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Abstract. The use of deep learning in side-channel analysis has been more and more
prominent recently. In particular, Convolution Neural Networks (CNN) are very
efficient tools to extract the secret information from side-channel traces. Previous
work regarding the use of CNN in side-channel has been mostly proposed through
practical results. Zaid et al. have proposed a theoretical methodology in order
to better understand the convolutional part of CNN and to understand how to
construct an efficient CNN in the side-channel context [ZBHV19]. The proposal
of Zaid et al. has been recently questioned by [WAGP20]. However this revisit is
based on wrong assumptions and misinterpretations. Hence, many of the claims
of [WAGP20] are unfounded regarding [ZBHV19]. In this paper, we clear out the
potential misunderstandings brought by [WAGP20] and explain more thoroughly the
contributions of [ZBHV19].
Keywords: Side-Channel Attacks · Deep Learning · Network Architecture · Weight
Visualization · Entanglement

1 Introduction
Side-Channel Analysis (SCA) is a class of cryptographic attack in which an attacker tries
to exploit the vulnerabilities of a system by analyzing its physical properties. One of
the most powerful types of SCA attacks are profiled attacks which were introduced by
[CRR03]. Very similar to profiled attacks, the application of machine learning algorithms
was inevitably explored in the side-channel context [HZ12, LBM14].

Some recent papers have shown the robustness of convolutional neural networks (CNNs)
to the most common countermeasures, namely masking [MPP16, MDP19b] and desyn-
chronization [CDP17, ZBHV19]. One of their main advantages is that they do not require
pre-processing. Nonetheless, finding a suitable architecture is one of the most challenging
tasks in deep learning because we have to set the network parameters properly to achieve
a good level of efficiency. Hence, choosing correct model hyperparameters is the first step
towards obtaining an optimal neural network. Recently, Zaid et al. provided a methodology
for generating suitable CNN architectures [ZBHV19]. They consider that CNNs can be
decomposed into two parts: a Convolutional part and a Classification part. The convo-
lutional part aims at retrieving information from the input to help the decision-making
while the classification part exploits the information provided by these relevant samples.
In [ZBHV19], Zaid et al. only focus their investigation on the feature detection (i.e.
Convolutional part). They try to understand the impact induced by each convolutional
hyperparameter. To that purpose, they introduce some new visualizations tools (i.e.
Weight Visualization and Heatmap) in the side-channel context. Zaid et al. propose a
methodology to generate CNNs with a suitable Convolutional part that limits the impact
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of the desynchronization. Their methodology outperforms the previous state-of-the-art
CNN models on all the public datasets. They dramatically reduce the network complexity
and the training time while increasing the network performance.

Recently, Wouters et al. proposed a revisit of this methodology in [WAGP20]. Un-
fortunately, most of their claims on Zaid et al. work are based on misinterpretations or
wrong assumptions.

Contributions. This paper clears out the false statements from [WAGP20] regarding
[ZBHV19]. We explain more clearly the tools introduced in the paper "Methodology for
Efficient CNN Architectures in Profiling Attacks" [ZBHV19]. We discuss the difference
between the gradient visualization and the weight visualization tools. By introducing the
concepts of Leakage Detection, Leakage Exploitation and Network Confidence, we show
how [WAGP20] misinterprets the weight visualization. Then, we use these definitions
to link the concepts of Entanglement and Receptive Field. We expose that [WAGP20]
wrongly claims that Zaid et al. correlate the network performance with the number of
convolutional blocks. Then, we correct the methodology applied to the AES_RD dataset
in [ZBHV19]. The proposition of Zaid et al aims to find a good trade-off between leakage
detection, network complexity and training time. Finally, we mention how unclear are the
contributions of [WAGP20] regarding these aspects.

2 Visualization Tools
Due to the black-box nature of neural networks, it can be challenging to explain and
interpret its decision-making. In order to overcome this problem, some visualization
techniques have been developed [vdMH08, ZF14] but their application in the SCA context
is not exploited well enough. As shown in [MDP19a, HGG19, PEC19], these techniques
could be useful in SCA to evaluate the ability of a network to extract the Points of Interest
(PoIs). We first recall the main tools applied in the SCA context. Then, we explicit the
misinterpretations of [WAGP20] regarding the weight visualization tool.

