 736 different generators. Since we need to split up G into the sub-
matrices G1 and G2 in order to allow a separate processing of the data in C1 and C2, we
tested the sub-matrices G1 and G2 of each G ∈ K1 for invertibility. This classification
leaves us with a slightly narrowed set

K2 = {G = [G1|G2] ∈ K1|det(G1),det(G2) 6= 0}

including 483 840 different generators. However, since each generator is represented
by 32 bit, storing all possible generators would require 483 840 · 32 bit ≈ 2 MByte which
consequently would result in exploding implementation costs.

To reduce these costs, we further minimized the size of K2 being able to randomly
generate new generator matrices on the fly. Therefore, we defined a set P including all
permutation matrices of size 4× 4 leading to |P| = 4!. Given that and a valid generator
matrix G, we can construct another valid generator matrix G̃ by randomly choosing
Pi∈{1,2} ∈ P and permuting the columns within the sub-matrices Gi∈{1,2} which results in

G̃ = [G1 · P1|G2 · P2] . (2)
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This operation does not change the capability of the underlying code and the resulting sub-
matrices are still invertible due to Lemma 2. Subsequently, given one arbitrary generator
matrix from the set K2, we can generate 4! · 4! = 576 different variants from it applying
Equation 2. Hence, we do not have to store the entire 483 840 generators but rather can
reduce the size of K2 creating a new set K3 with 483 840/576 = 840 different generators
which we will call basis generators in the following. In summary, we can generate all
G̃ ∈ K2 on the fly using the defined 840 basis generators and permutations from P.

As shown in Equation 1, the dynamic exchange of the linear ECCs does not only require
the sub-matrices Gi∈{1,2} but also their inverses. Assuming we have pre-calculated and
stored all the inverses of the basis generator’s sub-matrices in a set K̄3, we can compute
the inverses of the permuted matrices Gi · Pi on the fly by

(Gi · Pi)−1 = P−1
i ·G−1

i = PT
i ·G−1

i (3)

where Pi ∈ P and i ∈ {1, 2}. Simplifying implementation processes for hardware devices,
we define an additional set P̄ which contains all transposed permutations from P.

4 Case Study
As we concentrated our investigations mainly on lightweight ciphers, we apply our approach
in a practical case study to the PRESENT block cipher [BKL+07]. As a target platform
we selected FPGAs as already mentioned in Section 3.1.

4.1 PRESENT
PRESENT is a block cipher consisting of a 64-bit state and supporting key lengths of
80 bits and 128 bits. Independent of the chosen key length, the cipher executes 31 rounds
where each round includes a key addition, a linear layer, and a non-linear substitution.
The key addition adds (xor) a round key Ki for 1 ≤ i ≤ 32 to the current state where the
last round key K32 is used for post-whitening. The linear layer is realized by a bit-wise
permutation of the state. In order to perform the non-linear substitution, the state is
divided into nibbles which are used as inputs to 16 parallel 4-bit to 4-bit S-boxes S(x).
Note that we refer to the PRESENT version using an 80-bit key in the following.

4.2 Reconfiguration Controller
One important part of our design is the reconfiguration controller as depicted in Figure 1.
To generate all possible variations from K2 on the fly, we instantiated two 36 KB Block-
RAM (BRAM) modules (cf. Figure 2) storing K3 and K̄3, respectively. Using the random
bits rB, we can read one of the stored basis generators and the corresponding inverse into
one clock cycle setting the data-width to 32 bits. The outputs G and G−1 are separated
into two 16-bit words representing Gi∈{1,2} and G−1

i∈{1,2}, respectively. Using additional
randomness rEN and rRE, the permutation matrices Pi ∈ P and P̄i ∈ P̄ with i ∈ {1, 2} are
selected in order to permute the prior determined basis generators Gi ∈ K3 and G−1

i ∈ K̄3
applying Equation 3. The outputs G̃i∈{1,2} and G̃−1

i∈{1,2} are then used to reconfigure the
TI S-boxes, the error handling module, and modules being responsible for encoding the
state and round keys Ki.

4.3 Cryptographic Instantiations
The non-linear S-boxes of the instantiations C1 and C2 are realized using BRAMs. Since
we implemented a first-order secure TI, we decomposed the cubic-non-linearity S(x) into
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Figure 2: Randomized generation of G and G−1.

two quadratic functions S(x) = T (R(x)) using affine equivalences. We decided to apply the
same shared decomposed functions as the authors in [SMG16] where R1 = R2 = R3 = Rd

and T 1 = T 2 = T 3 = T d. Each 8-bit to 4-bit Look-Up Table (LUT) is stored in an own
dual-port BRAM module as exemplary shown in Figure 3 for two realizations of Rd where
the above BRAM is placed in the instantiation of C1 (encryption path) and the lower
BRAM in C2 (redundancy).

