
Chosen Ciphertext Security from Injective Trapdoor Functions

Susan Hohenberger∗

Johns Hopkins University
susan@cs.jhu.edu

Venkata Koppula†

Weizmann Institute of Science
venkata.koppula@weizmann.ac.il

Brent Waters‡

University of Texas at Austin and NTT Research
bwaters@cs.utexas.edu

June 20, 2020

Abstract

We provide a construction of chosen ciphertext secure public-key encryption from (injective) trapdoor
functions. Our construction is black box and assumes no special properties (e.g. “lossy”, “correlated
product secure”) of the trapdoor function.

1 Introduction

A public-key encryption system is said to be chosen ciphertext attack (CCA) secure [NY90, RS91, DDN00] if
no polynomial-time attacker can distinguish whether a challenge ciphertext ct∗ is an encryption of m0 or m1

even when given access to a decryption oracle for all ciphertexts except ct∗. In most deployed encryptions
systems, CCA security is necessary to protect against an active attacker that might induce a user to decrypt
messages of its choosing or even gain leverage from just the knowledge that an attempted decryption failed.
See Shoup [Sho98] for an excellent discussion on the importance of CCA security.

Over time the cryptographic community has become rather adept at achieving CCA security from many
of the same assumptions that can be used to achieve chosen plaintext attack (CPA) security for public-key
encryption, where the adversary is not given access to a decryption oracle. For instance we now have practical
CCA secure encryption schemes from the Decisional [CS98, CS02] and Search [CKS09] Diffie-Hellman, the
difficulty of factoring [HK09, HK08], Learning with Errors (LWE) [PW08] and Learning Parity with Noise
(LPN) [DMN12, KMP14] assumptions.

Despite the success in these ad-hoc number-theoretic rooted approaches, there is a strong drive to be able
to understand CCA security from the perspective of general assumptions with an ultimate goal of showing
that the existence of CPA secure public-key encryption implies CCA secure public-key encryption. In this
work we make significant progress in this direction by showing that CCA secure public-key encryption can
be built from any (injective) trapdoor function. Recall that a trapdoor function is a primitive in which any
user given a public key tdf.pk can evaluate the input x by calling TDF.Eval(tdf.pk,x)→ y. And a user with
the secret key tdf.sk can can recover x from y as TDF.Invert(tdf.sk,y) → x. However, a polynomial-time
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attacker without the secret key should not be able to output x given y = TDF.Eval(tdf.pk,x) for a randomly
chosen x. By injective, we require a one-to-one mapping of the function input and evaluation spaces.

There is a strong lineage connecting trapdoor functions with chosen ciphertext security. Fujisaki and
Okamoto [FO99] showed how in the random oracle model any CPA secure encryption scheme can be trans-
formed into a CCA secure scheme. Their transformation implicitly creates a trapdoor function (in a spirit
similar to the random oracle based TDF construction of [BHSV98]) where the decryption algorithm recovers
encryption randomness and re-encrypts to test ciphertext validity. If we allow the trapdoor function to be
a “doubly enhanced” permutation [Gol11], then they can be used to create non-interactive zero knowledge
proofs which are known to give chosen ciphertext security via non-black box constructions [NY90, DDN00].
Peikert and Waters [PW08] introduced the notion of lossy trapdoor functions and showed that this primitive
also gives rise to chosen ciphertext secure public-key encryption. Other works (e.g., [MY10, HO09]) extended
and generalized this notion including Rosen and Segev [RS10] who showed that a “correlated product se-
cure” TDF gives rise to CCA security. In each of these (standard model) cases an additional property of the
trapdoor function (i.e., permutation and doubly enhanced, lossy, correlated product secure) was required
and critical for achieving chosen ciphertext security leaving open the problem of building chosen ciphertext
secure encryption by only assuming injective trapdoor functions.

Finally, Koppula and Waters [KW19] recently showed how to achieve chosen ciphertext security from CPA
secure public-key encryption and a newly introduced “Hinting PRG” which is a pseudorandom generator
that has a special form of circular security.1 Their construction can be viewed as a “partial trapdoor” where
the decryption process recovers some, but not all of the randomness used to encrypt the ciphertext and
re-encrypts parts of the ciphertext to check for validity. They show how Hinting PRGs can be constructed
from number theoretic assumptions such as CDH and LWE using techniques similar to [DG17b, DG17a,
CDG+17, BLSV18, DGHM18, GH18].

Our Results

In this work we show a black box approach to construct chosen ciphertext security using just injective
trapdoor functions (in addition to primitives known to be implied by TDFs.) We outline our approach,
which begins with two abstractions that we will use as building blocks in our construction. These abstractions
are called (1) encryption with randomness recovery, and (2) tagged set commitments. We build the first
generically from injective trapdoor functions and the latter from pseudorandom generators, which are known
to be implied by TDFs. These abstractions are intentionally simple, but useful for building intuition.

Encryption with Randomness Recovery The “Encryption with Randomness Recovery” abstraction
is simply an IND-CPA secure public-key encryption where (1) the decryption algorithm recovers both the
message and the encryption randomness r and (2) where there is also a Recover algorithm which can recover
the message from a ciphertext given the encryption randomness r. That is, when Enc(pk,m, r) → ct, then
Dec(sk, ct) → (m, r) and Recover(pk, ct, r) → m. We formally define this abstraction in Section 3, followed
by an immediate construction of Encryption with Randomness Recovery from injective trapdoor functions.
Notably Yao’s method [Yao82] of achieving encryption from trapdoor functions is actually Encryption with
Randomness Recovery for 1-bit messages, where many such ciphertexts can be concatenated together to
encrypt many bits.

Tagged Set Commitments The “Tagged Set Commitment” abstraction is a commitment scheme that
commits to a B-sized set of indices S ∈ [N ] with a tag tg (where N and B are inputs to a trusted
setup algorithm) by producing a commitment together with a membership proof for each i ∈ S; that is,
Commit(pp, S, tg) → (com, (σi)i∈S). The verification algorithm checks the membership proof to verify that
i ∈ S under tag tg. These algorithms take in a set of public parameters pp generated by a Setup algorithm
with a bound B that enforces (the maximum) size of S. Additionally, for proof purposes, the scheme must

1Kitagawa and Matsuda [KM19] show how the Hinting PRG assumption can alternatively be replaced with the assumption
of symmetric key encryption with key-dependent security.
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support an alternative setup algorithm AltSetup that takes in a tag tg and produces public parameters to-
gether with a special commitment and a proof of membership for this commitment for every element in the
committing domain (which will exceed the bound B that all other commitments must abide by). In addition
to the regular soundness property, we will require that no polynomial-time adversary can distinguish between
when the parameters were generated by the regular or the alternative setup algorithm. We formally define
this abstraction in Section 4, followed by a construction from pseudorandom generators. This abstraction
is related to a number of prior works. It can be viewed as a generalization of the commitment scheme
used in [KW19] to achieve a generic CCA compiler for attribute-based encryption schemes, which was itself
related to Naor’s commitment from pseudorandom generators [Nao89].

Our CCA Construction Our construction uses three building blocks: a one-time signature scheme, a
CPA-secure encryption scheme with randomness recovery and tagged set commitments. Our construction
will create a CCA key that includes N CPA keys. To encrypt a message a user will encrypt it to a subset
of the keys. Decryption will then follow the paradigm of recovering randomness from (some of) the CPA
encryptions and then re-encrypting to check for validity. Conceptually, it is critical for us to perform a type
of balancing act when encrypting the ciphertexts in order to prove security. At one step in the proof we
want to have enough redundancy in the way randomness is chosen so that one can decrypt given any N − 1
of the private keys. However, at a later stage in the proof we want the fact that we choose any redundancy
at all to statistically wash away. We sketch our construction below and show how we find this balance.

We begin by noting the parameterization of our scheme. The driving factor will be the length of random-
ness `rnd = `rnd(λ) of the underlying encryption with randomness recovery scheme for security parameter λ.
We will choose integers N,B such that N > B and

(
N
B

)
> 2`rnd+λ. For example, we could let N = 2(`rnd +λ)

and B = N/2.
The CCA setup algorithm initially chooses N key pairs from the CPA with randomness recovery scheme

as (cpa.pki, cpa.ski) ← CPA.Setup(1λ). In addition, it samples the tagged set commitment as tsc.pp ←
TSC.Setup(1λ, 1N , 1B , 1t) where t is the length of a verification key in the one-time signature scheme.

To encrypt one first chooses a uniformly randomB-size subset S ⊂ [N ]. Next, choose a signing/verification
key (sig.sk, sig.vk)← Sig.Setup(1λ). And then get a commitment to the set elements as (tsc.com, (tsc.σi)i∈S)←
TSC.Commit(tsc.pp, S, sig.vk). At this point the encryptor will select the randomness used for encryption.
For all i ∈ S choose ri ∈ {0, 1}`rnd uniformly at random with the constraint that these values XOR to 0`rnd .
Observe that this slight redundancy implies that for a correctly formed ciphertext if we are given the set S
along with the ri values for B − 1 of the indices in S, then we can derive the last one by simply XORing all
the others together. For i /∈ S simply choose ri at random.

To finalize encryption for i ∈ [N ], if i ∈ S encrypt the message along with proof for index i as
cpa.cti = CPA.Enc(cpa.pki, 1|tsc.σi|m; ri). Otherwise for i /∈ S encrypt the all 0’s string as cpa.cti =

CPA.Enc(cpa.pki, 0
`cpa ; ri). Finally, sign

(
tsc.com, (cpa.cti)i∈[N ]

)
with sig.sk to get sig.σ and output the

ciphertext ct as
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
.

The decryption algorithm on a ciphertext ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
will first verify

the signature and reject if that fails. Next, it will initialize a set U = ∅ and use the cpa.ski to de-
crypt all cpa.cti using the respective cpa.ski. For each i ∈ [N ], it gets a message yi which is parsed as
gi|σi|mi and randomness ri. The decryption algorithm adds (i, yi) to U if decryption is successful and (1)
TSC.Verify(tsc.pp, tsc.com, i, tsc.σi, sig.vk) = 1 and (2) cpa.cti = CPA.Enc(cpa.pki, yi; ri). It then checks that
there are exactly B entries in the set U , they all encrypt the same message and that ⊕(i,yi)∈U ri = 0`. If
so, it outputs the message. We emphasize that the decryption algorithm both checks the well formness of
ciphertext components in U via re-encryption and checks for the redundancy in randomness via the XOR
operation. However, ciphertext components outside of the set U are not verified in this way. Indeed, the
algorithm will allow decryption to proceed even it “knows” some components outside of U were malformed.

Our proof is given as a sequence of games where we show that for any poly-time attacker the advantage
of the attacker must be negligibly close in successive games. We sketch the proof at high level here and refer
the reader to the main body for details.

3



1. In the first step of our proof the decryption algorithm rejects all ciphertexts that come with a signature
under sig.vk∗ where sig.vk∗ is the signing key of the challenge ciphertext. This step is proven via a
standard reduction to a strongly secure one-time signature scheme.

2. In the next security game the set commitment parameters are chosen via the alternate setup algorithm

as:
(
tsc.com∗, (tsc.σi)i∈[N ]

)
← AltSetup(1λ, 1N , 1B , 1t, sig.vk∗). This means that for the tag sig.vk∗

(and only the tag sig.vk∗) proof values exist for every single index in [N ]. However, in the challenge
ciphertext tsc.σi are only used for i ∈ S∗ where S∗ is the set used in creating the challenge ciphertext.