2.1 Background

Gradient Visualization (GV). GV is a well known visualization tool in machine learning
[SVZ14] that was introduced by Masure et al. in the side-channel context [MDP19a]. This
technique computes the derivatives of a CNN model with respect to an input trace such
that the magnitude of the derivatives indicates which features need to be modified the
least to affect the class score the most. Let F be a trainable model and t a trace that we
want to evaluate at a coordinate x. Following the value of the gradient, we can assess if x
is included in the set of PoIs, denoted EZ , such that [MDP19a],

∂

t[x]F (t)[z]
{
≈ 0 if x /∈ EZ ,
6= 0 if x ∈ EZ .

(1)

GV is useful for identifying the temporal instants that influence the most the classifi-
cation. Comparing these points to PoIs, we are able to interpret the learning phase of a
network. In other words, GV helps to evaluate the ability of the network to identify the
PoIs and to exploit them. The magnitude of the gradient indicates how a sample affects
the classification. However, as stated in [ZBHV19], this visualization technique cannot
be considered if an attacker wants to precisely evaluate the impact of the convolutional
hyperparameters.
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Weight Visualization (WV). To circumvent this issue, Zaid et al. introduce the weight
visualization tool [ZBHV19, Section 3.2] in order to visualize the trainable weights and in-
terpret the recognition patterns in the classification part. This method was first introduced
in [BPK92] as an useful framework when dealing with spatial information. During the
training process, the network evaluates the neurons which influence the most an efficient
classification. The role of the convolutional part is to select the relevant time samples (i.e.
PoIs) that compose a trace for an efficient classification [ZBHV19]. Therefore, by applying
the WV, Zaid et al. propose a new tool that estimates the capacity of the convolutional
part to retrieve the leakages.

Let n
[flatten +1]
u be the number of neurons in the layer following the flatten, n

[flatten−1]
f

the number of filters in the last convolutional blocks and dim
[flatten−1]
traces the dimension

associated with each intermediate traces after the last pooling layer. Let W [flatten +1] be
the weights corresponding to the first fully-connected layer. Let W vis

m ∈ Rdim
[flatten −1]
traces be a

vector that enables visualization of the weights related to the m-th neurons of the layer
following the flatten:

W vis
m [i] = 1

n
[flatten−1]
f

(i+1)×n
[flatten −1]
f∑

j=i×n
[flatten −1]
f

|W [flatten +1]
m [j]|, (2)

where i ∈ [0, dim
[flatten−1]
traces ].

Then, let W vis ∈ Rdim
[flatten −1]
traces be a vector that enables visualization of the mean

weight related to each neuron of the layer [flatten +1] such that:

W vis[i] = 1
n

[flatten +1]
u

n[flatten +1]
u ∑

m=0
W vis

m [i], (3)

where i ∈ [0, dim
[flatten−1]
traces ].

This tool is helpful to identify the relevant features selected by the convolutional part
and to interpret the impact of the convolutional hyperparameters [ZBHV19]. However,
due to the backpropagation process, the WV tool cannot be considered to evaluate the
suitability of the convolutional part if the entire network does not perform well. The
following section highlights the misinterpretations of Wouters et al. [WAGP20] concerning
the WV tool introduced by Zaid et al. [ZBHV19].

2.2 Misinterpretations by Wouters et al.
Wouters et al. in [WAGP20, Section 4] mention that the WV tool cannot be considered
to evaluate a CNN. They claim that Zaid et al. use WV in order to evaluate the overall
performance of the network based on the magnitude of the weights. For that purpose,
Wouters et al. oppose the gradient and the weight visualization tools to justify their
misinterpretations. In [ZBHV19], the authors suggest that the WV can be used to evaluate
the confidence of the network in the feature detection while the gradient visualization tool is
helpful to characterize the overall capacity of a network for exploiting the PoIs. In the deep
learning field, the confidence is usually correlated with the posterior probability of each
output class [GPSW17]. Hence, the concept introduced in [ZBHV19] can be misleading
for the readers. We further clarify these points in the following sections.

2.2.1 Leakage Detection vs. Leakage Exploitation

As mentioned by Zaid et al., the gradient visualization tool should be used in order to
evaluate the overall training process (i.e. convolutional and classification parts). The
evaluation of the model can be performed through two processes:
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• Leakage Detection: this phase consists in selecting the points of interest that seem
relevant for the classification task;

• Leakage Exploitation: this phase defines the relevance of each points of interest in
the classification task.