This implementation strategy reduces the amount of sequential logic and logic cells
and allows a concurrent reconfiguration of the non-linear functions due to the dual-port
memories. A reconfiguration is conducted by an eight bit counter which on the one hand
reads out the values of the shared decomposed functions Rd and T d and on the other hand
serves as foundation to determine new addresses. To complete the computation of the
addresses, the counter values are split into two nibbles and are separately encoded by the
corresponding generator matrices G̃i∈{1,2}. The new S-box values are determined based
on the original values of Rd and T d and a subsequent encoding with G̃i∈{1,2}. During
reconfiguration, the second BRAM port is used for processing the data of the encryption
and redundancy such that the input values are forwarded to the address-ports and the
outputs are used as inputs to the subsequent subfunction. After a reconfiguration is
completed, a context switch is performed and the freshly reconfigured LUTs are used.

4.4 Error Handling
The realization of the error handling module follows the design of [SMG16] and is used to
detect occurring faults within an encryption. After every key addition, the states of the
encryption path and of the redundant path are decoded and compared in order to prevent
faulty encryptions within the detection capability of the used ECC. As the applied ECCs
change over time, the detection module has to be reconfigured as well which requires the
inverse G̃−1 of the used generator matrix G̃. Here we just rely on combinatorial logic and
do not utilize BRAM in order to avoid additional delays when performing the error-check.

4.5 Overall Implementation
Figure 4 shows a schematic of the overall implementation composed of the aforementioned
building blocks. Note that all data paths are realized in shares to implement a correct
TI. Each plaintext that should be encrypted is first encoded by G1 forwarded to the
cipher’s instantiation C1 (left data flow) and encoded by G2 forwarded to the cipher’s
instantiation C2 (right data flow). Besides the shared plaintext, every round key Ki needs
to be encoded as well so that additional encoding modules (implemented in combinatorial
logic) are placed right before every key addition. The following register stage is included
in the BRAM modules and is used to prevent glitches. The LUTs R1 and R2 represent
the encoded quadratic function R generated by the reconfiguration technique described in
Figure 3. Again, the next register stage is included in the BRAM modules. However, to
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Figure 3: Reconfiguration of the TI S-boxes exemplary shown for the quadratic decomposed
function Rd.

generate the values of T , only the inputs get encoded by the reconfiguration controller.
The outputs of T are returned in a non-encoded form in order to allow a straightforward
application of the permutation layer. Afterwards both states of C1 and C2 are encoded
again by G1 and G2, respectively. As described above, the error handling module compares
the states of C1 and C2 after the key addition. In case a fault is detected, the Error
Flag is raised and an ongoing encryption is directly interrupted.
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Figure 4: Schematic of the overall implementation.
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4.6 Reconfiguration Performance
In Section 4.3 we already mentioned that a reconfiguration can be performed in parallel
to an encryption due to the dual-port BRAMs. One reconfiguration takes 28 = 256 clock
cycles (one clock cycle for each value of the TI S-boxes). The latency of one encryption
adds up to 64 clock cycles which perfectly fits to the 256 clock cycles required for the
reconfiguration. Hence, four encryptions are performed with the same encoding (i.e., the
same generator matrices) before a context switch between the two parts of the BRAMs
is induced and the freshly reconfigured LUTs can be used for upcoming encryptions.
Furthermore, due to this technique, no additional latency is introduced and a continuous
encryption process can be ensured.

5 Analysis
This section presents the implementation results as well as the security analysis. After we
compare our approach to already existing implementations, we focus our evaluation on a
theoretical discussion about the achieved fault coverage. Afterwards, we apply a state-of-
the-art leakage assessment methodology based on Test Vector Leakage Assessment (TVLA)
validating higher-order security.

5.1 Implementation Results
Since our approach uses reconfiguration techniques, FPGAs seem to be a perfect platform
for implementing and evaluating our design. As a target platform we selected a Xilinx
Kintex-7 XC7K160T FPGA. Table 1 shows the implementation results divided into
area utilization, speed, and power. Comparing our approach to designs reported in
the literature, the area overhead regarding the required amount of LUTs is reasonable
considering that our approach has implemented resistance against FIA which is missing in
all other designs. The decreased number of registers used in our implementation originates
from the instantiated BRAM modules realizing the non-linearities. Each BRAM module
contains a non-configurable input register which is in case of TI needed anyway to avoid
glitches. However, our design requires a total amount of 196 BRAM tiles since each
instantiation Ci∈{1,2} requires 96 tiles realizing the S-boxes and the four additional tiles
are required to hold the basis generators and the corresponding inverses.

The achieved throughput of 266 MB/s is comparable to the designs by Sasdrich et
al. [SMG15,SMG17] and slightly lower than the approach by Moradi and Wild [MW15].

Even though no work from the considered references provide any results regarding the
power consumption, we decided to include it within our evaluation table as additional
important metric especially for devices relying on power provided by battery. We deter-
mined the power consumption using Vivado leaving all settings at their default values.
Eventually, we obtained a power consumption with a high confidence of 423 mW for our
target device (excluding static power).

