
Time-release Cryptography from
Minimal Circuit Assumptions

Samuel Jaques∗ Hart Montgomery† Arnab Roy‡

Abstract

Time-release cryptography requires problems that take a long time to solve and take just as long
even with significant computational resources. While time-release cryptography originated with the
seminal paper of Rivest, Shamir and Wagner (’96), it has gained special visibility recently due to new
time-release primitives, like verifiable delay functions (VDFs) and sequential proofs of work, and their
novel blockchain applications. In spite of this recent progress, security definitions remain inconsistent
and fragile, and foundational treatment of these primitives is scarce. Relationships between the various
time-release primitives are elusive, with few connections to standard cryptographic assumptions.

We systematically address these drawbacks. We define formal notions of sequential functions, the
building blocks of time-release cryptography. The new definitions are robust against change of machine
models, making them more amenable to complexity theoretic treatment. We demonstrate the equivalence
of various types of sequential functions under standard cryptographic assumptions. The time-release
primitives in the literature (such as those defined by Bitansky et al. (ITCS ’16)) imply that these primitives
exist, as well as the converse.

However, showing that a given construction is a sequential function is a hard circuit lower bound
problem. To our knowledge, no results show that standard cryptographic assumptions imply any sequen-
tiality. For example, repeated squaring over RSA groups is assumed to be sequential, but nothing connects
this conjecture to standard hardness assumptions. To circumvent this, we construct a function that we
prove is sequential if there exists any sequential function, without needing any specific knowledge of
this hypothetical function. Our techniques use universal circuits and fully homomorphic encryption and
generalize some of the elegant techniques of the recent work on lattice NIZKs (Canetti et al., STOC ’19).

Using our reductions and sequential function constructions, we build VDFs and sequential proofs of
work from fully homomorphic encryption, incremental verifiable computation, and the existence of a
sequential function. Though our constructions are theoretical in nature and not competitive with existing
techniques, they are built from much weaker assumptions than known constructions.

1 Introduction

Traditional security models in cryptography consider adversaries with a given amount of general compu-
tational power. The adversary is assumed to be able to efficiently compute some class of functions–say,
anything that a modern processor can compute with 280 operations–but nothing else is assumed about the
adversary’s power, and there are no other restrictions on their computation.

However, there are several new and exciting cryptographic primitives that need stronger bounds on the
power of an adversary, such as verifiable delay functions [BBBF18] (VDFs). Informally, a verifiable delay
∗Oxford University, Oxford, UK. Email: sam@samueljaques.com
†Fujitsu Laboratories of America, CA, USA. Email: hmontgomery@fujitsu.com
‡Fujitsu Laboratories of America, CA, USA. Email: aroy@fujitsu.com

1

function is a function that requires T sequential steps of computation and has a unique output on every input
that can be verified efficiently in time “almost” independent of T . In other words, any “honest” user with
a relatively small amount of computing power should be able to compute the function in almost the same
time as an “adversarial” user with substantial parallel computing resources. This kind of assumption has a
radically different flavor from typical cryptographic security assumptions.

Verifiable delay functions have a number of exciting applications, including randomness beacons [Rab83,
CH10], resource-efficient blockchains [KRDO17, PKF+18, Lab17], and proofs of replication [ABBK16].
In fact, the Ethereum Foundation and a number of other blockchain entities are rapidly pushing towards
building practical VDFs in order to better scale Ethereum [CHI+20]. Potentially billions of dollars [eth] will
rely on a secure VDF construction in the near future, so it is important that we have a secure construction.
We encourage interested readers to refer to [BBBF18] for a full treatment of the applications of VDFs and
time-release cryptography.

1.1 Time-release Cryptography

VDFs are certainly not the only primitive that requires a sequential computational assumption. The field
of sequential (or “time-release”) crypto dates all the way back to 1996, when Rivest, Shamir, and Wagner
first proposed time-lock puzzles [RSW96]. Informally, a time-lock puzzle is a problem for which it is easy
to generate a problem instance but which require a moderate amount of sequential computation to solve.
In [RSW96], the authors first proposed that repeated squaring on a group of unknown order is an inherently
sequential function, and so far this has been the core idea behind almost all non-random oracle primitives in
time-release cryptography. Boneh and Naor [BN00] followed up by building timed commitment schemes,
but time-release cryptography was a relatively quiet field until the advent of blockchain [Nak19].

Recently there has been substantial interest in sequential primitives. There have been a number of
constructions on time-lock puzzles [BGJ+16], including a new notion of homomorphic time-lock puzzles
that allow for greater efficiency [MT19, BDGM19]. Mahmoody et al. [MMV13] defined a primitive called a
publicly verifiable sequential proof of work, which is similar to a VDF except the verify solution may not be
unique. More recently, Cohen and Pietrzak [CP18] showed a simpler construction.

Verifiable Delay Functions. Much of the most recent work has focused on the aforementioned verifiable
delay functions. The genesis of this work was seemingly a construction by Lenstra and Wesolowski called
Sloth [LW17]. Approximately two years later, Boneh et al. wrote the seminal VDF paper [BBBF18] which
formally defined and introduced the notion of a VDF. More efficient constructions from Weselowski [Wes19]
and Pietrzak [Pie19] followed this, as well as more analysis of these constructions [BBF18].

Other interesting VDF constructions have been shown as well: Döttling et al. showed how to construct
tight VDFs in [DGMV19], giving a greater theoretical understanding to the problem. VDFs have been
built from elliptic curve isogenies [DMPS19, Sha19]. The imminent use of VDFs in blockchains has even
prompted work on more efficient parallel field operations [Özt, Özt20].

The complexity requirements of VDFs have also attracted attention. In their paper on continuous VDFs,
Ephraim et al. [EFKP20] connect the existence of a VDF to the computation of Nash equilibria. Mahmoody
et al. show that VDFs satisfying perfect uniqueness and tight VDFs are impossible to construct in a black-box
way solely from ideal hash functions [MSW19]. Rotem et al. [RSS20] show that what they call “generic
group delay functions” which model the known VDF constructions which require hidden-order groups,
meaning that we are unlikely to be able to build VDFs from group-based assumptions without groups of
unknown order.

2

1.2 Models of Computation and Time

The existing models of computation in time release cryptography works [RSW96, BBBF18, Wes19] are
based on parallel random access machines. Boneh et al [BBBF18] define a notion of (t, ε)-sequentiality for
functions, which is roughly as follows: the function can be honestly computed in time t, while no adversary
will have a non-negligible chance of computing it within time (1− ε)t. Of course if the adversary has a vastly
superior machine compared to an honest evaluator, it can even accelerate the honest computation. So such a
possibility is implicit in the notion, although not explicitly encoded in the definition.

However, such a notion is not robust to changes in machine models which makes a complexity theoretic
treatment difficult. For example, if we want to analyze a function in the circuit model, which is very common
in cryptography, it is natural to take the depth as the run time and the width as the amount of parallelism.
However, the adversary may execute this in a random access machine which may shave off a log(λ) factor in
evaluation time.

We therefore ask the following question: is there a notion of sequential functions that is independent
of the specific, perhaps distinct, models adopted by the honest and adversarial evaluators, as long as these
models are reasonable in some sense? If so, can we relate these notions to each other, to standard time-release
primitives, and to standard cryptographic notions?

1.3 Assumptions of Existing Constructions

If we examine all of the above constructions of time-release cryptography, then we notice that there are some
common threads. In particular, all of the constructions we have mentioned (except for [BGJ+16], which we
will mention in more detail later) explicitly rely on one (or both) of the following assumptions: that repeatedly
computing a random oracle on its own output is an inherently sequential operation, and that repeated squaring
in a group of unknown order is an inherently sequential operation. Each of these assumptions has some
unfortunate drawbacks.

The Random Oracle Assumption. The random oracle sequentiality assumption in the above papers is
typically a more precise statement of the following form: given a random oracle H : X → X , if it takes
h time to compute H on a single input x ∈ X , then it takes O (hk) time to compute Hk (x), where
Hk (x) = H (...H (x)) for k computations of H . While there may be more complicated bounds involved,
this is the general structure of typical random oracle assumptions.

However, this is a very strong assumption on random oracle models. The random oracle model [BR93]
assumes that an adversary has black-box access to a random oracle: in other words, they can query the oracle
on inputs of their choice, and receive back the corresponding outputs. For some cryptographic protocols,
such as digital signatures, the protocols reasonably fit the scheme. For instance, if a signer has a (perhaps
keyed) random oracle that is used to hash a message before signing, then an adversary only has black-box
access to the random oracle.

In the case of time-release cryptography, though, this black-box assumption no longer holds. An adversary
generally must have the circuit description of a random oracle in order to compute any sequential functions,
and we must assume that given a circuit description of H an adversary cannot find another circuit that
computes Hk much faster than k evaluations of H . This is a very strong (and nonstandard) requirement of
random oracles, and while it seems to hold for popular choices of random oracle such as SHA256, it remains
to be seen if researchers will be able to parallelize computations of random oracle instantiations such as
SHA256, particularly once there are large financial incentives to do so.

3

Even more clearly defying the random oracle assumption, random oracle VDF constructions not only
require access to the circuit of the random oracle, but the proofs of correctness are built around the circuit
itself [BBBF18]. In fact, with only black-box access to H , VDFs are impossible [DGMV19].

Groups of Unknown Order. The more prominent sequentiality assumption made in VDFs and other
sequential crypto primitives is that repeated squaring in a group of unkown order is inherently sequential.
More precisely, many constructions assume that with a description of a group G that does not include the
order, and a generator g ∈ G, then it takes O (T) time to compute g2T . This assumption can be generalized
to include arbitrary powers other than squaring, which some constructions use.

This assumption is already known to be false: Bernstein and Sorenson [BS07] showed all the way
back in 2007 that modular exponentation of 2T can be parallelized with T 1+o(1) processors to a depth of
O(T/ lg lg T). While this algorithm is not a strong practical concern, it highlights that these assumptions
are tenuous. There are no known reductions relating the hardness of computing modular exponentiation
of 2T with any traditionally hard problems over groups of unknown order, such as factoring, even for
exponentially-sized T .

Finally, we would be neglectful if we did not mention that efficient quantum computers can determine the
order of groups in polynomial time [Sho99]. Recently [RSS20] showed that delay functions on groups require
an unknown order, meaning that we will need to completely scrap this assumption if quantum computing
becomes viable.

Ideal Assumptions. Naturally, we want to ask: can we do better? If so, how? Traditonal complexity
theorists have studied parallel complexity for quite some time [AB09], but devoted less attention to parallel
average-case complexity, which would be applicable to cryptographic protocols. [BGJ+16] define average-
case non-parallelizing languages and show that they imply one-way functions, but we would like a reverse
implication. Ideally we could build some sequential function F such that violating the sequentiality of
F allowed for some traditional cryptographic assumption to be broken. But this style of reduction seems
difficult, since we currently have no way of relating sequentiality assumptions to traditional cryptographic
assumptions.

On the other hand, what if we could build time-release cryptography from two assumptions: a very broad
assumption stating that some sequential function of a certain type existed, and a traditional cryptographic
assumption? Assuming only the existence of some non-parallelizing language, and a specific randomized
encoding, [BGJ+16] construct a concrete time-lock puzzle. This is fairly close to ideal, since the existence of
sequential functions is necessary for things like VDFs in the first place. Can we do this for VDFs?

Related Work. There has been some progress on building sequential cryptographic primitives from better
assumptions. In [BGJ+16], Bitansky et al. show how to construct time-locked puzzles from randomized
encodings [AIK04] assuming the existence of what they call a t-non-parallelizing language. Informally, a
t-non-parallelizing language is decidable in time t, but hard for circuits of depth substantially smaller than t.
Notably, the authors of [BGJ+16] only need to assume worst-case hardness of the non-parallelizing language,
avoiding average case assumptions of sequentiality.

Bitansky et al. show two main constructions of TLPs from randomized encodings. The first, an
(essentially) optimal construction from succinct randomized encodings, has the drawback that the only known
way to construct such randomized encodings uses indistinguishability obfuscation (iO) [GGH+13, BGL+15].
The second construction is of weak TLPs (similar to the primitive given in the random oracle construction
of [MMV13]) from randomized encodings that are implied by one-way functions.

4

The [BGJ+16] construction is, to our knowledge, the only known construction of time-release cryp-
tographic primitives that does not rely on a concrete sequentiality assumption. As such, we will refer to
it frequently in the paper. However, the only “optimal” construction relies on iO, which is a very strong
assumption.

1.4 Our Contributions

We develop new notions of sequential functions and show that we can, in fact, build time-release cryptography
from general circuit assumptions and standard cryptographic assumptions. We substantially advance the line
of work started in [BGJ+16] by showing several new constructions of time-release primitives, as well as
some implications between them all.

Sequential Function Notions. Informally, we allow distinct models for a challenger (the honest user) and
the adversary, which we callMC andMA, respectively. A sequential computation in both models takes
time proportional to some function of a security parameter λ and a time parameter k.MA is allowed to be
more powerful (up to some factors) thanMC with respect to λ but should be no more powerful with respect
to k. In this paradigm, we will consider (tC , tA)-sequentiality to model the gap between an honest user
and an adversary rather than the notion of (t, ε) sequentiality as in [BBBF18]. Our modeling here reflects
the fact that an adversary may have faster hardware or a better model of computation than the challenger,
which is not reflected in previous definitions. We develop several variants of the notion in terms of adaptivity
and iterativity and show the equivalence of the existence of these notions under standard cryptographic
assumptions. We also show that these primitives are implied by time-release primitives in the literature, as
well as the converse.

Sequential Function Constructions. Our core construction is an iterative sequential function (ISF) from
minimal circuit assumptions. In particular, we show how to build an ISF from the following ingredients:

• The existence of an iterative sequential function (ISF).

• A fully homomorphic encryption (FHE) scheme.

We emphasize that we do not actually need to know a construction of an ISF, we just need the knowledge that
one exists within some set of parameters. We need an FHE scheme that allows us to compute potentially
a superpolynomially large number of operations, so we will unfortunately need to assume circular-secure
LWE [Reg05] because we will need to bootstrap [Gen09]. Concretely, our scheme uses the [GSW13] FHE
scheme.

Circuit Framework. We define a circuit-based framework and assumptions for time-release cryptography.
In section 5, we show that our minimal circuit assumptions both imply and are implied by the the t-non-
parallelizing language assumption of [BGJ+16] up to some small loss factors. We specifically use the circuit
model and we focus on “search” problems instead of decision problems because these apply more directly to
recent time-reelase cryptographic primitives. To our knowledge, there has not been a model around sequential
computation for VDFs and other “modern” sequential primitives that is as fine-grained as this one, so we
think that this framework may be useful for future work in the space of time-release cryptography.