Through the evaluation of the gradient, both aspects can be estimated. Indeed, the
Leakage Detection characterizes the ability of a network to retrieve the points of interests
from a side-channel trace. Hence, it describes the capacity of the network to precisely
retrieve all the PoIs included in a trace. The GV can be helpful to visualize this concept.
From Equation 1, once the gradient value differs from 0 at a sample x, the network
considers this point as a relevant information. Thus, through the GV, we can identify
all the samples that are considered as relevant by the network. On the other hand, the
Leakage Exploitation identifies the relevance of each PoI. For a sample x, a large gradient
ensures that the information included at x has a huge impact on the classification task.
Hence, the magnitude of the gradient defines the relevance of each sample.

In [ZBHV19], Zaid et al. assume that the Leakage Detection step is provided by the
convolutional part while the Leakage Exploitation is performed by the classification part.
Their work is only focused on the Leakage Detection. Therefore, they propose a technique
to efficiently evaluate this step.

2.2.2 Weight Visualization as Leakage Detection tool

We reformulate the main goal of WV already presented in [ZBHV19]. To evaluate how
a network selects its features, a solution is to find a way to interpret the convolutional
part alone, i.e. leave apart the classification component of the network. In [ZBHV19], the
authors propose a solution to evaluate the Network Confidence related to a PoI.
Definition 1. (Network Confidence) Given a sample x, the Network Confidence defines
the capacity of a network to retrieve a PoI at x.

Hence, the higher the confidence, the higher the probability that the leakage will
be exploited in the classification part. For that purpose, Zaid et al. introduce the
weight visualization as a suitable tool to evaluate the Leakage Detection and the Network
Confidence. During the training process, the network evaluates influential neurons which
generate an efficient classification. If the network is confident in its feature detection,
it will attribute large weights to these neurons [ZBHV19]. From a weight visualization
point of view, if the convolutional part retrieves a PoI on a sample x, the related weight
will be higher than 0. Depending on its magnitude, the network will be more or less
confident in the detection of the features. If the network is extremely confident in the
information included at x, the related weight will be high and the exploitation of the
sensitive information will be easy. On the other hand, if the weight related to x is low
(similar to the noise), the network will be distrustful on the leakage detection. Hence, the
resulted exploitation will be harder or inexistent and the training time could increase. The
magnitude of the weights express the confidence of the network on its features detection
contrary to what Wouters et al. interpret. In [WAGP20], the authors misinterpret Zaid et
al. work such that the magnitude of the weight shall be directly related to the network
performance in exploiting the leakage. Zaid et al. only correlate the magnitude of the
weights with the confidence of the network and the related training time. However, the
naming of Network Confidence could be misinterpreted by a reader with the classical
definition of confidence in deep learning [GPSW17].

2.2.3 Gradient Visualization as a Global tool

From a GV point of view, the confidence of the network identifies the samples where the
gradient value is greater than 0. Following the magnitude of the weights, we can estimate



Gabriel Zaid, Lilian Bossuet, Amaury Habrard and Alexandre Venelli 5

which part of the trace will be considered during the exploitation phase. Given a sample
x, if the related weight is 0, then it won’t be exploited by the classification part and the
resulted gradient will also be 0. However, if the weight differs from 0, the classification
part should exploit the information included at x. The related gradient will be greater
than 0 if the training time is long enough. The highest the weight, the more confident the
network is in the feature detected at the sample x. Thus, the information will be more
easily exploited by the classification part. However, if the magnitude of the weight is close
to the noise, the exploitation of the relevant information at x could be hard and could
increase the training time. As a conclusion, the GV provides information related to the
convolutional and the classification parts (i.e. Leakage Detection and Leakage Exploitation)
while the weight visualization helps an attacker identifying the confidence of the network
on the feature detection (i.e. Leakage Detection and Network Confidence). Thus, these
visualization tools are complementary. The WV is not considered as a performance tool in
[ZBHV19] contrary to what Wouters et al. mention in [WAGP20].

The next section clears out the misunderstandings from [WAGP20] related to the
entanglement concept proposed [ZBHV19].

3 Entanglement
This section recalls the concept of Entanglement introduced in [ZBHV19]. Then, a
comparison with the Receptive Field [FLF+19] is made and a discussion is provided on
the misinterpretations of [WAGP20].

