
Fluid MPC:

Secure Multiparty Computation with Dynamic Participants

Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel Kaptchuk

Johns Hopkins University
{achoud,aarushig,mgreen,abhishek,gkaptchuk}@cs.jhu.edu

Abstract

Existing approaches to secure multiparty computation (MPC) require all the participants
to commit to the entire duration of the protocol. As interest in MPC continues to grow, it is
inevitable that there will be a desire to use it to evaluate increasingly complex functionalities
on massive datasets, resulting in computations spanning several hours or days. Such scenarios
call for a dynamic participation model for MPC where participants have the flexibility to go
offline as needed and (re)join when they have available computational resources. Such a model
would also democratize access to privacy-preserving computation by facilitating an “MPC-as-
a-service” paradigm — the deployment of MPC in volunteer-operated networks that perform
computation on behalf of clients.

In this work, we initiate the study of fluid MPC, where parties can dynamically join and
leave the computation. The minimum commitment required from each participant is referred to
as fluidity, measured in the number of rounds of communication that it must stay online. Our
contributions are threefold:

– We provide a formal treatment of fluid MPC, exploring various possible modeling choices.

– We construct information-theoretic fluid MPC protocols in the honest-majority setting.
Our protocols achieve maximal fluidity, meaning that a party can exit the computation
after receiving and sending messages in one round.

– We implement our protocol and test it in multiple network settings.

1

Contents

1 Introduction 3
1.1 Technical Overview . 5

1.1.1 Main Challenges . 5
1.1.2 Adapting Semi-honest BGW to Fluid MPC 6
1.1.3 Compiler for Malicious Security . 7

1.2 Future Directions . 11
1.3 Related Work . 11

2 Fluid MPC 12
2.1 Security . 15

3 Preliminaries 19
3.1 Threshold Secret Sharing . 19
3.2 Layered Circuits . 20

4 Roadmap to Our Results 21

5 Additive Attack Paradigm in Fluid MPC 22
5.1 Linear-Based Fluid MPC Protocols . 23
5.2 Weak Privacy and Security up to Additive Attacks 26

6 Malicious Security Compiler for Fluid MPC 27
6.1 Robust Circuit . 28
6.2 Maliciously Secure Fluid MPC . 29

6.2.1 Checking Equality to Zero . 29
6.2.2 Compiled Protocol . 30

7 Weakly Private Fluid MPC 31
7.1 Linear Protocols . 31
7.2 Proof of Weak Privacy . 33

8 Implementation and Evaluation 35
8.1 Evaluation . 36

A Proof Sketch for Lemma 2.4 40

B Proof of Theorem 2 40

C Proof of Theorem 1 46

2

1 Introduction

Multiparty computation (MPC) [Yao86, GMW87, BGW88, CCD88] allows a group of parties to
jointly compute a function while preserving the confidentiality of their inputs. The increasing
practicality of MPC protocols has recently spurred demand for its use in a wide variety of contexts,
including studying the wage gap in Boston [LVB+16] and student success [BKK+16].

While most current applications remain computationally “simple”, increasingly ambitious ap-
plications will inevitably be explored — like complex simulations on secret initial conditions or
training machine learning algorithms on massive, distributed datasets. Because the circuit repre-
sentations of these functionalities can be extremely deep, evaluating them could take several hours
or even days, even with highly efficient MPC protocols. While MPC has been studied in a variety
of settings over the years, nearly all previous work considers static participants who must commit
to participating for the entire duration of the computation. However, this requirement may not be
reasonable for long duration computations such as above. Indeed, during such a long period, it is
more realistic to expect that some participants may go offline either to perform other duties (or
undergo maintenance), or due to connectivity problems.

To accommodate increasingly complex applications, MPC protocols must be designed with
flexibility in mind. In this work, we formalize the study of MPC protocols that can support dynamic
participation. From a functionality perspective, it would be desirable to allow parties to join and
leave without interrupting the protocol. Not only would this remove the need for parties to commit
to entire long running computations, but it would also allow fresh parties to join midway through,
shepherding the computation to its end. More broadly, this extreme flexibility can allow parties
— including those with low resources — to contribute according to their computational capacity.
This would effectively yield a weighted, privacy preserving, distributed computing system.

Highly dynamic computational settings have already started to appear in practice, e.g. Bitcoin
[Nak08], Ethereum [B+14], and TOR [DMS04]. These networks are powered by volunteer nodes
that are free to come and go as they please, a model that has proven to be wildly successful.
Designing networks to accommodate high churn rates means that anyone can participate in the
protocol, no matter their computational power or availability. Building MPC protocols that are
amenable to this setting would be an important step towards replicating the success of these
networks. This would allow the creation of volunteer networks capable of private computation,
creating an “MPC-as-a-service” [BHKL18] system and democratizing access to privacy preserving
computation.

Fluid MPC. To bring MPC to highly dynamic settings, we formalize the study of fluid MPC.
Consider a group of clients that wish to compute a function on confidential inputs, but do not
wish to conduct the full computation themselves. These clients share their inputs in a privacy
preserving manner with some initial committee of volunteer servers. Once the computation begins,
both the clients and the initial servers may exit the protocol execution. Additionally, other servers,
even those not present during the input stage, can simply “sign-up” to join part-way through the
protocol execution. The resulting protocol should still provide the security properties we expect
from MPC.

More specifically, we consider a model in which the computation is divided into an input stage,
an execution stage, and an output stage. We illustrate this in Figure 1. During the input stage, a set
of clients prepare their inputs for computation and hand them over to the first committee of servers.
The execution stage is further divided into a sequence of epochs. During each epoch, a committee
of servers are responsible for doing some part of the computation, and then the intermediary state
of the computation is securely transferred to a new committee. Once the full circuit has been

3

Epoch i Epoch i+ 1 Epoch i+ 2Input Stage • • • • • • Output Stage

Execution Stage

Figure 1: Computation model of fluid MPC. A set of clients initiate the computation with the
input stage. During the execution stage, servers come and go, doing small amounts of work during
the compute phases and transferring state in the hand-off phase. Finally, once the entire circuit
has been evaluated, the output parties recover the outputs during the output stage.

evaluated, there is an output stage where the final results are recovered by the clients.
In order to see how well suited a particular protocol is to this dynamic setting, we introduce the

notion of fluidity of a protocol. Fluidity captures the minimum commitment required from each
server participating in the execution stage, measured in communication rounds. More specifically,
fluidity is the number of communication rounds within an epoch.

A protocol with worse fluidity might require that servers remain active to send, receive, or act
as passive observers on many rounds of communication. In this sense, MPC protocols designed for
static participants have the worst possible fluidity — all participants must remain active throughout
the lifetime of the entire protocol. In this work, we focus on protocols with only a single round of
communication per epoch, which we say achieve maximal fluidity. Note that such protocols must
have no intra-committee communication, as the communication round must be used to transfer
state. Achieving maximal fluidity is ideal for fluid MPC protocols, as they give the most flexibility
to the servers participating in the protocol.

There are several other modeling choices that can significantly impact feasibility and efficiency
of a fluid MPC protocol — many of which are non-trivial and unique to this setting. For instance:
when and how are the identities of the servers in the committee of a particular epoch fixed? What
requirements are there on the churn rate of the system? How does the adversary’s corruption model
interact with the dynamism of the protocol participants? We have already seen from the exten-
sive literature on volunteer consensus networks that different networks make different, reasonable
assumptions and arrive at very different protocols.

We discuss these modeling choices and provide a formal treatment of fluid MPC in Section 2.
For the constructions we give in this work, we consider adversaries that adaptively corrupt less
than half of the servers in any committee and assume that the identities of the servers in each
committee are made known during the previous epoch, but make no restrictions on which servers
may participate in any given epoch.

Our Contributions. In this work we initiate the study of fluid MPC. Our contributions are
threefold:

– Model. We provide a formal treatment of fluid MPC, exploring possible modeling choices.

– Protocols With Maximal Fluidity. We construct fluid MPC protocols that achieve max-
imal fluidity. We begin by noting that the classical semi-honest BGW protocol [BGW88] can
be adapted to the fluid MPC setting in a surprisingly simple manner.

To achieve security against malicious adversaries, we extend the “additive attack” paradigm of
[GIP+14] to the fluid MPC setting, showing that any malicious adversarial strategy on semi-
honest fluid MPC protocols (with a specific structure and satisfying a weak notion of privacy

4

against malicious adversaries1) is limited to injecting additive values on the intermediate wires
of the circuit. We use this observation to build a compiler that transforms such semi-honest
fluid MPC protocols into ones that achieve malicious security. Our compiler enjoys two salient
properties: (i) It introduces only a constant multiplicative overhead in the communication
complexity of the underlying protocol. (ii) It preserves fluidity of the underlying semi-honest
protocol. Applying our compiler to the fluid version of BGW gives a maliciously secure fluid
MPC protocol with maximal fluidity.

– Implementation. We implement our maliciously secure protocol and give concrete mea-
surements of running it across multiple network settings.

1.1 Technical Overview

We start by briefly discussing some specifics of the model in which we will present our construction.
A detailed formal description of our model is provided in Section 2.

As discussed earlier, we consider a client-server model where computation proceeds in three
phases – input stage, execution stage and output stage (see Figure 1). The execution stage proceeds
in epochs, where different committees of servers perform the computation. Each epoch ` is further
divided into two phases: (1) computation phase, where the servers in the committee (denoted as S`)
perform computation, and (2) hand-off phase, where the servers in S` transfer their states to the
incoming committee S`+1. We require that at the start of the hand-off phase of epoch `, everyone
is aware of committee S`+1. We consider security in the presence of an adversary who can corrupt
a minority of servers in every committee.

For the remainder of the technical overview, we describe our ideas for the simplified case where
all the committees are disjoint and the size of the committees remain the same across all epochs,
denoted as n. Neither of these restrictions are necessary for our protocols, and we refer the reader
to the technical sections for further details.

1.1.1 Main Challenges

Designing protocols that are well suited to the fluid MPC setting requires overcoming challenges
that are not standard in the static setting. While some of these challenges have been considered
previously in isolation in other contexts, the main difficulty is in addressing them at the same time.

1. Fluidity. The primary focus of our work is the fluidity of protocols, a measure of how long
the servers must remain online in order to contribute to the computation. The fluidity of a
protocol is the number of rounds of interaction in a single epoch, and we say that a protocol
achieves maximal fluidity if there is only a single round in each epoch. Designing protocols
with maximal fluidity means that the computation phase of an epoch must be “silent” (i.e.,
non-interactive), and the hand-off phase must complete in a single round.

2. Small State Complexity. In many classical MPC protocols, the private state held by
each party is quite large, often proportional to the size of the circuit (see, e.g. [DN07]).
We refer to this as the state complexity of the protocol. While state complexity is generally
not considered an important measure of a protocol’s efficiency, in the fluid MPC setting
it takes on new importance. Because the state held by the servers must be transferred

1It was observed in [GIP+14] that almost all known secret sharing based semi-honest protocols in the static model
naturally satisfy this weak privacy property. We observe that the fluid version of BGW continues to satisfy this
property. Further, we conjecture that most secret-sharing based approaches in the fluid MPC setting would also yield
semi-honest protocols that achieve this property.

5

` = 1

` = 2

` = 3

` = 4

S13

S12

S11

S23

S22

S21

S33

S32

S31

S43

S42

S41

S1 S2 S3 S4hand-off hand-off hand-off

Figure 2: Left: Part of the circuit partitioned into different layers, indicated by the different
colors. Right: A visual representation of the flow of information during the modified version
of BGW presented in Section 1.1.2, running with committees of size 3, which achieves maximal
fluidity. S` =

{
S`1,S

`
2, S

`
3,
}

denotes the set of active servers in each committee corresponding to
level `, indicated by the same color.

between epochs, the state complexity of a protocol contributes directly to its communication
complexity. Protocols with large state complexity, say proportional to the size of the circuit,
would require each committee to perform a large amount of work, undermining any advantage
of fluidity. Therefore, special attention must be paid to minimize the state complexity of the
protocol in the fluid MPC setting.

3. Secure State Transfer. As mentioned earlier, we consider adversaries that can corrupt a
minority of servers in every committee. As such, state cannot be naively handed off between
committees in a one-to-one manner. To illustrate why this is true, consider secret sharing
based protocols where the players collectively hold a t-out-of-n secret sharing of the wire
values and iteratively compute on these shares. If states were transferred by having each
server in committee Si choose a unique server in Si+1 (as noted, we assume for convenience
that |Si| = |Si+1|) and simply sending that new server their state, the adversary would see 2t
shares of the transferred state, t shares from Si and another t shares from Si+1, thus breaking
the privacy of the protocol. Fluid MPC protocols must therefore incorporate mechanisms to
securely transfer the protocol state between committees.

In this work, we focus our attention on protocols that achieve maximal fluidity. Designing such
protocols requires careful balancing between these three factors. In particular, the need for small
state complexity makes it difficult to use many of the efficient MPC techniques known in the
literature, as we will discuss in more detail below.

1.1.2 Adapting Semi-honest BGW to Fluid MPC

Despite the challenges involved in the design of fluid MPC protocols, we observe that the semi-
honest BGW [BGW88] protocol can be adapted to the fluid MPC setting in a surprisingly simple
manner.

Recall that in BGW, the parties collectively compute over an arithmetic circuit representation
of the functionality that they wish to compute, using Shamir’s secret sharing scheme. For each
intermediate wire in the circuit, the following invariant is maintained: the shares held by the parties
correspond to a t-of-n secret sharing of the value induced by the inputs on that wire. Evaluating
addition gates requires the parties to simply add their shares of the incoming wires, leveraging the
linearity of the secret sharing scheme. For evaluating multiplication gates, the parties first locally
multiply their shares of the incoming wires, resulting in a distributed degree 2t polynomial encoding

6

of the value induced on the output wire of the gate. Then, each party computes a fresh t-out-of-n
sharing of this degree 2t share and sends one of these share-of-share to every other party. Finally,
the parties locally interpolate these received shares and as a result, all the parties hold a t-out-of-n
sharing of the product. Thus, every multiplication gate requires only one round of communication.

We observe that adapting semi-honest BGW to fluid MPC setting, which we will refer to as
Fluid-BGW, is straightforward. The key observation is that the degree reduction procedure of
BGW simultaneously re-randomizes the state, so that only a single round of communication is
required to accomplish both goals. In each epoch, the servers will evaluate all the gates in a single
layer of the circuit, which may contain both addition and multiplication gates (see Figure 2). More
specifically, for each epoch `:

Computation Phase: The servers in S` interpolate the shares-of-shares (received from the pre-
vious committee) to obtain a degree t sharing for full intermediary state (for each gate in
that layer). Then, they locally evaluate each gate in layer `, possibly increasing the degree
of the shares that they hold. Finally, they compute a t-out-of-n secret sharing of the entire
state they hold, including multiplied shares, added shares and any “old” values that may be
needed later in the circuit.

Hand-off Phase: The servers in S` then send one share of each sharing to each active server in
S`+1.

The computation phase is non-interactive and the hand-off phase consists of only a single round of
communication, and therefore the above protocol achieves maximal fluidity.

Recall that we consider adversaries who can corrupt a minority of t servers in each committee,
a significant departure from the classical setting in which a total of t parties can be corrupted.
At first glance, it may seem as though the adversary can gain significant advantage by corrupting
(say) the first t parties in committee S` and the last t parties in committee S`+1. However, since
computing shares-of-shares essentially re-randomizes the state, at the end of the hand-off phase of
epoch `, the adversary is aware of the (1) nt shares-of-shares that were sent to the last t corrupt
servers during the hand-off phase of epoch ` and (2) (n − t) × t shares-of-shares that the first t
corrupt servers in S` sent to the (n − t) honest servers in S`+1. This is in fact no different than
regular BGW. Since the partial information that the adversary has about the states of the (n− t)
honest servers in S`+1 only corresponds to t shares of their individual states, privacy is ensured.

1.1.3 Compiler for Malicious Security

Having established the feasibility of semi-honest MPC with maximal fluidity, we now describe our
ideas for transforming semi-honest fluid MPC protocols into ones that achieve security against
malicious adversaries. Our goal is to achieve two salient properties: (1) fluidity preservation, i.e.,
preserve the fluidity of the underlying protocol, (2) constant multiplicative overhead, i.e., incur only
a constant overhead in the complexity of the underlying protocol.