3. In our proof for all indices i /∈ S∗ we will want to change cpa.cti from an encryption of the all 0’s
string to an encryption of 1|tsc.σ∗i |mb. We will change these one at a time. Suppose we want to argue
that no attacker can detect such a change on the j-th index. To prove this we need a reduction that
will not have access to the j-th secret key cpa.skj , but will still be able to decrypt in an equivalent
(but not identical) manner to the original decryption algorithm. To do this the alternative decryption
algorithm uses all N − 1 secret keys that it has to build a partial set U as in the actual decryption
algorithm above. It then branches its behavior on the size of U : (1) If |U | > B, then reject. In this
case the missing j-th component can only add to the size of U which is already too big and will be
rejected. (2) If |U | < B − 1, then reject. The missing j-th component can make the set size at most
B−1 which is too small and will be rejected. (3) If |U | = B, then proceed with the remaining checks of
decryption using the set U and ignore the j-th component. By soundness of the tagged set commitment
scheme, this could not have contained tsc.σj for a tag sig.vk 6= sig.vk∗ so we can safely ignore the j-th
component. (4) If |U | = B − 1, compute rj = ⊕i∈Uri and use this candidate randomness to decrypt
cpa.ctj in lieu of the key cpa.skj . Once this step is done, the result can be added (or not) to the set
U and the rest of decryption proceeds as before. We can show that the required redundancy checks
make this decryption case equivalent to the original as well.

Once this proof step has occurred for all j ∈ [N ] we have that each message is 1|tsc.σ∗i |mb, but that
the challenge ciphertext has the redundancy in the randomness ⊕i∈S∗ ri = 0`rnd .

4. For the next game we want to remove the redundancy in the randomness so that ri is chosen uniformly
at random for all indices i. It turns out that by the setting of our parameters this is statistically
already done! A random set of ri variables will have a 1

2`rnd
chance of XORing to 0`rnd. Thus, we

could then expect there will be approximately
(
N
B

)
· 1

2`rnd
sets of size B that satisfy this condition if all

ri are chosen randomly. Recall that since we set
(
N
B

)
> 2`rnd+λ we might then expect there to be an

exponential amount of sets meeting this condition. Therefore we would intuitively expect that planting
a single set S∗ with this condition and choosing all ri randomly will be statistically close. In the main
body, we formalize this intuition by applying the Leftover Hash Lemma [HILL99].

5. Now that the randomness in the challenge ciphertext is uncorrelated we want to change all encryptions
from 1|tsc.σ∗i |mb to 0`rnd. This can be done by a hybrid over all j from 1 to N . (At this point in the
security game there is no set S∗.) This is done by again using an alternative decryption algorithm that
can decrypt using all but the j-th secret key.

Stepping back we can see that the XORing to 0`rnd condition on S gave enough redundancy where one
could decrypt with all but one of the keys allowing Steps 3 and 5 of the proof above to proceed. However,
the redundant condition was limited enough where it could be statistically washed away in Step 4 of the
proof.

A further comparison to Koppula-Waters (CRYPTO 2019) We provide a closer comparison be-
tween our work and that of Koppula and Waters [KW19]. To do so we will imagine modifying our scheme
above and arrive at something analogous to [KW19]. Suppose that instead of choosing the values ri in the
set S at random with ⊕i∈S∗ ri = 0`rnd , we instead ran a pseudorandom generator (of output length B · `rnd)
on S as PRG(S) to determine the ri values for i ∈ S. The ri for i /∈ S are random as before.
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Using this encryption algorithm, one can create an analogous decryption algorithm that first recovers a
candidate set U almost as before. However, instead of getting the random coins ri from decryption once
it has U , the decryption algorithm can run PRG(U) to determine the candidate set of ri values. At this
point it can perform the same re-encryption and other checks as we outlined above. Indeed, the underlying
encryption system does not even need to have randomness recovery and thus is not necessarily trapdoor
based.

If we try to prove this system secure, we can mostly march along the same steps as above, but we hit a
roadblock at Step 4. In our construction we argue that choosing random ri is statistically close to embedding
the XOR condition. Is this true in the modified construction? Let’s imagine an arbitrary B-sized subset S
of indices with randomly chosen ri. The probability that PRG(S) outputs these ri values is 2−`rnd·B . Even
though there are

(
N
B

)
sets of size B, the chances of there being just one of these subsets that meets this

condition is still negligibly small. Thus we cannot make a statistical argument.
To get past Step 4 in the modified construction then, we will be forced to contrive an assumption

that these two distributions are computationally indistinguishable. Conceptually, this assumption is very
analogous to the “Hinting PRG” assumption introduced by Koppula and Waters. Altogether, our techniques
address the main limitation of [KW19] which was the need for a “Hinting PRG” by creating an encryption
scheme with less redundancy in the randomness. This allows us to bridge over a critical proof step with a
statistical argument.

1.1 Context on Trapdoor Functions

We conclude by providing some more context on trapdoor functions.

Constructions For many years the only known standard model technique for getting trapdoor functions
was to use an assumption like RSA [RSA78] that immediately gives a trapdoor function. Peikert and
Waters [PW08] gave the first standard model constructions for trapdoor functions from the DDH and the
LWE assumptions. More recently, Garg and Hajiabadi [GH18] and Garg, Gay and Hajiabadi [GGH] gave
constructions from the Computational Diffie-Hellman assumption.

On (Im)Perfect Correctness We observe that our security argument above relies on the trapdoor func-
tion to be perfectly correct when switching from the original decryption algorithm to the alternative de-
cryption algorithm. Otherwise, an attacker could potentially detect the change by constructing a ciphertext
component which is well formed, but does not decrypt correctly. (Even if the encryption with randomness
recovery correctness error is negligible for randomly sampled coins, it might be easy to adversarially discover
bad ciphertexts.) This creates an issue for schemes such as [GH18, GGH] that are not perfectly correct.

To address this issue, we recall the notion of almost-all-keys perfect correctness in encryption schemes,
introduced by Dwork et al. [DNR04]. In an almost-all-keys perfectly correct scheme, the key generation
algorithm Setup(1λ) will sample a public, private key pair (pk, sk) such that, with all but negligible probability,
these particular keys will work perfectly. That is, any message m and coins r used for encryption by pk
will decrypt to m using sk. (This is a stronger notion of (imperfect) correctness than the usual one where
potentially every public, secret key pair has a messages and coin pairs that cause decryption failures.) We
observe that almost-all-keys correctness is sufficient for our proof of security to go through. Since the attacker
has no influence on the key generation algorithm, with all but negligible probability, he/she will be stuck
with a keypair that has perfect correctness.

The CDH based scheme of Garg, Gay and Hajiabadi [GGH] satisfies almost-all-keys perfect correctness.
However, for the scheme of Garg and Hajiabadi [GH18], it is not clear if the above approach can directly
work.2 One might hope to use the transformation of [DNR04] to go from an imperfectly correct encryption

2In [GH18], it appears that it is computationally difficult for an attacker to discover a TDF input x where y =
TDF.Eval(tdf.pk,x) and TDF.Invert(tdf.sk,y) 6= x. We believe this property is also sufficient for our CCA transformation,
but do not show this formally.
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scheme to one that satisfies almost-all-keys perfect correctness. Unfortunately this does not appear to work
as we require encryption with randomness recovery.

TDFs with a Sample Algorithm The work of Bellare et. al.[BHSV98] as well as the Katz-Lindell [KL08]
textbook provide an alternative definition to trapdoor functions. In the standard definition the domain is
simply all the strings of length `inp and the security experiment chooses x ∈ {0, 1}`inp to evaluate the trapdoor
function on. In the alternative “sampling” definition there is an additional algorithm Sample that takes the
public key along with random coins and outputs an element x in the domain. The TDF evaluation algorithm
can then be run on x to give TDF.Eval(tdf.pk,x) → y. Notably, the domain can depend on the public key
and while correctness stipulates that TDF.Invert(tdf.sk,y)→ x, there is no requirement to recover the coins
of the Sample algorithm.

At first glance it might appear that the differences in these two definitions is conceptually minor. However,
these nuances are actually very important. As observed by Pandey [Pan13] there exists a trivial construction
of the sampling form of trapdoor functions from public key encryption. The public and secret key of the
trapdoor function will come from the PKE key generation algorithm. The Sample algorithm will choose
a random message m of sufficient length and output an encryption ct of m under the public key to give
x = (ct,m). The TDF.Eval algorithm can simply drop m. That is TDF.Eval(tdf.pk,x = (ct,m)) → ct. And
the inversion algorithm can recover (ct,m) from ct by simply decrypting. Security follows immediately from
the IND-CPA security of the underlying encryption scheme.

If we want the Sample algorithm to sample uniformly in the domain, we will need two additional properties
of the encryption algorithm. First, that for every public key pk and every pair of messages (m1,m2) the
number of distinct ciphertexts that can be generated from encrypting m1 under pk is the same as the number
that can be generated by encrypting m2 under pk. And that for any pk and message m the likelihood of any
ciphertext that is in the support of encrypting m under pk is the same.

This construction feels like a cheat as it does not match our intuitive concept of what a trapdoor function
is. It takes advantage of the fact that one is not required to recover the random coins used in the Sample
algorithm. Thus the definition essentially allows for one to dispense with the recovery of coins requirement
and seems to loose the spirit of trapdoor functions. An interesting question is whether such a transformation
could be done in a definition where the Sample algorithm only took as input the security parameter and not
the TDF’s public key.

Looking Forward It is interesting to think what implications our work might have on the ultimate
question of whether chosen plaintext security implies chosen ciphertext security. An immediate barrier is
that there are black box separations on building TDFs from PKE [GMR01]. However, it might be possible
to leverage our construction or lessons from it from an abstraction that delivers “most” of the properties of
a TDF.

2 Preliminaries

For any positive integer n, let [n] denote the set of integers {1, 2, . . . , n}. For any prime p and positive
integer `, let Fp` denote the (unique) field of order p`. We will use bold letters to denote a vector/array of
elements, and subscript i denotes the ith element (e.g. if w ∈ {0, 1}n, then wi denotes the ith bit). Given
two distributions D1,D2 over finite domain X , let SD(D1,D2) denote the statistical distance between D1

and D2.

Definition 2.1 (Pseudorandom Generator). Let n, ` ∈ N and let PRG be a deterministic polynomial-time
algorithm such that for any s ∈ {0, 1}n, PRG(s, 1`) outputs a string of length `. (Here, we will not require that
` be polynomial in n.) We say that PRG is a pseudorandom generator if for all probabilistic polynomial-time
distinguishers D, there exists a negligible function negl(·) such that for all n, `, λ ∈ N,

|Pr [D(r) = 1]− Pr
[
D(PRG(s, 1`)) = 1

]
| ≤ negl(λ),
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where r is chosen uniformly at random from {0, 1}`, s is chosen uniformly at random from {0, 1}n, and the
probabilities are taken over the choice of r and s and the coins of D.

Definition 2.2 (Strongly Unforgeable One-Time Signature [Lam79]). Let Σ = (KeyGen,Sign,Verify) be
a one-time signature scheme for the message space M . Consider the following probabilistic experiment
SU-OTS(Σ,A, λ) with A = (A1,A2) and λ ∈ N:

SU-OTS(Π,A, λ)
(pk, sk)← KeyGen(1λ)
(m, z)← A1(pk) s.t. m ∈M
σ ← Sign(sk,m)
(m∗, σ∗)← A2(σ, z)
Output 1 if (m 6= m∗ and Verify(pk,m∗, σ∗) = 1) or (σ 6= σ∗ and Verify(pk,m, σ∗) = 1) and 0 otherwise.