5

TLP

NPL

TLP

SRE

SF

ISF

CISF

IVC

FHE

VDF

VDF PoSW

PoSWLem 9.16

Lem 5.2,5.3

[BGJ+16]
Thm 4.5

Thm 6.4 [BBBF18]

Lem 9.8

Lem 9.12

Legend
(C) ISF (continous) iterated sequential function Definition 4.3

FHE fully homomorphic encryption Definition 3.2
IVC incremental verifiable computation Definition 9.6
NPL non-parallelizing language Definition 5.1

PoSW proof of sequential work Definition 9.10
SF sequential function Definition 4.1

SRE succinct randomized encoding –
TLP time-lock puzzle Definition 9.14
VDF verifiable delay function Definition 9.1

Figure 1: Relation between time-release cryptography assumptions. Thin borders indicate existential assump-
tions (e.g., there exists an ISF) and thick borders indicate constructive assumptions (e.g., the construction in
Section 6 is an ISF). Unlabelled arrows are consequences that follow directly from definitions.

Applications. [BBBF18] showed that an iterated sequential function (ISF), together with incremental
verifiable computation (IVC), can produce a verifiable delay function (VDF). This implies that if there exists
an ISF, an FHE, and IVC, then our construction can create a VDF.

We also show a converse result, that VDFs, proofs of sequential work, and time-lock puzzles all imply
the existence of sequential functions by definition. From this, the existence of any of these primitives implies
that ISFs exist, which in turn implies that VDFs exist. Our results provide some connection between these
time-release cryptography assumptions, illustrated in Figure 1.

1.5 Paper Outline

The rest of the paper proceeds as follows. In Section 2, we give a technical overview highlighting the key
points of our construction. This section summarizes some of the intuition and key observations we make.

We then begin the core of the paper. Section 3 covers some preliminary material. Section 4 introduces
our new definitions for various flavours of sequential functions, and also proves their equivalence if FHE
exists. We discuss our main assumption about the existence of a sequential function. Section 5 relates these
ideas to non-parallelizing languages, the notion of sequentiality defined in [BGJ+16].

In Section 6, we focus on our ISF construction. More precisely, we show an ISF from minimal circuit
assumptions and FHE. Since the construction depends heavily on some properties of universal circuits and
FHE, we explain the universal circuit constructions in Section 7 and then show that the [GSW13] FHE
scheme can be used to meet our required sequentiality properties in Section 8.

6

We then move to applications of our construction, which we explain in Section 9. Notably, we show that
our ISF can be used to build several other primitives, including a VDF.

2 Technical Overview

Our primary goal is to construct sequential functions. The input to these functions is a cryptographic security
parameter λ and a time parameter k, which is allowed to be subexponential in λ. Informally, these are
functions where both the honest evaluator’s and adversary’s required computation times scale with k. We
require this property even if the adversary may have superpolynomial parallelism in λ. As we will show in
this paper, these sequential functions can be viewed as the building blocks of time-release cryptography.

2.1 Sequential Function Notions

Computational Models. In defining time-release cryptography, we implicitly assume two models of
computation. One is the model where the construction execution time is measured, and the other is the model
where the adversarial execution takes place. The latter model can be significantly faster than the former. For
example, for normal operations of a protocol where client and mobile computing devices are involved we
have to consider a standard CPU with limited parallelism, whereas a highly motivated adversary can have
access to supercomputers with massive parallelism and GPU access. Such a dichotomy is not unreasonable in
scenarios where state-sponsored cyberattackers and bitcoin miners with huge financial incentives are involved.
It is therefore not always useful to compare wall clock times between a challenger and an adversary, so we
redefine sequential functions in terms of distinct modelsMC andMA for the challenger and adversary,
respectively.

We want a computational model that can capture general computations and which has universal simulation.
That is, all algorithms F in the modelM can be simulated by a universal algorithm U in the same model,
which takes a description of F as the input to U and outputs the result of executing of F , running in time at
most O(poly(λ)) more than F . Such models include:

• Uniform boolean circuits, with depth denoting time

• Uniform arithmetic circuits, with depth denoting time

• Turing machines

• Parallel random access machines with polynomial parallelism

These models are also simulatable by each other with O(poly(λ))-factor time conversions.
We want to know whether sequential functions exist with respect to the modelsMC andMA, and if

so, how “tight” they are: how much faster isMA compared toMC? Importantly, the tightness may change
between different models. Very tight ISFs may exist whenMA =MC , but not ifMA is a PRAM andMC

is a Turing machine.
For our construction we will need to restrictMC to a bounded fan-in boolean circuit model. Given

both the overheads on our construction and the possible gap between models, we adopt the more liberal
premise that an O(poly(λ)) degradation in the challenger’s time is acceptable. This is weaker than existing
definitions like [BBBF18, Wes19], but we posit that our definitions may reflect practical reality more closely,
given differences in actual computational speed. Further, our complexity theoretic analyses are more natural
under this premise. With our definition, we forward the following thesis:

7

A sequential function in the model (MC ,MA) is also a sequential function in the model
(M′C ,M′A), for any reasonable tuple of classical computation models (MC ,MA,M′C ,M′A).
Thus the notion of sequential functions makes sense independent of the underlying machine
models.

Importantly, we emphasize that we assume an initial O(poly(λ)) gap in execution time betweenMC

andMA, but this gap is independent of the time parameter k. That is, once we fix a security parameter λ, we
have also fixed the adversary’s advantage, and increasing the time parameter does not change that advantage.
This is a strong claim, but we show in Section 9 that standard time-release primitives imply this.

SSF ASF DSF

SISF AISF DISF CISF

FHE

FHE

Lem 4.2

Thm 4.5

Lem 4.4

(a) Existential implications.

Iterative

Sequential Functions

Selective

Adaptive

Dynamic

Continuous

(b) Set containments.

Figure 2: Relations between sequential function definitions. {S,A,D}SF are {sequential, adaptive, dynamic}
sequential functions (Definition 4.1). {S,A,D,C}ISF are {sequential, adaptive, dynamic, continuous} iterated
sequential functions (Definition 4.3). Unlabelled arrows represent implications that follow directly from
definitions

Sequential Functions. We explore the notion of a sequential function in Section 4. We consider two
dimensions: how adaptive the function is to the time parameter, and whether the function is iterable.

The most restrictive case is what we call a selective sequential function, where even the public parameters
must be selected according to the time parameters. Isogeny-based VDFs are in this category [DMPS19,
Sha19].

Loosening this requirement, the setup may accommodate all time parameters up to some bound, but we
need the time parameter to generate inputs. We call this type of sequential function adaptive. Time-lock
puzzles are adaptively sequential, since they must have a specific delay parameter specified to generate the
puzzle; it does not make sense to allow the solver to decide on the delay. In contrast, most VDFs can choose
a delay parameter after a random input is selected, since the goal is simply to run a long computation, not to
produce a specific output. We call this last category dynamic.

Further, all known VDF constructions are iterated, meaning that the sequential function is formed
by iterating some atomic round function, but this is not required by the definition. Any of the previous
three varieties can be iterated. In addition, some VDFs may be chained together (what [DGMV19] call
“self-composable”) if the internal round function is the same for all delay parameters. We call these continuous.

Thus, we have seven varieties of sequential functions. Remarkably, we show that if FHE exists, then they
are all existentially equivalent: If any type of sequential function exists, the other six types exist as well. We
also show that even without FHE, from any sequential function with polynomial space requirements, we can

8

construct an iterated sequential function. To do this we encode the machine state of the sequential function as
part of its input and output, and simulate its evaluation for a small number of steps. These implications are
depicted in Figure 2.

2.2 Sequential Function Constructions

FHE and the Universal Circuit. The starting point of our construction is not any of the recent VDF
constructions; rather, it is the beautiful line of work on building NIZKs from lattice assumptions [CCRR18,
CCH+19, PS19]. The core technique of these papers (that we will also use) is the idea of computing a
universal circuit [Val76] homomorphically over encrypted data. Informally, we refer to a a circuit UCn,md,g as
a universal circuit if, given a description C̃ of any circuit C with n inputs, m outputs, depth at most d, and no
more than g gates, then it holds that

UCn,md,g
(
C̃, x1, ..., xn

)
= C (x1, ..., xn) = y1, ..., ym

In other words, given a circuit description of a certain size and a valid input, the universal circuit computes the
given circuit on the input and outputs the result. Suppose we are given an encryption of a circuit description
C̃ and an encryption of a program input x, which we will refer to as Enc

(
C̃
)

and Enc (x), respectively. If
Eval denotes the FHE evaluation function under the appropriate public key, then we can compute

Eval
(
UCn,mg,d (·) ,Enc

(
C̃
)
,Enc (x)

)
= Enc (C (x))

In words, we homomorphically compute the universal circuit on an encrypted description of a circuit C
and an encrypted input to the circuit x, and get a valid encryption of C (x). What makes this technique so
powerful is that, due to FHE security, the encrypted circuit description C̃ is indistinguishable from random–so
someone computing the universal circuit in this way (without the secret key) cannot determine whether they
are computing C or any other circuit that meets the requirements of the parameters n, m, g, and d.

The authors of [CCH+19, PS19] use this to show correlation intractability, which allows them to use a
lattice-based hash function in the place of random oracles for NIZKs. We will use this technique to avoid
having to make any specific assumptions about parallel circuit complexity.

The Basic Idea. We start with a very basic assumption about circuits. Suppose there exists some function
f which is computable by a circuit C such that C has n input and output bits, g gates, and depth d, where
d = poly (g). In addition, suppose that C is the shallowest circuit that can efficiently compute f .1 Finally, we
make an even stronger assumption about f : namely, that computing fk (·) can only be done efficiently in
depth T := d · k. This means that f is an inherently sequential function.

It is straightforward to see that f would be a very useful function for time-release cryptography. For
instance, if we could efficiently generate proofs of correctness for fk, then constructing both VDFs and
proofs of sequential work would be simple. However, actually showing that some particular f satisfies these
properties could be very difficult, and we have no current known results in this direction for standard model
functions.

This is where we can use the ideas about FHE and universal circuits that we mentioned earlier. Suppose
that instead of directly computing f , we computed the homomorphic evaluation of the universal circuit

1We don’t rule out the fact that there may be ways to compute f in circuit depth d′ < d at computational cost superpolynomial in
d− d′, but we consider this to be “inefficient.” We elaborate on this more in the body of the paper.

9

on an encryption f , or more precisely, FHE.Eval
(
UCn,nd,g () ,Enc

(
C̃
)
,Enc (x)

)
. Suppose we call this new

function g. If the overhead from the FHE evaluation and the universal circuit do not add too much depth to
the computation of f , then we can still use g in our constructions of sequential primitives since it retains
the core sequential properties of f . There may be extra complications involved if we want to make proofs
associated with f still go through, but let’s ignore this for now.

At this point, in order to evaluate g, we do not even need to know f “in the clear” – we only receive an
encrypted ciphertext that contains a description of the circuit C that represents f . But due to the security of
the FHE, no adversary should be able to tell whether we have faithfully encrypted f , or if we have merely
encrypted all zeroes. So for our construction to be secure, we do not need to know such a function f–we only
need to be certain that such a function f exists. Claiming the existence of such a function f is a far weaker
assumption than claiming that some function satisfies the properties we have required for f , as we do not
need to do any tricky or complicated reductions around parallel computation. Moreover, as we will discuss
later, if such a function f does not exist, then many of the sequential primitives we would like to build cannot
exist either. So this is (intuitively, not formally) a “best of both worlds” construction: if there exists a VDF,
then the construction we have outlined here is a VDF (although a potentially “loose” one).

Unfortunately, our constructions based on this intuition are not remotely practical: honest parties will
need a huge amount of computational parallelism to compute our core sequential function. Instead, we view
our constructions as a theoretical advancement that will hopefully spur further improvements in this area, and
that maybe one day some constructions in this vein will be practical. However, even now we can use our
main idea here to construct some primitives in time-release cryptography with very nice theoretical properties.
We discuss these later.

Construction overheads. We need to show that there exist both a universal circuit construction and an
FHE scheme such that neither adds much circuit depth to the input function. There already exists a universal
circuit construction from Cook and Hoover [CH85] that only inflates the depth of the circuits it simulates
by a constant factor. We find this constant in Section 7. We also outline some tricks in Section 8 that allow
the [GSW13] FHE scheme to only add O

(
log λ (log log λ)2

)
overhead (for some security parameter λ) to

the depth of the circuit evaluation. Importantly, this is independent of T . These results allow us to instantiate
a construction with the intuition we have defined above.

The appeal of our construction is that we have a provable lower bound on the adversary’s parallel
run-time, assuming such a bound exists for any function at all. However, this may be much less than the
actual run-time. Our construction inflates the run-time of an honest user with the overhead of the universal
circuit and the homomorphic encryption, but we cannot prove that the adversary’s run-time must also include
these overheads. Other VDF proposals do not include these circuit-level details, so we do not regard this as a
weakness for the scheme.

Our proofs work because our construction acts as a circuit to evaluate the underlying ISF, and thus cannot
run faster than the ISF itself. However, in practice, an adversary must still act like a universal circuit and
must still homomorphically evaluate this circuit. We thus expect them to compute the same overheads as
honest users.

In this case, if they simply find a universal circuit with smaller overhead or a faster homomorphic
encryption scheme, then this should still only use poly(λ, log T) parallelism, and then honest users can
simply adopt these new algorithms and nullify the adversary’s advantage.

To maintain an advantage, an adversary must use their parallelism advantage to reduce the overhead.
We know this is possible for the Cook-Hoover universal circuit. As the proof of Lemma 7.1 discusses, an
exponential increase in the selection layer can reduce the depth overhead by a factor of at most 2. For the

10

FHE, we do not know of a super-polynomial method to reduce finite field multiplication over Fq below
Ω(log q) or multiplication of N ×N matrices below Ω(logN); either result would be an interesting result in
complexity theory. From these arguments, we expect that in practice a highly parallel adversary will have a
limited advantage in computing our construction.

A more serious concern is that the required parallelism for an honest user is too large in practice. While
the FHE relies on vector and matrix computations which could be run on widely-available specialized
hardware like GPUs or TPUs, the universal circuit is much worse. The initial parallelism overhead for a
g-gate circuit is O(g3), but by Lemma 4.7, to ensure that there exists a sufficiently deep circuit we must
square this. Since g must be at least as large as the input and outputs, each of which must be at least λ, our
construction requires at least 64λ6 parallel processors, which is well beyond the bounds of practicality.