Shortcomings of Natural Solutions. Consider a natural way of achieving malicious security:
after each gate evaluation, the servers perform a check that the gate was properly evaluated,
as is done in the malicious-secure version of BGW [BGW88]. However, known techniques for
implementing gate-by-gate checks rely on primitives such as verifiable secret sharing (among others)
that require additional interaction between the parties. Such a strategy is therefore incompatible
with our goal of achieving maximal fluidity, which requires a single round hand-off phase. Even
computational techniques like NIZKs are not well suited as they will require a committee to have

7

access to all prior rounds of communication in order to verify that the received messages were
correctly communicated.

Starting Idea: Consolidated Checks. Since performing gate-by-gate checks is not well-suited
to fluid MPC, we consider a consolidated check approach to malicious security where the correctness
of the computation (of the entire circuit) is checked once. This approach has previously been studied
in the design of efficient MPC protocols [DPSZ12, GIP+14, GIP15, CGH+18, FL19]. Roughly
speaking, in this approach, for every shared wire value z in the circuit, the parties also compute a
secret sharing of a MAC on z. At the end of the protocol, the parties verify validity of all the MACs
in one shot. While previously, this approach has primarily been used for improving the efficiency
of MPC protocols, we use it in this work for maximizing fluidity.

An important observation in this line of work, made in [GIP+14], is that linear-based MPC
protocols (a natural class of semi-honest honest-majority MPC protocols) are secure up to additive
attacks, meaning any strategy followed by a malicious adversary is equivalent to injecting an additive
error on each wire in the circuit. With this observation in hand, it is easy to see that the parties can
generate a single, secret MAC key r at the beginning of the protocol and compute MAC(r, z) = rz
for each wire z in the circuit. It holds that if the adversary injects an additive error δ on the
wire value z, they must inject a corresponding additive error of δ̂ = rδ on the MAC. Because r is
uniformly distributed and unknown to all servers, this can only happen with probability negligible
in the field size.

Verifying the MACs requires revealing the key r, but this is only done at the end of the protocol,
as revealing r too early would allow the adversary to forge MACs. Furthermore, to facilitate
efficient MAC verification, the parties finish the protocol with the following “condensed” check:
they generate random coefficients αk and use them to compute linear combinations of the wire
values and MACs as follows:

u =
∑
k∈[|C|]

αk · zk and v =
∑
k∈[|C|]

αk · rzk.

Finally, they reconstruct the key r and interactively verify if v = ru, before revealing the output
shares.

To build on this approach, we first need to show that linear-based fluid MPC protocols are also
secure up to additive attacks against malicious adversaries. We prove this to be true in Section 5
and show that the semi-honest Fluid-BGW satisfies the structural requirement of linear-based fluid
MPC protocols. At first glance, it would appear that we can then directly implement the above
mechanism to the fluid MPC setting as follows: in the output stage, parties interactively generate
shares of αk, locally compute this linear combination, reconstruct r, and perform the equality check.

To see where this approach falls short, consider the state complexity of this protocol. To
perform the consolidated check, parties in the output stage require shares of all wires in the circuit,
namely zk and rzk for k ∈ [|C|], which must have been passed along as part of the state between
each consecutive pair of committees. This means that the state complexity of the protocol is
proportional to the size of the circuit, which (as discussed earlier) would undermine the advantages
of the fluid MPC model. More concretely, this approach would incur at least |C| multiplicative
overhead in the communication of the underlying protocol – far higher than our goal of achieving
constant overhead.

Incrementally Computing Linear Combination. In order to implement the above consol-
idated check approach in the fluid MPC setting, we require a method for computing the afore-
mentioned aggregated values that does not require access to the entire intermediate computation
during the output stage. Towards this, we observe that the servers can incrementally compute u

8

and v throughout the protocol. This can be done by having each committee incorporate the part of
u and v corresponding to the gates evaluated by the previous committee into the partial sum. That
is, committee S` is responsible for (1) evaluating the gates on layer `, (2) computing the MACs
for gates on layer `, and (3) computing the partial linear combination for all the gates before layer
`− 1.

Let the output of the kth gate on the ith layer of the circuit be denoted as zik. Apart from the
shares of z`−1k and rz`−1k (for k ∈ [w]), the servers computing layer ` of the circuit S` also receive
shares of

u`−2 =
∑
i≤`−2

∑
k∈[w]

αik · zik and v`−2 =
∑
i≤`−2

∑
k∈[w]

αik · rzik

from S`−1 during hand-off, where αik is a random value associated with the gate outputting zik.
While u`−2 and v`−2 represent the consolidated check for all gates in the circuit before layer `− 1.
S` then computes shares of

u`−1 = u`−2 +
∑
k∈[w]

α`−1k · z`−1k and v`−1 = v`−2 +
∑
k∈[w]

α`−1k · rz`−1k

in addition to shares of the outputs of gates on layer ` (z`k and rz`k) and transfer u`−1 and v`−1 to
S`+1 during hand-off. Note that the final u = ud and v = vd, where d is the depth of the circuit.
This leaves the following main question: how do the servers agree upon the values of α`k?

Notice that |{α`k}k∈[w],`∈[d]| = |C|, therefore generating shares of all the α`k values at the begin-
ning of the protocol and passing them forward will again yields a protocol that has an excessively
large state complexity. Another natural solution might be to have the servers generate α`k as and
when they need them. However, because our goal is to maintain maximal fluidity, the servers in
Sj for some fixed j cannot generate αjk, as this would require communication within Sj .

Instead, consider a protocol in which the servers in Sj−1 do the work of generating the shares
of αjk. Each server in Sj−1 generates a random value and shares it, sending one share to each server
in Sj . The servers in Sj then combine these shares using a Vandermonde matrix to get correct
shares of αjk, as suggested by [BTH06]. While this approach achieves maximal fluidity and requires
a small state complexity, it incurs a multiplicative overhead of n in the complexity of the underlying
semi-honest protocol.2

Constant Overhead Compiler. We now describe our ideas for achieving constant multiplicative
overhead. In our compiler, we use the above intuition, having each committee, evaluate gates for
its layer, compute MACs for the previous layer, and incrementally add to the sum. In the input
stage, the clients generate a sharing of a secret random MAC key r, and secret random values
β, α1, . . . , αw. Over the course of the protocol, the servers will incrementally compute values

u =
∑
`∈[d]

∑
k∈[w]

(αk(β)`) · z`k and v =
∑
`∈[d]

∑
k∈[w]

(αk(β)`) · rz`k

where z`k is the output of the kth gate on level `, (β)` is β raised to the `th power, and αk(β)` is
the “random” coefficient associated with it. At the end of the protocol, the parties verify whether
v = ru.

Notice that at the beginning of the execution stage, the servers do not have shares of (αk(β)`)
for ` > 0, but they have the necessary information to compute a valid sharing of this coefficient

2In the static setting, this technique allows for batched randomness generation, by generating O(n) sharings with
O(n2) messages. In the fluid MPC setting, however, the number of servers cannot be known in advance and may not
correspond to the width of the circuit. Therefore, such amortization techniques are not applicable.

9

in parallel with the normal computation, namely β, α1, . . . , αw. To compute the coefficients, we
require that the servers computing layer ` are given shares of (αk(β)`−1) and β by the previous set
of servers, in addition to the shares of the actual wire values. The servers in S` then use these shares
to compute shares of (1) the values z`k on outgoing wires from the gates on layer `, (2) the partial
sums by adding the values computed in the previous layer u`−1 = u`−2 + (αk(β)`−1) · z`−1k and

v`−1 = v`−2 + (αk(β)`−1) · rz`−1k , and (3) the coefficients for the next layer (αk(β)`) = β ·αk(β)`−1.
All of this information can be securely transferred to the next committee.

We give a simplified sketch to illustrate why this check is sufficient. Let ε`z,k (and ε`rz,k resp.)

be the additive error introduced by the adversary on the computation of z`k (rz`k resp.).
As before, the check succeeds if

r ·
∑
`∈[d]

∑
k∈[w]

(αk(β)`)(z`k + ε`z,k) =
∑
`∈[d]

∑
k∈[w]

(αk(β)`)(rz`k + ε`rz,k)

Let the qth gate on level m be the first gate where the adversary injects errors εmz,q and εmrz,q. The
above equality can be re-written as.

αq

[
d∑

`=m

((β)`ε`rz,q)− r
d∑

`=m

((β)`ε`z,q)

]
= r ·

d∑
`=m

∑
k∈[w]
k 6=q

(αk(β)`)(z`k + ε`z,k)−
d∑

`=m

∑
k∈[w]
k 6=q

(αk(β)`)(rz`k + ε`rz,k)

This holds only if either (1)
∑d

`=m((β)`ε`z,q) = 0 and
∑d

`=m((β)`ε`rz,q) = 0. The key point is that
since these are polynomials in β with degree at most d, the probability that β is equal to one of its
roots is d/|F|. Or if (2) r =

∑d
`=m((β)`ε`rz,q)(

∑d
`=m((β)`ε`z,q))

−1. Since r is uniformly distributed,
this happens only with probability 1/|F|.

This analysis is significantly simplified for clarity and the full analysis is included in Appendix
B. Note that the adversary can inject additive errors on r and β, since these values are also re-
shared between sets of servers. Also, since the α values for the gates on level ` > 0 are computed
using a multiplication operation, the adversary can potentially inject additive errors on these values
as well. However, we observe that the additive errors on the value of β and consequently on the α
values associated with the gates on higher levels, does not hamper the correctness of output. But
the errors on the value of r, do need to be taken into consideration. The analysis in the Appendix
addresses how these errors can be handled, making it non-trivial and notationally complicated, but
the core intuition remains the same.

We note that we are not the first to consider generating multiple random values by raising a
single random value to consecutively larger powers. In particular, [DPSZ12] performs consolidated
checks by taking a linear combination of all wire values, the coefficients for which need to be gen-
erated securely, i.e. be randomly distributed and authenticated. But this generation is expensive,
so they generate a single secure value and derive all other values by raising it to consecutively
larger powers. A consequence of this technique is that once the single secure value is revealed, the
exponentiations are done locally and therefore precludes any introduction of errors in this com-
putation for the honest parties. Although this technique might seem similar to ours, our specific
implementation is different and for a different purpose, namely, achieving maximal fluidity together
with constant multiplicative overhead.

A roadmap to our constructions can be found in Section 4.

10

1.2 Future Directions

In this work we take the first steps towards designing MPC protocols with dynamic participation.
We envision a host of interesting problems in this area that are yet to be tackled. Here we provide
a brief, non-exhaustive list of some natural problems.

Efficiency. In this work, we build a malicious security compiler that preserves the fluidity of the
underlying semi-honest protocol while incurring only constant multiplicative overhead. This means
that future designs of concretely efficient fluid MPC protocols only need to focus on semi-honest
security.

Our construction of semi-honest fluid MPC is based on the classical BGW protocol which
performs worse than best known concretely efficient semi-honest MPC protocols such as [DN07].
However, these protocols use amortization techniques that inherently require large state complexity,
which (as discussed earlier) is problematic in the fluid MPC setting. As such, constructing more
efficient semi-honest fluid MPC protocols for general computations is an interesting problem.

Security. In this work, we consider an honest majority model in which the adversary is limited
to corrupting a minority of servers in each committee. A natural question is whether it is possible
to construct fluid MPC protocols in the more challenging setting where an adversary can corrupt
more than half of the servers in some or potentially all of the committees.

Other Models. In this work, we put forth an initial, and in our eyes, natural model for fluid
MPC. As we discuss in Section 2, there are a plethora of modeling choices that arise in this setting;
exploring them remains an interesting avenue for future research.

1.3 Related Work

Proactive Multiparty Computation. The proactive security model, first introduced in [OY91],
aims to model the persistent corruption of parties in a distributed computation, and the continuous
race between parties for corruption and recovery. To capture this, the model defines a “mobile”
adversary that is not restricted in the total number of corruptions, but can corrupt a subset of
parties in different time periods, and the parties periodically reboot to a clean state to mitigate
the total number of corruptions. Prior works have investigated the feasibility of proactive security
both in the context of secret sharing [HJKY95, MZW+19] and general multiparty computation
[OY91, BELO14, EOPY18].

While both fluid MPC and Proactive MPC (PMPC) consider dynamic models, the motivation
behind the two models are completely different. This in turn leads to different modeling choices.
Indeed, the dynamic model in PMPC considers slow-moving adversaries, modeling a spreading
computer virus where the set of participants are fixed through the duration of the protocol. This
is in contrast to the Fluid MPC model where the dynamism is derived from participants leaving
and joining the protocol execution as desired. As such, the primary objective of our work is to
construct protocols that have maximal fluidity while reducing the computation complexity in each
epoch, which are not a consideration of protocols in the PMPC setting. Furthermore, unlike PMPC,
fluid MPC captures the notion of volunteer servers that sign-up for computation proportional to
the computational resources available to them.

The difference in motivation highlighted above also presents different constraints in protocol
design. For instance, unlike PMPC, (as discussed in the technical overview) the state complexity
of protocol is a key parameter in the design of fluid MPC. We do note, however, that some ideas
from the PMPC setting, such as state re-randomization are relevant in our setting as well.

11

Malicious Security Compilers. There has been a recent line of exciting work [CGH+18,
NV18, LN17, ABF+17, AFL+16, MRZ15, IKHC14, FL19] in designing concretely efficient compiler
that upgrade security from semi-honest to malicious in the honest majority setting. Some of these
compilers rely on the additive attack paradigm introduced in [GIP+14]. We take a similar approach,
but adapt and extend the additive attack paradigm to the fluid MPC setting.

Concurrent and Independent Work.3 Two independent and concurrent works [GKM+20,
BGG+20] that recently appeared on ePrint Archive also model dynamic computing environments by
considering protocols that progress in discrete stages denoted as epochs, which are further divided
into computation and hand-off phases. These works study and design secret sharing protocols
in the dynamic environment. In contrast, our work focuses on the broader goal of multi-party
computation protocols for all functionalities.

Furthermore, we focus on building protocols that achieve maximal fluidity. While this goal is
not considered in [GKM+20], a notion of maximal fluidity is achieved in [BGG+20] (albeit with
some differences discussed below). In choosing committees for each epoch, [GKM+20] consider an
approach similar to ours where the committee is announced at the start of the hand-off phase of
each epoch. [BGG+20] stray from this approach and select committees via an external mechanism
using ideas very specific to the blockchain setting. A consequence of this approach is that while their
protocol is able to achieve maximal fluidity, the committee selection mechanism requires parties to
stay online throughout the protocol even if the parties are not performing any computation. This
is in contrast to the setting we consider, where we aim to capture flexibility of participation and
allow parties to go offline when they are not performing any computation.

Lastly, both of these works consider a security model incomparable to ours. Specifically,
they consider security with guaranteed output delivery for secret sharing against computationally
bounded adversaries, whereas we consider MPC with security with abort against computationally
unbounded adversaries.

2 Fluid MPC

In this section, we give a formal treatment of the fluid MPC setting. We start by describing the
model of computation and then turn to the task of defining security. Our goals in this section are
twofold: first, we illustrate that there are many possible modeling parameters to choose from in
the fluid MPC setting. Second, we highlight the modeling choices that we make for the protocols
we describe in later sections. Before beginning, we reiterate that the functionalities considered in
this setting can be represented by circuits where the depth of such circuits are large.

We consider a client-server model of computation where a set of clients C want to compute a
function over their private inputs. The clients delegate the computation of the function to a set
of servers S. Unlike the traditional client-server model [CDI05, DI05, DI06] where every server is
required to participate in the entire computation (and hence, remain online for its entire duration),
we consider a dynamic model of computation where the servers can volunteer their computational
resources for part of the computation and then potentially go offline. That is, the set of servers is
not fixed in advance.

In a fluid MPC protocol, computation proceeds in three stages:

Input Stage: In this stage, the clients pre-process their inputs and hand them off to the servers
for computation.

3An earlier version of our work containing the same results was submitted to ACM CCS 2019.

12

Epoch `

Committee S`

Compute Phase Hand-off Phase

Epoch `+ 1

Committee S`+1

Compute Phase Hand-off Phase• • •

Figure 3: Epochs ` and `+ 1

Execution Stage: This is the main stage of computation where only the servers participate in
the computation of the function.

Output Stage: This is the final stage where only the clients participate in order to reconstruct
the output of the function.

We emphasize that the clients only participate in the input and output stages of the protocol.
Consequently, we require that the computational complexity of both the input and the output stages
is independent of the depth of the functionality (when represented as a circuit) being computed
by the protocol. A primary goal of this work is to offload the computation work to the servers
and having a computation intensive input phase would undermine this goal. We wish to capture
dynamism for the bulk of the computation, and thus study dynamism in the execution stage of
the protocol, rather than the input and output stages. We highlight the key modeling choices for
the protocols we present by displaying them in bold font in color. Subsequent to the discussion
of various modeling choices, we shall refer to our model as Maximally-Fluid MPC with R-Adaptive
Security.