Signature scheme Σ is SU-OTS-secure if ∀ p.p.t. algorithms A, there exists a negligible function negl(·) such
that

Pr [SU-OTS(Π,A, λ) = 1] ≤ negl(λ),

where this probability is taken over all random coins used in the experiment.

Definition 2.3 (IND-CPA [GM84]). Let Π = (KeyGen,Enc,Dec) be an encryption scheme for the message
space M . Consider the following probabilistic experiment IND-CPA(Π,A, λ) with A = (A1,A2) and λ ∈ N:

IND-CPA(Π,A, λ)
(pk, sk)← KeyGen(1λ)
(m0,m1, z)← A1(pk) s.t. m0,m1 ∈M
y ← Enc(pk,mb)
b′ ← A2(y, z)
Output 1 if b′ = b and 0 otherwise.

Encryption scheme Π is IND-CPA-secure if ∀ p.p.t. algorithms A, there exists a negligible function negl(·)
such that

Pr [IND-CPA(Π,A, λ) = 1] ≤ 1

2
+ negl(λ),

where this probability is taken over all random coins used in the experiment.

Definition 2.4 (IND-CCA [NY90, RS91, DDN00]). Let Π = (KeyGen,Enc,Dec) be an encryption scheme
for the message space M and let experiment IND-CCA(Π,A, λ) be identical to IND-CPA(Π,A, λ) except that
both A1 and A2 have access to an oracle Dec(sk, ·) that returns the output of the decryption algorithm and
A2 cannot query this oracle on input y. Encryption scheme Π is IND-CCA-secure if ∀ p.p.t. algorithms A,
there exists a negligible function negl(·) such that

Pr [IND-CCA(Π,A, λ) = 1] ≤ 1

2
+ negl(λ),

where this probability is taken over all random coins used in the experiment.

Injective Trapdoor Functions An injective trapdoor function family T with input space {0, 1}`inp and
output space {0, 1}`out , where `inp and `out are polynomial functions of the security parameter λ, consists of
three PPT algorithms with syntax:

TDF.Setup(1λ) → (tdf.pk, tdf.sk): The setup algorithm takes as input security parameter λ and outputs a
public key tdf.pk and secret key tdf.sk.

TDF.Eval(tdf.pk, x ∈ {0, 1}`inp , ) → y: The evaluation algorithm takes as input an input x ∈ {0, 1}`inp and
public key tdf.pk, and outputs y ∈ {0, 1}`out .

TDF.Invert(tdf.sk, y ∈ {0, 1}`out)→ x ∈ {0, 1}`inp∪{⊥}: The inversion algorithm takes as input y ∈ {0, 1}`out
and secret key tdf.sk, and outputs x, which is either ⊥ or a `inp-bit string.
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Almost-all-keys Injectivity We require that for nearly all public/secret keys, inversion works for all
inputs. More formally, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr [∃ x s.t. TDF.Invert(TDF.Eval(tdf.pk, x), tdf.sk) 6= x] ≤ negl(λ),

where this probability is over the choice of (tdf.pk, tdf.sk)← TDF.Setup(1λ).

Definition 2.5. An injective trapdoor family is hard-to-invert if for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N,

Pr

[
x← A(tdf.pk, y) :

(tdf.pk, tdf.sk)← TDF.Setup(1λ)
x← {0, 1}`inp , y = TDF.Eval(tdf.pk, x)

]
≤ negl(λ).

Define (r · x) = ⊕ni=1ri · xi where r = r1 . . . rn and x = x1 . . . xn. The Goldreich-Levin theorem for
hard-core predicates [GL89] states that no polynomial time algorithm can compute (r · x) given a random
r, the TDF public key tdf.pk and evaluation TDF.Eval(tdf.pk, x) on random input x, where |r| = |x|.

Theorem 2.1 (Goldreich-Levin Hardcore Bit [GL89]). Assuming TDF is an injective trapdoor family, for
any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the following holds:∣∣∣∣∣∣Pr

b← A(tdf.pk, s, y, zb) :
(tdf.pk, tdf.sk)← TDF.Setup(1λ)

x, s← {0, 1}`inp , y = TDF.Eval(tdf.pk, x)
z0 = s · x, z1 ← {0, 1}, b← {0, 1}

− 1

2

∣∣∣∣∣∣ ≤ negl(λ).

3 Encryption Scheme with Randomness Recovery

An encryption scheme with randomness recovery is an IND-CPA secure encryption scheme with two addi-
tional properties: (a) the decryption algorithm can be used to recover the message as well as the randomness
used for encryption (b) the randomness used for encryption can be used to decrypt the ciphertext. Formally,
it consists of four PPT algorithms with the following syntax. Here the message length `msg and the length
of the randomness `rnd are polynomial functions of the security parameter λ.

Setup(1λ) → (pk, sk): The setup algorithm takes as input the security parameter λ and outputs a public
key pk and secret key sk.

Enc(pk,m)→ ct : The encryption algorithm is randomized; it takes as input a public key pk and a message
m, uses `rnd bits of randomness and outputs a ciphertext ct. We will sometimes write Enc(pk,m; r),
which runs Enc(pk,m) using r as the randomness.

Dec(sk, ct) → z ∈
(
{0, 1}`msg × {0, 1}`rnd

)
∪ {⊥}: The decryption algorithm takes as input a secret key sk

and a ciphertext ct, and either outputs z =⊥ or z = (m, r) where m ∈ {0, 1}`msg , r ∈ {0, 1}`rnd .

Recover(pk, ct, r)→ z ∈ {0, 1}`msg∪{⊥}: The recovery algorithm takes as input a public key pk, a ciphertext
ct and string r ∈ {0, 1}`rnd . It either outputs ⊥ or a message m ∈ {0, 1}`msg .

These algorithms must satisfy the following almost-all-keys perfect correctness property.

Almost-all-keys Perfect Correctness We require perfect correctness of decryption and recovery for all
but a negligible fraction of (pk, sk) pairs. More formally, there exists a negligible function negl(·) such that
for any security parameter λ,

Pr [∃ m, r s.t. Dec(sk,Enc(pk,m; r)) 6= (m, r)] ≤ negl(λ) and

Pr [∃ m, r s.t. Recover(pk,Enc(pk,m; r), r) 6= m] ≤ negl(λ)

where m ∈ {0, 1}`cpa , r ∈ {0, 1}`rnd , and the probability is over the choice of (pk, sk)← Setup(1λ).
Koppula and Waters [KW19] defined a notion of “recovery from randomness” which has the above

almost-all-keys perfect correctness requirement on the Recover algorithm, but not also on the Dec algorithm.
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3.1 Construction: Encryption Scheme with Randomness Recovery from Injec-
tive TDFs

We show an IND-CPA secure encryption scheme with randomness recovery for messages of length `msg where
encryption uses `rnd-bits of randomness based on injective trapdoor functions. This construction is closely
related to the CPA-secure encryption scheme of Yao [Yao82]. Let tdf = (TDF.Setup,TDF.Eval, TDF.Invert)
be an injective trapdoor function (see Section 2) with input space {0, 1}`inp and output space {0, 1}`out . Here
`inp, `out, `msg and `rnd = `msg · `inp are polynomial functions in the security parameter λ.

Setup(1λ)→ (pk, sk): The setup algorithm first chooses (tdf.pk, tdf.sk)← TDF.Setup(1λ). Next, it choses a
uniformly random string t ← {0, 1}`inp . The public key is set to be pk = (tdf.pk, t) and the secret key
is sk = (tdf.sk, t).

Enc
(
pk = (tdf.pk, t) ,m = (m1, . . . ,m`msg)

)
→ ct : For each i ∈ [`msg], the encryption algorithm:

• chooses a random string ri ← {0, 1}`inp .
• sets ct1,i = (ri · t) +mi and ct2,i = TDF.Eval(tdf.pk, ri).

For w ∈ {0, 1}, it sets ctw = (ctw,1, . . . , ctw,`msg
) and outputs (ct1, ct2).

Dec (sk = (tdf.sk, t), ct = (ct1, ct2)) → z: For each i ∈ [`msg], the decryption algorithm computes ri =
TDF.Invert(tdf.sk, ct2,i). If ri =⊥, it outputs ⊥ and aborts. Else, it sets mi = ct1,i + (ri · t)(mod 2).

Finally, it outputs m = (m1, . . . ,m`msg) and r = (r1, . . . , r`msg).

Recover (pk = (tdf.pk, t), ct = (ct1, ct2), r) → z: The recovery algorithm performs the following for each
i ∈ [`msg]: it computes zi = TDF.Eval(tdf.pk, ri). If zi 6= ct2,i, it outputs ⊥ and aborts. Else it sets
mi = ct1,i + zi(mod 2).

Finally it outputs m = (m1, . . . ,m`msg).

Almost-all-keys perfect correctness follows from the almost-all-keys perfect injectivity TDFs.

Encrypting long messages In the construction above the number of random bits, `rnd required by
encryption grows linearly in the message size as `rnd = `msg · `inp. We observe that to encrypt long messages
we could instead use the system above to encrypt a PRG seed k ∈ {0, 1}λ and then encrypt the message
itself as PRG(k) ⊕m for a pseudorandom generator of appropriate output length. This hybrid encryption
method would maintain the randomness recovery property, but the growth of the random coins would be
independent of the message length.

3.1.1 IND-CPA Security

Theorem 3.1. The Section 3.1 construction is IND-CPA-secure (per Definition 2.3) assuming TDF is a
hard-to-invert injective trapdoor family (per Definition 2.5).

The proof of security follows via a simple sequence of hybrid experiments {Hj}j∈{0,...,`msg+1} defined as

follows. H0 corresponds to the IND-CPA experiment of the construction in Section 3.1, While in hybrid
H`msg+1, the adversary will have advantage 0.

Hybrid Hj with security parameter λ, for j ∈ {1, . . . , `msg + 1} :

• The challenger chooses (tdf.pk, tdf.sk) ← TDF.Setup(1λ) and a random string t ← {0, 1}`inp . It sends
(tdf.pk, t) to the adversary.

• On receiving challenge messages m0,m1 ∈ {0, 1}`msg from the adversary, the challenger chooses b ←
{0, 1}. Next, it chooses ri ← {0, 1}`inp for all i ∈ [`msg]. For i < j, it sets ct1,i uniformly at random. For
i ≥ j, it sets ct1,i = (ri · t) +mb,i. In either case, it sets ct2,i = TDF.Eval(tdf.pk, ri) It sends (ct1, ct2)
to the adversary and receives guess b′. Adversary wins if b = b′.

9



Analysis: For any PPT adversary A, let advA,j(λ) denote the advantage of A in Hj (with sec. par. λ).

Claim 3.1. Assuming the hard-to-invert property of the injective TDF family T (see Definition 2.5), for
any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N and j ∈ [0, `msg],
advA,j(λ)− advA,j+1(λ) ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A and 0 ≤ j ≤ `msg such that advA,j − advA,j+1 = ε, where
ε is non-negligible.3 Then there exists a PPT algorithm B that breaks the hardcore bit property of T ,
since this property follows from the hard-to-invert property of T and Theorem 2.1, we have a contradiction.
The algorithm B receives (tdf.pk, s, y, z) from the challenger, where y = TDF.Eval(tdf.pk, x) for a uniformly
random x ∈ {0, 1}`inp , and z is either (s ·x) or a uniformly random bit. B sets t = s and sends (tdf.pk, t) to A,
and receives challenge messages m0,m1. The reduction then chooses w ← {0, 1}. For all i 6= j, the challenge
ciphertext components ct1,i, ct2,i are identically distributed, and the reduction algorithm can compute them
using tdf.pk and t. It sets ctj,1 = z +mw,j and ctj,2 = y, and sends (ct1, ct2) to A. The adversary sends its
guess w′. If w = w′, then the reduction B outputs 0 (indicating that z = s · x), else it outputs 1 (indicating
that z is uniformly random).