Model overheads. If there exists a very tight ISF in the circuit model, our construction adds only
O(log1+ε(λ)) overhead. However, this assumption may not be true. Instead, tight ISFs might exist in
other models, and we have an “overhead” of O(poly(λ)) when we try to infer the tightness of the ISFs that
exist in the circuit model.

We may further relax our assumptions by considering weaker notions of sequential functions. While an
ISF runs in time T by iterating some base function, other sequential functions may run an entirely different
algorithm for each time parameter. Our reductions in Section 4 create significant tightness loss. Finally, we
note that the definitions of time-release cryptography primitives do not imply iterative sequential functions.
Thus, to conclude that our construction is an ISF, we need to follow a chain of implications, each one losing
tightness.

We emphasize that the majority of the loss is from the assumptions, rather than our construction. If there
exists a very tight VDF, our construction is a VDF, but we can only guarantee that it is a very loose VDF. Yet,
if that VDF is built out of a very tight ISF, then that implies more directly that our construction is a VDF and
the loss of tightness is much smaller. For example, if squaring in a group of unknown order is a tight ISF,
then our construction only loses O(log1+ε(λ)) tightness.

2.3 Applications to Time-release Cryptography

We show how to build verifiable delay functions (which immediately imply proofs of sequential work) that
are provably secure based on the existence of sequential functions and standard cryptographic primitives. For
example, we use the blackbox construction of [BBBF18] of a VDF from an iterative sequential function and
incrementally verifiable computation (IVC). An IVC, in turn, can be built from SNARKs [BCTV14].

More precisely, we show how to build a slightly loose VDF: in particular, we can only prove that the
sequential computation time inMC is within a factor of O

(
log1+ε λ

)
for any ε > 0 for that ofMA, so

we construct a
(
O
(
log1+ε(λ)

)
T, T

)
-VDF. We note that this looseness seems very difficult to avoid, as

switching between computational models could incur even higher overhead. However, if we make some
basic assumptions about FHE evaluation that are seemingly plausible, then we can get a “tight” VDF, up to
constant multiplicative factors.

Conversely, we show that verifiable delay functions (VDFs), proofs of sequential work (PoSWs), and
time-lock puzzles (TLPs) each imply our circuit assumption. If there exists FHE and IVC, then following
the [BBBF18] construction, we can build a VDF from our sequential function. This VDF is “universal” in the
sense that if any other VDF exists, our construction is also a VDF. In turn this shows that VDFs and PoSWs
are equivalent assumptions (up to some loss factors), and both are implied by TLPs. If we also assume
succinct randomized encodings (which is, admittedly, a rather strong assumption), then sequential functions
imply TLPs [BGJ+16], and all three time-release cryptography primitives are equivalent assumptions.

11

3 Preliminaries

In this section we provide background material and definitions for our constructions and reductions. Experi-
enced cryptographers should be familiar with the content, although the notation might be unfamiliar in some
cases.

3.1 Public Key Encryption

We define basic public key encryption, mirroring the definitions of [CCH+19]. We chose this definition
because it is useful for our primitives that rely on FHE, which we will define later.

Definition 3.1. Public Key Encryption A public key encryption scheme PKE = (Gen,Enc,Dec) consists
of three PPT algorithms:

• Gen
(
1λ
)
→ (pk, sk) takes as input the security parameter and outputs a public key pk and a secret

key sk.

• Enc (pk,m)→ ct takes as input the public key pk and a message m1 and outputs a ciphertext ct.

• Dec (sk, ct)→ m′ takes as input the secret key and a ciphertext ct and outputs a message m′.

Any PKE must satisfy the following properties:

• Correctness: for all λ and messages m, and all valid tuples (pk, sk), it holds with probability 1 that
Dec (sk,Enc (pk,m)) = m.

• Semantic Security: for any two messages m and m′, the distribution ensembles{
(pk, sk)← Gen

(
1λ
)

: (pk,Enc (pk,m))
}

and {
(pk, sk)← Gen

(
1λ
)

:
(
pk,Enc

(
pk,m′

))}
are computationally indistinguishable.

3.2 Fully Homomorphic Encryption

We now briefly go over definitions and notation for fully homomorphic encryption (FHE) [Gen09]. We base
our presentation off of [CCH+19] because we use FHE in a similar manner as they do.

Definition 3.2. Fully Homomorphic Encryption: A fully homomorphic encryption (FHE) scheme FHE =
(Gen,Enc,Dec,Eval) consists of four PPT algorithms such that (Gen,Enc,Dec) is a public key encryption
scheme and

• Eval (pk, f, ct1, ..., ctn)→ ct′ takes as input the public key pk, a function f (represented by a Boolean
circuit), and a vector of ciphertexts (ct1, ..., ctn). Eval outputs another ciphertext ct′ which has size
that is polynomial in λ (and, without loss of generality, linear in the output length of f).

1Note that we are not specifiying a domain for m.

12

• For any (pk, sk) ← Gen
(
1λ
)
, any vector of messages (m1, ...,mn) and any circuit C : {0, 1}n →

{0, 1} it holds with probability 1 that

Dec (sk,Eval (pk, C,Enc (pk,m1) , ...,Enc (pk,mn))) = C (m1, ...,mn)

Definition 3.3. Levelled FHE: A levelled fully homomorphic encryption scheme FHE = (Gen,Enc,Dec,Eval)
satisfies the same syntax, correctness, and security properties of an FHE scheme, except that

• Gen
(
1λ, 1d

)
takes as input an additional parameter d representing a circuit depth.

• Homomorphic evaluation correctness of Eval is only guaranteed to hold for circuits of depth at most d.

• Ciphertexts output by Enc (pk,m) and Eval (pk, f, ct) have size that are polynomial in λ (and the
output length of f) and independent of d.

• The decryption algorithm Dec (sk, ct) has a fixed poly (λ) depth which is independent of d.

Definition 3.4. Circular Secure Encryption: A public key encryption scheme PKE is said to be circular
secure if the following two distributions are computationally indistinguishable:{

(pk, sk)← Gen
(

1λ
)

:
(

pk,Enc
(
pk, 0|sk|

))}
≈c{

(pk, sk)← Gen
(

1λ
)

: (pk,Enc (pk, sk))
}

3.3 Universal Circuits

Our construction needs a universal circuit [CH85, Weg87, LMS16a] for homomorphic computation of
encrypted circuits. We define this below.

Definition 3.5. Universal Circuit: A circuit UCn,md,g is called a universal circuit if it cointains n true input
variables,m true output variables, and g distinguished universal gates such that for any circuit C of sice gc ≤ g
and depth dc ≤ d, there is an efficiently computable configuration for UC such that the ith distinguished
universal gate of UC computes the same function as the ith gate of C for 1 ≤ i ≤ gc.

Let C̃ denote the bitwise representation of some circuit C with gc ≤ g gates, n true input variables, and m
true output variables. We define the following convention:

UCn,md,g
(
C̃, x1, ..., xn

)
= C (x1, ..., xn) = m1, ...,mn

In this work, we will focus on the simple, traditional circuit model with boolean gates of fan-in 2. This is
the most common type of universal circuit, although there have been universal circuits constructed for other
circuit classes, such as arithmetic circuits [LMS16a].

4 Sequential Functions

In this section we define sequential functions and related primitives and prove equivalence results between dif-
ferent notions of sequential functions. We also relate our new definitions to previous work, such as [BBBF18]
and [BGJ+16]. We start by introducing our models of comptuation, as these will motivate many of our new
definitions.

13

4.1 Models of Computation

We assume two models of computationsMC andMA, respectively, for the challenger and the adversary. We
will still assume that both the models are asymptotically probabilistic polynomial time, though at certain points
we we will require time polynomial in the delay parameter. The resources of each model are parameterized
by the security parameter λ, withMC having poly(λ) parallelism, whereasMA may have parallelism up to
some function in 2o(λ). The precise subexponential resources ofMA must be polynomial in the delay T , but
not enough to break the security of the FHE scheme we will use. Rather than clutter our notation with these
specific functions, we will simply refer to the parallelism ofMA as 2o(λ).

These two models allow us to define (tC , tA)-sequential functions. Informally,MC can compute such a
function in time tC , and tA is the fastest time that an algorithm inMA can compute the same function.

Our constructions and reductions will use both universal circuits and FHE. Since we will need to keep
track of the circuit overhead of these primitives in order to properly describe our constructions and reductions,
we will actually require four different computational models:

1. The modelMC which can compute a (tC , tA)-sequential function. There must be a universal circuit
which can simulateMC .

2. The modelMUC in which a universal circuit can run.MUC must be homomorphically computable
by the FHE.

3. The modelMFHE in which the fully homomorphic encryption is performed and the universal circuit
homomorphically evaluated.

4. The adversarial modelMA.

In this paper, we chooseMC to be a boolean circuit model with gates of fanin two, with unit cost and
unit depth for all 16 possible gates. Assuming a (tC , tA)-sequential function exists is a stronger assumption
ifMC is less powerful. Unfortunately, we must choose a weaker modelMC so that a universal circuit exists
that can efficiently evaluate circuits in this model.

We chooseMUC to be a boolean circuit model, since this accommodates a universal circuit, but we
restrict the gate set so it can be easily evaluated homomorphically.

We also modelMFHE as a boolean circuit of bounded fanin, simply for ease of analysis. Since this is the
model that actually computes the construction, it should be similar toMA. If not, we risk losing logarithmic
factors in the sequentiality.

Adversarial Modelling. It is a little bit tricky to model the adversary appropriately. We want our definitions
to remain true even if an adversary has, say, substantially better hardware than an honest player. For instance,
if an honest player is computing a VDF on a phone and an adversary is using a fast GPU, then it is only
natural that the adversary could compute the VDF more quickly than the honest user, and such a fact should
not invalidate a VDF.

What is even more complicated is if an adversary somehow has hardware that enables a better model
of computation than an honest user. For instance, suppose an honest user is restricted to gates of fan-in
2 while an adversary has gates of large fan-in. Clearly there are some functions (for instance, the parity
function) that the adversary could compute in logarithmically better depth than an honest user. While this is a
contrived example, we want to be able to model situations where there are large differences in hardware. This
is certainly the case in cryptocurrency mining, and we believe that if time-release cryptogrpahy becomes
popular on the blockchain, it is very possible that a hardware arms race will ensue. We would ideally like our

14

definitions to be able to apply even in these difficult cases. It may also be that a parallel RAM model is a
more accurate description of the runtime of real computers, but our construction measures the depth ofMC

in the boolean circuit model.
Still, we need to be careful with the power that we give the adversary. If the adversary were allowed an

exponential number of gates, then they could compute any circuit in depth logarithmic in the input size by
hard-coding the truth table of the function being computed. To avoid such pitfalls, we prevent the modelMA

from having exponential parallelism. Previous works [BBBF18] also only allow subexponential parallelism
to the adversary.

Even given this restriction, with subexponential parallelism the adversary can potentially compress the
circuit depth [GKW18]. However, our assumption states that once we fix the dependence of adversary
resources on λ, the time required for it to compute the function still scales linearly with k upto subexponential
values.

Specifically, we allow an adversary to reduce circuit depth from d to d′, with an increase in circuit size of
Ω(2d−d

′
). This means with poly(k, λ) size, they can reduce the depth of a circuit by an additive factor of

O(log k + log λ). This allows us to choose a slightly smaller t′A(λ) such that ktA(λ)−O(log k + log λ) ≥
kt′A(λ) for al k ≤ 2o(λ) and retain the linear scaling.

The key observation for our model is that we are more flexible in allowing an adversary to compute a
sequential function once very quickly – up to poly(λ) faster thanMC – but we still have the restriction that
computing such a function k times is sequence takes time proportional to k times the original computation.

4.2 Definitions of Sequential Functions

In this work, instead of considering (t, ε)-sequentiality as in [BBBF18], we will consider (tC , tA)-sequentiality.
If MC = MA (except for the allowed parallelisms), then these definitions are trivially equivalent with
t = tC and ε = 1− tA

tC
.

We view sequential functions in practice to have three phases, captured in the (Setup,Gen,Eval) tuple
which we will present soon in Definition 4.1. The infrequent setup phase Setup generates public parameters
depending on the required cryptographic strength. Then the instance generation function Gen comes up with
a seed value for the sequential evaluation. Finally, the evaluation function Eval runs on the seed for a desired
duration and outputs a value. For honest participants, the requirement is that these subroutines should be
efficient to perform. For security, we want to disallow adversaries to output the same value too soon.

In defining the syntax and security of sequential functions, we have freedom along two dimensions.
The first is adaptivity in selecting the duration parameter: which of the three phases require the duration
parameter. The most inflexible situation (“selective”) is when the duration needs to be decided at the setup
phase. This restricts all runtime instances to the same duration parameter. Isogeny-based VDFs are in
this category [DMPS19, Sha19]. We can relax this restriction to make the setup independent of the delay
parameter, but the instance generation phase can select its own (“adaptive”). The least restrictive case is when
even the instance generation is duration independent (“dynamic”) - here the evaluation can select its desired
duration.

The second dimension is iterativity, where the evaluation function has a repetitive structure composed
of rounds. Having a repetitive structure is not only more convenient, but also enables some primitive
constructions, such as VDFs by using IVC and SNARKs [BBBF18, DGMV19] and continuous VDFs
[EFKP20]. We can have all possible conjuctions of adaptivity and iterativity.

In an iterative sequential function where only Eval requires the duration parameter, Eval is allowed to
select a different round function for each duration parameter. We can relax this further and allow the round
function to be independent of the duration parameter (“continous”). This allows us to extend the duration at

15

any point by computing more iterations of the round function. This captures the idea of a self-composable
VDF from [DGMV19]. We take the name from continuous VDFs [EFKP20], though a continuous VDF
requires the proofs to also be produced iteratively.

Some of the implications among these primitives follow from the definitions. We show some non-trivial
implications in this section. Remarkably, the existence of all these notions are equivalent assuming FHE and
restricting evaluation to polynomial space in the security parameter.

Sequential Functions. We define three flavors of Sequential Functions: Selective, Adaptive and Dynamic
as below:

Definition 4.1 (Sequential Functions). A selective sequential function (SSF) F = (Setup,Gen,Eval) is
defined as the following tuple of algorithms:

Setup(1λ , k)→ pp: On input the security parameter 1λ , and k ∈ 2o(λ) , the setup algorithm returns
the public parameters pp. By convention, the public parameters encode an input domain X and an
output domain Y .