Epoch. We model the progression of the execution stage in discrete steps referred to as epochs.
In each epoch `, only a subset of servers S` participate in the computation. We refer to this set of
servers S` as the committee for epoch `. An epoch is further divided into two phases, illustrated
in Figure 3:

Computation Phase: Every epoch begins with a computation phase where the servers in
the committee S` perform computation over their local states, possibly involving multiple
rounds of interaction with each other.

Hand-off Phase: The epoch then transitions to a hand-off phase where the committee S`
transfers the protocol state to the next committee S`+1. As with the computation phase,
this phase may involve multiple rounds of interaction. When this phase is completed, epoch
`+ 1 begins.

Fluidity. We define the notion of fluidity to measure the minimum commitment that a server
needs to make for participating in the execution stage.

Definition 1 (Fluidity). Fluidity is defined as the number of rounds of interaction within an epoch.

Clearly, the fewer the number rounds in an epoch, the more “fluid” the protocol. We say that
a protocol has maximal fluidity when the number of rounds in an epoch is 1. We emphasize that
this is only possible when the computation phase of an epoch is completely non-interactive, i.e., the
servers only perform local computation on their states without interacting with each other. This
is because the hand-off phase must, by definition, consist of at least one round of communication.
In this work, we aim to design protocols with maximal fluidity.

Committees. We now explore modeling choices for committees. We address three key aspects of
a committee – its formation, size and possible overlap with other committees. Along the way, we
also discuss how long a server needs to remain online.

13

Committee Formation and Availability. From our above discussion of computation pro-
gressing in epochs, we view three possible choices for committee formation:

1. In the most restrictive choice, the servers announce right at the start, their participation
for the protocol, and epoch(s) they will be participating in. This in turn determines the
committee for every epoch. In this choice, the servers lose some of their flexibility since they
have to commit to their resources ahead of time. We view this choice to be too restrictive
and shall not consider it for our model.

2. Since we view the servers as “volunteers” who sign up to participate in the execution stage
whenever they have computational resources available. The natural choice we consider
in this model is that the committee for epoch ` + 1 is determined and known to
everyone at the start of the hand-off phase of epoch `. In order to allow the
committee S` to securely communicate with committee S`+1, we assume the existence of
private point-to-point channels between all parties.4

3. On can envision a third choice where the committee for each epoch are determined via some
external process and the servers in S` are oblivious to the identities of the servers in S`+1.
A potential benefit of this choice is that it can further narrow the window of opportunity for
an adversary to corrupt committee members. However, the idea of committee “selection”
(via an external process) departs from our vision of volunteer-based computation; hence
we do not consider it in the present work.

We consider two notions of availability of any server:

1. We say that a server is active within an epoch if it either (a) performs some protocol
computation, or (b) sends/receives protocol messages. Clearly, a server is active during
epoch ` only if it belongs to S` ∪S`+1. A committee S` is active from the beginning of the
hand-off phase in epoch `− 1 to the end of the hand-off phase in epoch ` (see Figure 3).

2. We say that a server is online if it is active (in the above sense) or simply passively listening
to broadcast communication.

A protocol may potentially require a server to be online throughout the protocol and keep
its local state “up to date” as a function of all the broadcasted protocol messages (possibly for
participation at a later stage). In such a case, while a server may not be performing active
computation throughout the protocol, it would nevertheless have to commit to being present
and listening throughout the protocol. In this work, we focus on designing protocols where
a server is only required to be online during epochs where it is active. In such a
protocol, a server in committee S` only needs to come online at the start of the hand-off phase
in epoch `− 1 and can then go offline at the end of epoch `. In particular, it does not need to
“hang around” listening to protocol communication.

Committee Sizes. In view of modeling committee members signing up as and when they have
available computational resources, we allow for variable committee sizes in each epoch. For
simplicity, we describe our protocol in the technical sections for the simplified setting where the
committee sizes in each epoch are equal and indicate how it extends to the variable committee
size setting. An alternative choice would be to require the committee to have a fixed size,
or change sizes at some prescribed rate. These choices might be more reasonable under the
requirement that servers announce their committee membership at the start of the protocol.

Committee Overlap. In our envisioned applications, participants with available computa-
tional resources will sign up more often to be a part of a committee (see Remark 1). In view

4In practice, this can be implemented, e.g., by using a public-key infrastructure (PKI).

14

of this, we make no restriction on committee overlap, i.e., we allow a server to volunteer
to be in multiple epoch committees. As we discuss below, this has some bearing on modeling
security for the protocol.

Remark 1 (Weighted Computation.). We note that our model naturally allows for a form of
weighted computation, where the amount of work performed by a participant is proportional to
its available resources. This is because a participant (i.e., a server) can choose to participate in
a number of epochs proportional to its available resources.

2.1 Security

As in traditional MPC, there are various choices for modeling corruption of parties to determine
the number of parties that can be corrupted (i.e., honest vs dishonest majority) as well as the time
of corruption (i.e., static vs adaptive corruption).

Corruption Threshold. We consider an honest-majority model for fluid MPC where an adversary
can corrupt any minority of the clients as well as any minority of servers in every
committee in an epoch. An alternative model, that we do not consider in this work, is where
an adversary may corrupt a majority of clients and additionally a majority of servers in some or
all the epochs.

Corruption Timing. Given that the protocol progresses in discrete steps, and knowledge of
committees may not be known in advance, it is important to model when an adversary can specify
the list of corrupted parties. For clients, this is straightforward: we assume that the adversary
specifies the list of corrupted clients at the start of the protocol, i.e. we assume static corruption
for the clients. Since the servers perform the bulk of the computation, and their participation
is already dynamic, there are various considerations for corruption timing. We consider two main
aspects below: point of corruption and effect on prior epochs.

Point of corruption: When the committee S` is determined at the start of hand-off phase of
epoch `− 1, the adversary can specify the corrupted servers from S` in either:

1. a static manner, where the adversary is only allowed to list the set of corrupted servers
when the committee S` is determined; or

2. an adaptive manner, where the adversary can corrupt servers in S` adaptively up until the
end of epoch `, i.e. while they are active.

Effect on prior epochs: We consider the effect of the adversary corrupting parties during epoch
` on prior epochs.

1. No retroactive effect: In this setting, the corruption of servers during epoch ` has no bearing
on any epoch j < `, i.e. the adversary does not learn any additional information about
epoch j at epoch `. This model can be achieved in two ways:

Erasure of states: If servers in Sj erase their respective local states at the end of epoch
j, then even if the server were to participate in epoch ` (i.e. Sj ∩S` 6= ∅), the adversary
would not gain any additional information.

Disjoint committees: If the sets of servers in each epoch are disjoint, by corrupting
servers in epoch `, the adversary cannot learn anything about prior epochs.

We note that for any protocol that is oblivious to the real identities of the servers (i.e. the
protocol doesn’t assume any prior state from the servers), the two methods of achieving no
retroactive effect, i.e. erasures and disjoint committees are equivalent. This follows from

15

the fact that servers do not have to keep state in order to rejoin computation, and therefore
from the point of view of the protocol and for all purposes, are equivalent to new servers.

2. Retroactive effect: In this setting, the adversary is allowed limited information from prior
epochs. Specifically, when corrupting a server S ∈ S` in epoch `, the adversary learns
private states of the server in all prior epochs (if the server has been in a committee
before). Therefore, the S is then assumed to have been (passively) corrupt in every epoch
j < `. In order to prevent the adversary from arbitrarily learning information about prior
epochs, the adversary is limited to corrupting servers in epoch ` as long as corrupting a
server S and its retroactive effect of considering S to be corrupted in all prior epochs does
not cross the corruption threshold in any epoch.

One could consider models with various combinations of the aforementioned aspects. We will
narrow further discussion to two models of the adversary:

Definition 2 (R-adaptive Adversary). We say that the adversary A is an R-adaptive adversary if A
can statically corrupt a set T of the clients (at the start of the protocol) and corrupt the servers in
an adaptive manner with retroactive effect. Specifically, in epoch `, the adversary A can adaptively
choose to corrupt a set of servers T ` ⊂ [n`] from the set S`, where T ` corresponds to a canonical
mapping based on the ordering of servers in S`. On corrupting the server, A learns its entire past
state and can send messages on its behalf in epoch `. The set of servers that A can corrupt, and
its corresponding retroactive effect, will be determined by the corruption threshold τ specifying that
∀`, |T `| < τ · n`.

Definition 3 (NR-adaptive Adversary). We say that the adversary A is an NR-adaptive adversary
if A can statically corrupt a set T of the clients (at the start of the protocol) and corrupt the servers
in an adaptive manner with no retroactive effect. The corruption process is similar to the case of
R-adaptive adversaries, except that the adversary can corrupt any server in epoch ` as long as the
number of corrupted servers in epoch ` are within the corruption threshold. As mentioned earlier,
any protocol that achieves security against such an adversary necessarily requires either (a) erasure
of state, or (b) disjoint committees.

While our security definition will be general, and encompass both adversarial models, we will
consider protocols in the model with R-adaptive adversary.

In the above discussions, we have considered corruptions only when servers are active. One could
also consider a seemingly stronger model where the adversary can corrupt servers when they are
offline, i.e. no longer active. We remark below that our model already captures offline corruption.

Remark 2 (Offline Corruption). If servers are offline once they are no longer active i.e. they are
not passively listening to protocol messages, then offline corruptions in the retroactive effect model
is the same as adaptive corruptions during (and until the end of) the epoch due to the fact that
the server’s protocol state has not changed since the last time it was active. Going forward, since
honest parties do go offline when they are no longer active, we do not specify offline corruptions as
they are already captured by our model.

Remark 3 (Un-corrupting parties). It might be desirable to consider a model in which a server
is initially corrupted by the adversary, but then the adversary eventually decided to “un-corrupt”
that server, returning it to honest status. This kind of “mobile adversary” has been studied in some
prior works [GHM+17]. We note that this can be captured in our model by just having the adversary
“un-corrupt” a server by making that server leave the computation at the end of the epoch and rely
on the natural churn of the network to replace that server.

16

Defining Security. We consider a network of m-clients and N -servers S and denote by (−→n =
(n1, . . . , nE), E) the partitioning of the servers into E tuples (corresponding to epochs) where the
`-th tuple has n` parties (corresponding to committee in the `-th epoch), i.e. S` ⊂ S such that
∀` ∈ [E], |S`| = n`.

Similar to the client-server setting, defined in [CDI05, DI05, DI06], only the m clients have
an input (and receive output), computing a function f : X1× · · · ×Xm → Y1× · · · × Ym, where for
each i ∈ [m], Xi and Yi are the input and output domains of the i-th client.

We consider the most well studied security notion in the MPC literature called, security with
abort. The security of a protocol (with respect to a functionality f) is defined by comparing the
real-world execution of the protocol with an ideal-world evaluation of f by a trusted party. More
concretely, it is required that for every adversary A, which attacks the real execution of the protocol,
there exist an adversary Sim, also referred to as a simulator, which can achieve the same effect in
the ideal-world. Let’s denote −→x = (x1, . . . , xm) where xi corresponds to the input of the i-th client.

In the real execution of the (−→n ,E)-party protocol π for computing f proceeds with the clients
pre-processing their inputs and handing it off to the servers in S1. The protocol then proceeds in
epochs as described earlier in the presence of an adversary A. A at the start of the protocol chooses
a subset of clients T ⊂ [m] to corrupt. As discussed, the corruption of the clients is static, and thus
fixed for the duration of the protocol. The honest parties follow the instructions of π. Depending
on whether A is R-adaptive or NR-adaptive, A proceeds with adaptively corrupting servers, and
sending messages on their behalf.

The interaction of A with a protocol π defines a random variable REALπ,A,T (−→x) whose value
is determined by the coin tosses of the adversary and the honest players. This random variable
contains (a) the output of the adversary (which may be an arbitrary function of its view); (b) the
outputs of the uncorrupted clients; and (c) list of all the corrupted servers

{
T `
}
`∈[E]

.

The ideal world execution is defined similarly to prior works. We formally define the ideal ex-
ecution for the case of retroactive adaptive security, and the analogous definition for non-retroactive
adaptive security can be obtained by appropriate modifications. Roughly, in the ideal world exe-
cution, the participants have access to a trusted party who computes the desired functionality f .
The participants send their inputs to this trusted party who computes the function and returns the
output to the participants.

More formally, an ideal world execution for a function f with adversary Sim proceeds as follows:

– Clients send inputs to the trusted party: The clients send their inputs to the trusted party,
and we let x′i denote the value sent by client Ci. The adversary Sim sends inputs on behalf of
the corrupted clients.

– Corruption Phase of servers: The trusted party initializes ` = 1. Until Sim indicates the end
of the current phase (see below), the following steps are executed:

1. Trusted party sends ` to Sim and initializes an append-only list Corrupt` to be ∅.
2. Sim then sends pairs of the form (j, i) where j denotes epoch number and i denotes the index

of the corrupted server in epoch j ≤ `. Upon receiving this, the trusted party appends i to
the list Corruptj . This step can be repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments ` by 1.

Sim may also send an abort message to the trusted party in this phase in which case the trusted
party sends ⊥ to all honest clients and stops. Else, Sim sends next phase to the trusted party to
indicate the end of the current phase.

17

The following steps are only executed if the Sim has not already sent an abort message to the
trusted.

– Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
m) =

(y1, . . . , ym) and sends {yi}i∈T to the adversary Sim.

– Adversary instructs trust party to abort or continue: This is formalized by having the
adversary send either a continue or abort message to the trusted party. In the latter case, the
trusted party sends to each uncorrupted client Ci its output value yi. In the former case, the
trusted party sends the special symbol ⊥ to each uncorrupted client.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values
obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf,Sim,T (−→x) con-
taining the (a) output of the ideal adversary Sim; (b) output of the honest parties after an ideal
execution with the trusted party computing f where Sim has control over the adversary’s input to
f ; and (c) the lists

{
Corrupt`

}
`

of corrupted servers output by the trusted party. If Sim sends abort
in the corruption phase of the server, the trusted party outputs the lists that have been updated
until the point the abort message was received from Sim.

Having described the real and the ideal worlds, we now define security.

Definition 4. Let f : X1 × · · · × Xm → Y1 × · · · × Ym be a functionality and let π be a fluid
MPC protocol for computing f with m clients, N servers and E epochs. We say that π achieves
(τ, µ) retroactive adaptive security (resp. non-retroactive adaptive security) if for every probabilistic
R-adaptive (resp. NR-adaptive) adversary A in the real world controlling a subset of servers T ` ⊆ S`,
∀` ∈ [E] s.t. |T `| < τ · n` and less than τ ·m clients, there exists a probabilistic simulator Sim in
the ideal world such that for every input −→x ∈ X1 × · · · ×Xm if holds that

SD (IDEALf,Sim,T (−→x),REALπ,A,T (−→x)) ≤ µ

where SD(X,Y) is the statistical distance between distributions X and Y .

When µ is a negligible function of some security parameter λ, we say that the protocol π is
τ -secure.

Remark 4. We note that the above definitions do not explicitly state whether the adversary behaves
in (a) a semi-honest manner, where the messages that it sends on behalf of the parties are computed
as per protocol specification; or (b) a malicious manner, where it can deviate from the protocol
specification. Our intention is to give a general definition independent of the type of adversary. In
the sequel, we shall appropriately prefix the adversary with semi-honest/malicious to indicate the
power of the adversary.

This Work. We summarize the fluid MPC model that we focus on in this work, in the definition
below.

Definition 5 (Maximally-Fluid MPC with R-Adaptive Security). We say that a Fluid MPC protocol
π is a Maximally-Fluid MPC with R-Adaptive Security if it additionally satisfies the following
properties:

– Fluidity: It has maximal fluidity.

18

– Volunteer Based Sign-up Model: Committee for epoch `+ 1 is determined and known to
everyone at the start of the hand-off phase of epoch `. Each epoch can have variable committee
sizes, and the committees themselves can arbitrarily overlap. A server is only required to be
online during epochs where it is active.

– Malicious R-Adaptive Security: It achieves security as per Definition 4 against malicious
R-adaptive adversaries who can corrupt any minority (τ < 1/2) of clients and any minority
of servers in every committee in an epoch.

As we have just shown, there are many interesting, reasonable modeling choices that can be made
in the study of fluid MPC. While our specific model name may be heavy-handed, we want to ensure
that our modeling choices are clear throughout this work. Additionally, we hope to emphasize that
our work is an initial foray in the study of fluid MPC and much is to be done to fully understand
this setting.