3.1 Background
The aim of the convolutional layer is to extract the relevant information from side-channel
traces. To perform this operation, filters are used in order to identify the relevant patterns
that are useful in the decision-making. In [ZBHV19], Zaid et al. define the Entanglement
as the effect induced by filters such that multiple convoluted samples share the same
relevant information. They theoretically demonstrate that increasing the filter length
causes entanglement, reduces the weight related to a single information and therefore the
Network Confidence (see Definition 1). Hence, increasing the entanglement can cause a
dramatic impact on the leakage retrieval. Indeed, the network can be less confident on
the detection of the resulted PoI and the exploitation phase can be affected. If the weight
related to the PoI is 0, the classification part cannot extract the relevant information
provided by this sample. If the weight related to the PoI is spread over convoluted samples,
the exploitation of the relevant information could be harder and the resulted training
time could increase. We illustrate these properties and discuss the misinterpretations of
[WAGP20] in the next section.

3.2 Misinterpretations by Wouters et al.
3.2.1 Impact on the Network Confidence

In [WAGP20, Section 5], Wouters et al. identify the entanglement as inconsistent. They
also consider that the weight visualization method cannot be performed to demonstrate
the following claim:

"increasing the length of the filter causes entanglement and reduces the weight
related to a single information and therefore, the network confidence". [ZBHV19]

Wouters et al. argue that the authors of [ZBHV19] attempt to correlate the network
performance with the entanglement such that increasing the filter size induces a reduction
of performance. For that purpose, they wrongly assume that the network confidence



6 Understanding Methodology for Efficient CNN Architectures in Profiling Attacks

(a) Weight visualization (filter size 1) (b) Weight visualization (filter size 100)

(c) Gradient visualization (filter size 1) (d) Gradient visualization (filter size 100)

Figure 1: Weight (top) and Gradient (bottom) visualizations for filter size 1 (left) and
filter size 100 (right) on DPA-v4 dataset. Note the differences in x-axis scale and y-axis
scale between the different experiments.

Figure 2: Signal-to-Noise Ratio on the DPA-v4 dataset

is equivalent to the network performance. However, through Subsection 2.2, we clearly
explain how these concepts are not correlated such that the network confidence only
impacts the leakage detection and the training time.

To emphasize the proposition introduced in [ZBHV19], we perform the same experiment
as Wouters et al. [WAGP20, Figure 4] on the DPA-v4 contest dataseta. We generate two
models based on the architectureb proposed in [ZBHV19]. The models are composed of
1 convolutional block and 1 fully-connected layer of size 2. To evaluate the effect of the
entanglement, we either set the filter size to 1 or 100. With the weight visualization (see
Figure 1a and Figure 1b), we can easily evaluate the effect of entanglement while the
gradient visualization (see Figure 1c and Figure 1d) is not suitable to interpret the impact
of the filter size on the Leakage Detection.

As mentioned in [ZBHV19], increasing the entanglement spreads the relevant informa-
tion through the convoluted samples. Hence, the network is less confident in its features
detection. Comparing these figures with the SNR (see Figure 2) shows the precision of the
leakage detection for each model. When the network is trained with a filter of size 1 (see
Figure 1a), we notice that most of the leakages are identified by the convolutional part
(even the lowest around the 3, 000th samples). On the other hand, Figure 1b only detects
three patterns that are associated with the different leakage areas. Hence, the resulted
network is less confident in its features detection and some of the weight values, associated
with relevant patterns, are similar to the noise. It will be harder for the network to exploit

ahttp://www.dpacontest.org/v4/42_traces.php
bhttps://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

http://www.dpacontest.org/v4/42_traces.php
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA
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these relevant information and the resulted training time should increase. Indeed, for
identical optimizer hyperparameters (i.e. number of epochs, batch-size, learning rate, etc.)
the training time equals 23 seconds when the filer size is 1 while it is about 92 seconds for
the other model. Thus, increasing the entanglement has a consequence on the training time
as Zaid et al. mentioned [ZBHV19]. From a deep learning point of view, this phenomenon
can be easily explained by the network complexity. Figure 1a and Figure 1b illustrate
what Zaid et al. introduce as Network Confidence.

When we compare the resulted gradient visualizations (see Figure 1c and Figure 1d),
the observations in Section 2 are confirmed. Indeed, when the filter size equals 100 (see
Figure 1d), some leakages are not exploited by the classification part. This is due to the
weak confidence of the network on the leakage detection. Indeed, the lowest SNR values
detected around the 3, 000th samples are not exploited when the filter size is too large
because the related weight values are equivalent to the noise. On the other hand, the
network generated with a filter of size 1 identifies most of the leakages. This observation
can also be made on [WAGP20, Figure 4] and can be explained by the entanglement effect.
For clarity, we do not identify large filters as irrelevant for detecting small sensitive peaks.
However, the larger the filters, the more difficult the leakage detection and exploitation
for the peaks with low confidence. Hence, contrary to what Wouters et al. claimed in
[WAGP20], Zaid et al. do not correlate the entanglement with the network performance.