Note that if y = TDF.Eval(tdf.pk, x) and z = (s ·x), then this corresponds to Hj ; if z is uniformly random,

then this corresponds to Hj+1. Let advTB denote B’s advantage in the hardcore bit experiment against T .

advTB = Pr[B outputs 0 | z = (s · x)]− Pr[B outputs 0 | z is random]

= Pr[A wins in Hj ]− Pr[A wins in Hj+1] = ε.

4 Tagged Set Commitment

We introduce an abstraction called a “tagged set commitment” and show that it can be constructed generi-
cally from a pseudorandom generator. We employ this abstraction shortly in our Section 5 construction.

Setup(1λ, 1N , 1B , 1t)→ pp: The setup algorithm takes as input the security parameter λ, the universe size
N , bound B on committed sets and tag length t, and outputs public parameters pp.

Commit(pp, S ⊆ [N ], tg ∈ {0, 1}t)→ (com, (σi)i∈S): The commit algorithm is randomized; it takes as input
the public parameters pp, set S of size B and string tg, and outputs a commitment com together with
‘proofs’ σi for each i ∈ S. 4

Verify(pp, com, i ∈ [N ], σi, tg ∈ {0, 1}t) → {0, 1}: The verification algorithm takes as input the public
parameters, an index i, a proof σi, and tg. It outputs 0/1.

AltSetup(1λ, 1N , 1B , 1t, tg) → (pp, com, (σi)i∈[N ]): The scheme also has an ‘alternate setup’ which is used
in the proof. It takes the same inputs as Setup together with a special tag tg, and outputs public
parameters pp, commitment com together with proofs σi for all i ∈ [N ].

These algorithms must satisfy the following perfect correctness requirements:

Correctness of Setup and Commit: For all λ, N , B ≤ N , t, tg ∈ {0, 1}t and set S ⊆ [N ] of size B, if pp←
Setup(1λ, 1N , 1B , 1t) and (com, (σi)i∈S)← Commit(pp, S, tg), then for all i ∈ S, Verify(pp, com, i, σi, tg) = 1.

Correctness of AltSetup: For all λ, N , B ≤ N , t, tg ∈ {0, 1}t, if (pp, com, (σi)i∈[N ])← AltSetup(1λ, 1N , 1B ,

1t, tg), then for all i ∈ [N ], Verify(pp, com, i, σi, tg) = 1.

3We drop dependence on λ for notational convenience.
4We require S to be of size exactly B for simplicity of presentation, however, one could generalize this to allow S to be of

size at most B.
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Security We require two security properties of a tag set commitment.

Indistinguishability of Setup : In this experiment, the adversary chooses a tag tg, set S and receives
either public parameters, together with commitments for (S, tg), or receives public parameters and commit-
ment/proofs (corresponding to set S) generated by AltSetup (for tag tg). The scheme satisfies indistinguisha-
bility of setup if no PPT adversary can distinguish between the two scenarios. This experiment is formally
defined below.

Definition 4.1. A tagged set commitment scheme Com = (Setup,Commit,Verify,AltSetup) satisfies indis-
tinguishability of setup if for any PPT adversary A, there exists a negligible function negl(·) such that for
all λ ∈ N, |Pr[1← Expt-Ind-SetupA(λ)]− 1/2| ≤ negl(λ), where Expt-Ind-SetupA is defined in Figure 1.

Expt-Ind-SetupA(λ)

1. Adversary A receives input 1λ and sends 1N , 1B , 1t, tg, S such that B ≤ N , tg ∈ {0, 1}t and |S| = B.

2. Challenger chooses b ← {0, 1}. It computes pp0 ← Setup(1λ, 1N , 1B , 1t) and (com0,
(
σ0
i

)
i∈S) ←

Commit(pp, S, tg), and (pp1, com1,
(
σ1
i

)
i∈[N ]

) ← AltSetup(1λ, 1N , 1B , 1t, tg). It sends

(ppb, comb,
(
σbi

)
i∈S) to A.

3. A outputs its guess b′. The experiment outputs 1 iff b = b′.

Figure 1: Experiment for Indistinguishability of Setup

Soundness Security : The soundness property informally states that if public parameters are generated
for bound B (using either regular setup or AltSetup), then no PPT adversary can produce a commitment
with greater than B ‘proofs’. However, for our CCA application, we need a stronger guarantee: if the
challenger generates the public parameters for a tag tg using AltSetup and the adversary gets all N proofs,
even then it cannot generate a commitment with B + 1 proofs for a different tag tg′.

Definition 4.2. A tagged set commitment scheme Com = (Setup,Commit,Verify,AltSetup) satisfies sound-
ness security if for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
Pr[1← Expt-SoundA(λ)] ≤ negl(λ), where Expt-SoundA is defined in Figure 2.

Expt-SoundA(λ)

1. Adversary A receives input 1λ, sends 1N , 1B , 1t, tg such that B ≤ N , tg ∈ {0, 1}t.
2. Challenger computes (pp, com, (σi)i∈[N ]) ← AltSetup(1λ, 1N , 1B , 1t, tg), sends (pp, com, (σi)i∈[N ]) to
A.

3. A outputs tg′ 6= tg, set S ⊆ [N ] of size greater than B, commitment com′ and proofs (σ′i)i∈S . The
experiment outputs 1 iff for all i ∈ S, Verify(pp, com′, i, σ′i, tg

′) = 1.

Figure 2: Experiment for Soundness Security

4.1 Construction of Tagged Set Commitment

In this section, we will present a Tagged Set Commitment scheme TSC whose security is based on PRG
security. Let PRG : ({0, 1}λ, 1`)→ F2` be a pseudorandom generator. Let emb be an injective and efficiently-
computable function that maps strings in {0, 1}t (tags) to elements in F2` . Below the notation p← F2` [x]B−1

means that p is set to be a random degree B−1 polynomial over variable x, where p is represented in canonical
form with B randomly chosen coefficients in F2` .

Setup(1λ, 1N , 1B , 1t): The setup algorithm sets ` = 2t+(B+1)·logN+λ·(B+1)+λ. Next it chooses N ran-
dom elements Ai, Di ← F2` for all i ∈ [N ]. The public parameters is set to be pp = (1`, (Ai, Di)i∈[N ]).
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Commit(pp = (1`, (Ai, Di)i), S ⊆ [N ], tg): The commitment algorithm first chooses si ← {0, 1}λ for each
i ∈ S. Next, it chooses the degree B − 1 polynomial p(·) over F2` such that for all i ∈ S, p(i) =
PRG(si, 1

`) + Ai + Di · emb(tg). (Since we fix B points, there is a unique degree B − 1 polynomial
p, which is described in canonical form using B coefficients in F2` .) The commitment com is the
polynomial p, and the proof σi = si for each i ∈ S.

Verify(pp = (1`, (Ai, Di)i), com = p, i, σi, tg): The verification algorithm outputs 1 iff p(i) = PRG(σi, 1
`) +

Ai +Di · emb(tg).

AltSetup(1λ, 1N , 1B , 1t, tg) : The alternate setup algorithm chooses random strings si ← {0, 1}λ, Di ← F2`

for each i ∈ [N ], p← F2` [x]B−1 and sets Ai = p(i)− PRG(si, 1
`)−Di · emb(tg).

The correctness properties follow immediately from the construction.

4.1.1 Security Proofs

We need to show that the scheme satisfies indistinguishability of setup and soundness security (Definition 4.2).

Lemma 4.1. Assuming PRG is a secure pseudorandom generator (Definition 2.1), TSC satisfies indistin-
guishability of setup (Definition 4.1).

Proof. We will prove this using a sequence of hybrid experiments H0, . . . ,H3 where H0 corresponds to the
challenger using Setup and H3 is the challenger using AltSetup.

Hybrid H0 : In this experiment, the challenger runs Setup and Commit.

1. The adversary sends 1N , 1B , tg and S ⊂ [N ] of size B.

2. The challenger performs the following steps:

(a) It chooses Ai, Di ← F2` for each i ∈ [N ] and sets pp = (1`, (Ai, Di)i).

(b) Next, it chooses si ← {0, 1}λ for each i ∈ S, sets di = PRG(si, 1
`) +Ai +Di · emb(tg).

(c) It computes the polynomial p ∈ F2` [x]B−1 such that p(i) = di for all i ∈ S and sets com = p,
σi = si for each i ∈ S.

(d) The challenger sends pp, com, (σi)i∈S .

3. The adversary sends its guess b′.

Hybrid H1 : This experiment is identical to the previous one, except that the challenger first chooses the
di values uniformly at random for each i ∈ S and then sets the corresponding Ai values appropriately.

1. The adversary sends 1N , 1B , tg and S ⊂ [N ] of size B.

2. The challenger performs the following steps:

(a) It chooses Di ← F2` for each i ∈ [N ], Ai ← F2` for each i ∈ [N ] \S and si ← {0, 1}λ, di ← F2` for
each i ∈ S. It sets Ai = di−PRG(si, 1

`)−Di · emb(tg) for each i ∈ S, and sets pp = (`, (Ai, Di)i).

(b) It computes the polynomial p ∈ F2` [x]B−1 such that p(i) = di for all i ∈ S and sets com = p,
σi = si for each i ∈ S.

(c) The challenger sends pp, com, (σi)i∈S .

3. The adversary sends its guess b′.
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Hybrid H2 : Here, the challenger first chooses a random degree B − 1 polynomial, and then sets the di
values according to this polynomial.

1. The adversary sends 1N , 1B , tg and S ⊂ [N ] of size B.

2. The challenger performs the following steps:

(a) It chooses Di ← F2` for each i ∈ [N ], Ai ← F2` for each i ∈ [N ]\S and si ← {0, 1}λ for each i ∈ S.
It chooses a random polynomial p← F2` [x]B−1, sets di = p(i), Ai = di−PRG(si, 1

`)−Di ·emb(tg)
for each i ∈ S, and sets pp = (`, (Ai, Di)i).

(b) It sets com = p, σi = si for each i ∈ S.

(c) The challenger sends pp, com, (σi)i∈S .

3. The adversary sends its guess b′.

Hybrid H3 : In this experiment, the challenger uses AltSetup. The only difference between this hybrid and
the previous one is with respect to the choice of Ai for i ∈ [N ]\S. In the previous experiment, the challenger
chooses Ai uniformly at random for all i ∈ [N ] \S. In this one, it sets Ai = p(i)−PRG(si, 1

`)−Di · emb(tg).
The experiment is described formally below.

1. The adversary sends 1N , 1B , tg and S ⊂ [N ] of size at most B.

2. The challenger performs the following steps:

(a) It chooses Di ← F2` and si ← {0, 1}λ for each i ∈ [N ]. It chooses a random polynomial p ←
F2` [x]B−1, sets Ai = p(i)−PRG(si, 1

`)−Di ·emb(tg) for each i ∈ [N ], and sets pp = (`, (Ai, Di)i).

(b) It sets com = p, σi = si for each i ∈ S.

(c) The challenger sends pp, com, (σi)i∈S .