3 Preliminaries

In this section we present some of the notations used for representing secret shares and give a
formal definition of layered circuits.

3.1 Threshold Secret Sharing

A t-out-of-n secret sharing scheme enables n parties to share as secret v ∈ F so that no subset of t
parties can learn any information about it, while any subset of t+ 1 parties can reconstruct it. We
use Shamir’s secret sharing scheme [Sha79] in our protocols that supports the following procedures
(taken verbatim from [CGH+18]):

– share(v): In this procedure, a dealer shares a value v ∈ F as follows:

1. Set p0 = v and sample p1, . . . , pt←$Ft.
2. Set p(z) = p0 + p1z + p2z

2 + . . .+ ptz
t.

3. For each i ∈ [n], set vi = p(i).

Each output share vi (for i ∈ [n]) is the share intended for party Pi. We denote the t-out-of-n
sharing of a value v by [v]. We use the notation [v]J to denote the shares held by a subset of
parties J ⊂ [n]. We stress that if the dealer is corrupted, then the shares received by the parties
may not be correct. Nevertheless, we abuse notation and say that the parties hold shares [v]
even if these are not correct.

– share(v, J, [v]J): This procedure is similar to the previous procedure, except that here the shares
of a subset J of parties with |J | ≤ t are fixed in advance. Given the value v to be shared, let
p(z) = v+p1z+p2z

2 + . . .+ptz
t be the polynomial used for secret sharing. Now given |J | shares,

we get the following system of equations:

∀i ∈ J, vi = v + p1i+ p2i
2 + . . .+ pti

t

This a system of |J | equations in t variables {p1, . . . , pt} and can be easily solved using Gaussian
elimination. Finally, given the polynomial p(z) the shares of all other parties i ∈ [n] \ J is
vi = p(i).

19

Remark. If |J | = t, then [v]J together with v fully determine all the shares v1, . . . , vn. This also
means that any t+ 1 shares fully determine all shares. (This follows since with t+ 1 shares one
can always obtain v. However, for Shamir’s secret sharing scheme, this holds directly as well).

– reconstruct(J, [v]J): Given the shares of a subset J of parties with |J | = t + 1, this procedure
reconstructs the value v consistent with these shares. Since shares in Shamir’s secret sharing
scheme correspond to points on a polynomial, we can use Lagrange Interpolation over a finite
field to reconstruct the value v. For a given set J , for each i ∈ J , the Lagrange coefficient ci is
defined as

ci =
∏

j∈J,j 6=i

−j
i− j

The value v can now be computed as v =
∑

i∈J ci · vi.

– open([v]): Given a sharing of v held by parties, this procedure guarantees that at the end of
the execution, if [v] is not correct, then all the honest parties will abort. Otherwise, if [v] is not
correct, then each party will output ⊥. This procedure works as follows:

– Sample any two subsets J1 ⊂ [n] and J2 ⊂ [n].

– Check if reconstruct(J1, [v]J1) = reconstruct(J2, [v]J2). If so, output reconstruct(J1, [v]J1), else,
output ⊥.

Clearly, open can be run by any subset of t+ 1 or more parties. If any subset of t+ 1 parties run
this procedure, it always output a non-⊥ value.

– Operations: Given correct sharings [u] and [v] and a scalar α ∈ F, the parties can generate correct
t-out-of-n sharings [u + v], [α · v],[v + α] and 2t-out-of-n sharings 〈u · v〉 (where 〈u · v〉 denotes
the 2t-out-of-n sharing of u · v) using local operations only (i.e., without any interaction). We
denote these operations as follows:

– Addition: [u+ v] = [u] + [v]

– Scalar Addition: [α+ v] = α+ [v]

– Scalar Multiplication: [α · v] = α · [v]

– Multiplication: 〈u · v〉 = [u] · [v].

3.2 Layered Circuits

We will design a protocol that works for any polynomial-sized arithmetic circuit with a specific
structure. In particular, we consider circuits that can be decomposed into well-defined layers such
that the output of gates on a layer ` are only used as input to the gates on layer ` + 1. We refer
to such circuits as layered circuits. Apart from the regular addition and multiplication gates, these
circuits can additionally have single input relay gates that implement the identity operation. We
start by giving a formal definition of layered circuits. Later we show that any arithmetic circuit
can be transformed into a layered circuit with the same depth and twice the width.

Definition 6 (Layered Circuits). An arithmetic circuit C over a field F with depth d and maximum
width w is said to be a layered circuit, if it satisfies the following properties:

– The circuit C can be decomposed into d distinct and well-defined layers/layers such that the gates
on layer ` ∈ [d] take only output wires coming from gates on layer `− 1 as input.

20

– layer ` = 0 is a special layer consisting of special gates called input gates. These gates have
in-degree 0. In some cases, we also allow these gates with in-degree 0 to be labeled as random
input gates. As the name suggests, random input gates output random values. The output of
gates in this layer act as inputs to the gates on layer ` = 1.

– The circuit consists of another special type of gates called output gates on layer ` = d+ 1. These
gates have out-degree 0. The output of gates on layer ` = d are inputs to the output gates.

– Apart from the input and output gates, the circuit consists of the following types of gates:

– Addition Gates: These gates have arbitrary in-degrees and out-degrees. Given inputs x1, . . . , xq ∈
F on the respective input wires, addition gates output

∑q
i=1 xi on each of their output wires.

– Addition-by-Constant Gates: These gates have an in-degree of one and arbitrary out-
degree. Given input x ∈ F, addition-by-constant gates output (x + c) on each of their output
wires, where c ∈ F is some constant hardwired in the gate.

– Multiplication Gates: These gates have in-degree two and arbitrary out-degrees. Given
inputs x, y ∈ F on the respective input wires, multiplication gates output x · y on each of their
output wires.

– Multiplication-by-Constant Gates: These gates have in-degree one and arbitrary out-
degree. Given input x ∈ F, multiplication-by-constant gates output c ·x on each of their output
wires, where c ∈ F is some constant hardwired in the gate.

– Relay Gates: Relay gates have in-degree one and arbitrary out-degree. These gates essentially
implement the identity function. Given input x ∈ F, they output x on each of their output
wires.

In the following lemma we show that any arithmetic circuit can be converted into a layered
circuit as defined above.

Lemma 1. Any arithmetic circuit C over a field F with depth d and width w can be transformed
into a layered circuit Clayered of depth d and maximum width 2w.

We give a proof sketch for this lemma in Appendix A

4 Roadmap to Our Results

In this work, we construct a Maximally-Fluid MPC with R-Adaptive Security (see Definition 5). In
this section, we outline the sequence of steps used for obtaining this result.

1. In Section 5, we adapt the additive attack paradigm of [GIP+14] to the fluid MPC setting. In
particular, we start by formally defining a class of secret sharing based fluid MPC protocols,
called “linear-based fluid MPC protocols”. We then focus on “weakly private” linear-based
fluid MPC protocols, which are semi-honest protocols that additionally achieve a weak no-
tion of privacy against a malicious R-adaptive (see Definition 2) adversary. We show that
such weakly private protocols are also secure against a malicious R-adaptive adversary up to
“additive attacks”.

2. In Section 6, we present a general compiler that can transform any linear based fluid MPC
protocol that is secure against a malicious R-adaptive adversary up to additive attacks, into
a protocol that achieves security with abort against a malicious R-adaptive adversary. Our
resulting protocol only incurs a constant multiplicative overhead in the communication com-
plexity of the original protocol and also preserves its fluidity.

21

3. In Section 7, we adapt the semi-honest BGW [BGW88] protocol to the fluid MPC setting and
show that this protocol is both linear-based and weakly private against a malicious R-adaptive
adversary, and achieves maximal fluidity.

By using the result in Section 5, we establish that the linear-based weakly private protocol described
in Section 7 is also secure against a malicious R-adaptive adversary up to additive attacks. Finally,
compiling this protocol using the compiler from Section 6, we obtain a maximally fluid MPC
protocol secure against malicious R-adaptive adversaries. In Section 8, we implement and evaluate
this protocol in various network settings.

Notations. From this section onwards, unless specified otherwise, we denote a fluid MPC protocol
that satisfies all the properties listed in Definition 5 except that it may or may not be maximally
fluid as a Fluid MPC with R-Adaptive Security and as a Fluid MPC, if the corruption model is also
unspecified.

5 Additive Attack Paradigm in Fluid MPC

In this section, we formalize the notion of “linear-based” Fluid MPC protocols. Linear-based pro-
tocols are a special class of MPC protocols that rely on threshold secret sharing and satisfy some
additional structural properties. This notion was previously studied in [GIP+14], we generalize it
to the Fluid MPC5 setting. We discuss these structural properties in more detail in Section 5.1.

We analyze the security of linear-based Fluid MPC protocols against malicious R-adaptive ad-
versaries, w.r.t. two security notions (1) weak privacy and (2) security up to additive attacks. We
start by recalling these security notions as defined in [GIP+14].

– A protocol is said achieve weak privacy against a malicious adversary, if its “truncated” view
(i.e., its view excluding the last communication round) in the real execution can be simulated
by a simulator in the ideal world, who does not query the trusted functionality on the inputs
of the corrupt parties.

– A protocol is said to be secure against a malicious adversary up to additive attacks, if any
malicious strategy of the adversary in the protocol is equivalent to injecting arbitrary additive
values on each intermediate wire of the circuit (representing the functionality that the MPC
computes). More importantly, these additive values are independent of the inputs of the
honest parties. Intuitively, this means that in such a protocol, the privacy of the honest
parties’ inputs is ensured, but the correctness of output is not guaranteed.

We consider weak privacy in the presence of malicious R-adaptive adversaries6 and show that a
weakly private linear-based Fluid MPC protocol is secure against a malicious R-adaptive adversary
up to additive attacks. This corresponds to adapting the proof from [GIP+14] to the fluid MPC
setting. The rest of this section is organized as follows. In Section 5.1, we define linear-based
Fluid MPC protocols and in Section 5.2 we formally define weak privacy and security up to additive
attacks and establish the above relation between these notions.

5As mentioned in the previous section, we emphasize on the use of a different font for the term Fluid MPC. This is
because, we define linear-based protocols for a restricted class of fluid MPC protocols that satisfy all the properties
listed in Definition 5, except that they may or may not be maximally fluid and are not restricted to any corruption
model. We do not restrict ourselves to any corruption model for this definition since it only captures the structural
properties of a protocol.

6In order to adapt the notion of weak privacy in the Fluid MPC setting, we consider a slightly modified variant of
this definition, which we discuss in Section 5.2

22

5.1 Linear-Based Fluid MPC Protocols

We start by giving an overview of linear-based MPC protocols as defined in [GIP+14] and then
discuss how we extend this concept to the Fluid MPC setting. A linear protocol satisfies two main
properties7:

– Messages: Each message exchanged by the parties in a linear protocol is either computed as an
arbitrary function of their main inputs or as a linear combination of their incoming messages.

– Output: The output of each party in a linear protocol is computed as a linear combination of
its incoming messages.

We now describe the structure of a linear-based protocol w.r.t. linear protocols. At a high
level, the parties in a linear-based MPC protocol collectively evaluate the circuit (representing the
functionality that they wish to compute) in a gate-by-gate manner on the secret shared inputs of
all parties. Each of these inputs is secret shared at the beginning of the protocol using a linear
protocol and the shares correspond to those of a threshold secret sharing scheme. The parties
evaluate each gate on the secret shared values using a linear protocol. The output of the parties
in this linear protocol is a secret sharing of values on the outgoing wires of that gate. At the end,
each party holds a share of the output, which they then reveal to each other and reconstruct the
output.

In the context of Fluid MPC, we define linear protocols w.r.t. two sets of parties, where only
the first set has inputs and only the second set gets the output. In addition to satisfying all of
the properties discussed earlier, we impose a structural requirement. In the Fluid MPC setting, we
require that a linear protocol be divided into three main phases: (1) computation phase, where only
the parties in the first set communicate within themselves, (2) the hand-off phase, where both sets
of parties communicate with each other and (3) the output phase, where the parties in the second
set locally compute their output.

In order to adapt the definition of a linear-based protocol in the Fluid MPC setting, we require
the parties to necessarily operate on a layered circuit (see Definition 6). Similar to any fluid MPC
protocol, a linear-based Fluid MPC is also divided into an input stage, execution stage and an
output stage. In the input stage, the clients and the servers in the first committee participate in a
linear protocol that allows the clients to secret share their inputs with the first committee. In the
execution stage, each committee is responsible for evaluating one layer of the circuit. For each gate
in layer ` of the circuit, committee S` and S`+1 engage in a linear protocol, where the servers in S`
evaluate the gate and hand-off the shares of its output to the servers in S`+1. The last committee
Sd hands-off the shares of the output gates (gates on the last layer) to the clients. The clients
reveal the shares that they receive to all the other clients in the output stage and reconstruct the
output. As a result, the number of committees (and hence the number of epochs) in a linear-based
Fluid MPC is equal to the depth of the layered circuit.

Next, we formally define a linear and linear-based Fluid MPC protocol.

Definition 7 (Linear Protocol). An (n1 + n2)-party protocol Π is said to be a linear protocol,
over some finite field F if Π consists of communication amongst the parties in [1, n1] (called the
computation phase), followed by a hand-off phase, where the parties in [1, n1] communicate with the
parties in [n1 +1, n1 +n2], followed a non-interactive output phase and has the following properties:

7In [GIP+14], the authors consider two different kinds of inputs in a linear protocol-namely the main inputs of the
parties and their auxiliary inputs. In our setting, it suffices for us to consider a simplified version of their definition,
where the parties do not have any auxiliary inputs.

23

1. Inputs. The input of every party Pi, for i ∈ [1, n1], is a vector of field elements. Parties in
[n1 + 1, n1 + n2] have no inputs.

2. Messages. Each message in Π is a vector of field elements. We require that every message
−→m of Π, sent by the parties belongs to one of the following categories:

(a) −→m is some fixed arbitrary function of Pi’s inputs.

(b) every entry mj of −→m is generated as some fixed linear combination of elements of previous
messages received by Pi.

3. Outputs. The output of every party Pi, for i ∈ [n1 + 1, n1 + n2], is a linear function of its
incoming messages. The parties in [1, n1] do not have any output.

Remark. A linear protocol is said to have maximal fluidity if there is no communication amongst
the parties in [1, n1] and the handoff phase consists of a single round of communication where the
parties in [1, n1] send messages to the parties in [n1 + 1, n1 + n2].

As observed in [GIP+14], the output function can be described as a linear function as follows.

Definition 8 (Output function of a linear protocol). Let π be a linear protocol for computing a
functionality f and let T ⊂ [n1 + 1, n1 + n2] be a subset of parties. Let −→x be the input to π and
let minp,T be the messages of type 2a in Definition 7 sent by parties in T to themselves during an
honest execution of π on −→x . In addition, let mT→T be the messages of type 2b sent by the parties
in T = [n1 + 1, n1 + n2] \ T to the parties in T during an honest execution of π. We say that a
function outT is the output function of T in π if for any input −→x it holds that

outT
(
minp,TmT→T

)
= fT (−→x)

where fT is the restriction of f to the outputs of the parties in T .

The following claim is restated from [GIP+14].

Claim 1. Let π be a linear protocol and let T be a set of parties. In addition let outT be the output
function of T in π. Then for any m1,m2,m

′
1,m

′
2 it holds that

outT
(
m1 +m′1,m2 +m′2

)
=

outT (m1,m2) + outT
(
m′1,m

′
2

)
We now define the notion of a linear based Fluid MPC protocol. For simplicity, we assume that

all clients get the same output.
Parties: The protocol is executed by the following sets of parties:

– Clients: C := {C1, . . . ,Cm}

– Servers: For each ` ∈ [d], S` := {S`1, . . . ,S`n`}, where d is the depth of the circuit representing
the functionality that the clients wish to compute. There may or may not be an overlap
between these sets of servers.

Definition 9 (Linear-based Fluid MPC protocol). Let (share, reconstruct) be the functions associated
with a threshold secret sharing scheme (section 3.1). A m-client −→n -sever Fluid MPC protocol Π for
computing a single output, m-client layered circuit (see Section 3.2) C :

(
Fin
)m → Fout, where t out

of m ≥ 2t + 1 clients maybe corrupt, out is the output length and in is the length of each client’s

24

input and where d is the depth of C, is said to be linear-based with respect to the threshold secret
sharing scheme if Π has the following structure:

Input Stage. All the clients C and the servers S1 participate in a linear protocol πinput, where for
every input gate Gi, some client Cj has input xi. At the end of the protocol, each server in S1 holds
a share for each input gate Gi. Simultaneously, the clients C and the servers S1 also participate in
a linear protocol πrand for every random input gate Grk.