Gen(pp , k))→ x: On input the public parameters pp , and k ∈ 2o(λ) , the instance generation algorithm
samples a random input x← X .

Eval(pp, x, k)→ y: On input the public parameters pp, an input x ∈ X , and k ∈ 2o(λ), the evaluation
algorithm returns an output y ∈ Y .

An SSF is an Adaptive Sequential Function (ASF) if Setup is independent of k. An ASF is a Dynamic
Sequential Function (DSF) if Gen is independent of k.

An SF F satisfies (tC(λ), tA(λ))-sequentiality for machine models (MC ,MA) if the following hold:

1. There exists an algorithm in the computational modelMC such that for all x that can be output by
Gen, it computes Eval in at most time k · tC(λ).

2. (SSF) For all λ ∈ N and for all tuples of PPT machines (A0,A1,A2), such thatA2 runs in time strictly
less than k · tA(λ) in the computational modelMA, there exists a negligible function negl such that:

Pr
[
y = y′

k ← A0(1λ), pp← Setup(1λ, k), τ ← A1(pp, k), x← Gen(pp, k)
y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

]
= negl(λ)

3. (ASF) For all λ ∈ N and for all pairs of PPT machines (A1,A2), such that A2 runs in time strictly less
than k · tA(λ) in the computational modelMA, there exists a negligible function negl such that:

Pr
[
y = y′

pp← Setup(1λ), (k, τ)← A1(pp), x← Gen(pp, k)
y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

]
= negl(λ)

4. (DSF) For all λ ∈ N and for all pairs of PPT machines (A1,A2), such that A2 runs in time strictly less
than k · tA(λ) in the computational modelMA, there exists a negligible function negl such that:

Pr
[
y = y′

pp← Setup(1λ), (k, τ)← A1(pp), x← Gen(pp)
y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

]
= negl(λ)

By definition, we have DSF =⇒ ASF =⇒ SSF, but FHE allows us to show the reverse implications.

16

Lemma 4.2. If a selective sequential function and FHE exist, then a dynamic sequential function exists.

Proof. Given an SSF and an FHE, we construct a DSF as follows:

DSF.Setup(1λ)→ pp: Sample pk← FHE.Gen(1λ). Let l be the poly(λ) size bound of SSF.Setup(1λ, ·).
Sample pp1 ← FHE.Enc(pk, 0l). Output pp = (pk,pp1).

DSF.Gen(pp)→ x: Let l′ be the poly(λ) size bound of SSF.Gen(pp, ·). Sample and output x← FHE.Enc(pk, 0l
′
).

DSF.Eval(pp, x, k)→ y: Let PE be the algorithm SSF.Eval(·, ·, k). Output FHE.Eval(pk, PE ,pp1, x).

First we argue that if the above DSF has SSF-sequentiality then it has DSF-sequentiality as well. We
build a DSF-sequentiality adversary (A1,A2) from an SSF-sequentiality adversary (A′0,A′1,A′2) as follows:
A1(pp) calls A′0(1λ) and obtains k, then it calls A′1(pp, k) to obtain τ . Then it returns (k, τ). Finally A2

just mimics A′2. Now observe that the advantage of both adversaries are same.
Now we construct the following hybrid SSF′ as follows:

SSF′.Setup(1λ, k)→ pp: Sample pk← FHE.Gen(1λ). Let l be the poly(λ) size bound of SSF.Setup(1λ, ·).
Sample pp′ ← SSF.Setup(1λ, k) and pad it to l bits. Sample pp1 ← FHE.Enc(pk,pp′). Output
pp = (pk,pp1).

SSF′.Gen(pp, k)→ x: Let l′ be the poly(λ) size bound of SSF.Gen(pp, ·). Let PG be the algorithm
PadTo(SSF.Gen(·, k), l′). Sample and output x← FHE.Eval(pk, PG,pp1).

SSF′.Eval(pp, x, k)→ y: Let PE be the algorithm SSF.Eval(·, ·, k). Output FHE.Eval(pk, PE ,pp1, x).

By the semantic security of FHE, it follows that the SSF-sequentiality of SSF′ implies the same of DSF.
Finally, by the correctness of FHE, we observe that SSF′ is SSF-sequential if SSF is the same.

Iterative Sequential Functions. We next move to our definitions of iterative sequential functions.

Definition 4.3. An Iterative Sequential Function (ISF) is a Sequential Function such that the Eval function
is iterative: there exists a function Round such that Eval(pp, x, k) = (Round(pp, ·, k))(k)(x). We have
Selective, Adaptive and Dynamic Iterative Sequential Functions defined in the same way as Sequential
Functions. In addition, we say that a DISF is a Continuous ISF (CISF) if Round is also independent of k.

By definition, we have CISF =⇒ DISF =⇒ AISF =⇒ SISF, and an iterative sequential function of
any type (selective, adaptive, or dynamic) implies the existence of a non-iterative sequential function of the
same type. We now prove the converse implications.

Lemma 4.4. If a selective iterative sequential function and FHE exist, then a continuous iterative sequential
function exists.

Proof. Given an SISF and an FHE, we construct a CISF as follows:

CISF.Setup(1λ)→ pp: Sample pk← FHE.Gen(1λ). Let l be the poly(λ) size bound of SISF.Setup(1λ, ·).
Sample pp1 ← FHE.Enc(pk, 0l). Output pp = (pk,pp1).

17

CISF.Gen(pp)→ x: Let l′ be the poly(λ) size bound of SISF.Gen(pp, ·) and let l′′ be the o(λ) size bound
of k. Sample x′ ← FHE.Enc(pk, 0l

′
) and k′ ← FHE.Enc(pk, 0l

′′
). Output x = (x′, k′).

CISF.Round(pp, x)→ y: LetPE be the algorithm SISF.Round(·, ·, ·). Output FHE.Eval(pk, PE ,pp1, x
′, k′).

First we argue that if the above CISF has SISF-sequentiality then it has CISF-sequentiality as well. We
build a CISF-sequentiality adversary (A1,A2) from an SISF-sequentiality adversary (A′0,A′1,A′2) as follows:
A1(pp) calls A′0(1λ) and obtains k, then it calls A′1(pp, k) to obtain τ . Then it returns (k, τ). Finally A2

just mimics A′2. Now observe that the advantage of both adversaries are same.
Now we construct the following hybrid SISF′:

SISF′.Setup(1λ, k)→ pp: Sample pk← FHE.Gen(1λ). Let l be the poly(λ) size bound of SISF.Setup(1λ, ·).
Sample pp′ ← SISF.Setup(1λ, k) and pad it to l bits. Sample pp1 ← FHE.Enc(pk,pp′). Output
pp = (pk,pp1).

SISF′.Gen(pp, k)→ x: Let l′ be the poly(λ) size bound of SISF.Gen(pp, ·) and let l′′ be the o(λ) size
bound of k. Let PG be the algorithm PadTo(SISF.Gen(·, k), l′). Sample x′ ← FHE.Eval(pk, PG,pp1)
and k′ ← FHE.Enc(pk,PadTo(k, l′′)).

SISF′.Round(pp, x, k)→ y: LetPE be the algorithm SISF.Eval(·, ·, ·). Output FHE.Eval(pk, PE ,pp1, x
′, k′).

By the semantic security of FHE, it follows that the SISF-sequentiality of SISF′ implies the same of
CISF. Finally, by the correctness of FHE, we observe that SISF′ is SISF-sequential if SISF is the same.

Theorem 4.5. DSF =⇒ DISF, provided DSF.Eval runs in poly-space in λ. Similarly, ASF =⇒ AISF
and SSF =⇒ SISF with the same poly-space restrictions.

Proof. Let CΩ be an algorithm in modelMC that takes a configuration description M (in the modelMC)
of length poly(λ) and outputs M ′ of length poly(λ), the configuration resulting after the simulation of tC
steps. We will make the initial configuration to be the description of the function DSF.Eval followed by the
input (x, k). CΩ will only introduce a poly(λ) overhead in time. We define the DISF as follows:

• Setup
(
1λ
)
→ pp:

– Let [E] denote the description of DSF.Eval(), and s(λ) define the upper limit of its space
requirement.

– Sample pp0 ← DSF.Setup(1λ)

– Output pp = (pp0, [E], s(λ)).

• Gen (pp):

– Sample x← DSF.Gen(pp0).
– Output M = ([E], x, 0) padded to make it s(λ)-bits.

• Round (pp,M, k):

– If M is of the form ([E], x, 0) then let M ′ = ([E], x, k), otherwise let M ′ = M . Pad M ′ to
make it s(λ)-bits.

– Output CΩ(M), padded to make it s(λ)-bits.

The proof can be simply adapted for the other two implications ASF =⇒ AISF and SSF =⇒ SISF
with the same poly-space restrictions.

18

4.3 Overall Picture

Figure 3 shows the overall relationship between all of the sequential functions we have defined and their
implications. The main conclusion is that the existence of any type implies the existence of any of the others,
though perhaps with a poly(λ) loss of tightness.

SSF ASF DSF

SISF AISF DISF CISF

FHE

FHE

Lem 4.2

Thm 4.5

Lem 4.4

(a) Existential implications.

Iterative

Sequential Functions

Selective

Adaptive

Dynamic

Continuous

(b) Set containments.

Figure 3: Relations between sequential function definitions, identical to Figure 2. {S,A,D}SF are {sequential,
adaptive, dynamic} sequential functions (Definition 4.1). {S,A,D,C}ISF are {sequential, adaptive, dynamic,
continuous} iterated sequential functions (Definition 4.3). Unlabelled arrows represent implications that
follow directly from definitions

4.4 Main Assumption

As we have mentioned, we do not know of any primitives that are provably sequential in a rigorous sense.
Like other works, we will make an assumption that some sort of sequential function exists. Our goal is that
this assumption should be as weak as possible, and that we only need the existence of such a function–not
necessarily the knowledge of one.

This core assumption is that continous ISFs exist:

Definition 4.6 (Circuit Assumption CKTtC ,tA,d,g,n). There exists a CISF, denoted CISF∗, with (tC , tA)-
sequentiality such that f∗ = CISF∗.Round has a circuit of at most g gates, at most d depth, and at most n
inputs and n outputs.

We will typically assume that CISF∗ is a boolean circuit with fan-in 2, although all circuit models are
interchangeable up to polynomial loss. Though we assume the strongest type of ISF, Lemma 4.4 shows that
the types of ISF are also interchangeable up to polynomial loss.

4.5 Parameter Selection

Our construction is universal in the sense that if there are any iterated sequential functions that can be
simulated by the universal circuit and FHE, then our construction is an iterated sequential function. However,
we must choose parameters for the universal circuit, and these parameters may not accomodate any iterated
sequential function.

Our circuit assumption CKTtC ,tA,d,g,n has many parameters, and it is not obvious that it holds for all
parameters. That is, perhaps all iterated sequential functions require many more gates g than their depth d.

19

Here we prove a particular relationship between them, allowing us to choose values of d, g, and n that are
likely to capture a CISF, if it exists.

Lemma 4.7. The assumption CKTtC ,tA,d,g,n implies CKTt′C ,t′A,d′,g′,n, where d′ = g, g′ = g2, t′C = d′−o(d′)
and d′

t′A
≤ 2 tCtA .

Proof. Let CISF∗ = (Setup,Gen,Eval,Round) be a continous iterated sequential function implied by the
circuit assumption. Let CISF′ be identical to CISF∗, except CISF′.Round consists of repeating CISF∗.Round
for bg/tCc iterations. This repeats the round function at most g times and thus has at most g2 gates. In
modelMC it runs in time t′C := tC · b gtC c = g − o(g). Because CISF∗ is an iterated sequential function,
CISF′.Round cannot run faster than t′A := tAb gtC c in modelMA.

Since CISF∗.Round can be computed in a circuit of depth tC , CISF′.Round can be computed with a
circuit of depth at most tCbg/tCc ≤ g, and thus d′ := g.

Finally, since tC ≤ g we have bg/tCc ≥ g/2tC , and thus

d′

t′A
=

g

tAbg/tCc
≤ 2

tC
tA
.

5 Non-Parallelizing Languages

Bitansky et al. defined a primitive called a non-parallelizing language in their work on time-locked
puzzles [BGJ+16]. We modify their definition slightly to use our (MC ,MA) approach and then show
equivalences between our definition of adaptive sequential function and the definition of a non-parallelizing
language. Informally, an adaptive sequential function is akin to the “search problem” variant of a non-parallel
language.

Definition 5.1. An average-case non-parallelizing language ensemble with gap ε is a set of languages
{Lλ,t}λ,t∈N, where Lλ,t ⊆ {0, 1}λ, that satisfies:

Completeness: For all λ ∈ N and t ≤ 2o(λ), there exists a decision algorithm L in modelMC such that for
all λ and t and all inputs x ∈ {0, 1}λ, L(t, x) runs in time t and outputs 1 if and only if x ∈ Lλ,t.

Average-case non-parallelizing: There exists an efficient sampler Gen such that for every family of circuits
A = {Aλ}λ∈N in modelMA with parallelism at most 2o(λ), there exists a negligible function negl
such that for all λ and t, if the run-time of Aλ < (1− ε)t, then

Pr
[
Aλ(x) = L(t, x) x← Gen(1λ, t)

]
≤ negl(λ).

Lemma 5.2. The existence of a (tC , tA) ASF implies an average case non-parallelizing language of gap
ε = 1− tA

tC
+ o(1).

Proof. Our proof is a relatively basic application of the Goldreich-Levin Theeorem [GL89]. A critical fact
necessary for the proof to work is that queries in the Goldreich-Levin algorithm (as stated in theorem) are
nonadaptive and thus can be computed in parallel.

Let ASF = (Setup,Gen,Eval) be an ASF and let pp = Setup(1λ). We let T = ktC(λ) and l be the
bit-length of the outputs of Gen(pp, k). We create a language Lλ,T ⊆ {0, 1}l+l as the set of all strings (x, r)

20

such that 〈Eval(pp, k,x), r〉 ≡ 1 mod 2. The behaviour of Eval may be undefined if x is not the output of
Gen; we include such strings in Lλ,T if Eval runs in T and produces a well-formed output with odd parity
with r.

Finding the parity with Eval satisfies the completeness property, since Eval runs in time ktC(λ) = T . If
Eval fails to run in that time or does not produce a well-formed output, the string is not in the language by
definition and we can correctly output 0.