3. The adversary sends its guess b′.

Analysis : We will now show that the above hybrids are computationally indistinguishable. For any PPT
adversary A, let prA,x(λ) denote the probability that the adversary outputs 1 in hybrid Hx.

Claim 4.1. For any adversary A, prA,0(λ) = prA,1(λ).

Proof. The only difference between H0 and H1 is as follows: in H0, the challenger chooses (Ai)i∈S uniformly

at random and then sets di = PRG(si, 1
`)+Ai+Di ·emb(tg); in H1, the challenger chooses (di)i∈S uniformly

at random and sets Ai = di − PRG(si, 1
`)−Di · emb(tg). Clearly, both these experiments are identical.

Claim 4.2. For any adversary A, prA,1(λ) = prA,2(λ).

Proof. The only difference between H1 and H2 is as follows: in H1, the challenger chooses (di)i∈S uniformly
at random and then chooses the polynomial p which satisfies the restriction that p(i) = di for all i ∈ S. In
H2, the challenger first chooses a random degree B − 1 polynomial and sets di = p(i) for all i ∈ S. Since
there is a bijective mapping between FB2` and F2` [x]B−1, it follows that the outputs of these two experiments
are identically distributed.

Claim 4.3. Assuming PRG is a secure pseudorandom generator, for any PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, |prA,2(λ)− prA,3(λ)| ≤ negl(λ).

13



Proof. Suppose there exists a PPT adversary A such that prA,2(λ)− prA,3(λ) is non-negligible. We will use
A to build an algorithm B that breaks the PRG security. (Recall, per Definition 2.1 for our case, no efficient
distinguisher can distinguish between a random element in F2` and the output of PRG(s, 1`) for a random
seed s ∈ {0, 1}λ. Suppose we consider an extension of this experiment where the distinguisher submits an
integer q (polynomial in λ) and then receives either q random elements in F2` or the q values {PRG(ai, 1

`)}i
for random ai ∈ {0, 1}λ. If no efficient distinguisher has a non-negligible probability of distinguishing the
first experiment, then that will also hold for this polynomial repetition of it by a simple hybrid argument.)

The algorithm B first receives 1N , 1B , 1t, tg, S from A. It chooses Di ← F2` for each i ∈ [N ], a random
polynomial p← F2` [x]B−1, random strings si ← {0, 1}λ for i ∈ S, and sets Ai = p(i)−PRG(si, 1

`)−emb(tg) ·
Di for all i ∈ S. Next, it sends integer N − B queries to our extended PRG challenger above and receives
(zi)i∈[N ]\S as the responses (we index each response with an element in [N ] \S). The reduction algorithm B
sets Ai = p(i)− zi −Di · emb(tg). Finally, it sets pp = (`, (Ai, Di)), com = p, and sends pp, com, (si)i∈S to
A. If the adversary outputs 1, then B guesses that the PRG challenger’s outputs are random, else it guesses
that they are pseudorandom.

Lemma 4.2. TSC satisfies soundness security (Definition 4.2).

Proof. This proof is a statistical argument. Suppose there exists an adversaryA s.t. Pr[1← Expt-SoundA(λ)] =
ε(λ). The adversary A sends tg, receives (pp, com, (si)i∈[N ]) ← AltSetup(1λ, 1N , 1B , tg), and outputs tg′ to-

gether with com′ = p′, S and (s′i)i∈S such that |S| > B and Verify(pp, com′, i, s′i, tg
′) = 1 for all i ∈ S. This

means, com′ ∈ F2` [x]B−1, and for all i ∈ S, Ai = p′(i)− PRG(s′i, 1
`)−Di · emb(tg′). It suffices to show that

the following probability, and therefore ε(λ), is bounded by negl(λ) 5:

ρ(λ) = Pr

[
∃p′ ∈ F2` [x]B−1, S ⊆ [N ], |S| = B + 1, (s′i)i , tg 6= tg′ such that

∀i ∈ S, p(i)− PRG(si, 1
`)−Di · emb(tg) = p′(i)− PRG(s′i, 1

`)−Di · emb(tg′)

]
where the probability is over the choice of Di ← F2` , si ← {0, 1}λ for all i ∈ [N ] and p← F2` [x]B−1.

We will prove something stronger: consider the following probability where si ∈ {0, 1}λ, p ∈ F2` [x]B−1

are arbitrary and the probability is only over the choice of Di ← F2` . Let ρs,p denote the probability ρ(λ)
for some fixed λ, s = (si)i and p.

Claim 4.4. If ` > t+ (B + 1) · logN + λ · (B + 1) + λ, then ρs,p ≤ 2−λ.

Proof. The proof follows via the union bound. For any tuple (λ,N,B, tg), let R(λ,N,B, tg) denote the set of
all potentially-winning responses sent by the adversary after receiving (pp, com, (si)i∈[N ]); that is, it consists

of all tuples (tg′, p′, S, (s′i)i∈S) such that tg′ 6= tg, p′ ∈ F2` [x]B−1, |S| = B + 1 and the s′i strings are λ bits
long.6 Then, note that we can express ρs,p in terms of R(λ,N,B, tg) as follows:

ρs,p = Pr

 ∀i ∈ [N ], choose Di uniformly at random
A sends (tg′, p′, S, (s′i)i∈S) ∈ R(λ,N,B, tg)

∀i ∈ S, p(i)− PRG(si, 1
`)−Di · emb(tg) = p′(i)− PRG(s′i, 1

`)−Di · emb(tg′).


First, we note that the size of R(λ,N,B, tg) can be bounded as follows.

Observation 4.1. For any λ,N,B, tg, |R(λ,N,B, tg)| = (2t − 1) ·
(
N
B+1

)
· 2λ·(B+1) · 2`·B .

Proof. The number of tags tg′ satisfying tg 6= tg′ is 2t− 1. The number of sets S of size B+ 1 is
(
N
B+1

)
. The

set F2` [x]B−1 has size 2`·B and the set (si)i∈S has size 2λ·(B+1).
Note that in this proof, we use the fact that degree of p′ is B − 1.

5Note that in the following probability, we only look at sets S of size B + 1. Clearly, if an adversary can output a set S of
size greater than B, then it can output a set of size exactly B + 1.

6We call it a potentially-winning response because the definition of this set does not have the main requirement for winning:
∀i ∈ S, p(i)− PRG(si, 1

`)−Di · emb(tg) = p′(i)− PRG(s′i, 1
`)−Di · emb(tg′)
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Next, we observe the following:

Observation 4.2. For any λ,N,B, tg, strings (si)i∈[N ], polynomial p ∈ F2` [x]B−1 and r = (tg′, p′, S, (s′i)) ∈
R(λ,N,B, tg),

ρrs,p = Pr

[
∀i ∈ [N ], choose Di uniformly at random

∀i ∈ S, p(i)− PRG(si, 1
`)−Di · emb(tg) = p′(i)− PRG(s′i, 1

`)−Di · emb(tg′).

]
= 2−`·(B+1)

Proof. The above expression can be rewritten as follows:

Pr

[
∀i ∈ [N ], choose Di uniformly at random

∀i ∈ S,Di = (emb(tg)− emb(tg′))−1 · (PRG(s′i, 1
`)− PRG(si, 1

`) + p(i)− p′(i))

]
Here, we use the fact that tg 6= tg′, and hence this probability precisely captures the event where B + 1
uniformly random strings (of length ` each) are equal to some fixed B + 1 strings.

Note that in this part, we do not use the fact that p′ has degree B − 1.

Since the above expression ρrs,p is independent of the tuple r, let us call this ρfixed
s,p . Finally, we show a

bound on ρs,p.

Observation 4.3. For any adversary A that sends λ,N,B, tg, any strings (si)i∈[N ], polynomial p ∈
F2` [x]B−1, ρs,p ≤ |R(λ,N,B, tg)| · ρfixed

s,p .

Proof. First, note that ρs,p ≤ ρ′s,p, where

ρ′s,p = Pr

 ∀i ∈ [N ], choose Di uniformly at random
∃r = (tg′, p′, S, (s′i)i∈S) ∈ R(λ,N,B, tg)

∀i ∈ S, p(i)− PRG(si, 1
`)−Di · emb(tg) = p′(i)− PRG(s′i, 1

`)−Di · emb(tg′).

 .
(We are simply setting the best possible response that the adversary can send).

Next, we can bound the expression above by a union bound as follows:

ρ′s,p ≤
∑

r∈R(λ,N,B,tg)

Pr

[
∀i ∈ [N ], choose Di uniformly at random

∀i ∈ S, p(i)− PRG(si, 1
`)−Di · emb(tg) = p′(i)− PRG(s′i, 1

`)−Di · emb(tg′).

]
︸ ︷︷ ︸

= ρfixeds,p = 2`·(B+1)(as discussed in Observation 4.2)

.

Hence, we conclude that ρs,p ≤ ρ′s,p ≤ |R(λ,N,B, tg)| · ρfixed
s,p .

The proof follows by setting ` ≥ t+ (B + 1) · logN + λ · (B + 1) + λ.

Since we have shown that ρs,p ≤ 2−λ for all s, p, it follows that it holds even for randomly chosen s and
p. This concludes the proof of the lemma.

5 Our CCA Secure Encryption Scheme

In this section, we will present a CCA secure encryption scheme with message space {0, 1}`cca satisfying
almost-all-keys perfect correctness. We require the following parameters/notations for our construction.

- λ: security parameter
- N : number of ciphertext components of underlying CPA scheme
- B: size of set for ‘selected’ ciphertext components
- `tsc.σ: size of proofs output by tagged set commitment scheme
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- `cpa: message space for underlying CPA scheme
- `rnd: number of random bits used by CPA scheme to encrypt `cpa bit message
- `vk: size of verification key of signature scheme

The construction uses the following primitives, which are defined in Sections 2, 3 and 4 respectively:

- A Strongly Unforgeable One-Time Signature Scheme P1 = (Sig.Setup,Sig.Sign,Sig.Verify).
- A CPA Secure almost-all-keys perfectly correct Encryption Scheme with Randomness Recovery P2 =

(CPA.Setup,CPA.Enc,CPA.Dec,CPA.Recover), parameterized by polynomials `cpa (denoting the message
space) and `rnd (denoting the number of random bits used for encryption).7

- A Tagged Set Commitment Scheme P3 = (TSC.Setup,TSC.Commit,TSC.Verify,TSC.AltSetup), param-
eterized by polynomials `tsc.σ (denoting the length of proof for each index) and `com (denoting the
length of commitment).

These parameters must satisfy the following constraints:

- `cpa = 1 + `tsc.σ + `cca

- log
((
N−1
B−1

))
> `rnd + 2λ

Setup(1λ): The setup algorithm performs the following steps:

1. It first chooses public parameters for the commitment scheme. Let tsc.pp← TSC.Setup(1λ, 1N , 1B , 1`vk).

2. Next, it choosesN public/secret keys for the encryption scheme. Let (cpa.pki, cpa.ski)← CPA.Setup(1λ).

3. It sets pk =
(
tsc.pp, (cpa.pki)i∈[N ]

)
and sk = (cpa.ski)i∈[N ].

Enc(pk,m): The encryption algorithm takes as input pk =
(
tsc.pp, (cpa.pki)i∈[N ]

)
and m ∈ {0, 1}`cca , and

performs the following steps:

1. It chooses a uniformly random B size subset S ⊂ [N ]. Let S = {i1, i2, . . . , iB} where i1 < i2 <
. . . < iB .

2. Next, it chooses a signing/verification key (sig.sk, sig.vk)← Sig.Setup(1λ).

3. It then commits to the set S using sig.vk as the tag. It computes (tsc.com, (tsc.σi)i∈S) ←
TSC.Commit(tsc.pp, S, sig.vk).