Execution Stage. The protocol Π proceeds in stages. In each stage `, all gates in level ` of the
circuit are evaluated. The gates G`k themselves in the level are evaluated in parallel, and at the end
of the stage, the servers in S`+1 hold a sharing of the output of each G`k. For notational convenience
we denote by Gc gates of the form G`w and by Ga and Gb gates of the form G`−1w . We set Sd+1 = C.
The evaluation of the gates are done in the following manner

1. addition gate. For every addition gate Gc in C with inputs Ga and Gb, Π evaluates Gc

by having the servers in S` sum its shares corresponding to the outputs of Ga and Gb. The
servers in S` and S`+1 then participate in a linear protocol πtrans where the inputs of the
servers in S` are the shares computed above.

2. addition by constant gate. For every addition by constant gate Gc in C with inputs Ga

and constant b, Π evaluates Gc by having the servers in S` sum its shares corresponding to
the outputs of Ga and b. The servers in S` and S`+1 then participate in a linear protocol
πtrans where the inputs of the servers in S` are the shares computed above.

3. multiplication by constant gate. For every multiplication by constant gate Gc in C with
inputs Ga and constant b, Π evaluates Gc by having the servers in S` multiply its shares
corresponding to the outputs of Ga with b. The servers in S` and S`+1 then participate in a
linear protocol πtrans where the inputs of the servers in S` are the shares computed above.

4. multiplication gate. For every multiplication gate Gc in C with inputs Ga and Gb, the
servers in S` and S`+1 participate in a linear protocol πmult where the inputs of the servers
in S` are the shares of Ga and Gb.

5. relay gate. For every relay gate Gc in C with input Ga, Π evaluate Gc by considering the
corresponding share of Ga. The servers in S` and S`+1 then participate in a linear protocol
πtrans where the inputs of the servers in S` are the shares computed above.

Output Stage. The output recovery phase is done as follows. For each output gate of C, the first
t+ 1 clients send their corresponding shares to all other parties, and all the parties in turn recover
each output of C using reconstruct.

Note in the last epoch of the execution stage Sd+1 = C. Therefore, at the end of the execution
stage every client in has a share of the output wires. It’s obvious from the description, but is used
in the malicious compiler.

Remark. As defined above, each epoch in the execution stage comprises of multiple parallel
executions of various linear protocols and each linear protocol consists of a computation phase, a
hand-off phase and an output phase. The computation phases of each of the linear protocols in a
given epoch are part of the computation phase of that epoch. The hand-off phases of each of these

25

linear protocols together constitute the hand-off phase of that epoch. And the output phases of the
linear protocols of a given epoch can be combined with computation phase of the next epoch. A
linear-based Fluid MPC protocol is said to have maximal fluidity if it only comprises of maximally
fluid linear protocols.

5.2 Weak Privacy and Security up to Additive Attacks

We now formalize the notion of weak privacy against malicious R-adaptive adversaries. As discussed
earlier, a protocol is said to be weakly private if its truncated view in the real execution can be
simulated by a simulator in the ideal world. When considering weak privacy in the Fluid MPC
setting against a malicious R-adaptive adversary, we must also keep track of the list of all the
corrupted servers in each epoch (similar to the security definition in Section 2.1). Therefore, we
consider the following modified variant of the above definition.

Definition 10 (Weak Privacy). Let π be a Fluid MPC protocol (with E epochs) for computing a
functionality f , and let A be a malicious R-adaptive adversary, who corrupts a subset T ⊂ [m] of
the clients and a subset T ` ⊂ [n`] of the servers in each epoch ` servers. Denote by viewπ,truncA (−→x)
the view of A excluding the last communication round8 during a real execution of π on inputs −→x .
We say that π is weakly-private against A if there exists a simulator Sim such that,(

viewπ,truncA (−→x), {T `}`∈[E]

)
≡
(
Sim(−→x T), {corrupt`}`∈[E]

)
where Sim gets the following “limited” communication access to the trusted party: The trusted party
initializes ` = 1. Until Sim indicates the end of the execution stage, the following steps are executed:

1. Trusted party sends ` to Sim and initializes an append-only list Corrupt` to be ∅.

2. Sim then sends pairs of the form (j, i) where j denotes epoch number and i denotes the index
of the corrupted server in epoch j ≤ `. Upon receiving this, the trusted party appends i to the
list Corruptj. This step can be repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments ` by 1.

Sim can also send an abort message to the trusted party in which case the trusted party outputs
the lists that have been updated until the point the abort message was received. Else, Sim sends
next phase to the trusted party to indicate the end of the execution stage, and hence the end of
the corruption phase of servers. In this case, the ideal functionality outputs the final version of
{corrupt`}`∈[E]. Notice that Sim can only update the trusted functionality f with the list of corrupt
servers and cannot make any other queries to the trusted functionality regarding the output of f .

We now proceed to formalize the notion of additive attacks.

Additive Attack. Let C be a circuit. An additive attack A on C assigns a field element to every
intermediate wire as well as to the outputs of C. We use Aa,b to denote the attack restricted to
wire (a, b), where a and b denote gates. Similarly we use Aout to denote the restriction of A to the
outputs of C. An additive attack changes the computation performed by circuit C in the following
manner. For every wire (a, b) in C, the value Aa,b is added to the output of a before it enters the
input of b. Similarly the value Aout is added to the outputs of C.

8We emphasize that we are talking about the the last round and not the last epoch here. In any Fluid MPC
protocol, this will generally correspond to the last round of the output stage. In other words, this truncated view
includes the view of the adversary in the input stage, execution stage (all E epochs) and all but the last round of the
output stage.

26

Definition 11 (Additively Corruptible Version of a Circuit). Let C :
(
Fin
)m → Fout be an m-party

circuit containing ω wires. We define the additively corruptible version of C to be the m-party
functionality f̃C :

(
Fin
)m × Fω → Fout that apart from the inputs −→x , takes additional input A

from the adversary specifying an additive attack for every wire of C, and outputs the result of the
additively corrupted C as specified by the additive attack A.

With the appropriate definitions in place, we can now restate the appropriately modified theo-
rem from [GIP+14] in the context of our setting.

Theorem 1. Let Π be a Fluid MPC protocol computing a (possibly randomized) m-client circuit
C :

(
Fin
)m → Fout using N servers that is a linear-based Fluid MPC with respect to a t-out-of-n

secret sharing scheme, and is weakly-private against malicious R-adaptive adversaries controlling
at most t` < n`/2 servers in committee S` (for each ` ∈ [d]) and t < m/2 clients, where d is the
depth of the circuit C and n` are the number of servers in epoch `. Then, Π is a 1/2-Fluid MPC
with R-Adaptive Security with d epochs for computing the additively corruptible version f̃C of C.

The proof extends identically as in [GIP+14], and we provide a description of the simulator in
Appendix C for completeness.

6 Malicious Security Compiler for Fluid MPC

In this section, we describe a generic compiler that can compile any linear-based Fluid MPC protocol
that is secure up to additive attacks against a malicious R-adaptive adversary into one that achieves
security with abort against R-adaptive adversaries (Definition 4) in the fluid MPC setting. Our
compiler achieves two main properties: (1) it preserves the fluidity of the underlying protocol
and (2) only incurs a constant multiplicative overhead in the communication complexity of the
underlying protocol. We discuss these properties in detail in the upcoming subsections.

As discussed in Section 1.1, in order to go from security up to additive attacks to security with
abort against malicious adversaries, we require the parties to compute a MAC of each individual
wire value and incrementally compute two random linear combinations: (1) one using the actual
values induced on the intermediate wires of the circuit during evaluation and (2) the other one
using the MAC values corresponding to these wire values. Finally, correctness of the computation
is verified by performing a check on the two linear combinations. For designing a generic compiler
that implements this idea, we proceed in two main steps.

1. In the first step (Section 6.1), given a layered arithmetic circuit C, we augment it to obtain a
robust circuit C̃, that additionally computes these MAC values and the two linear combinations.

2. Then, in the second step (Section 6.2), we run the underlying protocol (say Π) that is secure up
to additive attacks on this robust circuit C̃. Before executing the output stage of Π, the clients
first check if the computation was done honestly by comparing the two linear combinations.
They proceed to the output stage of Π only if this check succeeds.

From the previous section, we know that any weakly private linear-based Fluid MPC is secure
against a malicious R-adaptive adversary up to additive attacks. Hence, for the remainder of this
section, we refer to the underlying linear-based Fluid MPC as being weakly private or being secure
against a malicious R-adaptive adversary, interchangeably. For simplicity, throughout this section,
we assume that the number of clients and number of servers in each committee are n. While in
most places it is easy to see how the protocol can be extended to support committees of different
sizes, we add additional remarks wherever necessary. We also assume (w.l.o.g.) that all parties get
the same output.

27

6.1 Robust Circuit

In this section, we describe the first step towards building our malicious security compiler, i.e.,
transforming a layered circuit C into a robust circuit C̃. We transform C in such a way, that the
resulting circuit C̃ computes the two linear combinations (mentioned above) incrementally. Recall
that this incremental computation is necessary in order to prevent the size of the circuit from
blowing up. As a result, our transformation only incurs a constant (multiplicative) overhead in the
size of the original circuit C. Another property of our transformation is that the resulting protocol
is also a layered circuit.9

We start by formally defining a robust circuit.

Definition 12 (Robust Circuit). Given a layered arithmetic circuit C for functionality f of depth
d and maximum width w, the robust circuit C̃ corresponding to C, that realizes a functionality f̃
that computes the following:

1. Original Output: Compute −→z = C(−→x) on the given set of inputs −→x .

2. Random Values: Sample random values r ∈ F, β ∈ F and α1, . . . , αw ∈ Fw.

3. Linear Combinations: Computes the following linear combinations

u =
d∑
l=0

(
w∑
k=1

αlkz
l
k

)
and v =

d∑
l=0

(
w∑
k=1

αli(rz
l
k)

)

where z`k corresponds to the output of gate G`k (kth gate on level `), α0
k = αk and for ` > 0

α`k = α`−1k β = αk(β)`

4. Final Output: Output −→z , r, u, v.

We now show how any layered circuit can be transformed into a robust circuit with constant
overhead in size.

Lemma 2. Any layered arithmetic circuit C for functionality f with depth d and maximum width
w, can be transformed into a randomized layered robust circuit C̃ for functionality f̃ (as defined in
12) of depth d+ 1 and maximum width 4w + 4.

Proof. The transformation proceeds as follows:

1. Add w + 2 random input gates for r, α1, . . . , αw, β ∈ F on level ` = 0.

2. Add n multiplication gates on level 1 to multiply each of the input values {xi}i∈[n] with the
random input r.

3. All the gates in on level ` > 0 in the original circuit C, are now on level `+ 1. Add relay gates
on level ` = 1 to connect the input gates with the gates on level ` = 2 (note that these gates
were originally on level ` = 1).

4. Now for each layer ` ∈ {2, . . . , d+ 1}, do the following:

9This property is necessary for the second step in our compiler and reason behind it will become clear in Section
6.2.

28

– For each gate G`k (for k ∈ [w]), do the following:

– If G`k is an addition gate: Let G`k take as input a set of values {z`−1i }i∈Q from the
previous layer, add another addition gate on layer ` with a similar in-degree that takes as
input values {rz`−1i }i∈Q.

– If G`k is a multiplication gate: Let G`k take as input values z`−1i , z`−1j from the previous

layer, add another multiplication gate on layer ` that takes as input values rz`−1i and z`−1j .

– If G`k is a multiplication-by-constant gate: Let G`k take as input value z`−1i from the
previous layer, add another multiplication-by-constant gate on layer ` that takes as input
value rz`−1i .

– If G`k is an addition-by-constant gate: LetG`k take as input value z`−1i from the previous
layer and has a value c hard-wired in it, add a multiplication-by-constant gate on level `−1
that has the value c hardwired in it and takes as input r. Add another addition gate on
layer ` that takes as input value rz`−1i and the output of the new multiplication-by-constant
gate on level `− 1.

– If G`k is a relay gate: Let G`k take as input z`−1i from the previous layer, add another
relay gate on layer ` with a similar in-degree that takes as input values rz`−1i .

– Add 3w multiplication gates where the first w gates are used for multiplying α`−1k with β to

output α`k, The next set of w gates are used for multiplying α`−1k with z`−1k and the last set

of w gates are used for multiplying α`−1k with rz`−1k .

– If ` > 2, add 2 addition gates to add u`−2, {α`−2k z`−2k }k∈[w] to get u`−1 and v`−2, {α`−2k rz`−2k }k∈[w]
to get v`−1 respectively (assuming u0 = 0 and v0 = 0).

– Add 2 relay gates to relay r, β to the next level respectively.

5. At the end the circuit outputs the actual output z of C along with r, u = ud and v = vd.

6.2 Maliciously Secure Fluid MPC

In this section, we describe the final step towards building our compiler. Our malicious security
compiler, works by running the weakly private linear-based Fluid MPC protocol (say Π) on a robust
circuit C̃ (as defined earlier). In the output stage, the clients first check if the computation was
done honestly by comparing the linear combinations (computed in the robust circuit). If this
check succeeds, the clients reveal the shares of the “actual” outputs and reconstruct the output.
Incorporating this additional check to verify correctness of output, bootstraps the security of the
underlying protocol to security with abort against malicious R-adaptive adversaries (as defined in
definition 4).

It is easy to see that since the execution stage of the weakly private protocol is executed as is
(albeit on a different circuit), the resulting protocol achieves the same fluidity as the underlying
protocol. Moreover, since the size of the robust circuit on which this underlying protocol is executed
is only a constant times bigger than the original layered circuit, our compiler only incurs a constant
multiplicative overhead in the communication complexity of the servers.

6.2.1 Checking Equality to Zero

We first discuss a functionality described in Chida et.al [CGH+18], that enables a set of parties to
check whether the shares held by the parties correspond to a valid sharing of the value 0, without

29

revealing any further information on the shared value. Looking ahead, this functionality will be
used in our compiled protocol for the verification check at the end. For the sake of completeness
we describe this functionality in figure 4. We refer the reader to [CGH+18] for the description of
the protocol that securely realizes this functionality.

The functionality fcheckZero(C := {C1, . . . ,Cn})

The n-party functionality fcheckZero, running with clients {C1, . . . ,Cn} and the ideal ad-
versary Sim receives [v]H from the honest clients and uses them to compute v.

– If v = 0, then fcheckZero sends 0 to the ideal adversary Sim. If Sim responds with reject
(resp., accept), then fcheckZero sends reject (resp., accept) to the honest parties.

– If v 6= 0, then fcheckZero procees as follows:

– With probability 1
|F| it sends accept to the honest clients and ideal adversary Sim.

– With probability 1 − 1
|F| it sends reject to the honest clients and ideal adversary

Sim.

Figure 4: Functionality for checking equality to zero

Lemma 3. [CGH+18] There exists a protocol that securely realizes fcheckZero with abort in the
presence of static malicious adversaries who control t < n/2 parties.

Looking ahead, this sub-protocol will be run by the clients in the output stage. We note that it
suffices for the protocol realizing fcheckZero to be secure against a static malicious adversary because
an R-adaptive adversary only statically corrupts the clients.

6.2.2 Compiled Protocol

Finally, we describe a Fluid MPC protocol that achieves security with abort against an R-adaptive
adversary that can corrupt t < n/2 clients and t < n/2 servers in each committee in the fcheckZero-
hybrid model.

Auxiliary Inputs: A finite field F and a layered robust arithmetic circuit C̃ (corresponding to C)
of depth d and width w over F that computes the function f̃ on inputs of length n.

Parties: The protocol is executed by the following sets of parties: (1) Clients: C := {C1, . . . ,Cn}
and (2) Servers: For each ` ∈ [d], S` := {S`1, . . . ,S`n}, where d is the depth of the circuit C̃.

Inputs: For each j ∈ [n], client Cj holds input xi ∈ F. All other other parties have no input.

Protocol: Let Π be a weakly private linear-based Fluid MPC protocol. The clients and servers
execute the input and execution stage of protocol Π for circuit C̃. Let [z], [r], [u], [v] be the
shares obtained by the clients at the end of the execution stage. The output stage is modified
as follows:

– The clients locally compute: [T] = [v]− [r] · [u]

30

– They invoke fcheckZero on [T]. If fcheckZero outputs reject, the clients output ⊥. Else, if it
outputs accept, the clients run the output stage reveal their shares of z.