We let ASF.Gen be the efficient sampler for the languages. If Lλ,T are not average-case non-parallelizing,
then there is a parallel circuit A that decides Lλ,T with probability greater than 1

2 + p in time less than
(1− ε)T on the outputs of Gen. The Goldreich-Levin algorithm will then find the output of Eval by running
A for O(p−2λ1+o(1)) inputs [GL89]; however, this is less than 2o(λ), and these can be run in parallel, since
the output of the algorithm is just the bitwise majority of the outputs of A. Thus, the total time will be less
than (1− ε)T +O(log(p) + log(λ)). If we let ε = 1− tA

tC
+ δ, then this equals

ktC(λ)− δktC(λ) +O(log(p) + log(λ)).

If δ is large enough this contradicts the sequentiality of ASF, and a large enough δ is still o(1) in terms of λ.

Lemma 5.3. If there exists an average-case non-parallelizing languages of gap ε, then there is a (1, 1− ε)
ASF.

Proof. Suppose we have a language Lλ,t which is average-case non-parallelizing of gap ε. It comes with
an algorithm L with decides the language. We set Setup(1λ) → λ. The definition of non-parallelizing
implies a sampler L.Gen, and we define the Gen function for the ASF as λ repetitions of L.Gen, outputting
x = (x1, . . . ,xλ). We then define

Eval(pp, k,x)→ L(k,x1)‖L(k,x2)‖ . . . ‖L(k,xλ).

Since L can be run in time k for any t, Eval runs in time k · 1.
If (A1,A2) breaks sequentiality of this ASF, thenA1 can be run once to produce k, since Setup produces

only the public information λ. Then A2 produces the output of Eval in time less than ktA := k(1− ε), and
the output of Eval decides the language Lλ,k with non-negligible probablity, contradicting the average-case
non-parallelization of Lλ,t.

Lemma 5.4. If there exist a worst-case non-parallelizing language of gap ε, then there is a (κFHE , (1− ε))
ASF, where κFHE is the sequential overhead of FHE.

Proof. Suppose we have a languages Lλ,t which is worst-case non-parallelizing of gap ε. As before, it comes
with an algorithm L with decides the language. We sample pk ← FHE.Gen

(
1λ
)

and set Setup(1λ) →
(pk, λ). Let S be the sampler implied by the definition of Lλ,t, and set Gen to be

FHEEnc (x1 ← S‖x2 ← S‖ . . . ‖xλ ← S)

Finally, we set

Eval (pp, k,x)→ FHE.Eval (L (k, ·) ,x1) ‖ . . . ‖FHE.Eval (Lλ (k, ·) ,xλ)

S This has the exact same structure as in lemma 5.3 except for the fact that the input string is encrypted
and we are evaluating everything homomorphically. Thus, our argument would follow immediately for
average-case non-parallelizing languates.

21

However, the FHE scheme hides the input of Eval (effectively the output from Gen). So, by the security
of the FHE scheme, an adversary cannot tell whether this is a random input or a specially tailored one. Using
a simple hybrid argument, we can switch out the input x for arbitrary (i.e. worst-case) value, which completes
the proof.

Lemma 8.8 proves that the [GSW13] FHE encryption scheme has sequential overhead of O
(
log1+ε λ

)
for any ε > 0, which means we can instantiate the implied construction from the above lemma with relatively
good parameters.

6 Construction

We are now in position to define our construction of an iterated sequential function assuming the existence
but not knowledge of some iterated sequential function as well as an FHE scheme. Since we only assume the
existence of an ISF, we do not need to have one as an input to our scheme.

6.1 Formal Definition

We formally describe our ISF construction. This ISF is a continuous ISF (CISF) in the sense of Section 4, as the
subroutines Setup,Gen and Round are all independent of k. We use a universal circuit UCn,nd,g (Definition 3.5),
and we assume the existence of a fully homomorphic encryption scheme FHE = (Gen,Enc,Dec,Eval)
(Definition 3.2).

Definition 6.1 (CISFFHE construction). The continous iterated sequential function CISFFHE is defined
as follows:

• Setup
(
1λ
)
→ pp:

– Select g, k, and d to be in O(poly(λ)), such that n ∈ Ω(λ) and g = d2 (see Lemma 4.7). These
parameterize the number of gates, the input size, and depth, respectively, of a universal circuit.

– Let b denote the largest number of bits required to represent the circuit portion of the input to
UCn,nd,g (·).

– Sample (pk, sk)← FHE.Gen
(
1λ
)
.

– Sample ctckt ← 〈FHE.Enc (pk, 0)〉bi=1.

– Output the tuple pp = (pk, ctckt).

• Gen (pp):

– Sample x← 〈FHE.Enc (pk, 0)〉ni=1.

– Output x.

• Round (pp,x):

– Output FHE.Eval
(

pk,UCn,nd,g , ctckt,x
)

.

• Eval (pp,x, k):

– Output
(
Round

(
pk,UCn,nd,g , ctckt, ·

))(k)
(x).

22

6.2 Sequentiality

Here we show that CISFFHE is a continous ISF as long as there exists a continuous ISF. Since we must
assume FHE for this construction, then Lemma 4.4 and Theorem 4.5 show that the existence of any type of
sequential function implies that CISFFHE is a continuous ISF.

Our construction adds two constant overheads to the scheme: κUC , the overhead to compute a circuit
with a universal circuit, and κFHE , the overhead to compute a circuit homomorphically with an FHE scheme.
Sections 7 and 8 discuss these constants, and show that they are a function only of the security parameter λ.
Here we show that evaluating a sequential function with either a universal circuit or an FHE scheme is also
sequential.

Recall Definition 4.6, which defines CKTtC ,tA,d,g,n as the assumption that there exists some (tC , tA)
continous ISF, simulatable by UCn,nd,g . We use this in the lemma below:

Lemma 6.2 (UC Sequentiality). Assuming CKTt′C ,t′A,d,g,n, there exists a continous ISF CISF = (Setup,Gen,Eval)

such that (Setup,Gen,UCn,nd,g (f, ·)) is a (tC , tA) continous ISF, with tC = κUCg and tA = t′Ab
g
t′C
c.

Proof. Lemma 4.7 strengthens the circuit assumption to CKTt′′C ,t
′′
A,g,g

2,n with t′′C = g and t′′A = t′Ab
g
tC
c,

implying the existence of CISF. Then Lemma 7.1 gives the sequentiality of the universal circuit partially
applied to f .

Lemma 6.3 (FHE Sequentiality). If CISF = (Setup,Gen,Eval) is an iterated (t′C , t
′
A)-sequential function

such that CISF.Eval has circuit C, then CISF′ = (Setup′,Gen′,Eval′) is an iterated (tC , tA)-sequential
function, with tC = (κFHE + o(1))t′C and tA = t′A, where

• Setup′(1λ)→ (pp1 := CISF.Setup(1λ),pp2 := FHE.Gen(1λ))

• Gen′((pp1,pp2))→ FHE.Enc(pp2,CISF.Gen(pp1))

• Eval′((pp1,pp2), k,x) = (FHE.Eval(pp, C, ·))(k) (x)

Proof. If we decrypt the output of Eval′, then it acts as a circuit to compute the iterated sequential function
CISF, and this cannot run faster than tA. Lemma 8.8 gives the overheads for these computations. Decrypting
the output adds the o(1) term.

Finally, we prove that our scheme is sequential even if the encrypted public parameters do not encode a
sequential function.

Theorem 6.4 (Sequentiality). Let CISFFHE be instantiated with parameters d, g = d2, and n. Assuming
CKTt′C ,t

′
A,d,d,n

and CPA-2 security of FHE, CISFFHE is a (tC , tA)-iterated sequential function, where

tC = (κFHEκUC + o(1))d and tA = (
t′A
t′C
− o(1))d.

Proof. The circuit assumption and Lemma 6.2 imply that there exists CISF = (Setup,Gen,Eval), a CISF,
that UCn,n

d,d2
can simulate.

We now play an adaptive security game with an oracle for an FHE scheme with public key pk. First we
run Gen and get a random message m, and we send this to the FHE oracle to get an input x. Then for the
challenge, we send m0 = {0}b and m1 as the circuit for f . We receive a ciphertext ctc for c ∈ {0, 1}, and
we set ppc = (pk, ctc) to be the public parameters of our construction.

23

Suppose that (A1,A2) breaks the sequentiality of CISFFHE . We set (k, τ) ← A1(ppc) and then set
yA ← A2(ppc,x, k, τ), which runs in some time TA. We also honestly compute CISFFHE(ppc, k,x).

By our assumption that A2 breaks the iterated sequentiality of CISFFHE , if c = 0 then y = yA and
TA < ktA. However, if c = 1, then both statements cannot be true, since then A2 would contradict
Lemmas 6.2 and 6.3. Thus, we can compare y to yA, and TA to ktA, and deduce the original value of c,
breaking the semantic security of FHE. Honestly computing CISFFHE requires only k poly(λ) ≤ 2o(λ)

resources, so this is a computationally feasible attack.

7 Universal Circuits

The definition of a universal circuit (Definition 3.5) UCn,md,g requires that it evaluates circuits of depth d, but
does not specify the depth of the universal circuit itself. Let dUC be the depth of UCn,md,g . We define the depth
overhead κUC of this universal circuit to equal dUC/d. Cook and Hoover describe a depth-universal circuit
that simulates circuits of depth d in depth O(d) [CH85, Theorem 1]. Here we account for the constants in
their construction to give better bounds on κUC .

Lemma 7.1 (UC Overhead). There exists a universal circuit UCk,`d,g such that for any circuit C of k inputs, `
ouputs, at most g gates, and at most d depth, there is an efficiently-computable encoding of C into a binary
string such that UCk,`d,g computes C in depth at most κUCd and size O(poly(g)), where κUC is independent of
k, `, g, and d.

Proof. We use Cook and Hoover’s construction, which requires the circuit be presented in an extended
encoding. Each gate is represented as a tuple (v, π, g, l, r), where v is the index of an initial node, π describes
a forward path from v, g describes the gate at the end of the path, and l and r are the indices of the inputs to
this gate. They show that this is efficiently computable from a standard encoding of a circuit.

Their construction divides the universal circuit into stages, where each stage has two steps: first, trees
of height h of universal gates of fanin 2 simulate the next h gates in the circuit, and then trees of selection
circuits rearrange the outputs as necessary. If the selection circuit has depth ds(g) and each universal gate has
depth du, then the total depth is

d

h
(duh+ ds(g))

Since we can build a selection tree out of 2dlog ge sequential AND gates, we can parameterize the
universal circuit to have a total depth between 2ddu + o(d) and ddu + ε. Increasing h means fewer switching
layers but larger simulation trees, leading to a lower depth but larger circuit size. The size of the simulation
trees is g2hd/h, so to approach the minimum depth of ddu + ε the circuit size must increase exponentially.
We take h = ds(g)/du, so that the total depth is 2ddu and thus κUC = 2du.

We can further modify the Cook-Hoover construction by partially evaluating the universal circuit. For
example, suppose there is a gate G in the circuit whose inputs are bits ci and cj in the encoding of the circuit.
We can pre-compute G(ci, cj) as part of the encoding of the circuit. We replace the output wire of G with an
input wire, which takes the value G(ci, cj). This allows us to save some depth during the universal gates.

Lemma 7.2. In a boolean circuit model with unbounded fanout and {AND,XOR} gates of unit depth,
κUC ≤ 10. With a gate Select of unit depth such that

Select(x, y, z) = (x ∧ y) ∨ (x ∧ z)

then κUC ≤ 4.

24

Proof. We will provide the value of du, and by Theorem 7.1, κUC ≤ 2du.
From [LMS16b], du ≤ 6 if we treat all 0- and 1-fan-in gates as 2-fan-in gates, by identifying them with

gates that ignore one or both inputs. This can be done as part of the encoding process. In their construction,
we can partially evaluate the initial XOR gates, bringing the depth to 5.

Another approach to a universal gate on two inputs is to use the two input bits x and y as an index to
address one of the bits c0c1c2c3 of the gate description. In this way the bits of the gate directly encode the
truth table for the gate. We can compute this by

Select(y,Select(x, c0, c1),Select(x, c2, c3)).

In short, the overhead of a universal circuit is constant and small. We mention the function Select in
Lemma 7.2 because this can be implemented in an FHE scheme in the same depth as an XOR gate.

8 Fully Homomorphic Encryption

In this section we define the Gentry, Sahai, and Waters [GSW13] FHE encryption scheme and explain some
of its parallel evaluation properties. Readers familiar with the scheme may still want to refresh their memory,
as we will use very specific properties of the scheme in order to prove bounds on circuit depth.

Our overall goal is to show that, given enough parallel resources, we can homomorphically evaluate a
circuit C of depth d consisting of AND and XOR gates in depth O

(
d log1+ε (λ)

)
, where λ is the security

parameter (which is typically closely related to the lattice dimension).

8.1 Helper Functions

We start by defining some “helper” functions that are used throughout [GSW13]. Let k, q ∈ Z be integers,
and let ` = blog qc+ 1 and N = k · `.

Definition 8.1. BitDecomp Function: We define BitDecomp : Zkq → ZN2 as the function that, on an input
vector a ∈ Zkq , outputs the binary vector (a1,0, ...,a1,`−1,a2,0, ...,ak,0, ...,ak,`−1) where ai,j represents the
jth bit of the ith entry of a.

Definition 8.2. BitDecomp−1 Function: We define BitDecomp−1 : ZNq → Zkq as the function that, on
an input vector a ∈ ZNq where we define a = (a1,0, ...,a1,`−1,a2,0, ...,ak,0, ...,ak,`−1), outputs the vector(∑`−1

j=0 2ja1,j ,
∑`−1

j=0 2ja2,j , ...,
∑`−1

j=0 2jak,j

)
.

While this function does invert BitDecomp it is also well-defined if the entries of a are not binary (and
thus, not a possible output of BitDecomp).

Definition 8.3. Flatten Function: We define Flatten : ZNq → ZN2 to be the function such that Flatten (a) =

BitDecomp
(
BitDecomp−1 (a)

)
.

Definition 8.4. Powersof2 Function: We define PowersOf2 : Zkq → Z`q in the following say. On an input
vector b ∈ Zkq , we output the vector

(
b1, 2b2, ..., 2

`−1b1, ...,bk, 2bk, ..., 2
`−1bk

)
.

In [GSW13], the authors explain intuition about these functions in more detail. We encourage interested
readers to read the original text for more information.