5.2 Resistance against Fault Injections
The resistance against FIA is determined by the underlying ECCs. In our case study we
only used linear codes with the maximum minimal distance being available for the selected
parameters, i.e., n=8, k=4, d=4. Since we rely on the same structure and codes with the
same capabilities as the authors in [SMG16], our design achieves the same fault coverage.
Using the biased fault distribution EBb

introduced in Section 3.2, where an attacker is able
to inject up to b faults into a single codeword, the fault coverage Ccov follows

Ccov = 1− Fnot
Ftot
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Table 1: Implementation results compared to related work.
Approach Logic Memory Latency Freq. Through. Power

LUT FF LUTRAM BRAMi cycles MHz MBit/s mW

1st-order TI [MW15] 808 384 – 0 64 207 413 N/A
2nd-order TI [MW15] 2 245 1 680 – 0 128 204 406 N/A

Affine Equivalences [SMG15] 1 834 742 – 1 64 112 224 N/A
Glitch-Free Duplication [MW15] 5 442 12 672 – 0 704 459 458 N/A
Dynamic Hardware Mod. [SMG17] 3 236 3 246 1 952 192 124 153 315 N/A

Dynamic ECCs [this work]ii 3 955 219 0 196 64 135 266 423iii

i 18 KB tiles. ii Only work that includes a countermeasure against SCA and FIA. iii Dynamic power.

where Fnot represents the number of undetectable errors and Ftot the total number of
errors that can occur in the defined fault model. The corresponding fault distribution
is given by Table 2. Note that the used codes have a 100 % fault coverage as long as
b ≤ 3 due to a minimum distance of d=4 (cf. Corollary 1). However, this does not mean
that Fnot = Ftot when b ≥ 4 as only faults that are equal to valid codewords will not be
detected. For detailed information we refer the interested reader to the original work from
Schneider et al. [SMG16].

Table 2: Fault coverage of the applied linear ECCs.

EB1 EB2 EB3 EB4 EB5 EB6 EB7

100 % 100 % 100 % 91.36 % 93.58 % 94.31 % 94.49 %

5.3 Resistance against Side-Channel Analysis
For evaluating the resistance against SCA, we used the side-channel measurement board
Sakura-X equipped with a Kintex-7 FPGA holding the cryptographic implementation
and a Spartan-6 FPGA controlling the measurement which includes the generation of a
stable clock of 4 MHz. The voltage drop was measured using a 1 Ω shunt resistor while
amplifying the signal with a ZFL-100 LN+ amplifier (24 dB gain). The analog signal was
converted into an 8-bit digital word using a 6404D PicoScope and a sampling rate of
625 MS/s. Furthermore, we used the PicoScope’s low-pass filter with a cut-off frequency
of 25 MHz. As leakage assessment methodology we applied an univariate Welch’s t-test
since it can be extended to higher-order statistical moments [SM15].

To validate our implementation and measurement setup, we first conduct measurements
setting all masks to zero and disable the additional randomness required for the dynamic
reconfiguration of the ECCs. The corresponding results are shown in Figure 5. As expected,
after acquiring 1 million power traces, we clearly see leakage in all considered statistical
orders.

In our second experiment, we use random masks and enable the Linear Feedback Shift
Register (LFSR) providing the required randomness for the reconfiguration of the dynamic
ECCs. The t-test results for the first three statistical moments after acquiring 150 million
power traces are shown in Figure 6. Within the considered confidence threshold of ±4.5,
we do not detect any t-value that falls outside the interval. Hence, we do not detect any
noticeable leakage in the considered statistical moments.

6 Discussion
Implementing the error handling module just as detection module (cf. Figure 1), offers
weak points against SIFA based fault attacks. However, the application of storing the S-box
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Figure 5: Measurement results using a static code, zero masks and 1 million traces.

values in BRAMs does not allow to implement correction modules as the input registers of
BRAMs are not accessible by the user so that faults occurring in these registers cannot be
corrected before processed by the S-boxes. The non-linearities would uncontrollably spread
a fault over an entire codeword such that the correction capabilities would be exceeded.
To this end, our approach could be still implemented using distributed memory instead
of BRAM as the designer can place input registers combined with correction modules
before each non-linearity. This procedure would allow to apply our combined protection
mechanism and to successfully thwart SIFA based attacks.

Section 3.4 deals with suitable codes for lightweight ciphers which does not include
larger algorithms like the Advanced Encryption Standard (AES). Performing an exhaustive
search over all [16, 8]-codes (each byte of the AES state matrix is encoded separately),
would not be possible as there are 216·8 possibilities. However, picking already existing
codes like the [16, 8, 5]-code described in the appendix of [BCC+14] and using the same
permutation process as described in Section 3.4, would produce 8! · 8! different generator
matrices given just one basis generator. Hence, an application to AES would be conceivable
but not all existing basis generator matrices could be exploited.

7 Conclusion
In this work we present a combined countermeasure against SCA and FIA based on a
combination of a first-order secure TI and linear ECCs. Using the underlying structure of
the linear codes as an opportunity to introduce additional noise by randomizing the used
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Figure 6: Measurement results using dynamic codes, random masks and 150 million traces.

generators, we achieve a higher-order protected design against SCA. We narrowed down the
size of the required generator matrices resulting in a reconfiguration controller which is able
to generate 483 840 different variations on the fly while achieving acceptable implementation
overhead. Eventually, a case study on PRESENT, including power measurements with
150 million traces, shows protection up to the third statistical order while providing
resistance against FIA.
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