Output: All clients then locally run open([z]) to learn the output.

This completes the description of our compiled maliciously secure protocol. We now proceed to
analyze its concrete efficiency.

Concrete Efficiency. LetWexec(n`−1, w, n`) be the total communication/computation complexity
of epoch ` in the weakly private linear-based Fluid MPC protocol, where n`−1 (and n`, resp.) is the
size of the committee in epoch ` − 1 (and `, resp.) and w is the maximum width of the layered
circuit C representing the functionality f . In the above transformation, the layered circuit C of
depth d, and width w transformed into a robust layered circuit of depth d + 1 and width 4w + 4.
Running the weakly private linear-based Fluid MPC protocol on this robust circuit, yields the total
communication and computation complexity of Wexec(n`−1, (4w + 4), n`) in epoch `.

We give a proof of the following theorem in Appendix B.

Theorem 2. Let C :
(
Fin
)m → Fout be a (possibly randomized) m-client circuit. Let C̃ be the robust

circuit corresponding to C (see Definition 6). Let Π be a Fluid MPC protocol computing C̃ using
N servers that is a linear-based Fluid MPC with respect to a t-out-of-n secret sharing scheme, and
is weakly-private against malicious R-adaptive adversaries controlling at most t` < n`/2 servers in
committee S` (for each ` ∈ [d+1]) and t < m/2 clients, where d is the depth of the circuit C and n`
is the number of servers in epoch `. Then, the above protocol is a 1/2-Fluid MPC with R-Adaptive
Security with d+ 1 epochs for computing C. Moreover, this protocol preserves the fluidity of Π and
only adds a constant multiplicative overhead to the communication complexity of Π.

7 Weakly Private Fluid MPC

In this section, we describe a linear-based Fluid MPC that achieves weak privacy against malicious
R-adaptive adversaries. This is an adaptation of the semi-honest BGW [BGW88] protocol in the
fluid MPC setting. For simplicity, throughout this section, we assume that the number of clients
and number of servers in each committee are n. While in most places it is easy to see how the
protocol can be extended to support committees of different sizes, we add additional remarks
wherever necessary.

7.1 Linear Protocols

In this section, we discuss the sub-protocols that are used in our protocol. Each of these sub-
protocols is a linear protocol (see Definition 7). Instantiating the protocol from Definition 9 with
these sub-protocols, we get our weakly private linear-based Fluid MPC protocol. Each of these
linear protocols is described between parties: P1 = {P 1

1 , . . . , P
1
n} and P2 = {P 2

1 , . . . , P
2
n}.

Linear Protocol for πrand. This protocol outputs honestly computed shares of random values
or ⊥. Parties in P1 sample random values and secret share them amongst the parties in P2.
The parties in P2 compute a sum of these shares to obtain shares of a random value. A formal
description of the protocol is given in Figure 5.

Linear Protocol for πinput. This is a simple input sharing protocol where in the computation
phase, the parties in P1 computes secret shares of their inputs and send them to the parties in P2

during the hand-off phase.

31

Protocol πrand

Inputs: The parties do not have any inputs.
Protocol: The parties proceed as follows:

– Computation Phase: Each party {P 1
i } (for i ∈ [n]) chooses a random element ui ∈ F.

It runs share(ui) to receive shares {ui,j}j∈[n].

– Hand-off Phase: For each i, j ∈ [n], P 1
i sends ui,j to party P 2

j .

– Output Phase: Given shares ([u1], . . . [un]), the parties in P2 compute and output

[r] =
∑
i∈[n]

[ui]

Figure 5: Protocol πrand

Linear Protocol for πmult. This is the multiplication protocol used in BGW [BGW88] adapted
to our setting, where the input sharings [x], [y] are held by the parties in P1 who want to securely
compute and send shares [x · y] to the parties in P2. A formal description of this protocol is given
in Figure 6. Note that in this protocol, the parties in P1 (and the ones in P2) do not communicate
amongst themselves, their is only one round of interaction where all the parties in P1 send messages
to all the parties in P2.

Protocol πmult

Inputs: The parties in P1 hold shares [x], [y].
Protocol: The parties proceed as follows:

– Computation Phase: The parties in P1 locally compute 〈x · y〉 = [x] · [y]. Let xyi
be the resulting share held by P 1

i . Each P 1
i (for i ∈ [n]) runs share(xyi) on their share

xyi to receive shares {xyi,j}j∈[n].

– Handoff Phase: For each i, j ∈ [n], P 1
i sends xyi,j to party P 2

j .

– Output Phase: Parties in P2 locally compute and output [x · y] =
∑

i∈[2t+1] ci · [xyi],
where each ci is the Lagrange reconstruction coefficient for a degree 2t polynomial.

Figure 6: Protocol πmult

Linear Protocol for πtrans. This is a protocol for secure transfer, where the parties in P1 hold
shares of a value x and wish to securely re-share it amongst the parties in P2. A formal description
of this protocol is given in Figure 7.

32

Protocol πtrans

Inputs: The parties in P1 hold shares [x].
Protocol: The parties proceed as follows:

– Computation Phase: Each P 1
i (for i ∈ [n]) runs share(xi) on their share xi to receive

shares {xi,j}j∈[n].

– Hand-off Phase: For each i, j ∈ [n], P 1
i sends xi,j to party P 2

j .

– Output Phase: Parties in P2 locally compute and output [x] =
∑

i∈[t+1] ci ·[xi], where
each ci is the Lagrange reconstruction coefficient for a degree t polynomial.

Figure 7: Protocol πtrans

7.2 Proof of Weak Privacy

In this section, we show that the linear-based Fluid MPC protocol described in Definition 9, when
instantiated with the sub protocols in Sections 7.1 for n clients and −→n servers achieves weak privacy
(see Definition 10) against a malicious R-adaptive adversary controlling at most t < n/2 servers in
each epoch and at most t < n/2 clients. This protocol achieves maximal fluidity.

Lemma 4. Let f be an n-input functionality and C be a layered arithmetic circuit representing f .
Let n, t be positive integers such that n ≥ 2t+ 1. The protocol defined in Definition 9 instantiated
with linear protocols from Section 7.1 is weakly private against a malicious R-adaptive adversary
controlling at most t servers in each epoch and at most t clients,

Proof. We begin by describing the simulator.

Simulator. Until the end of the computation phase of the first layer of the circuit, as and when
the adversary corrupts these servers, for each newly corrupted server S1

i , the simulator sends (1, i)
to the trusted functionality and does the following:

– Input gates: For each input gate Gj held by an honest client Cj , it samples a random share
z0j,i on behalf of that honest client and sends to the adversary.

– Random input gates: For each random input gate Grk, the simulator samples a random
share uk,j,i on behalf of each honest client Cj and sends them to the adversary.

Execution Stage: For each epoch (` ∈ [d]), the simulator does the following. Since the servers are
allowed to volunteer in as many epochs as they want, let Ŝ`+1, where |Ŝ`+1| ≤ t be corrupt servers
in S`+1 that the adversary had already corrupted in some prior epoch that they were part of (we
will call them pre-corrupted in the context of this epoch). In addition to these, the adversary is
also allowed to adaptively corrupt more servers in S`+1 from the beginning of the hand-off phase
of epoch `, until the end of the computation phase of epoch ` + 1 as long as the total number of
corruptions do not exceed t in the current or any prior epoch (we will call them newly corrupted in
the context of this epoch). The simulator sends continue to the trusted functionality and proceeds
as follows:

33

Configuration Number of Parties

Net Config Width 3 4 5 6 7 8 9 10 20

LAN 100 0.389 0.458 0.516 0.550 0.686 0.758 0.990 1.036 3.171
LAN 1000 2.441 3.180 3.577 3.822 5.099 5.605 6.683 7.294 22.939

WAN 150 184.891 183.335 184.149 183.643 185.319 186.131 186.243 185.871 370.906
WAN 1500 186.823 187.683 189.532 189.905 195.937 192.087 195.443 200.885 1842.295

Figure 8: Computation time, in milliseconds, per layer of the circuit. In WAN deployment, the
communication time significantly dominates the time spent computing the gates. Note that the in-
crease between 10 and 20 players is dramatic, as there are insufficient threads available on C4.large’s
for all parties to sync simultaneously.

– Corruption within the epoch: For each pre-corrupted and newly corrupted server S`+1
i ,

it sends (` + 1, i) to the trusted functionality. For each gate G`k (for k ∈ [w]), the simulator
samples a random share z`k,i,j , on behalf of each honest server in the set S`j and sends them
to the adversary.

– Handling Retroactive effect: For each newly corrupted server S`+1
i , if it was part of the

execution phase in any prior epoch, then the simulator does the following. It sends (`′, i′) to
the trusted functionality. For each `′ < ` + 1 that S`+1

i was a part of, let i′ be its assigned
position in that epoch. For each k ∈ [w], the simulator samples a random value z`

′
k,i′ and

computes an honest t-out-of-n secret sharing [z`
′
k,i′] of this value that is consistent with the

shares {z`′k,i′,j}j∈Adv∩S`′+1 sent by the simulator on behalf of this party to the corrupt parties
in epoch `′. It sends this value along with all the n shares to the adversary.

If at any point during the execution phase, the adversary aborts, then the simulator sends abort to
the trusted functionality.

Indistinguishability Argument. Throughout the protocol, the messages sent by each server
or client to the next set of servers are always a sharing of some value. Since the adversary only
controls at most t parties in each committee, by the privacy property of Shamir secret sharing
with privacy threshold t, the distribution of messages received by the adversary from every honest
client or server during each round of communication is indistinguishable from a uniformly sampled
value and does not depend on the value the honest client or server shared. Therefore, it suffices
for the simulator to send random values to the adversary on behalf of each honest server/client.
Moreover, even while handling retroactive effect, the simulator can simply compute and send to
the adversary, shares of a random value (say v), as long as they are consistent with the shares sent
for the remaining corrupt parties. Recall that in the real world, this value v corresponds to the
value obtained by locally multiplying or adding (depending on the gate) shares of the incoming
wires values of that gate. To an adversary who corrupts at most t servers in every committee, these
shares of the incoming wires values appear uniformly distributed. As a result, the value v also
appears uniformly distributed. Finally, the list of corrupted servers is also determined identically
in the real and ideal worlds, and hence the joint distribution of the list of corrupted servers and
the view of the adversary in the real and ideal executions is indistinguishable.

Remark. This protocol trivially extends to the setting where each server set consists of a different
number of servers. In this setting, we allow up to ti < |Si|/2 corruptions in server set Si and for each
retro-active corruption, the simulator computes ti-out-of-ni secret sharing instead of t-out-of-n.

34

Figure 9: The computation phase runtimes of circuits with depths 10 (red), 100 (orange) and 1000
(yellow), but approximately equal numbers of multiplication gates.

Combining Lemma 4 with Theorem 1 and subsequently with Theorem 2, we get the following
corollary.

Corollary 1. There exists an information-theoretically secure Maximally-Fluid MPC with R-Adaptive
Security (see Definition 5) for any f ∈ P/Poly.

8 Implementation and Evaluation

We implement our protocol in C++, using the evaluation code written Chida et al. [CGH+18] as a
starting point. Chida et. al. is a state of the art, honest-majority malicious security compiler with
constant overhead in the static setting. Both the initial code base and our modification relies on
the libscapi [Cry19] library to facilitate communication and evaluate field operations. libscapi
supports a number of different fields, but we choose to execute all of our tests using the 61-bit
Mersenne field. We note that the probability of detecting a malicious adversary with our compiler
is proportional to the depth of the circuit. As such, for very deep circuits, the size of the field
may need to be chosen accordingly. All communication was over unencrypted TCP point to point
channels.

In our implementation, we incorporate a number of optimizations that are not included in
our initial protocol description, that we omitted to streamline the intuition and analysis. In our
formal description of the protocol, we introduce relay gates to signify transitioning data between
committees. These relay gates also make explicit the need to re-share wire values connecting to
gates deeper in the circuit than the immediate next layer. In our implementation, we chose not to
alter the arithmetic circuit representation used by libscapi and instead keep track of where relay
gates would be injected. To do this, we preprocess all wires in the circuit to count the number of
times they are used in the circuit and decrement that value each time the wire is used as input to a
gate being evaluated. Once this value reaches zero, it is no longer passed during the communication
round. Importantly, our implementation, therefore, does not require circuits to be strictly layered.

In order to minimize the number of alpha values that need to be sent between committees, we
add an additional preprocessing step to count the width of each layer of the circuit. Instead of
sending a fixed number of alpha values at each layer, the parties only send a number of alphas equal

35

to the maximum width of any future layer. While this optimization is insignificant in rectangular
circuits, the savings can be considerable when circuits are more triangular in shape.

Because our implementation is intended to evaluate the efficiency of our protocol, we make the
simplifying assumption that the parties are fixed for the duration of the protocol. While this might
seem like a significant departure from the protocol described in Section 6, we note that switching
between committees is not important for evaluating efficiency. The messages sent between parties
and the computation performed do not change as a result of fixing the parties. Moreover, there are
many possible ways to select which parties will be in each committee and we want our evaluation
to be agnostic to these decisions. Finally, we keep the size of each committee fixed throughout the
evaluation of each circuit.

8.1 Evaluation

In order to test our implementation, we needed to run it using varying number of parties and on
circuits of various sizes. Because existing arithmetic circuit compilers infrastructure is lacking, we
chose to generate randomized circuits instead of compiling specific functionalities. This randomized
process allowed us to more carefully control the size and shape of the test circuits. Circuits were
generated as follows: (1) A fixed number of inputs (1024 input wires for most of our test circuits)
were randomly divided between the prescribed number of parties (2) The generator proceeds layer
by layer for a prescribed number of layers. In each layer, it randomly selects a number of multipli-
cation in [w2 , 2] where w is the maximum width of any layer (another prescribed value). These gates
are randomly connected to the output wires of the preceding layer. The generator also generates
a random number of addition gates, subtraction gates, and scalar multiplication gates in [w2 , 2],
wiring them similarly. After this process, if there are any unconnected wires from the previous
layer, the generator inserts addition gates until all wires are connected. (3) Finally, the generator
assigns the wires in the final layer as outputs to random parties. Using this method, we generate
circuits of depth d that have between wd

2 and wd multiplication gates, and a similar number of
addition gates.

We tested our protocol in both a LAN and WAN setting. The LAN configuration ran all parties
on a single, large computer in our lab. The machine had 72 Intel Xeon E5 processors and 500GB
of RAM. The WAN setup attempted to replicate the WAN deployment of [CGH+18]. We used
AWS C4.large instances spread between North Virgina, Germany and India. Each party was run
on a separate C4.large instance, even when the parties were located within the same zone. We
report per-layer timing results for both our LAN deployment and WAN deployment in Figure 8.
Circuits for these tests were generated with the widths in the second column using techniques
described above. Notably, the cost of doing wide area communication far outweighs the cost of
local computation. The computation runtime of various depth circuits containing approximately 1
million gates is shown in Figure 9.

Acknowledgements. The fourth author would like to thank Amit Sahai and Sunoo Park for
insightful discussions on dynamism in MPC.

Arka Rai Choudhuri, Aarushi Goel and Abhishek Jain are supported in part by DARPA/ARL
Safeware Grant W911NF-15-C-0213, NSF CNS-1814919, NSF CAREER 1942789, Samsung Global
Research Outreach award and Johns Hopkins University Catalyst award. Arka Rai Choudhuri
is also supported by NSF Grants CNS-1908181 and CNS-1414023. Matthew Green is supported
in part by NSF CNS-1653110 and CNS-1801479. Gabriel Kaptchuk is supported by NSF CNS-
1329737.

36

References

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,
Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC
for malicious adversaries - breaking the 1 billion-gate per second barrier. In 2017 IEEE
Symposium on Security and Privacy, pages 843–862, San Jose, CA, USA, May 22–26,
2017. IEEE Computer Society Press.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 805–817, Vienna, Austria, October 24–28,
2016. ACM Press.

[B+14] Vitalik Buterin et al. A next-generation smart contract and decentralized application
platform. white paper, 3(37), 2014.

[BELO14] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. How to
withstand mobile virus attacks, revisited. In Magnús M. Halldórsson and Shlomi Dolev,
editors, 33rd ACM PODC, pages 293–302, Paris, France, July 15–18, 2014. ACM.

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk,
Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a blockchain keep a secret? Cryp-
tology ePrint Archive, Report 2020/464, 2020. https://eprint.iacr.org/2020/464.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system for
large scale p2p mpc-as-a-service and low-bandwidth mpc for weak participants. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 695–712, New York, NY, USA, 2018. ACM.