25

Definition 8.5. [GSW13] Fully Homomorphic Encryption Scheme: The [GSW13] FHE scheme is de-
fined as follows:

• Gen
(
1λ, 1L

)
: Choose a modulus q of κ = κ (λ, L) bits, lattice dimension parameter n = n (λ, L)

and error distribution χ = χ (λ, L) appropriately for LWE that achieves at least 2λ security against
known attacks. Also, choose parameter m = m (λ, L) = O (n log q). Let pp = (n, q, χ,m). Let
` = blog qc+ 1 and N = (n+ 1) `.

• SecretKeyGen (pp): Sample t ← Znq . Output sk = s ← (1,−t1, ...,−tn) ∈ Zn+1
q . Let v =

PowersOf2 (s).

• PublicKeyGen (pp, sk): Generate a matrix B ← Zm×nq uniformly and a vector e ← χm. Set
b = B · t + e. Set A to be the (n+ 1)-column matrix consisting of b followed by the n columns of
B. Set the public key pk = A.

• Enc (pp,pk, µ) : to encrypt a message µ ∈ Zq, sample a uniform matrix R ∈ {0, 1}N×m and output
the ciphertext C given as follows:

C = Flatten (µ · IN + BitDecomp (R ·A)) ∈ ZN×Nq

• Dec (pp, sk,C): Observe that the first ` coefficients of v are 1, 2, ..., 2`−1. Among these coefficients,
let vi = 2i be in

(q
4 ,

q
2

]
. Let Ci be the ith row of C. Compute xi ← (Ci,v). Output µ′ =

⌊
xi
vi

⌉
.

This scheme, in contrast to our definition of FHE (see Definition 3.2), splits up the Gen function into
SecretKeyGen and PublicKeyGen and also has an extra set of public parameters called pp. We can still
“simulate” our definition of FHE given this syntax, as we can make the pp part of the public key, and just
have Gen call both SecretKeyGen and PublicKeyGen.

We will also use some “less secure” variants of the above algorithms. For instance, in the case where we
don’t need a ciphertext to look fresh (i.e. we just want to use it for bootstrapping) we define the following
algorithm:

• EncFixR (pp,pk, µ,R) : to encrypt a message µ ∈ Zq with fixed randomness, output the ciphertext C
given as follows:

C = Flatten (µ · IN + BitDecomp (R ·A)) ∈ ZN×Nq

Since BitDecomp (R ·A) can be precomputed for a fixed R, we can precompute the entire function EncFixR
for µ = {0, 1}.

8.2 Homomorphic Operations

So far we have not defined how Eval works for [GSW13]. We slowly build our way to this, and in this
section we define the [GSW13] homomorphic operations and explain how they work.

Definition 8.6. [GSW13] Homomorphic Operations Let C1, C2, and C3 be three valid ciphertexts such
that Ci = Enc (pp,pk, µi) for i ∈ {1, 2, 3}. The following homomorphic operations hold:

• Add (C1,C2) = Flatten (BitDecomp (C1 + C2)) is a valid enrcyption of µ1 + µ2, assuming the
noise tolerance has not been exceeded.

26

• Multiply (C1,C2) = Flatten (BitDecomp (C1C2)) is a valid enrcyption of µ1µ2, assuming the noise
tolerance has not been exceeded.

• Invert (C1) = Flatten (BitDecomp (−C1)) is a valid enrcyption of −µ1. Alternatively we can write
Invert (C1) = Multiply (Enc (pp,pk,−1) ,C1).

We refer to the original text of [GSW13] for the proofs or correctness of these operations, although they are
relatively straightforward.

The following logical gates can also be constructed, assuming the ciphertexts are encryptions of either
zero or one (we assume the noise tolerance is not exceeded during these operations for correctness):

• NAND (C1,C2) = Add (Enc (pp,pk, 1) , Invert (Multiply (C1,C2))) is a valid encryption of NAND (µ1, µ2).

• AND (C1,C2) = Multiply (C1,C2) is a valid encryption of AND (µ1, µ2).

• XOR (C1,C2) = Add (Add (C1,C2) , Invert (Multiply (Enc (pp,pk, 2) ,Multiply (C1,C2)))) is a
valid encryption of XOR (µ1, µ2).

• OR (C1,C2) = Add (Add (C1,C2) , Invert (Multiply (C1,C2))) is a valid encryption of OR (µ1, µ2).

• NOT (C1) = Add (Enc (pp,pk, 1) , Invert (C1)) is a valid encryption of NOT (µ1).

• Select (C1,C2,C3) = Add (Multiply (C1,C2) ,Add (C3,Multiply (Invert (C1) ,C3))) is a valid en-
cryption of Select (µ1, µ2, µ3).

In the above algorithms, we can always replace the calls to Enc that encrypt constant values with EncFixR
since we do not care about the security of these ciphertexts themselves. Assuming b1 and b2 are binary, the
constructions of the above gates follow from the fact that:

• NAND (b1, b2) = 1− b1b2.

• AND (b1, b2) = b1b2.

• XOR (b1, b2) = b1 + b2 − 2b1b2.

• OR (b1, b2) = b1 + b2 − b1b2.

• NOT (b1) = 1− b1.

• Select (b1, b2, b3) = b1b2 + (1− b1)b3.

These are very basic results on constructing boolean circuits over fields, but we mention them for clarity.
Given the above gates, we can homomorphically construct any boolean circuit with fan-in 2, so we can view
Eval as operating on boolean circuits using these results.

8.3 Bootstrapping

In order to homomorphically compute a function iteratively for a long period of time, we will need to
use bootstrapping, which is a technique from [Gen09] allowing us to perform an indefinite amount of
homomorphic computations. The idea is simple yet elegant: using an encryption of the secret key (under
itself), we encrypt a ciphertext and then homomorphically decrypt it, lowering the noise in the process if it
has gotten large. Bootstrapping in [GSW13] is relatively simple since decryption is (essentially) linear and
can be done using what amounts to Regev decryption [Reg05].

27

Definition 8.7. [GSW13] Bootstrapping: We define [GSW13] bootstrapping in the following way. We
are given a ciphertext to bootstrap C and a series of ciphertexts Cvi for i ∈ [1, N] where Cvi is an encryption
of the ith value of the secret key vector v.

In order to bootstrap, we need to homomorphically compute the decryption of C. This involves the
following:

• Encrypt each bit of the jth row of the matrix C, which we previously denoted Cj .

• Using binary operations, compute Ci · v homomorphically.

• Choose an appropriate encryption (of a high-order bit of the computed operation Ci · v) and output
that encryption.

We don’t need to do a “proper encryption” since we do not need the bootstrapped ciphertext to look
“fresh,” so we can use EncFixR instead of Enc for our encryptions. When we compute Ci · v, we are doing a
homomorphic operation where we are given access to only the individual bits of each field element, so we
must do bitwise operations to compute this. One of the easiest ways to do this is to write the dot product in
terms of traditional logic gates and then use our formulas from above.

By definition C ·v = µv+e for some error vector v, so the output of the homomorphically computed dot
product of the ith row of C is an encryption of the ith element of µv + e, denoted xi. We want to compute
bxi
vi
e. The first ` coefficients of v are vj = 2j . Thus, all we need to do to eliminate the noise is to pick an

encryption of one of the jth high-order bits of our encryption of xi, such that 2j ∈ (q4 ,
q
2]. This will be 1 if

and only µ = 1, so we output the encryption of this bit.

8.4 Circuit Complexity of [GSW13] FHE Operations

We next discuss the circuit complexity of the FHE operations we will need in our construction. In particular,
we will focus on the circuit depth of the operations.

8.4.1 Circuit Complexity of Field Operations

We next mention some lemmas describing the complexity of performing arithmetic operations over a
field Fq using boolean gates with fanin and fanout 2. The classic textbook [Vol13] and some survey
papers [GS13, Wan12] summarize and contain many complexity results of this type, and [HV06] is also very
useful reading. In addition, most of our matrix operations will never need modular reduction, which enables
us to save on circuit complexity.

Addition over Fq without modular reduction. It is a well-known and classic result that addition of two
q-bit numbers can be done in AC0. However, since we are only allowed gates with fan-in two, the overall
depth of addition will be O (log q), since we will need to simulate a large fan-in addition gate with a tree of
fan-in 2 gates.

The [GSW13] construction calls Flatten after every operation. So, in the actual construction, we will
typically only need to add very small values together. If q is a constant, then the circuit depth of addition is
still constant for gates with fan-in two.

28

Multiplication over Fq without modular reduction. It is substantially less easy to show that the upper
(and lower) bounds for multiplication of two elements in Fq are O (log q) depth. This is explained nicely
in [GS13].

Again, if q is constant, then we can multiply in constant depth as well.

Matrix Multiplication over Fq without modular reduction. Parallel matrix multiplication typically
works as follows: on an N ×N matrix, we perform N3 multiplications in parallel and then, also in parallel,
generate N2 sums of N elements for the final output. So, the parallel circuit depth of such an operation is the
depth of one multiplication followed by the depth of summing N elements together.

This means that even multiplication of binary matrices using typical boolean circuits will take O (logN)
depth in this format. There has been quite a bit of work done on the complexity of matrix multiplication [RS01,
Shp01]. However, a simple argument using Hastad’s switching lemma [Hås86] (which states that any poly-
size circuits for computing the parity function using fan-in two AND, OR, and NOT gates require logarithmic
depth in the number of inputs) can be used to show that matrix multiplication should have at least logN
depth in our model, no matter what our elements are.

If we multiply binary matrices, our algorithmic depth is actually logN : binary multiplication is constant
depth, and adding N binary elements together can also be done in logN depth with poly (N) gates. This
result is slightly complicated, although a common problem for advanced complexity theory classes, and a
good reference is [YVPL99]. So our actual circuit for matrix multiplication matches the lower bounds known,
up to constant factors.

8.4.2 Helper Functions

We first mention the circuit complexity of our helper functions. While it is generally simple, getting this out
of the way now lets us avoid having to deal with these calls later.

• BitDecomp is a depth one function. In fact, since we are computing Zq functions using the direct bits
of field elements (rather than in an arithmetic manner), BitDecomp doesn’t need any gates and is just a
rewiring of bits to bits. If we count rewiring as a “depth zero” function–possible in some cases–then
BitDecomp can be done in depth zero. Regardless, we are ignoring constants so this difference is
immaterial.

• BitDecomp−1 is slightly more complicated. If the input vector a is binary, then it would just rewire
bits. However, since we do not assume the input is binary (and it is actually important that we do
not), we cannot necessarily just rewire bits. Instead we can write each output of BitDecomp−1 using a
single, blog qc+ 1-parity gate, computable in depth log log (q + 1). An exact lower bound exists as
well, as a bounded fan-in circuit with blog qc+ 1 input bits has depth at least log log (q + 1).

• Flatten is both upper and lower bounded by log log (q + 1) + 1 due to our results on BitDecomp and
BitDecomp−1.

• PowersOf2: The depth of PowersOf2 depends on the choice of q: in particular, if q were a power of 2,
it would be a simple rewiring. But this is unlikely to be a good choice for q. We can view PowersOf2 as
just N multiplications by powers of 2 in parallel, meaning that PowersOf2 is upper and lower bounded
by O (log q) depth.

29

8.4.3 Basic Operations

We start by considering the basic homomorphic operations.

• EncFixR: This corresponds to one addition operation, followed by a Flatten operation. Since we only
use binary encryptions, we only ever need encryptions of 0, 1, and 2 in our other operations1, we can
just precompute these encryptions (and reuse them) which means that this operation does not cost us
any depth.

• Add: This is just a matrix addition, followed by some bit manipulations. Since we are only ever adding
binary matrices (because we are flattening after every operation), Add will only be constant depth.

• Multiply: In a similar vein, we can view Multiply as just a matrix multiplication over Fq followed by
some bit manipulations. As with Add, we can assume the input matrices are binary, but in this case, we
will need O (logN) depth as we discussed in the previous section.

• Invert: If we use our second form of inversion (multiplying by a fixed encryption of −1) then this
operation corresponds exactly to a Multiply operation, and the depth will be the same at O (logN).
If we attempt to do this naively using the first method we propose, then our overall circuit depth might
be logarithmic in q (which will be larger than N) rather than logarithmic in N .

8.4.4 Eval for General Functions

All of our gates can be built using a constant number of calls to EncFixR, Add, Multiply, and Invert. Since
all of the above functions use no more than O (logN) depth, the depth of any of our gates must be no more
than O (logN).

In particular, note that the only gates for which we need logarithmic depth are Multiply and Invert. Add
and EncFixR can be done in constant depth when the inputs are binary. However, since all of the gates we
present have either an inversion or a multiplication (or both), we note that all of our gates require logN depth.

8.4.5 Bootstrapping

Recall that bootstrapping is essentially three steps: encryption of many (existing) ciphertexts, a large
dimension multiplication, and then bit selection. We can encrypt using EncFixR in constant depth, so we can
ignore this in our asymptotic analysis.

Computing Ci · v homomorphically can be done using a generic algorithm for field multiplication
homomorphically using binary circuits over each matrix, followed by additions. Since v is not binary, we
unfortunately must use the general multiplication algorith rather than a faster one. However, we know that
this can be done in depth O (log (N log q)) in our existing gates, so the total depth multiplies with the depth
of our current gates. Thus, our total depth is O

(
log2 (N) log log q

)
.

We note that the bootstrapping circuit has depth log (N log q) in our boolean logic gates. Since each of
these gates contains a multiplication, and each multiplication “blows” up the noise by up to a factor of

√
N ,

this means our modulus will need to be proportional to
√
N

logN log log q
, which is slightly superpolynomial

(quasipolynomial). This means that LWE security is not ideal [Reg05], but is a parameter choice that many
papers in lattice cryptography make. This fact is alluded to in the brief section in [GSW13] on bootstrapping
and is a common drawback of all known “true” FHE schemes.

1We use the encryption of 2 solely in or XOR gate computation and not as an encryption of something in and of itself.

30

8.4.6 Putting It All Together

In this section, we tie together all of our previous results and discussion into formal statements about the
parallel evaluation of [GSW13] encryption primitves.

Lemma 8.8. Let C be a boolean circuit composed of a polynomial number of fan-in and fan-out 2 AND,
NOT, OR, and Select gates. Suppose we have an instantiation of the [GSW13] FHE scheme with modulus
q ≥ 2O(logN log log q). Let C have depth d for some d ≥ log3 λ. Given an encrypted input to C, we can
homomorphically evaluate C using the [GSW13] encryption scheme with our implementations of the protocols
described above using poly (λ) parallelism in depth O

(
log1+ε λ

)
∗ d for any ε > 0.