However, as mentioned by Wouters et al., the network using a filter of size 100 has
a better Leakage Exploitation than the network with filter of size 1 and the related
performance seems similar. As it improves the leakage exploitation part of the network,
which is not part of Zaid et al. work, a theoretical study of the leakage exploitation shall
be part of a future research.

3.2.2 Receptive Field

In [WAGP20, Section 5.2], Wouters et al. oppose the Entanglement with the Receptive
Field (RF) concept. Widely used in computer vision [LYH18], RF was introduced by Fawaz
et al [FLF+19] for temporal data. Wouters et al. mention that RF can be interpreted as:
"how many input samples affect one weight deeper in the network". This definition is very
close to the concept of entanglement. Indeed, increasing the length of the filter spreads
the relevant information through the convoluted samples and the resulted weights share
more input samples. Thus, the opposition between both concepts is misplaced. Moreover,
the conclusion of Wouters et al. is the same as [ZBHV19]: "bigger filters determine more
robust and generic networks, but also increase the number of parameters that have to be
trained" [WAGP20, Section 5.2].

One additional interesting point of [WAGP20], not introduced by Zaid et al., concerns
the robustness of the network. The concepts of RF and entanglement help us better
understand in which context larger filters can provide more stability. If we try to explain
this phenomenon using the entanglement, we can argue that the relevant information
is spread over multiple convoluted samples. Hence, there is multiple weights linked to
the same PoI. During the training phase, the resulted network could be less disrupted to
retrieve the sensitive value because there are multiple ways to extract the leakage. As a
conclusion, increasing the length of the filters could actually increase the robustness of the
network. This observation highlights that RF and entanglement are equivalent contrary to
what Wouters et al. mention in [WAGP20, Section 5.2].

4 Convolutional Blocks
This section revises the misinterpretations of [WAGP20] regarding the impact of the
number of convolutional blocks introduced in [ZBHV19].
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4.1 Background
A convolutional block is composed by at least one Convolutional layer and one Pooling layer.
The pooling layer is a non-linear layer that divides the dimension of the input such that the
most relevant information is preserved. To apply its down sampling function, an Average
Pooling, or a Max Pooling, is performed. In [ZBHV19], the authors provide theoretical
details on the impact of the convolutional blocks for the Leakage Detection. Indeed, adding
convolutional blocks reduce the distance between relevant points. Hence, the impact
of desynchronization is diminished: it will be easier for the network to characterize the
desynchronization. By adding more convolutional blocks, we can drastically reduce the
impact of desynchronization by choosing appropriate pooling parameters. To illustrate
this phenomenon, Zaid et al. apply different kind of pooling layers on a Chipwhisperer
dataset (see [ZBHV19, Appendix D]) in order to evaluate the impact of the convolutional
blocks on the features detection. Through these experiments, they conclude that a deeper
network could induce a loss in its confidence on the Leakage Detection for some (and not
the entire) sensitive information. Furthermore, they argue that depending on the pooling
operation, some relevant information can be discarded (i.e. MaxPooling) or the PoI can be
impacted with noisy samples (i.e. AveragePooling). Consequently, a good trade-off should
be found between the detection of the desynchronization and the maximum amount of
information related to the relevant points.

4.2 Misinterpretations by Wouters et al.
In [WAGP20, Section 6], Wouters et al. misinterpret the Network Confidence concept.
They affirm that Zaid et al. conclude that increasing the number of convolutional blocks
affects the performance of the network by quoting from [ZBHV19]: "we can see that,
the deeper the network, the less confident it is in its feature detection". As explained
in Subsection 2.2, the Network Confidence is not correlated with the performance of
the network. This erroneous interpretation by Wouters et al. implies that their claims,
regarding [ZBHV19], are incorrect.

5 Methodology
Thanks to a remark of Wouters et al. on the AES_RD dataset, a correction is proposed
on the application of the methodology introduced in [ZBHV19].