[BKK+16] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and Riivo
Talviste. Students and taxes: a privacy-preserving study using secure computation.
Proceedings on Privacy Enhancing Technologies, 2016(3):117–135, 2016.

[BTH06] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party computation with
dispute control. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of
LNCS, pages 305–328, New York, NY, USA, March 4–7, 2006. Springer, Heidelberg,
Germany.

[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear com-
munication complexity. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS,
pages 213–230, San Francisco, CA, USA, March 19–21, 2008. Springer, Heidelberg,
Germany.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87,
volume 293 of LNCS, page 462, Santa Barbara, CA, USA, August 16–20, 1988. Springer,
Heidelberg, Germany.

37

https://eprint.iacr.org/2020/464

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. In Joe Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 342–362, Cambridge, MA, USA, February 10–12, 2005.
Springer, Heidelberg, Germany.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell,
and Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 34–64, Santa Barbara, CA, USA, August 19–23, 2018. Springer,
Heidelberg, Germany.

[Cry19] Cryptobiu. cryptobiu/libscapi, May 2019.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 378–394, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany.

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 501–520, Santa Barbara,
CA, USA, August 20–24, 2006. Springer, Heidelberg, Germany.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th Conference on USENIX Security Symposium
- Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multi-
party computation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS,
pages 572–590, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Heidelberg,
Germany.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662, Santa Barbara,
CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[EOPY18] Karim Eldefrawy, Rafail Ostrovsky, Sunoo Park, and Moti Yung. Proactive secure
multiparty computation with a dishonest majority. In Dario Catalano and Roberto
De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 200–215, Amalfi, Italy,
September 5–7, 2018. Springer, Heidelberg, Germany.

[FL19] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious
adversaries at almost the cost of semi-honest. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 1557–1571. ACM
Press, November 11–15, 2019.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computa-
tion (extended abstract). In 24th ACM STOC, pages 699–710, Victoria, BC, Canada,
May 4–6, 1992. ACM Press.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling byzantine agreements for cryptocurrencies. Cryptology ePrint Archive,
Report 2017/454, 2017. http://eprint.iacr.org/2017/454.

38

http://eprint.iacr.org/2017/454

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Cir-
cuits resilient to additive attacks with applications to secure computation. In David B.
Shmoys, editor, 46th ACM STOC, pages 495–504, New York, NY, USA, May 31 –
June 3, 2014. ACM Press.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party com-
putation: From passive to active security via secure SIMD circuits. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 721–741, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg,
Germany.

[GKM+20] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song.
Storing and retrieving secrets on a blockchain. Cryptology ePrint Archive, Report
2020/504, 2020. https://eprint.iacr.org/2020/504.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive se-
cret sharing or: How to cope with perpetual leakage. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 339–352, Santa Barbara, CA, USA, Au-
gust 27–31, 1995. Springer, Heidelberg, Germany.

[IKHC14] Dai Ikarashi, Ryo Kikuchi, Koki Hamada, and Koji Chida. Actively private and correct
MPC scheme in t < n/2 from passively secure schemes with small overhead. Cryptology
ePrint Archive, Report 2014/304, 2014. http://eprint.iacr.org/2014/304.

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
259–276, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[LVB+16] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen, and Mayank
Varia. Secure mpc for analytics as a web application. In 2016 IEEE Cybersecurity
Development (SecDev), pages 73–74. IEEE, 2016.

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party compu-
tation: The garbled circuit approach. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 591–602, Denver, CO, USA, October 12–16,
2015. ACM Press.

[MZW+19] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari
Juels, and Dawn Song. CHURP: dynamic-committee proactive secret sharing. In ACM
Conference on Computer and Communications Security, pages 2369–2386. ACM, 2019.

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. 2008.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-
majority MPC by batchwise multiplication verification. In Bart Preneel and Frederik
Vercauteren, editors, ACNS 18, volume 10892 of LNCS, pages 321–339, Leuven, Bel-
gium, July 2–4, 2018. Springer, Heidelberg, Germany.

39

https://eprint.iacr.org/2020/504
http://eprint.iacr.org/2014/304

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended
abstract). In Luigi Logrippo, editor, 10th ACM PODC, pages 51–59, Montreal, QC,
Canada, August 19–21, 1991. ACM.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

A Proof Sketch for Lemma 2.4

An arithmetic circuit C, can be view as a directed acyclic graph, where all the nodes with in-
degree 0 constitute the layer ` = 0 of the graph/circuit. All the nodes/gates whose incoming edges
only consist of outgoing edges from nodes/gates on layer ` = 0 constitute the first layer of the
graph/circuit. Similarly, all the nodes/gates whose incoming edges only consist of outgoing edges
from nodes/gates on either layer ` = 0 or layer ` = 1 constitute the second layer of the graph/circuit
and so on.

We add additional relay gates for edges that do not connect nodes/gates on consecutive layers
as follows. Let gate G`k be a node/gate on layer ` that has h′ outgoing edges to gates {G`′i }i∈[h′] on

layer `′ > ` and h′′ outgoing edges to gates {G`′′j }j∈[h′′] on layer `′′ > `′. We introduce the following

relay gates to relay the output of G`k to the respective gates:

1. On each layer between from `+ 1 to `′ − 2, we add a relay gate with out-degree 1. The h′ + h′′

outgoing edges from G`k is replaced with a single outgoing edge to the new relay gate on layer
`+ 1. The outgoing edge from this gate goes into the new relay gate on layer `+ 2 and so on.

2. On layer `′ − 1, we add a relay gate with out-degree h′ + 1. The outgoing edge from the new
relay gate on layer `′− 2 goes into this relay gate. h′ outgoing edges from this relay gate go into
gates {G`′i }i∈[h′].

3. On each layer between from `′ to `′′ − 2, we add a relay gate with out-degree 1. One of the
outgoing edges from the relay gate introduced in the previous step go into the new relay gate
on layer `′. he outgoing edge from this gate goes to the new relay gate on layer `′+ 1 and so on.

4. Finally on layer `′′ − 1, we add a relay gate with out-degree h′′. The edges of these gates are
connected similar to the ones described in Step 2.

It is easy to observe that the resulting circuit Clayered satisfies all the properties of a layered circuit
listed in Definition 6.

B Proof of Theorem 2

From Theorem 1, we know that a weakly private linear-based Fluid MPC realizes functionality f̃C
against malicious R-adaptive adversaries. In other words, it achieves security against such malicious
adversaries up to additive attacks, meaning that the adversary can add an arbitrary error value
to each wire in the circuit. Since our robust circuit C̃ computes on different types of values, we
use different variables to denote the additive errors that the adversary can inject on each of these
computations. For simplicity, we assume ` ∈ [0, d], where ` = 0 consists of input and random input
gates.

40

– Let ε`β be the additive error value added by the adversary on the output of the relay gate on level
` that is used to transfer β.

– Let ε`α,k be the additive error value added by the adversary on the output of the multiplication

gate on level ` that is used to multiply α`−1k with β.

– Let ε`r be the additive value added by the adversary on the output of the relay gate on level `
that is used to transfer r. We use εr to denote

∑
`={0,...,d} ε

`
r.

– Let ε`z,k be the additive error value added by the adversary on the output of the kth gate on level

` in the original circuit C when evaluated on actual inputs −→x .

– Let ε`rz,k be the additive error value added by the adversary on the output of the kth gate on

level ` in the original circuit C when evaluated on randomized inputs r−→x .

– Let εu denote the cumulative errors added on the multiplication gates used to multiply the output
of each gate z`k with the respective α`k and the errors added on the relay gates used to transfer
partially computed values of u at each level.

– Similarly, let εv denote the cumulative errors added on the multiplication gates used to multiply
the output of each gate (on randomized inputs) rz`k with the respective α`k and the errors added
on the relay gates used to transfer partially computed values of v at each level.

Let A be the real adversary who controls the set of corrupted clients and servers. The simulator
Sim works as follows:

Simulator. We describe the simulator in fcheckZero- hybrid model. The simulator uses the sim-
ulator of the underlying weakly private linear-based Fluid MPC protocol to simulate messages for
the adversary in the input stage and execution stage. During simulation, it stores the inputs of the
adversarial clients and the additive errors added by the adversary on each wire, that are extracted
by the simulator of the underlying protocol. It also forwards the list of corrupt servers sent by the
underlying simulator to its ideal functionality. At the end of the execution stage, it performs the
following check:

– If there does not exist any non-zero error of the form ε`r or ε`z,k or ε`rz,k or εu or εv,
10 it sends the

extracted inputs of the adversarial clients to the ideal functionality and gets the output z. It
simulates fcheckZero sending accept to the adversary. Finally, it runs the last step of the underlying
simulator on input z to compute the last set of messages for the adversary. It ignores the shares
of r, u, v and only forwards the shares of z to the adversary. Upon receiving shares of z from the
adversary on behalf of each honest client Ci ∈ T , it checks if all the shares of z are consistent. If
so, it sends continue, i to the ideal functionality, to instruct it to send the correct output to the
honest client Ci. Else, it sends abort, i, in which case the honest client Ci gets ⊥.

– Else there exists any non-zero error of the form ε`r or ε`z,k or ε`rz,k or εu or εv. It also sends ⊥
to its ideal functionality. It simulates fcheckZero sending reject to the adversary. The simulator
simulates sending ⊥ to the adversary on behalf of all the honest parties. The output of all the
honest parties is ⊥ in this case.

10We note that the simulator does not need to account for additive errors of the form ε`β and ε`α,k. This is because
additive errors on β and the α values does not affect correctness of the “real” output. This point will become clear
later in the indistinguishability argument.

41

Finally, it outputs whatever A outputs.
Remark. As is clear from the description of the simulator, we argue selective security with abort
against R-adaptive adversaries. The security can be easily bootstrapped to unanimous abort (in a
straight-forward manner), if the clients have access to a broadcast channel in the last round or if
they implement a broadcast over point-to-point channels.

Indistinguishability Argument. We need to argue indistinguishability of the view of the
adversary, the outputs of the honest clients and the list of corrupt servers in the real and ideal
worlds. Indistinguishability of the list of corrupt servers follows from the security of the underlying
protocol up to additive attacks. Next, we note that the only difference between the view generated
by the simulator (and how the output of the honest parties is decided) in the ideal world and that
obtained in the real execution is that the simulator sends reject on behalf of fcheckZero if it sees
any additive errors of the form e` or ε`z,k or ε`rz,k or εu or εv. If fcheckZero returns accept in the real
world, then the view generated by the simulator and the output of the honest clients is trivially
distinguishable from that of the real execution. We argue that this happens with at most negligible
probability.

Recall that if every party behaves honestly, then

u =
d∑
l=0

(
w∑
k=1

αlkz
l
k

)
and v =

d∑
l=0

(
w∑
k=1

αlk(rz
l
k)

)

We would like to check if ru = v, ie.

r

[
d∑
l=0

(
w∑
k=1

αlkz
l
k

)]
=

d∑
l=0

(
w∑
k=1

αlk(rz
l
k)

)
This is trivially true if no additive errors were added by the adversary at any step. Accounting for all
the additive errors that the adversary might introduce, we get the following, where α̂k

0 = α0
k + ε0α,k

and for ` > 0, α̂k
` = α̂`−1k (β +

∑`
j=0 ε

j
β) + ε`α,i

ru = (r + εr)

[
d∑
`=0

(
w∑
k=1

α̂`k(z
`
k + ε`z,k)

)
+ εu

]
v =

d∑
`=0

(
w∑
k=1

α̂`k(rz
`
k + ε`rz,k)

)
+ εv

We now consider the following cases:

– Case 1: No additive errors introduced in computation of the original circuit on −→x and
r−→x . This does not preclude errors introduced as a consequence of relay gates for r, i.e.,
∀` ∈ {0, . . . , d} and ∀k ∈ [w], ε`z,k, ε

`
rz,k = 0: We want to calculate the probability that the

following equation holds, i.e.,

(r + εr)

[
d∑
`=0

(
w∑
k=1

α̂`kz
`
k

)
+ εu

]
=

d∑
`=0

(
w∑
k=1

α̂`krz
`
k

)
+ εv

in other words

rεu = εv − εr

[
d∑
`=0

(
w∑
k=1

α̂`kz
`
k

)
+ εu

]

42

– Case a: If εu 6= 0
Since r is sampled uniformly, the probability that the following holds is 1/|F|.

r =

(
εv − εr

[
d∑
`=0

(
w∑
k=1

α̂`kz
`
k

)
+ εu

])
· ε−1u

– Case b: Else if εu = 0, then

εv = εr

[
d∑
`=0

(
w∑
k=1

α̂`kz
`
k

)]
(1)

We know that α̂k
` = α̂`−1k (β +

∑`
j=0 ε

j
β) + ε`α,k, we expand each α̂k

` and write it out as terms
that depend on α0 and terms that don’t

α̂k
` = p`k +

α0
k

∏̀
j=0

(β +

j∑
i=0

εiβ)


where p`k only depends on β and the additive errors added but not on α0

k and can be expanded
as the following:

p`k = α̂`−1k (β +
∑̀
j=0

εjβ) + ε`α,k −

α0
k

∏̀
j=0

(β +

j∑
i=0

εiβ)


Let q ∈ [w] be the smallest q such that ∃z`q 6= 0 for some ` ∈ {0, . . . , d}. From equation 1, εv
is equal to the following:

εv = εr

 d∑
`=0

α̂`q +

d∑
`=0

 w∑
k=1,k 6=q

α̂`kz
`
k


= εr

 d∑
`=0

p`qz
`
q + α0

q

d∑
`=0

∏̀
j=0

(β +

j∑
i=0

εiβ)z`q +
d∑
`=0

 w∑
k=1,k 6=q

α̂`kz
`
k


Which can be rewritten as

α0
qεr

 d∑
`=0

∏̀
j=0

(β +

j∑
i=0

εiβ)z`q

 =

εv − εr
 d∑
`=0

p`qz
`
q +

d∑
`=0

 w∑
k=1,k 6=q

α̂`kz
`
k

 (2)

We now consider the following two cases:

1. If εr

(∑d
`=0

∏`
j=0(β +

∑j
i=0 ε

i
β)z`q

)
= 0:

Then either εr = 0, which from equation 1 would imply that εv = 0. This would mean that
the adversary has only injected additive errors on the computations and transfers of α’s
and β. This does not hamper the correctness of output.
Else, this is a uni-variate polynomial in β with degree at most d. Such a polynomial has
at most d roots. Since β is uniformly distributed, the probability that β is equal to one of
these roots is d/|F|.

43

2. Else if εr

(∑d
`=0

∏`
j=0(β +

∑j
i=0 ε

i
β)z`q

)
6= 0:

Since α0
q is uniformly distributed, the probability that the equality in Equation 2 holds is

1/|F|.

Hence, overall the probability that that the view generated by the simulator in Case 1 is distin-
guishable from the view in the real execution is at most

1

|F|
+

(
1− 1

|F|

)(
d

|F|
+

(
1− d

|F|

)
1

|F|

)
<
d+ 1

|F|

– Case 2: Not all ε`z,k and ε`rz,k are 0: Let the qth gate on level m be the first gate with non-zero
errors. We want to calculate the probability that ru = v, where:

ru = (r + εr)

[
m−1∑
`=0

(
w∑
k=1

α̂`kz
`
k

)
+

q−1∑
k=1

α̂mk z
m
k

]
+ (r + εr)

α̂mq (zmq + εmz,q) +
w∑

k=q+1

α̂mk (zmk + εmz,k)


+ (r + εr)

[
d∑

`=m+1

(
w∑
k=1

α̂`k(z
`
k + ε`z,k)

)
+ εu

]

v =
m−1∑
`=0

(
w∑
k=1

α̂`krz
`
k

)
+

q−1∑
k=1

α̂mk rz
m
k + α̂mq (rzmq + εmrz,q) +

w∑
k=q+1

α̂mk (rzmk + εmrz,k)

+
d∑

`=m+1

(
w∑
k=1

α̂`k(rz
`
k + ε`rz,k)

)
+ εv

Substituting into ru = v, and canceling the equal terms (similar to Case 1) we get

α̂mq
(
εr(z

m
q + εmz,q)− εmrz,q + rεmz,q

)
=

w∑
k=q+1

α̂mk ε
m
rz,k +

d∑
`=m+1

(
w∑
k=1

α̂`kε
`
rz,k

)
+ εv

− r

 w∑
k=q+1

α̂mk ε
m
z,k +

d∑
`=m+1

(
w∑
k=1

α̂`kε
`
z,k

)
+ εu


− εr

m−1∑
`=0

(
w∑
k=1

α̂`kz
`
k

)
+

q−1∑
k=1

α̂mk z
m
k +

w∑
k=q+1

α̂mk (zmk + εmz,k) +

d∑
`=m+1

(
w∑
k=1

α̂`k(z
`
k + ε`z,k)

)
+ εu


This can be further simplified to get

α̂mq
(
εr(z

m
q + εmz,q)− εmrz,q + rεmz,q

)
= εv − (r + εr)εu +

w∑
k=q+1

α̂mk (εmrz,k − rεmz,k − εr(zmk + εmz,k))

+

d∑
`=m+1

(
w∑
k=1

α̂`k(ε
`
rz,k − rε`z,k − εr(z`k + ε`z,k))

)

+ εr

[
q−1∑
k=1

α̂mk z
m
k +

m−1∑
`=0

w∑
k=1

α̂`kz
`
k

]

44

This is equivalent to separating out all the terms on the right hand side that are of the form α̂`q×
(something) for all ` ∈ [d].