Proof. This statement follows from all of our previous work in this section. First, note thatN = poly (λ) log q.
All of our circuit gates take no more than O (logN) = O (log λ log log q) = O

(
log1+ε λ

)
depth. The last

equality holds from the fact that q = 2o(λ).
Bootstrapping takes depth O

(
log2N log log q

)
, so as long as we only bootstrap every log1+εN steps,

this extra cost is amortized away. Setting the modulus q ≥ 2O(logN log log q) makes this possible, so we can
compute circuits indefinitely.

8.4.7 Tighter Bounds

In this section, we have shown that FHE using the [GSW13] FHE scheme only adds aO
(
log1+ε λ

)
sequential

overhead to a circuit computation. However, from a practical perspective, it seems unlikely that an adversary
could outperform the computations we have shown above by a substantial margin. In particular, as long
as each circuit operation was computed homomorphically (and thus, at some point a ciphertext of each
incremental operation existed), it would seemingly be hard for an adversary to do compute the [GSW13]
FHE operations in lower depth. A formal argument about this would allow us to build much tighter sequential
primitives, but unfortunately we do not know how to do this. We leave such an argument as interesting future
work.

9 Applications

In this section we relate sequential functions to several existing time-release cryptography primitives:
verifiable delay functions, proofs of sequential work and time-lock puzzles. We show that these notions imply
each other under appropriate cryptographic assumptions, completing the depiction in Figure 1.

9.1 Verifiable Delay Functions

The first application we consider is probably also the most popular: verifiable delay functions (VDFs). A
VDF produces a deterministic output from a long computation (“function”), such that any party can compute
the output if they spend the time (“delay”) and any party can efficiently verify that the computation was
performed correctly (“verifiable”). We can use a VDF in situations where we want some shared, verifiable
data, but we do not want any party to access that data until after a certain delay.

9.1.1 VDF Definition

We adapt the definitions below from [BBBF18, DGMV19]. Specifically, we define sequentiality twice:
once for their (T, ε) notion of sequentiality, and once for our (TC , TA) definition of sequentiality. Our new

31

definition helps us more accurately take into account differences in computational models (and thus hardware).
The two definitions are trivially equivalent if the same hardware model is used for both honest and adversarial
evaluators.

Definition 9.1 (Verifiable Delay Function). A VDF V = (Setup,Gen,Eval,Vf) is defined as the following
tuple of algorithms:

Setup(1λ)→ pp: On input the security parameter 1λ, the setup algorithm returns the public parameters pp.
By convention, the public parameters encode an input domain X and an output domain Y .

Gen(pp)→ x: On input the public parameters pp, the instance generation algorithm samples a random
input x← X .

Eval(pp, x, T)→ (y, π): On input the public parameters pp, an input x ∈ X , and a time parameter
T ∈ 2o(λ), the evaluation algorithm returns an output y ∈ Y together with a proof π. The evaluation
algorithm may use random coins to compute π, but not for computing y.

Vf(pp, x, y, π, T)→ {0, 1}: On input the public parameter pp, an input x ∈ X , an output y ∈ Y , a proof
π, and a time parameter T , the verification algorithm outputs a bit {0, 1}.

Efficiency. We require that Setup and Gen run in time poly(λ), and Vf runs within poly(log(T), λ). We
require Eval to run in exact parallel time T with at most poly(log(T), λ) processors.

Definition 9.2 (Completeness). A VDF V = (Setup,Gen,Eval,Vf) is complete if for all λ ∈ N and all
T ∈ N, the following holds:

Pr

 Vf(pp, x, y, π, T) = 1
pp← Setup(1λ)
x← Gen(pp)
(y, π)← Eval(pp, x, T)

 = 1

Definition 9.3 (Soundness). A VDF V = (Setup,Gen,Eval,Vf) is sound if for all λ ∈ N and for all PPT
machines A, there exists a negligible function negl such that:

Pr

 Vf(pp, x, y′, π′, T) = 1 and y 6= y′
pp← Setup(1λ)
(T, x, y′, π′)← A1(pp)
(y, π)← Eval(pp, x, T)

 = negl(λ)

We can define sequentiality for VDFs:

Definition 9.4 ((T, ε)-Sequentiality). A VDF V = (Setup,Gen,Eval,Vf) is (T, ε)-sequential if for all
λ ∈ N and for all pairs of PPT machines (A1,A2), such that the parallel running time ofA2 (with poly(T, λ)
processors) is less than (1− ε) · T , there exists a negligible function negl such that:

Pr
[
y = y′

pp← Setup(1λ), (T, τ)← A1(pp), x← Gen(pp)
y′ ← A2(pp, x, T, τ), (y, π)← Eval(pp, x, T)

]
= negl(λ)

Definition 9.5 ((TC , TA)-Sequentiality). A VDF V = (Setup,Gen,Eval,Vf) is (TC , TA)-sequential if for
all λ ∈ N and for all pairs of PPT machines (A1,A2), such that the running time of A2 on computational
modelMA is less than TA, there exists a negligible function negl such that:

Pr
[
y = y′

pp← Setup(1λ), (TC , τ)← A1(pp), x← Gen(pp)
y′ ← A2(pp, x, TC , τ), (y, π)← Eval(pp, x, TC)

]
= negl(λ)

As for sequential functions, ifMC =MA (except for their parallelism difference) then these definitions
are the same, with T = TC and ε = 1− TA

TC
.

32

9.1.2 Incremental Verifiable Computation

Incremental Verifiable Computation (IVC) allows a prover to produce a proof that a certain state is indeed the
current state of the computation, at every incremental step. An iterative sequential function (ISF) supports the
computation structure required by IVCs. Bitansky et al. [BCCT13] showed that any SNARK system such as
[PHGR13] can be used to construct IVC. Boneh et al. [BBBF18] use IVCs to generically compile an ISF to
VDF. To achieve this they require an additional property called “tight incremental proving”, which they show
is achievable by existing IVCs.

Definition 9.6 (IVC). An IVC scheme consists of three polynomial time algorithms, (Gen,Prove,Verify).

• (ek, vk)← Gen(λ, f). A randomized algorithm that takes a function f , where f(k, x) = gk(x), and a
security parameter λ. It outputs a public evaluation key ek and a public verification key vk.

• (y, π)← Prove(ek, k, x). Computes and outputs y = f(k, x) alongside a proof π of the correctness
of this output.

• {0, 1} ← Verify(vk, x, y, k, π). A deterministic algorithm that outputs 1 if y = f(k, x) and 0
otherwise.

Definition 9.7 (IVC Properties). An IVC scheme (Gen,Prove,Verify) has the following properties:

Completeness. For all λ ∈ N, k ∈ N and x ∈ X , the following holds:

Pr
[
Verify(vk, x, y, k, π) = 1

(ek, vk)← Gen(λ, f)
(y, π)← Prove(ek, k, x)

]
= 1

Succinctness. The length of a proof and the complexity of Verify is bounded by poly(λ, log(k · t)).

(Sub-exponential-)Soundness For all λ ∈ N and for all algorithms A running in time 2o(λ), there exists a
negligible function negl such that:

Pr
[

Verify(vk, x, y, k, π) = 1
and f(k, x) 6= y

(ek, vk)← Gen(λ, f)
(x, y, k, π)← A(ek, vk)

]
= negl(λ)

Tight Incremental Proving. There exists a k′ such that for all k ≥ k′ and k = 2o(λ), Prove(ek, k, x) runs
in parallel time k · t+O(1) using poly(λ, t)-processors.

For our purposes the function f is the Eval function from an iterated sequential function.

9.1.3 VDF Construction

[BBBF18] describe a verifiable delay function construction from an iterated sequential function ISF =
(Setup,Gen,Eval) and incremental verifiable computation IVC. They construct it as follows:

Setup(1λ): Sample pp1 ← ISF.Setup(1λ) and (ek, vk) ← IVC.Gen(λ, ISF.Eval(pp, ·, ·)). Output pp =
(ek, vk,pp1)

Gen(pp): Sample x← ISF.Gen(pp1)

33

Eval(pp, x, T): Set k to be the largest integer such that IVC.Prove(ek, k, x) takes time less than T . Compute
(y, π)← IVC.Prove(ek, k, x). Output (y, π).

Vf(pp, x, y, π): Output IVC.Verify(vk, x, y, k, π).

Let FHE-VDF be the VDF constructed by using CISFFHE (from Section 6) as the ISF in the above
construction. Theorem 6.4 implies that if there exists any iterated sequential function, then CISFFHE is an
iterated sequential function and thus FHE-VDF is a VDF. We further show that FHE-VDF is universal in the
sense that if there exists any VDF, then FHE-VDF is a VDF as well.

We assume that any VDF comes with a minimum delay t. This is no loss of generality, as we can take
t = 1 if need be.

Lemma 9.8. If there exists a VDF with a minimum time of t, and VDF.Eval(pp, x, t) can be evaluated by a
circuit with g(λ) gates and has a machine state describable with at most n(λ) bits, then the circuit assumption
CKTd(λ),(1−ε)t,d(λ),g(λ),n(λ) holds, where d, g, and n are poly(λ).

Proof. By definition the Eval function runs on a (t, (1− ε)t)-adaptively sequential function. As we’re in the
boolean circuit model, from Theorem 4.5 this implies an iterated (d(λ), (1− ε)t)-sequential function, where
d(λ) contains the overheads of Theorem 4.5. The size n(λ) will be the original input size, plus the size of the
machine state.

Theorem 9.9. If there exists a (T ′, ε′)-sequential VDF, an FHE, and an IVC, then FHE-VDF is a (T, ε)-
sequential VDF for T = κFHEκUCg, where g is a polynomial function of λ and

ε = 1− (1− ε′)t′

κFHEκUCd′

for d′ and t′ as polynomial functions of λ.

Proof. Lemma 9.8 shows that the self-composable VDF implies CKTd′(λ),(1−ε′)t′,d′,g′,n′ for some minimum
depth time t′, depth d′, gates g′, and input size n′. We can instantiate our construction with g as a polynomial
function of λ, and then Theorem 6.4 implies that this will be a (T, (1 − ε)T) = ((κFHEκUC + o(1))g,
(1−ε′)t′

d′ g)-sequential function, which by [BBBF18] can construct a VDF with an IVC. We then solve for ε.

The specific value of ε shows that this is quite a loose VDF. So our construction of a VDF will not
be remotely practical, particularly compared to constructions based on unkown order, for which people
conjecture ε to be very small. However, our assumption is much weaker than what is currently known to
imply VDFs, and, as we mentioned earlier, it is a VDF assuming that there exists some VDF.

9.2 Proofs of Sequential Work

The next application we consider is proofs of sequential work, pioneered by Mahmoody et al. [MMV13]. The
difference between a proof of sequential work (PoSW) and a VDF is that a PoSW needs no output beyond
the proof, and the sequential proving algorithm can be probabilistic. Given a PoSW for some delay T , one
can be assured that the prover spent at last time T constructing the proof, and in particular they must have
started at least time T before the present moment. The prover can use this as a timestamp, for example.

We start by providing a definition of PoSW and then show a construction from our function CISFFHE .

34

9.2.1 Definition of PoSW

We adapt the definition from [CP18], but without the use of random oracles and with explicit functions to
generate inputs and challenges.

Definition 9.10. A proof of sequential work is a triple PoSW = (Setup,Gen,Prove,Challenge,Open,Verify)
for a prover and verifier, such that:

Setup(1λ)→ pp: Produces public parameters pp from a security parameter λ.

Gen(pp, T)→ x: The verifier produces an input x ∈ {0, 1}poly(λ).

Prove(pp, x, T)→ (πv, πp): With an input x, a time parameter T , the prover produces a proof πv for the
verifier and a helper proof πp for the prover.

Challenge(pp, x, πv, T)→ r: The verifier responds to the proof πv with a challenge r.

Open(pp, x, T, πp, r)→ πo: The prover takes the random challenge r from the verifier and produces a final
proof for the verifier.

Verify(pp, x, T, πv, r, πo)→ {0, 1}: The verifier verifies the two proofs πv and πo relative to the input x and
challenge r.

Definition 9.11 (PoSW Properties). A proof of sequential work (Setup,Gen,Prove,Challenge,Open,Verify)
must satisfy:

Tightness. Prove(pp, x, T) runs in time at most T on a machine with poly(log T, λ) processors.

Correctness. For all T ≤ 2o(λ):

Pr

 Verify(pp, x, T, πv, r, πo) = 1

pp← Setup(1λ), x← Gen(pp, T)
(πv, πp)← Prove(pp, x, T),
r ← Challenge(pp, x, πv, T)
πo ← Open(pp, x, T, πp, r)

 = 1.

ε-Sequential Soundness. For all λ ∈ N, all T ≤ 2o(λ), and for all triples of PPT machines (A1,A2,A3),
such that the parallel running time of A1 with poly(T, λ) processors is less than (1− ε)T , there exists
a negligible function negl such that:

Pr

 Verify(pp, x, T, πv, r, πo) = 1

pp← Setup(1λ), (T, τ)← A1(pp)
x← Gen(pp, T), (πv, πp)← A2(x, T, τ)

r ← Challenge(pp, x, πv, T)
πo ← A3(x, T, πp, r, τ)

 = negl(λ)

9.2.2 Construction of PoSW

[BBBF18] show that a VDF is a proof of sequential work (PoSW, Definition 9.10), but not the converse. A
PoSW need not output a deterministic output, which a VDF must. However, we can simply fix the randomness
at each step of the PoSW.

35

Lemma 9.12. Let PoSW = (Setup,Prove,Open,Verify) be a proof of sequential work. Let PoSW′ =
(Setup,Prove′,Open′,Verify) be scheme where the random coins in Prove and Open are replaced with fixed
values. Then PoSW′ is a proof of sequential work.

Proof. We must prove correctness and sequential soundness. Correctness follows by correctness of PoSW,
since it must be certain that Prove and Open will produce proofs which correctly verify. This means every
posssible value for the randomness must produce a valid proof, include the fixed values used in Prove′ and
Open′.

The algorithms Prove and Open do not appear at all in the definition of sequential soundness, so PoSW′

also inherits this property.

Intuitively, if fixing the randomness made the new protocol insecure, then an adversary could fix the
randomness in the original protocol and break it.