4. For all i 6= iB , it chooses random values ri ← {0, 1}`rnd, and sets riB = ⊕j<B rij .

5. Using the ri values, the encryption algorithm computes N ciphertext components. For i ∈
[N ] if i ∈ S, it computes cpa.cti = CPA.Enc(cpa.pki, 1|tsc.σi|m; ri). Else it sets cpa.cti =
CPA.Enc(cpa.pki, 0

`cpa ; ri).

6. Finally, the algorithm computes a signature sig.σ ← Sig.Sign
(
sig.sk,

(
tsc.com, (cpa.cti)i∈[N ]

))
and outputs

(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
.

Dec(sk, ct): Let sk = (cpa.ski)i∈[N ] and ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
. The decryption algorithm

performs the following steps:

1. It first verifies the signature sig.σ. If 0 ← Sig.Verify
(
sig.vk, sig.σ,

(
tsc.com, (cpa.cti)i∈[N ]

))
then

decryption outputs ⊥.

2. Next, it initializes a set U to be ∅. For each i ∈ [N ] it does the following:
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Check

Hardwired: pk, ct
Input: i ∈ [N ], y ∈

(
{0, 1} × {0, 1}`tsc.σ × {0, 1}`cca

)
∪ {⊥} , r ∈ {0, 1}`rnd

Output: 0/1.

Output 1 if and only if the following conditions are satisfied:

- y 6=⊥. Parse y = (g, tsc.σ,m)

- g = 1.

- TSC.Verify(tsc.pp, tsc.com, i, tsc.σ, sig.vk) = 1.

- cpa.cti = CPA.Enc(cpa.pki, y; r).

Figure 3: Routine Check for checking if tuple (i, y) should be added to set U

(a) Let (yi, ri) = CPA.Dec(cpa.ski, cpa.cti).
8 The decryption algorithm adds (i, yi) to U if

Check(i, yi, ri) = 1, where Check is defined in Figure 3.

3. If the set U does not have exactly B elements then the decryption algorithm outputs ⊥.

4. If ⊕(i,yi)∈U ri 6= 0`rnd , it outputs ⊥.

5. Finally, the decryption algorithm checks that for all (i, ri) ∈ U , the mi values recovered from yi
are the same. If not, it outputs ⊥. Else it outputs this common mi value as the decryption.

Perfect Correctness The message space is {0, 1}`cca , where `cca is a polynomial function in the security
parameter λ. There exists a negligible function negl(·) such that for any security parameter λ,

Pr
[
∃ m, r ∈ {0, 1}`cca s.t. Dec(sk,Enc(pk,m)) 6= m

]
≤ negl(λ)

where the probability is over the choice of (pk, sk)← Setup(1λ) and the random coins of Enc.
The almost-all-keys perfect correctness of the CCA scheme follows from the almost-all-keys perfect cor-

rectness of the CPA scheme and the (perfect) correctness of the signature and tagged set commitment
schemes.

Remark 5.1. Any signature or tagged set commitment scheme with negligible correctness error can be
transformed into one with perfect correctness. A signer or committer can check whether the respective
signature or commitment verifies using the public verification algorithm. If it does not, the signing algorithm
can fall back to a trivial signature that is perfectly correct, but has no security against forgeries. In the
case of commitments use a trivial scheme that is binding, but is not hiding. Since the correctness error is
negligible, this will only happen with negligible probability in the security argument.

5.1 Proof of Security

Theorem 5.1. The above construction is IND-CCA-secure (per Definition 2.4) and almost-all-keys perfectly
correct, assuming P1 is a strongly unforgeable one-time signature scheme (Definition 2.2), P2 is an IND-CPA-
secure encryption scheme (Definition 2.3) with randomness recovery with almost-all-keys perfect correctness
(Section 3) and P3 is a secure tagged set commitment scheme (Definitions 4.1 and 4.2).

The following result follows immediately from the above theorem, Theorem 3.1, Lemma 4.1, and known
constructions of other building blocks from injective trapdoor functions.

Corollary 5.1 (IND-CCA-secure Public-Key Encryption is Implied by (Injective) Trapdoor Functions). The
above construction is IND-CCA-secure (per Definition 2.4) assuming injective trapdoor functions.

Proof of the main theorem proceeds via a sequence of hybrid experiments.

7For security parameter λ, the scheme will support `cpa(λ) bit messages, and the encryption algorithm will use `rnd(λ) bits
of randomness. We will drop the dependence on λ when it is clear from context.

8Recall the decryption algorithm also recovers the randomness used for encryption.

17



Hybrid H0 This experiment corresponds to the CCA experiment. Here, we spell out the setup and
encryption algorithms again in order to set up notations for the proof.

• Setup phase: This is identical to the scheme’s setup.

1. The challenger first chooses tsc.pp← TSC.Setup(1λ, 1N , 1B , 1t).

2. Next, it chooses (cpa.pki, cpa.ski)← CPA.Setup(1λ) for all i ∈ [N ].

3. It sends pk =
(
tsc.pp, (cpa.pki)i∈[N ]

)
to A and uses sk = (cpa.ski)i∈[N ] for handling decryption

queries.

• Pre-challenge decryption queries: The adversary makes polynomially many decryption queries. For

each query ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
, the challenger outputs Dec(sk, ct).

• Challenge ciphertext: The adversary sends two challenge messages m0,m1 ∈ {0, 1}`cca . The challenger
chooses a bit b and does the following.

1. It chooses a uniformly random B size subset S∗ = {ij}j∈[B] ⊂ [N ].

2. Next, it chooses a signing/verification key (sig.sk∗, sig.vk∗)← Sig.Setup(1λ).

3. It then commits to the set S using sig.vk∗ as the tag. It computes (tsc.com∗, (tsc.σ∗i )i∈S) ←
TSC.Commit(tsc.pp, S∗, sig.vk∗).

4. For all i 6= iB , it chooses ri ← {0, 1}`rnd , and sets riB = ⊕j<B rij .

5. Using the ri values, the encryption algorithm computes N ciphertexts. If i ∈ S, it computes
cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗i |mb; ri). Else it sets cpa.ct∗i = CPA.Enc(cpa.pki, 0

`cpa ; ri).

6. Finally, the challenger computes a signature sig.σ∗ ← Sig.Sign
(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))
and outputs

(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

• Post-challenge decryption queries: Same as pre-challenge decryption queries, but challenge ciphertext
not allowed as a decryption query.

• Guess: The adversary sends bit b′ and wins if b = b′.

Hybrid H1 : This experiment is identical to the previous one except that the challenger chooses sig.vk∗

and S∗ during setup, and uses these to compute the challenge ciphertext.

• Setup phase:

1. The challenger first chooses tsc.pp← TSC.Setup(1λ, 1N , 1B , 1t).

2. Next, it chooses (cpa.pki, cpa.ski)← CPA.Setup(1λ) for all i ∈ [N ].

3. Then it chooses a uniformly random B size subset S∗ = {ij}j∈[B] ⊂ [N ] and (sig.sk∗, sig.vk∗) ←
Sig.Setup(1λ).

4. It sends pk =
(
tsc.pp, (cpa.pki)i∈[N ]

)
to A and uses sk = (cpa.ski)i∈[N ] for handling decryption

queries.

Hybrid H2 : In this experiment, the challenger outputs ⊥ during the decryption queries if the queried

ciphertext ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
is such that sig.vk = sig.vk∗.

• Pre-challenge decryption queries: The adversary makes polynomially many decryption queries. For

each query ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
, if sig.vk = sig.vk∗, then the challenger outputs

⊥, else it outputs Dec(sk, ct).

• Post-challenge decryption queries: Same as pre-challenge decryption queries, but challenge ciphertext
not allowed as a decryption query.

18



Hybrid H3 : Here, the challenger runs TSC.AltSetup instead of TSC.Setup during the setup phase. During
the challenge phase, it uses the commitment and proofs generated by TSC.AltSetup instead of computing
them using TSC.Commit.

• Setup phase:

1. The challenger first chooses (cpa.pki, cpa.ski)← CPA.Setup(1λ) for all i ∈ [N ].

2. Next, it chooses a uniformly random B size subset S∗ ⊂ [N ] and (sig.sk∗, sig.vk∗)← Sig.Setup(1λ).

3. Then it chooses
(
tsc.com∗, (tsc.σi)i∈[N ]

)
← TSC.AltSetup(1λ, 1N , 1B , 1t, sig.vk∗).

4. It sends pk =
(
tsc.pp, (cpa.pki)i∈[N ]

)
to A and uses sk = (cpa.ski)i∈[N ] for handling decryption

queries.

• Challenge phase: Note that the signature keys (sig.sk∗, sig.vk∗), set S∗ and commitment tsc.com∗

together with proofs (tsc.σi)i∈[N ] were chosen during setup. Below we include the full challenge phase
for readability.

1. For all i 6= iB , it chooses ri ← {0, 1}`rnd , and sets riB = ⊕j<B rij .

2. Using the ri values, the encryption algorithm computes N ciphertexts. If i ∈ S, it computes
cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗i |mb; ri). Else it sets cpa.ct∗i = CPA.Enc(cpa.pki, 0

`cpa ; ri).

3. Finally, the challenger computes a signature sig.σ∗ ← Sig.Sign
(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))
and outputs

(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

Hybrid H4 : In this experiment, the challenger modifies the challenge ciphertext. Instead of encrypting
0`cpa at N −B positions, the challenger encrypts 1|tsc.σi|mb at position i for all i ∈ [N ].

• Challenge phase:

1. For all i 6= iB , it chooses ri ← {0, 1}`rnd , and sets riB = ⊕j<B rij .

2. Using the ri values, the encryption algorithm computes N ciphertexts. For all i ∈ [N ], it computes
cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗i |mb; ri).

3. Finally, the challenger computes a signature sig.σ∗ ← Sig.Sign
(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))
and outputs

(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

Hybrid H5 : In this experiment, the challenger encrypts at all positions using true randomness.

• Challenge phase:

1. For all i ∈ [N ], the challenger chooses ri ← {0, 1}`rnd .

2. Using the ri values, the encryption algorithm computes N ciphertexts. For all i ∈ [N ], it computes
cpa.ct∗i = CPA.Enc(cpa.pki, 1|tsc.σ∗i |mb; ri).

3. Finally, the challenger computes a signature sig.σ∗ ← Sig.Sign
(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))
and outputs

(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.
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Hybrid H6 : In the final hybrid experiment, the challenger switches all challenge ciphertext components
to encryptions of 0`cpa . As a result, in this hybrid, the adversary has advantage 0.

• Challenge phase:

1. For all i ∈ [N ], it chooses ri ← {0, 1}`rnd .

2. Using the ri values, the encryption algorithm computes N ciphertexts. For all i ∈ [N ], it computes
cpa.ct∗i = CPA.Enc(cpa.pki, 0

`cpa ; ri).

3. Finally, the challenger computes a signature sig.σ∗ ← Sig.Sign
(
sig.sk∗,

(
tsc.com∗, (cpa.ct∗i )i∈[N ]

))
and outputs

(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
.

5.1.1 Analysis

Lemma 5.1. For all λ ∈ N, and any adversary A, prA,0(λ)− prA,1(λ) = 0.

Proof. In game H0 the challenge phase is used to choose a random S∗ = {ij}j∈[B] ⊂ [N ] and sample

(sig.sk∗, sig.vk∗)← Sig.Setup(1λ). Both of these samplings will use a fresh set of coins and their distribution
will be completely independent of any attacker actions including the challenge messages selected by the
attacker. Therefore the attacker’s sampling them in the challenge phase as in H0 or earlier as in H1 is
identical.