α̂mq
(
εr(z

m
q + εmz,q)− εmrz,q + rεmz,q

)
= εv − (r + εr)εu +

w∑
k=q+1

α̂mk (εmrz,k − rεmz,k − εr(zmk + εmz,k))

+

d∑
`=m+1

 w∑
k=1,k 6=q

α̂`k(ε
`
rz,k − rε`z,k − εr(z`k + ε`z,k))


+

d∑
`=m+1

α̂`q

(
ε`rz,q − rε`z,q − εr(z`q + ε`z,q)

)

+ εr

q−1∑
k=1

α̂mk z
m
k +

m−1∑
`=0

w∑
k=1,k 6=q

α̂`kz
`
k

+ εr

[
m−1∑
`=0

α̂`qz
`
q

]

Substituting α̂`q = p`q + α0
q

∏`
j=0(β +

∑j
i=0 ε

i
β) for all ` ∈ [d], we get

α0
q

 d∑
`=m

∏̀
j=0

(β +

j∑
i=0

εiβ)

(εr(z`q + ε`z,q)− ε`rz,q + rε`z,q

)− α0
q

m−1∑
`=0

εrz
`
q

∏̀
j=0

(β +

j∑
i=0

εiβ)


= εv − (r + εr)εu +

w∑
k=q+1

α̂mk (εmrz,k − rεmz,k − εr(zmk + εmz,k))

+
d∑

`=m+1

 w∑
k=1,k 6=q

α̂`k(ε
`
rz,k − rε`z,k − εr(z`k + ε`z,k))

 +
d∑

`=m

p`q

(
ε`rz,q − rε`z,q − εr(z`q + ε`z,q)

)

+ εr

q−1∑
k=0

pmk z
m
k +

m−1∑
`=0

w∑
k=1,k 6=q

α̂`kz
`
k

+ εr

[
m−1∑
`=0

p`qz
`
q

]
(3)

Left hand side of this equation can be re-written as

α0
q

rε`z,q
 d∑
`=m

∏̀
j=0

(β +

j∑
i=0

εiβ)

+

 d∑
`=m

∏̀
j=0

(β +

j∑
i=0

εiβ)

(εr(z`q + ε`z,q)− ε`rz,q
)

−

m−1∑
`=0

εrz
`
q

∏̀
j=0

(β +

j∑
i=0

εiβ)


Let the above term be equal to α0

q · y, where y is the term within (·).
Now, equation 3 holds if either of the following hold:

1. If y 6= 0 Since α0
q is uniformly distributed, the probability that in this case the equality in

equation 3 holds is 1/|F|.

45

2. Or if y = 0, then

rε`z,q

 d∑
`=m

∏̀
j=0

(β +

j∑
i=0

εiβ)

 =−

 d∑
`=m

∏̀
j=0

(β +

j∑
i=0

εiβ)

(εr(z`q + ε`z,q)− ε`rz,q
)

+

m−1∑
`=0

εrz
`
q

∏̀
j=0

(β +

j∑
i=0

εiβ)


In this case, either ε`z,q

[∑d
`=m

(∏`
j=0(β +

∑j
i=0 ε

i
β)
)]

= 0. Since this is a uni-variate polyno-

mial in β with degree at most d, it has at most d roots. Since β was sampled uniformly, the

probability that β is equal to one of these roots is d/|F|. Or ε`z,q

[∑d
`=m

(∏`
j=0(β +

∑j
i=0 ε

i
β)
)]
6=

0. Since r is uniformly distributed in F, the probability that in this case the equality in equa-
tion 3 holds is 1/|F|.

Hence, overall the probability that that the view generated by the simulator in Case 2 is distin-
guishable from the view in the real execution is at most

1

|F|
+

(
1− 1

|F|

)(
d

|F|
+

(
1− d

|F|

)
1

|F|

)
<
d+ 1

|F|

In both cases, the probability of equality is upper bounded by (d+1)
|F| . Therefore, the protocol

is secure, since if the adversary induces errors of the form ε`r or ε`z,k or ε`rz,k or εu or εv, then the

value T computed during verification will be zero with probability at most (d+1)
|F| . In the case where

T 6= 0, fcheckZero fails (in detection) with probability at most 1
|F| . Thus overall, the probability of

distinguishing between the real and ideal world is at most (d+2)
|F| . For reasonable-sized fields, this is

negligible in the security parameter.

Operating over Smaller fields. This protocol works for fields that are large enough such that
(d+2)
|F| is an acceptable probability of an adversary cheating. In cases where it might be desirable to

instead work in a smaller field, we can use the same approach as used by Chida et al. [CGH+18]. In
particular, instead of having a single randomized evaluation of the circuit w.r.t. r, we can generate
shares for δ random values r1, . . . , rδ (such that ((d+2)

|F|)δ is negligible in the security parameter) and
run multiple randomized evaluations of the circuit and verification steps for each ri. Since each r is
independently sampled and their corresponding verification procedures are also independent, this
will yield a cheating probability of at most ((d+2)

|F|)δ, as required.

C Proof of Theorem 1

In order to prove Theorem 1, we need to construct a simulator that can “extract” the additive errors
induced by the adversary on each intermediate wire. While the view of the adversary until the last
round can be simulated using the simulator for weak privacy, the last round messages and the
output of the honest parties crucially depend on these additive errors. At a high level, in [GIP+14],
the simulator for additive security Sim proceeds as follows: First, Sim invokes the adversary A on
the truncated view simulated by the simulator for weak privacy S̃im. Recall that the truncated view
produced by S̃im consists of the simulated honest party messages, which are relayed from Sim to A
at each step of the protocol, and the corresponding responses from A are recorded. Next, at each

46

step Sim determines the messages that A should have sent were it behaving in an honest manner.
Using the observation from Claim 1, Sim uses both (a) messages sent by A; and (b) messages that
A should have sent were it behaving honestly; to determine the additive errors injected by A on
each wire. Finally, Sim invokes the ideal functionality, on (a) the inputs extracted from A; and (b)
the additive errors for each wire in the circuit. Upon receiving the corresponding output from the
ideal functionality, Sim then simulates the messages of the last round appropriately.

Given a simulator for weak privacy against a malicious R-adaptive adversary, the simulator for
security up to additive attacks in the Fluid MPC setting works exactly like the simulator described
in [GIP+14] for the static corruption setting. This is because, all the messages sent to the adversary
until the last round are simulated using the simulator for weak privacy, and extraction of additive
errors during these rounds does not affect the view of the adversary. Recall that in the Fluid MPC
setting, by corrupting a server in a given epoch, a malicious R-adaptive adversary cannot change
the messages that it had sent in any of the prior epochs. Therefore, the additive errors determined
by the simulator based on adversary’s messages in any given epoch do not change if the adversary
decides to corrupt a server at a later stage and can be extracted in a similar way. The last round
messages in the Fluid MPC setting, correspond to the messages exchanged by the clients in the
output stage. Since the clients are statically corrupted, the same approach can be used to simulate
these messages in the Fluid MPC setting as well. Moreover the list of corrupted servers that the
simulator for security up to additive attacks is required to send to the trusted functionality can
also be determined using the simulator for weak privacy (see Definition 10).

Since we use slightly different notations, for the sake of completeness, we formally describe the
simulator. However, we omit the argument for indistinguishability. This is because indistinguisha-
bility of the list of corrupt servers and of the adversary’s view up to the last round follows from weak
privacy. The indistinguishability of the output of the honest clients and the view of the adversary
in the last round (i.e., the output computation) depends on whether or not the additive errors were
correctly computed by the simulator. Since a malicious R-adaptive adversary cannot change these
errors by corrupting servers at a later stage, this is no different than the static corruption setting.
For simplicity, we assume that the number of clients and the number of servers in each epoch are
n.

Simulator Let Π be a linear-based fluid MPC protocol for computing a (possibly) randomized m-
client circuit C :

(
Fin
)m → Fout using −→n servers that is weakly private against malicious adversaries

controlling at most t servers in each epoch, and linear based with respect to a t-out-of-n threshold
secret sharing scheme. In addition let A be an adversary controlling a subset T of clients and a
subset T of servers. We use T to denote the set of honest clients. Since an R-adaptive adversary can
adaptively corrupt the servers at any point, in the context of this simulator, we use T ` to denote
the set of corrupt servers in epoch ` during epoch `. This does not include the servers in epoch `

that the adversary might choose to corrupt in a later epoch. Similarly, we use T
`

to denote the
set of honest servers in epoch ` during epoch `. The simulator Sim on input −→x T , of the corrupted
clients, initializes an additive attack A and does the following:

1. Truncated view generation phase. Let Simtrunc-view be a simulator guaranteed by the
weak-privacy property of Π against malicious R-adaptive adversary. Invoke Simtrunc-view on
the inputs −→x T and obtain a simulated truncated view u′A. At each step when Simtrunc-view

generates an updated list of corrupted servers, Sim forwards it to its trusted functionality.

2. Input Stage (Random Input Gates). Let out
T

1
,πrand

be the output function of T
1

in

πrand as defined in Definition 8. The simulation proceeds as follows:

47

(a) Simulate the honest behavior of the clients in T given their truncated view u′A and obtain

the messages m′πrand
T→T 1 that should have been sent by the clients in T to T

1
during the

execution of πrand. In addition, for every server Si ∈ T 1, for every randomness gate Gc

obtain the share G
′c
i that is part of the output of Si at the end of the honest execution

of πrand.

(b) InvokeA on the truncated view u′A and obtain the messages m̃′πrand
T→T 1 sent by the adversary

to the servers in T
1

during the execution of πrand.

(c) Compute γπrand
T

1 ← out
T

1
,πrand

(0, m̃′πrand
T→T 1 −m′πrand

T→T 1).

(d) For every randomness gate Gc, let γc
T

1 ∈ Ft+1 be the restriction of γπrand
T

1 to the values

corresponding to Gc.

i. The simulator now determines entries for the additive attack A on the circuit C.
Notice that γc

T
1 is a vector of t + 1 shares of the threshold secret sharing scheme,

and thus forms a valid sharing of some value.

Compute αc := reconstruct(γc
T

1 , T
1
), and for every gate Gd connected to Gc set

Ac,d := αc. Additionally, compute the shares γcT 1 of the adversarial servers consistent
with γc

T
1 .

ii. The simulator for each S1i ∈ T 1 computes the share G′ci := G
′c
i + γci .

3. Input Stage (Input Gates).

(a) for each input gate Gc that is part of the inputs of some honest client Ci:

i. for every corrupted server S1j , retrieve from u′A the value G′cj representing S1j ’s share
of Ci’s input for Gc and send it to A.

ii. for any gate Gd connected to the output of Gc, set Ac,d := 0.

(b) For each input gate Gc that is part of the inputs of some adversarial client Ci:

i. for each honest server S1j , receive a message G̃′cj from A corresponding to the S1j ’s
share of A’s input for Gc.

ii. notice that the honest shares is a vector of t+1 shares of the threshold secret sharing
scheme, and thus forms a valid sharing of some value.

Compute x̃c := reconstruct(
{
G̃′cj

}
S1j∈T

1 , T
1
). for any gate Gd connected to the output

of Gc, set Ac,d := x̃−xc where xc is the input of Ci to Gc.

iii. For each corrupted server compute the shares GcT 1 of the adversarial servers consis-
tent with the shares obtain above.

4. Execution Stage. For each layer ` ∈ [d], the simulator simulates all the gates in the layer
` as follows

Addition gate. For each corrupted server, do the following:

(a) Simulate the honest behavior of the servers in T ` given their truncated view u′A, on main
inputs (G′ai + G′bi)S`i∈T `

and obtain the messages m′πtrans
T `→T `

that should have been sent by

the servers in T ` to T
`

during the execution of πtrans.

In addition, for every server S`+1
i ∈ T `+1, obtain the share G

′c
i that is part of the output

of S`+1
i at the end of the execution of πtrans.

48

(b) Invoke A on the truncated view u′A and obtain the messages m̃′πtrans
T `→T `

sent by the adver-

sary to the servers in T
`

during the execution of πrand.

(c) Compute δπtrans
T
` ← out

T
`
,πtrans

(0, m̃′πtrans
T `→T `

−m′πtrans
T `→T `

).

(d) The simulator now determines entries for the additive attack A on the circuit C. Notice
that δc

T
` is a vector of t+1 shares of the threshold secret sharing scheme, and thus forms

a valid sharing of some value.

Compute αc := reconstruct(δc
T
` , T

`
), and for every gate Gd connected to Gc set Ac,d := αc.

Additionally, compute the shares δc
T `

of the adversarial servers consistent with δc
T
` .

(e) The simulator for each S`+1
i ∈ T `+1 computes the share G′ci := G

′c
i + δci .

Addition-by-a-constant and multiplication-by-a-constant gates. The simulation pro-
ceeds identically as above with the only change being that simulation of the honest behavior
of the adversarial servers are done with inputs (G′ai + b)S`i∈T `

(respectively (G′ai · b)S`i∈T `) for

the addition-by-a-constant (respectively multiplication-by-a-constant) gate.

Relay gate. As above, the simulation is identical to the addition gate with the only change
being that simulation of the honest behavior of the adversarial servers are done with inputs
Ga for the relay gate.

Multiplication gate. As above, the simulation is identical to the addition gate with the
following two changes:

(a) the simulation is done for the protocol πmult instead of πtrans; and

(b) the inputs to πmult are (G′ai ,G
′b
i)S`i∈T `

.

5. Output stage. At the end of the circuit evaluation phase, for each output gate Gz each
corrupted client Ci ∈ T holds a share G̃zi of the supposed output.

(a) The simulator sets to 0 all coordinates of A that were not previously set.

(b) The simulator invokes the trusted party computing f̃C with the inputs of the corrupted
parties and with the aforementioned wire corruptions A. The trusted party responds to
the simulator with the output y.

(c) For each output gate Gz of C that is connected to an output of some gate ga the simulator
chooses shares of yz that are compatible with (Gai)C∈

i T
, adds them to u′A and sends them

to A.

(d) The simulator outputs u′A.

The proof of indistinguishability follows identically as in [GIP+14], and we refer the reader to their
paper for further details.

In the above simulator description, we have assumed that the adversary corrupts exactly t
servers in each epoch. While in reality an adversary could corrupt fewer than t servers in an epoch.
This distinction between these two kinds of adversaries has already been studied in the regular
MPC setting in [GIP+14]. At a high level they prove this by taking an adversary that corrupts
fewer than t parties and suitably augmenting it to construct an adversary that corrupts exactly t
parties. Using the intuition explained at the start of this section, that the adversary cannot affect
messages previously sent by the honest parties, this idea can also be extended to our Fluid MPC
setting. We refer the reader to [GIP+14] for more details.

49

	Introduction
	Technical Overview
	Main Challenges
	Adapting Semi-honest BGW to Fluid MPC
	Compiler for Malicious Security

	Future Directions
	Related Work

	Fluid MPC
	Security

	Preliminaries
	Threshold Secret Sharing
	Layered Circuits

	Roadmap to Our Results
	Additive Attack Paradigm in Fluid MPC
	Linear-Based Fluid MPC Protocols
	Weak Privacy and Security up to Additive Attacks

	Malicious Security Compiler for Fluid MPC
	Robust Circuit
	Maliciously Secure Fluid MPC
	Checking Equality to Zero
	Compiled Protocol

	Weakly Private Fluid MPC
	Linear Protocols
	Proof of Weak Privacy

	Implementation and Evaluation
	Evaluation

	Proof Sketch for Lemma 2.4
	Proof of Theorem 2
	Proof of Theorem 1