We must fix the randomness so that the description of the machine to compute Prove can be efficiently
described as a deterministic circuit. We can specify the randomness once and use that as needed. Thus, since
Prove uses only polynomial space, we can construct the following adaptive sequential function:

ASF.Setup(1λ)→ pp: Use PoSW.Setup directly.

ASF.Gen(pp, k)→ x: Use PoSW.Gen directly.

ASF.Eval(pp, x, k)→ y: Run PoSW.Prove(pp, x, k) → (πv, πp), with the randomness fixed, and output
y = (πv, πp).

Lemma 9.13. The construction above is a (1, 1− ε)-adaptively sequential function.

Proof. Tightness of ASF follows from tightness of PoSW. If (A1,A2) breaks (1, 1 − ε)-sequentiality
of ASF, then we break ε-sequential soundness of PoSW as follows: We run (k, τ) ← A1(pp), x ←
PoSW.Gen(pp, k), then set (πv, πp)← A2(pp, x, k, τ). We receive r from PoSW.Challenge(pp, x, πv, k),
then run PoSW.Open honestly to produce πo. Since A2 breaks ASF, then with greater than negligible
probability, (πv, πp) = PoSW.Prove(. . .), where PoSW.Prove(. . .) is certain to verify correctly.

Since a VDF is a special case of a PoSW, then Theorem 9.9 implies that CISFFHE can also form a
universal PoSW.

9.3 Time-lock Puzzles

We finally consider the relation of time-lock puzzles (TLPs) to our sequential functions. A time-lock puzzle
is like a VDF, except the inputs are created by a challenger who knows the output that they will eventually
produce. The challenger can embed some data into the output of the puzzle and release it publicly, with the
assurance that no one will know the data until after a certain time as has passed.

We show that TLPs imply ASFs, which means that the existence of a TLP implies all of the other
primitives we have discussed here. We start with a definition of TLPs and then show the reduction. However,
TLPs seem inherently stronger than our notion of sequential function and it seems we would need to use
indistinguishability obfuscation or some other strong primitive rather than just FHE in order to build them
from our notions of sequential function.

36

9.3.1 Definition of TLPs

We adapt the definition from [BGJ+16] for a time-lock puzzle.

Definition 9.14 (Time-Lock Puzzle). A time-lock puzzle is a triple of algorithms Puzzle = (Setup,Gen,Sol),
such that

• Setup(1λ)→ pp produces public parameters pp from a security parameter λ.

• Gen(pp, T, s)→ Z is a probabilistic algorithm taking as input public paramaters pp, a time parameter
T , a solution s ∈ {0, 1}λ, and outputs a puzzle Z.

• Sol(pp, Z)→ s is a deterministic algorithm that outputs the solution s to a puzzle Z.

We require a time-lock puzzle to have the following properties:

Definition 9.15 (TLP Properties). A time-lock puzzle (Setup,Gen, Sol) must satisfy:

Tightness. On inputs pp, T , and s, with poly(log T, λ) processors, Gen runs in time poly(log T, λ) and Sol
runs in time T on any output of Gen(pp, T, s).

Completeness. For all security parameters λ, all time parameters T ≤ 2o(λ), and all solutions s ∈ {0, 1}λ:

Pr
[
Sol(pp, Z) = s

pp← Setup(1λ)
Z ← Gen(pp, T, s)

]
= 1.

Time-lock with gap ε. For all λ ∈ N and for all pairs of PPT machines (A1,A2,A3) such that the parallel
running time of A2 with poly(T, λ) processors is less than (1 − ε)T , there is a negligible function
negl such that

Pr

 b′ = b

b←$ {0, 1}
pp← Setup(1λ)

(T, τ, s1,0, s1,1, . . . , sk,0, sk,1)← A1(pp)
Zi ← Puzzle.Gen(pp, T, si,b)
b′ ← A2(pp, T, τ, Z1, . . . , Zk)

 ≤ 1

2
+ negl(λ).

This is slightly stronger than [BGJ+16], who allow a polynomial gap in depth.

9.4 Construction of ASF from a TLP

Time-lock puzzles (TLPs, Definition 9.14) imply the existence of adaptively sequential functions (ASFs). We
construct ASF = (Setup,Gen,Eval) from a TLP (Puzzle.Setup, Puzzle.Gen, Puzzle.Sol) as follows:

ASF.Setup(1λ)→ pp: Use Puzzle.Setup directly.

ASF.Gen(pp, k)→ x: Choose s←$ {0, 1}λ and output x← Puzzle.Gen(pp, k, s).

ASF.Eval(pp, x, k)→ y: Compute y ← Puzzle.Sol(pp, x).

Lemma 9.16. If Puzzle is a TLP with gap ε, then the above construction is an ASF with (1, 1−ε)-sequentiality

37

Proof. By the tightness property of the TLP,MC can compute Puzzle.Sol, and hence ASF.Eval, in time at
most k.

Suppose there is a pair of PPT machines (ASF.A1,ASF.A2) that breaks the sequentiality of this function.
We can construct (Puzzle.A1,Puzzle.A2) as follows to break the TLP: Puzzle.A1 runs ASF.A1 and outputs
(k, τ) along with 2k random solutions s1,0, s1,1, . . . , sk,0, sk,1 from {0, 1}λ. Then Puzzle.Gen follows the
security game and produces k puzzles Z1, . . . , Zk.

With these puzzles, Puzzle.A2(pp, k, τ, Z1, . . . , Zk) calls ASF.A2(pp, Zi, k, τ) for any i. ASF.A2 will
run in time less than (1− ε)k and produce y′ = ASF.Eval(pp, Zi, k) = Puzzle.Sol(pp, Zi) = s′. Puzzle.A2

compares this to si,0 and si,1. With probability greater than negl, s′ = si,b and Puzzle.A2 outputs this value
of b; otherwise it outputs a random value. This succeeds with probability greater than 1

2 + negl(λ).

We don’t need the full power of the TLP here: we only need to use one of the outputs of Puzzle.Gen
rather than all k of them as stated in the TLP definition.

Together with Theorem 4.5, this shows that the existence of a TLP implies CISFFHE , which in turn can
form VDFs and PoSWs. However, we do not know how to construct a time-lock puzzle directly from our
construction. The primary obstacle is that, even if we know the secret key of the FHE scheme, that does not tell
us precisely which ciphertext will be output at the end of computing CISFFHE .Eval. We could perhaps encode
a circuit C in the public parameters such that FHE.Dec(CISFFHE .Eval(pp, k,x)) = Ck(FHE.Dec(x))
such that we can efficiently compute Ck, but there may be no way to predict the precise ciphertext that
CISFFHE .Eval will produce.

Acknowledgements. S. Jaques was supported by the University of Oxford Clarendon fund. Hart Montgomery
would also like to thank Ryan Williams for an incredibly useful and insightful discussion on the relationship
between complexity theory and verifiable delay functions, as well as the VDF Alliance for hosting VDF Day
at Stanford, where these discussions occurred.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[ABBK16] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O. Karame. Mirror:
Enabling proofs of data replication and retrievability in the cloud. In Thorsten Holz and Stefan
Savage, editors, USENIX Security 2016, pages 1051–1068. USENIX Association, August 2016.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th FOCS,
pages 166–175. IEEE Computer Society Press, October 2004.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, August 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/
712.

38

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press, June 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer, Heidelberg, August 2014.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC 2019, Part II, LNCS,
pages 407–437. Springer, Heidelberg, March 2019.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and Brent
Waters. Time-lock puzzles from randomized encodings. In Madhu Sudan, editor, ITCS 2016,
pages 345–356. ACM, January 2016.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct randomized
encodings and their applications. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
ACM STOC, pages 439–448. ACM Press, June 2015.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor, CRYPTO 2000,
volume 1880 of LNCS, pages 236–254. Springer, Heidelberg, August 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BS07] Daniel J. Bernstein and Jonathan P. Sorenson. Modular exponentiation via the explicit chinese
remainder theorem. Mathematics of Computation, 76(257):443–454, 2007.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum,
and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen,
editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer, Heidelberg,
April / May 2018.

[CH85] Stephen A Cook and H James Hoover. A depth-universal circuit. SIAM Journal on Computing,
14(4):833–839, 1985.

[CH10] Jeremy Clark and Urs Hengartner. On the use of financial data as a random beacon. EVT/WOTE,
89, 2010.

[CHI+20] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere,
abhi shelat, Muthu Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scalable
rsa modulus generation with a dishonest majority. Cryptology ePrint Archive, Report 2020/374,
2020. https://eprint.iacr.org/2020/374.

39

https://eprint.iacr.org/2020/374

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages
451–467. Springer, Heidelberg, April / May 2018.

[DGMV19] Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan. Tight verifiable
delay functions. Cryptology ePrint Archive, Report 2019/659, 2019. https://eprint.
iacr.org/2019/659.

[DMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In ASIACRYPT 2019, Part I, LNCS, pages 248–277.
Springer, Heidelberg, December 2019.

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable delay
functions. In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part III, LNCS,
pages 125–154. Springer, Heidelberg, May 2020.

[eth] https://coinmarketcap.com/currencies/ethereum/.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GKW18] Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. Circuit depth reductions,
2018.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st
ACM STOC, pages 25–32. ACM Press, May 1989.

[GS13] S. Gashkov and I. Sergeev. Complexity of computation in finite fields. Journal of Mathematical
Sciences, 191, 06 2013.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg,
August 2013.

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In 18th ACM STOC, pages
6–20. ACM Press, May 1986.

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields of
characteristic two. pages 672–683, 02 2006.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg,
August 2017.

40

https://eprint.iacr.org/2019/659
https://eprint.iacr.org/2019/659
https://coinmarketcap.com/currencies/ethereum/

[Lab17] Protocol Labs. Filecoin: A decentralized storage network, 2017. https://filecoin.io/
filecoin.pdf.

[LMS16a] Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal circuit: Improve-
ments, implementation, and applications. Cryptology ePrint Archive, Report 2016/017, 2016.
https://eprint.iacr.org/2016/017.

[LMS16b] Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal circuit: Improve-
ments, implementation, and applications. Cryptology ePrint Archive, Report 2016/017, 2016.
http://eprint.iacr.org/2016/017.

[LW17] Arjen K Lenstra and Benjamin Wesolowski. Trustworthy public randomness with sloth, unicorn,
and trx. International Journal of Applied Cryptography, 3(4):330–343, 2017.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of sequential
work. In Robert D. Kleinberg, editor, ITCS 2013, pages 373–388. ACM, January 2013.

[MSW19] Mohammad Mahmoody, Caleb Smith, and David J. Wu. A note on the (im)possibility of
verifiable delay functions in the random oracle model. Cryptology ePrint Archive, Report
2019/663, 2019. https://eprint.iacr.org/2019/663.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic time-lock puzzles and
applications. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 620–649. Springer, Heidelberg, August 2019.

[Nak19] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot,
2019.

[Özt] Erdinç Öztürk. Modular multiplication algorithm suitable for low-latency circuit implementa-
tions.

[Özt20] Erdinç Öztürk. Design and implementation of a low-latency modular multiplication algorithm.
IEEE Transactions on Circuits and Systems I: Regular Papers, 2020.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019,
volume 124, pages 60:1–60:15. LIPIcs, January 2019.

[PKF+18] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joël Alwen, and Krzysztof Pietrzak.
SpaceMint: A cryptocurrency based on proofs of space. In FC 2018, LNCS, pages 480–499.
Springer, Heidelberg, February / March 2018.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 89–114. Springer, Heidelberg, August 2019.

[Rab83] Michael O Rabin. Transaction protection by beacons. Journal of Computer and System Sciences,
27(2):256–267, 1983.

41

https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://eprint.iacr.org/2016/017
http://eprint.iacr.org/2016/017
https://eprint.iacr.org/2019/663

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

[RS01] Ran Raz and Amir Shpilka. Lower bounds for matrix product, in bounded depth circuits with
arbitrary gates. In 33rd ACM STOC, pages 409–418. ACM Press, July 2001.

[RSS20] Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions require hidden-order
groups. In Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part III, LNCS, pages
155–180. Springer, Heidelberg, May 2020.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto.
1996.

[Sha19] Barak Shani. A note on isogeny-based hybrid verifiable delay functions. Cryptology ePrint
Archive, Report 2019/205, 2019. https://eprint.iacr.org/2019/205.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

[Shp01] Amir Shpilka. Lower bounds for matrix product. In 42nd FOCS, pages 358–367. IEEE
Computer Society Press, October 2001.

[Val76] Leslie G Valiant. Universal circuits (preliminary report). In Proceedings of the eighth annual
ACM symposium on Theory of computing, pages 196–203, 1976.

[Vol13] Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 2013.

[Wan12] Fengming Wang. On circuit complexity classes and iterated matrix multiplication. PhD thesis,
Rutgers University-Graduate School-New Brunswick, 2012.

[Weg87] Ingo Wegener. The complexity of Boolean functions. BG Teubner, 1987.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rij-
men, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer,
Heidelberg, May 2019.

[YVPL99] Chi-Hsiang Yeh, EA Varvarigos, B Parhami, and H Lee. Optimal-depth threshold circuits
for multiplication and related problems. In Conference Record of the Thirty-Third Asilomar
Conference on Signals, Systems, and Computers (Cat. No. CH37020), volume 2, pages 1331–
1335. IEEE, 1999.

42

https://eprint.iacr.org/2019/205

	Introduction
	Time-release Cryptography
	Models of Computation and Time
	Assumptions of Existing Constructions
	Our Contributions
	Paper Outline

	Technical Overview
	Sequential Function Notions
	Sequential Function Constructions
	Applications to Time-release Cryptography

	Preliminaries
	Public Key Encryption
	Fully Homomorphic Encryption
	Universal Circuits

	Sequential Functions
	Models of Computation
	Definitions of Sequential Functions
	Overall Picture
	Main Assumption
	Parameter Selection

	Non-Parallelizing Languages
	Construction
	Formal Definition
	Sequentiality

	Universal Circuits
	Fully Homomorphic Encryption
	Helper Functions
	Homomorphic Operations
	Bootstrapping
	Circuit Complexity of C:GenSahWat13 FHE Operations
	Circuit Complexity of Field Operations
	Helper Functions
	Basic Operations
	Eval for General Functions
	Bootstrapping
	Putting It All Together
	Tighter Bounds

	Applications
	Verifiable Delay Functions
	VDF Definition
	Incremental Verifiable Computation
	VDF Construction

	Proofs of Sequential Work
	Definition of PoSW
	Construction of PoSW

	Time-lock Puzzles
	Definition of TLPs

	Construction of ASF from a TLP