Lemma 5.2. Assuming that P1 is a strongly-unforgeable one-time signature scheme, there exists a negligible
function negl(·) s.t. for all λ ∈ N, and any ppt. adversary A, prA,1(λ)− prA,2(λ) ≤ negl(λ).

Proof. In game H1, the challenger answers all decryption queries, except when queried on the challenge

ciphertext ct∗ =
(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
. In game H2, the challenger will not respond to

decryption queries on ct∗ and returns⊥ on any decryption query for ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
where ct 6= ct∗ and sig.vk = sig.vk∗. However, there are two cases to explore. First, if ct 6= ct∗ and
sig.vk = sig.vk∗ but the signature sig.σ does not verify under sig.vk on message (tsc.com, (cpa.cti)i∈[N ])),
then the challenger of game H2 immediately outputs ⊥ and the challenger of game H1 would also have
returned ⊥ (via rejection of this ciphertext by the regular decryption algorithm) and the two responses are
identical.

Second if ct 6= ct∗ and sig.vk = sig.vk∗, but the signature does verify, then the adversary’s view of these
two games differ, but we argue that due to the strong unforgeability of the one-time signature scheme P1,
this case occurs with only negligible probability. To see this, we argue that any adversary with non-negligble
prA,1(λ) − prA,2(λ) can be used to break P1 as follows. The reduction generates (pk, sk) ← Setup(1λ) and
sends pk to A. It receives sig.vk∗ from the SU-OTS challenger. If sig.vk∗ appears as the signing key in
any phase I decryption query, then it aborts. Since A has no information about sig.vk∗ at this point, this
can happen with probability at most the number of decryption queries (polynomial) divided by the size of
the public key space for the signature scheme (exponential), so with negligible probability. Once A outputs
challenge messages m0,m1, the reduction selects one of these messages randomly and encrypts it according to
the normal encryption algorithm, except it uses sig.vk∗ as the verification key and obtains the corresponding
signature sig.σ∗ by calling the SU-OTS challenger to sign the message (tsc.com∗, (cpa.ct∗i )i∈[N ]) (this message

is computed according to the normal encryption algorithm). It passes this properly-distributed ciphertext

ct∗ =
(
sig.vk∗, sig.σ∗, tsc.com∗, (cpa.ct∗i )i∈[N ]

)
back to A. When A issues a Phase II decryption query ct =(

sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
where ct 6= ct∗, sig.vk = sig.vk∗ and sig.σ verifies, then the reduction

outputs ((tsc.com, (cpa.cti)i∈[N ]), sig.σ) to win the SU-OTS challenge.

Lemma 5.3. Assuming that P3 is a tagged set commitment scheme with indistinguishability of setup
(Definition 4.1), there exists a negligible function negl(·) s.t. for all λ ∈ N, and any ppt. adversary A,
prA,2(λ)− prA,3(λ) ≤ negl(λ).
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Proof. In game H2, the challenger uses TSC.Setup to generate the public commitment parameters and
TSC.Commit to generate the commitment and proofs of membership (for the B items in S ⊆ [N ]), whereas
in game H3, the challenger uses TSC.AltSetup to generate the public parameters, commitment and proofs of
membership (for all items in [N ]). Otherwise, these games are identical. If there exists an efficient A that
can distinguish between H2 and H3, then we can use this A to attack the indistinguishability of setup of
P3. The reduction works as follows. In both games, a random set S∗ ⊂ [N ] and a signing/verification key
(sig.sk∗, sig.vk∗)← Sig.Setup(1λ) are chosen at the start of the game. The reduction sets tg = sig.vk∗. It sends
(1λ, 1B , 1t, tg, S∗) to the Expt-Ind-Setup challenger, who responds with (pp∗, com∗, (σ∗i )i∈S), which are either
generated by TSC.Setup (making this equivalent to H2 or TSC.AltSetup (making this equivalent to H3). The

reduction uses CPA.Setup(1λ, 1CPA) to generate N public/secret key pairs. It sets pk =
(
pp∗, (cpa.pki)i∈[N ]

)
and sk = (cpa.ski)i∈[N ]. It sends pk to A. It answers each decryption query by running the normal decryption

algorithm using sk. (In both games, we already have that if any decryption (pre or post challenge) query
sig.vk = sig.vk∗, then the response is ⊥, so if this somehow happens the response would be identical in
both games.) Upon receiving challenge messages m0,m1, it chooses a random bit b and encrypts mb,
using S∗ (which it chose randomly earlier) in step 1 of the encryption algorithm, setting (sig.sk∗, sig.vk∗)
as the signing/verification key in step 2 (instead of generating a new pair), using the commitment/proofs
(com∗, (σ∗i )i∈S) (obtained earlier) in step 3, instead of computing them using TSC.Commit, and then following
steps 3-5 as normal to generate ct∗. It sends this challenge ciphertext ct∗ to A. It continues to answer
decryption queries for A using sk. Once A outputs a guess b′ if b = b′, then it outputs 0 (guessing H2) and
otherwise outputs 1 (guessing H3). Since our assumption is that A has a non-negligible advantage in Game
H2 over Game H3, then this reduction will have a non-negligible advantage in the indistinguishability of
setup experiment for the tagged commitment scheme. Thus, we have a contradiction.

Lemma 5.4. Assuming encryption scheme with randomness recovery P2 is an IND-CPA secure encryption
scheme and the tagged set commitment scheme P3 satisfies statistical soundness ( Definition 4.2), for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, advA,3(λ)−advA,4(λ) ≤ negl(λ).

Proof. First, we define the alternate decryption routine which works without the jth decryption key.

Dec-Altj(sk−j , ct): Let sk = (cpa.ski)i 6=j and ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
. The ‘alternate’

decryption oracle performs the following steps:

1. If 0← Sig.Verify
(
sig.vk, sig.σ,

(
tsc.com, (cpa.cti)i∈[N ]

))
then decryption outputs ⊥.

2. Next, it initializes a set U ′ to be ∅. For each i 6= j it computes (yi, ri) = CPA.Dec(cpa.ski, cpa.cti).
Parse yi as gi|σi|mi. It adds (i, yi) to U ′ if Check(i, yi, ri) = 1. 9

3. If the set U ′ has B−1 elements, then set rj = ⊕(i,yi)∈U ′ri. Use rj to recover the message from cpa.ctj .
Let yj = CPA.Recover(cpa.pkj , cpa.ctj , rj). If yj 6=⊥ and Check(j, yj , rj) = 1, then add (j, yj) to U ′.

4. If the set U ′ does not have exactly B elements then the decryption algorithm outputs ⊥.

5. If ⊕(i,yi)∈U ′ ri 6= 0`, it outputs ⊥.

6. Finally, the decryption algorithm checks that for all (i, ri) ∈ U ′, the mi values recovered from yi are
the same. If not, it outputs ⊥. Else it outputs this common mi value as the decryption.

We will now show that with overwhelming probability (over the choice of the CPA keys and the output

of TSC.AltSetup) there does not exist a ciphertext ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
with sig.vk 6=

sig.vk∗ such that Dec(sk, ct) 6= Dec-Altj(sk−j , ct).

9Recall, Check was defined in Section 5. It outupts 1 if yi 6=⊥, gi = 1, the commitment verifies and encryption of yi using
public key cpa.pki and randomness ri outputs cpa.cti.
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Claim 5.1. There exists a negligible function negl(·) such that for all λ ∈ N and j ∈ [N ],

Pr

[
∃ct =

(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk 6= sig.vk∗ and
Dec(sk, ct) 6= Dec-Altj(sk−j , ct)

]
≤ negl(λ)

where the probability is over the choice of CPA keys10 and output of TSC.AltSetup.

Proof. We consider the following cases:

1. Both decryptions output non-bot but distinct messages.

Pr

∃ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk 6= sig.vk∗ and
Dec(sk, ct) 6= Dec-Altj(sk−j , ct) and
(Dec(sk, ct),Dec-Altj(sk−j , ct)) 6= (⊥,⊥)

 = 0.

This follows directly from the construction of our scheme. Note that Dec and Dec-Altj agree on N−1 of
the sub-decryptions. Hence the message recovered must be the same if the output message is non-bot.

2. Decryption using sk outputs ⊥ but decryption using sk−j outputs non-bot message.

Pr

∃ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk 6= sig.vk∗ and
Dec(sk, ct) 6= Dec-Altj(sk−j , ct) and
Dec(sk, ct) =⊥

 ≤ negl(λ)

Here we have the following sub-cases, depending on which step of the decryption outputs ⊥. For each
of the sub-cases, we show that Dec-Altj also outputs ⊥.

(a) Step 1 of Dec outputs ⊥ (that is, signature does not verify). Then Step 1 of Dec-Altj also outputs
⊥.

(b) Step 3 of Dec outputs ⊥ (that is, the set U constructed by Dec has size not equal to B). If
|U | < B − 1, then Step 4 of Dec-Altj outputs ⊥ since the set U ′ after Step 3 in Dec-Altj also has
size less than B.

If |U | > B, then this can be used to break the statistical soundness security of TSC (see Definition
4.2) because this ciphertext can produce at least B + 1 commitments for tag sig.vk 6= sig.vk∗.

If |U | = B−1, then we will show that the size of set U ′ after Step 3 in Dec-Altj is also B−1, hence
Dec-Altj rejects in Step 4. Suppose on the contrary, the set U ′ has size B after Step 3. This means
(j, yj) was not added to U in Dec (Step 2), but the same tuple was added to U ′ in Dec-Altj (Step
3). Note that this implies Check(j, yj , rj) = 1 and therefore, CPA.Enc(cpa.pkj , yj ; rj) = cpa.ctj .
Using the perfect correctness of the encryption scheme, CPA.Dec(cpa.skj , cpa.ctj) = (yj , rj). This
leads to a contradiction (as (j, yj) /∈ U).

(c) Step 4 outputs ⊥. In this case, Step 5 of Dec-Altj also outputs ⊥ since the set U recovered by
Dec is identical to the set U ′ recovered by Dec-Altj .

(d) Step 5 outputs ⊥. Here again, since the set U recovered by Dec is identical to the set U ′ recovered
by Dec-Altj , Step 6 of Dec-Altj also rejects here.

3. Decryption using sk−j outputs ⊥ but decryption using sk outputs non-bot message.

Pr

∃ct =
(
sig.vk, sig.σ, tsc.com, (cpa.cti)i∈[N ]

)
s.t.

sig.vk 6= sig.vk∗ and
Dec(sk, ct) 6= Dec-Altj(sk−j , ct) and
Dec-Altj(sk−j , ct) =⊥

 ≤ negl(λ)

Here we have the following sub-cases, depending on which step of Dec-Altj outputs ⊥. For each of the
sub-cases, we show that Dec also outputs ⊥.

10For simplicity, we are assuming that the underlying PKE scheme is perfectly correct, instead of almost-all-keys perfect
correctness. Note that in an almost-all-keys perfect scheme, there is a negligible probability that the (pk, sk) output by setup
does not satisfy correct decryption on all messages. However, since only a negligible fraction of the keys are ‘bad’, it suffices to
focus our attention on perfectly correct encryption schemes.
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(a) Step 1 of Dec-Altj outputs ⊥ =⇒ Step 1 of Dec outputs ⊥.