5.1 Background
In [ZBHV19], Zaid et al. propose a new generic methodology based on theoretical guidelines.
When desynchronization techniques are used as countermeasures, the authors suggest to
generate a convolutional part with 3 convolutional blocks that can be decomposed as:

• The first convolutional block aims at minimizing the filter size in order to mimic
the entanglement between each PoI. Moreover, adding this first convolutional layer
reduces the dimension of the trace while preserving most of the relevant information.
Following [WAGP20], this layer has a preprocessing effect on the input traces.

• The second convolutional block tries to detect the desynchronization effect. To that
purpose, Zaid et al. recommend to set the filter size to N [0]

2 such as N [0] defines the
maximum shift value on the raw traces. With this proposition, we are assured that
the relevant pattern is included in the filter. Hence, the leakage will be necessarily
extracted. Finally, a pooling layer is applied with a large stride in order to reduce
the desynchronization effect.



Gabriel Zaid, Lilian Bossuet, Amaury Habrard and Alexandre Venelli 9

• The last convolutional layer attempts to reduce the dimensionality of each trace in
order to focus the network only on the relevant points.

5.2 A correction for the AES_RD dataset
In [WAGP20, Section 5.3], Wouters et al. point out that this methodology is not applied
correctly on the AES_RD datasetc. Wouters et al. show that the dataset contains traces
which are shifted by 1, 000 samples. This is indeed an error in [ZBHV19, Section 5.3.1]
which is due to the lack of information on this dataset. The authors of [ZBHV19] wrongly
assumed that the desynchronization effect was only 100.

In order to correct this wrong assumption in [ZBHV19], we reapply the methodology on
AES_RD with the correct parameters. Table 1 illustrates that the corrected methodology
still outperforms the previous state-of-the-art results.

In [ZBHV19], Zaid et al. attempt to find a good trade-off between the network
complexity, the network performance and the training time. Hence, the error pointed out
by Wouters et al. does not question the methodology. As mentioned, the filter of size N [0]

2
is set to find stable networks and to ensure that the relevant pattern is included in the
filter. However, following [WAGP20], we can assume that an improvement could be made
in order to reduce the complexity of the second convolutional block. This proposition
is only detailed through experimental results in [WAGP20]. Theoretical demonstrations
should be given in order to fully consider this claim as part of a generic methodology.

Table 1: Comparison of performance on AES_RD considering the corrected methodology
Previous state-of-the-art Methodology Corrected methodology

([KPH+19]) ([ZBHV19, Section 5.3.1]) (Subsection 5.2)
Complexity (trainable parameters) 512, 711 12, 760 69, 720
N̄tGE 10 5 3
Learning time (seconds) 4, 500 380 1, 965

5.3 Discussion
One of the contribution of [ZBHV19] is to propose networks that give a good trade-
off between leakage detection, network complexity and training time. In [WAGP20],
the authors seem only focused on the overall performance of the models including the
classification part, which is out of the scope of Zaid et al work. In [ZBHV19], the good
performance on the public datasets is just a consequence of the generation of suitable
convolutional parts. Their proposition shows that the networks needed to perform side-
channel attacks do not have to be complex compared to the classical state-of-the-art results
in the deep learning based side-channel analysis.

Finally, all of the experiments in [ZBHV19, WAGP20] were possible thanks to a GitHub
repositoryd publicly available. Readers can easily run all the experiments in order to verify,
improve or propose corrections to the methodology.

6 Conclusion
This paper highlights the misinterpretations of [WAGP20] targeting Zaid et al. work.
Contrary to Wouters et al. claims, the weight visualization tool is not proposed to evaluate
the performance of the network. Indeed, following the magnitude of the weight, we can
estimate the confidence of the network in its feature detection in order to retrieve the
relevant samples that should be used in the classification part. Then, we recall the concept
of Entanglement and confirm its equivalence with the Reception Field contrary to what

chttps://github.com/ikizhvatov/randomdelays-traces
dhttps://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

https://github.com/ikizhvatov/randomdelays-traces
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA
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Wouters et al. mention. Finally, we correct some wrong assumptions on the impact of
the convolutional blocks and we evoke the difference between Network Confidence and
Network Performance. This implies that many of the claims targeting [ZBHV19] should
be reviewed [WAGP20, Sections 4, 5, 6].

However, some of the results of [WAGP20] on the filter size should be deeper inves-
tigated, with theoretical details, in order to improve the second convolutional block of
the methodology and reduce even more the network complexity. Finally, as mentioned in
[ZBHV19], a further theoretical study on the Leakage Exploitation part of the networks
shall be part of a future work in order to complete the proposed methodology. Further
investigations on more side-channel protected datasets should also be made.
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