(b) Step 4 of Dec-Altj outputs ⊥. Let U ′ be the set after Step 3 in Dec-Altj , and U the set after Step
2 in Dec. If |U ′| > B, then Step 3 of Dec outputs ⊥ since U also has size larger than B.

If |U ′| < B − 1, then |U | < B, hence Step 3 of Dec outputs ⊥.

We will now show that if |U ′| = B− 1, then either |U | is B− 1, or Step 4 of Dec outputs ⊥. Since
|U ′| = B−1, this means the (j, y′j , r

′
j) tuple11 extracted in Step 3 does not satisfy Check(j, y′j , r

′
j) =

1. Let us now consider the implications of |U | = B and ⊕(i,yi)∈U ri = 0`rnd . First, note that
U = U ′ ∪ {(j, yj)}, and hence rj = ⊕(i,yi)∈U ri = r′j . Since Check(j, yj , rj) = 1, encryption of yj
using randomness rj outputs cpa.ctj . Using the perfect correctness of the encryption scheme, it
follows that y′j = yj , but this leads to a contradiction.

(c) Step 5 of Dec-Altj outputs ⊥ =⇒ Step 4 of Dec outputs ⊥ (the set U ′ recovered by Dec-Altj is
identical to the set U recovered by Dec).

(d) Step 6 of Dec-Altj outputs ⊥ =⇒ Step 5 of Dec outputs ⊥ (same reasoning as above).

We will now use the alternate decryption algorithm to show that hybrids H3 and H4 are computationally
indistinguishable. We will first define intermediate hybrid experiments H3,j for 0 ≤ j ≤ N , where H3,0

corresponds to H3 and H3,N corresponds to H4. In hybrid H3,j , for each i ≤ j, the ith challenge ciphertext
component cpa.cti is an encryption of 1|tsc.σ∗i |mb. Therefore, it suffices to show that for all j ∈ [N ], H3,j

and H3,j−1 are computationally indistinguishable.
In order to proveH3,j−1 ≈c H3,j , we will introduce two more intermediate hybrid experiments: Halt,j,0 and

Halt,j,1. The experiment Halt,j,0 is identical to H3,j−1, except that the challenger uses Dec-Altj instead of Dec
for answering decryption queries. Similarly, the experiment Halt,j,1 is identical to H3,j , except that the chal-
lenger uses Dec-Altj instead of Dec for answering decryption queries. (Note that in both these experiments,
the challenger still rejects decryption queries corresponding to sig.vk∗).We will show that H3,j−1 ≈c Halt,j,0,
Halt,j,0 ≈c Halt,j,1 and Halt,j,1 ≈c H3,j .

As before, let advA,x denote the advantage of adversary A in hybrid Hx.

Claim 5.2. There exists a negligible function negl(·) such that for any λ ∈ N and any adversary A,
advA,3,j−1(λ)− advA,alt,j,0(λ) ≤ negl(λ).

Proof. The proof of this claim follows from Claim 5.1.

Claim 5.3. Assuming the encryption scheme P1 is IND-CPA secure, for any ppt. adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, advA,alt,j,0(λ)− advA,alt,j,1(λ) ≤ negl(λ).

Proof. Suppose there exists a ppt. adversary A such that advA,alt,j,0− advA,alt,j,1 ≤ negl(λ). We can use this
adversary to build a reduction algorithm B that breaks the IND-CPA security of the encryption scheme P1.
The main observation here is that in Halt,j,0 and Halt,j,1, the only component that possibly changes is the
jth ciphertext component cpa.ctj , and we can reduce the computational indistinguishability of these hybrids
to the IND-CPA security because both these hybrids do not use the jth secret key cpa.skj .

The reduction algorithm receives the public key cpa.pkj from the challenger; it chooses a uniformly random
B size set S, signing keys (sig.sk∗, sig.vk∗), CPA scheme’s keys (cpa.pki, cpa.ski)i 6=j , runs TSC.AltSetup and
sends pk to A. The decryption queries are handled using (cpa.ski)i6=j since both hybrids use Dec-Altj . The

adversary sends its challenge messages m0,m1, and the reduction algorithm chooses b← {0, 1}. If j /∈ S,12

the reduction algorithm sends 0`cpa , 1|tsc.σ∗j |mb to the challenger as challenge messages, and receives cpa.ctj .
It then computes the remaining ciphertext components and sends the ciphertext ct to A. The adversary then
makes polynomially many post-challenge decryption queries, and finally sends its guess b′. The reduction
algorithm guesses that cpa.ctj is encryption of 0`cpa iff b = b′.

11We use y′j , r
′
j here to distinguish it from yj , rj which are computed in Step 2 of Dec.

12If j ∈ S, then these two hybrids are identical.
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Claim 5.4. There exists a negligible function negl(·) such that for any λ ∈ N and any adversary A,
advA,alt,j,1(λ)− advA,3,j(λ) ≤ negl(λ).

Proof. The proof of this claim follows from Claim 5.1.

Lemma 5.5. There exists a negligible function negl(·) s.t. for all λ ∈ N, and any adversary A, prA,4(λ) −
prA,5(λ) ≤ negl(λ).

Proof. First, let us consider the distribution D defined by the following experiment:

• choose a random vector x = (x1, x2, . . . , xN−1)←
(
{0, 1}`rnd

)N−1
.

• choose a random vector z← {0, 1}N−1 of Hamming weight B − 1.
• output (x,⊕i:zi=1xi).

Let U be the uniform distribution over
(
{0, 1}`rnd

)N
.

Claim 5.5.
SD(D,U) ≤ 2−λ.

Proof. This follows from the Leftover Hash Lemma [HILL99]. Let hx be a hash function defined by x =
(x1, . . . , xN−1) which maps N − 1 bits to `rnd bits as follows: hx(z) = ⊕i:zi=1xi. Let Y denote the uniform
distribution over all N−1 bit strings of Hamming weight B−1. This distribution has min-entropy H∞(Y) =

log
((
N−1
B−1

))
. Since the hash function family {hx}x∈({0,1}`rnd )N−1 is a pairwise-independent hash function

family and H∞(Y) > `rnd + 2λ, SD(D,U) ≤ 2−λ.

As a corollary, it follows that the following distribution D′ is also close to uniform:

• choose a random vector z′ ← {0, 1}N of Hamming weight B. Let i1 < i2 < . . . < iB denote the indices
such that z′ij = 1.

• for each i 6= iB , choose x′i ← {0, 1}`rnd .
• set x′iB = ⊕j<Bx′ij and output x′.

Corollary 5.2.
SD(D′, U) ≤ 2−λ.

Proof. Given a sample x which is either from D or U , one can generate a sample from either D′ or U as
follows: choose a random permutation π : [N ] → [N ], and permute the components of x according to π;

that is, set x′i = xπ(i) for all i ∈ [N ]. Clearly, if x is a uniformly random sample from
(
{0, 1}`rnd

)N
, then the

resulting vector x′ is also a uniformly random sample.
Suppose x is a sample from D, and let z ∈ {0, 1}N−1 be the random B − 1 weight vector chosen by D

sampler with 1 at positions {i1, . . . , iB−1}. Let z′ ∈ {0, 1}N be a B weight vector which has 1 at positions
{π(i1), . . . , π(iB−1), π(N)} and 0 elsewhere. Since π is a uniformly random permutation, the vector z′ is a
uniformly random B weight vector and the resulting vector x′ is from distribution D′.

Using this corollary, we can now prove our lemma. Note that the only difference between the two hybrid
experiments is the choice of randomness for encryptions. In Hybrid H4, the challenger chooses a B-size set
S = {i1, . . . , iB}, chooses ri ← {0, 1}`rnd for all i 6= iB and sets riB = ⊕j∈[B] rij . This corresponds to the
distribution D′. In Hybrid H5, all ri are chosen uniformly at random.

Lemma 5.6. Assuming encryption scheme with randomness recovery P2 is an IND-CPA secure encryption
scheme and the tagged set commitment scheme P3 satisfies statistical soundness ( Definition 4.2), for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, advA,5(λ)−advA,6(λ) ≤ negl(λ).
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Proof. The proof of this lemma is very similar to the proof of Lemma 5.4, the only difference being that there
is no set S∗ here (that is, we switch all ciphertexts to being encryptions of 0`cpa ; in Lemma 5.4, the ciphertext
components corresponding to indices in set S∗ were not altered). We include the proof in Appendix A for
completeness.
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A Proof of Lemma 5.6

As in the proof of Lemma 5.4, we will first define intermediate hybrid experiments H5,j for 0 ≤ j ≤ N , where
H5,0 corresponds to H5 and H5,N corresponds to H6. In hybrid H5,j , the first j ciphertext components are
encryptions of 0`cpa . We will show that for all j ∈ [N ], H5,j ≈c H5,j−1.

We will introduce two more intermediate hybrid experiments: Halt,j,0 and Halt,j,1.13 The experiment
Halt,j,0 is identical to H5,j−1, except that the challenger uses Dec-Altj instead of Dec for answering decryption
queries. Similarly, the experiment Halt,j,1 is identical to H5,j , except that the challenger uses Dec-Altj instead
of Dec for answering decryption queries. (Note that in both these experiments, the challenger still rejects
decryption queries corresponding to sig.vk∗).We will show that H5,j−1 ≈c Halt,j,0, Halt,j,0 ≈c Halt,j,1 and
Halt,j,1 ≈c H5,j .

As before, let advA,x denote the advantage of adversary A in hybrid Hx.

Claim A.1. There exists a negligible function negl(·) such that for any λ ∈ N and any adversary A,
advA,5,j−1(λ)− advA,alt,j,0(λ) ≤ negl(λ).

Proof. The proof of this claim follows from Claim 5.1.

Claim A.2. Assuming the encryption scheme P1 is IND-CPA secure, for any ppt. adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, advA,alt,j,0(λ)− advA,alt,j,1(λ) ≤ negl(λ).

13Note that we are overloading the names of these hybrid names (the same names were used for intermediate hybrids in the
proof of Lemma 5.4). This is to avoid additional subscripts in the hybrid name.
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Proof. Suppose there exists a ppt. adversary A such that advA,alt,j,0− advA,alt,j,1 ≤ negl(λ). We can use this
adversary to build a reduction algorithm B that breaks the IND-CPA security of the encryption scheme P1.
The main observation here is that in Halt,j,0 and Halt,j,1, the only component that possibly changes is the
jth ciphertext component cpa.ctj , and we can reduce the computational indistinguishability of these hybrids
to the IND-CPA security because both these hybrids do not use the jth secret key cpa.skj .

The reduction algorithm receives the public key cpa.pkj from the challenger; it chooses signing keys
(sig.sk∗, sig.vk∗), CPA scheme’s keys (cpa.pki, cpa.ski)i6=j , runs TSC.AltSetup and sends pk to A. The de-
cryption queries are handled using (cpa.ski)i 6=j since both hybrids use Dec-Altj . The adversary sends its
challenge messages m0,m1, and the reduction algorithm chooses b← {0, 1}. The reduction algorithm sends
1|tsc.σ∗j |mb, 0

`cpa to the challenger as challenge messages, and receives cpa.ctj . It then computes the remain-
ing ciphertext components and sends the ciphertext ct to A. The adversary then makes polynomially many
post-challenge decryption queries, and finally sends its guess b′. The reduction algorithm guesses that cpa.ctj
is encryption of 1|tsc.σ∗j |mb iff b = b′.

Claim A.3. There exists a negligible function negl(·) such that for any λ ∈ N and any adversary A,
advA,alt,j,1(λ)− advA,3,j(λ) ≤ negl(λ).

Proof. The proof of this claim follows from Claim 5.1.
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