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Abstract

In this work, we study the question of what set of simple-to-state assumptions suffice for con-
structing functional encryption and indistinguishability obfuscation (iO), supporting all func-
tions describable by polynomial-size circuits. Our work improves over the state-of-the-art work
of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple dimensions.
New Assumption: Previous to our work, all constructions of iO from simple assumptions
required novel pseudorandomness generators involving LWE samples and constant-degree poly-
nomials over the integers, evaluated on the error of the LWE samples. In contrast, Boolean
pseudorandom generators (PRGs) computable by constant-degree polynomials have been exten-
sively studied since the work of Goldreich (2000).1 We show how to replace the novel pseudoran-
dom objects over the integers used in previous works, with appropriate Boolean pseudorandom
generators with sufficient stretch, when combined with LWE with binary error over suitable
parameters. Both binary error LWE and constant-degree Goldreich PRGs have been subject
to extensive cryptanalysis since much before our work. Thus, we back the plausibility of our
assumption with security against algorithms studied in context of cryptanalysis of these objects.
New Techniques: we introduce a number of new techniques:

• We introduce a simple new technique for proving leakage resilience when polynomial-size
noise is used to hide small secrets (for example, to hide LWE-based FHE decryption errors).

• We show how to build partially-hiding public-key functional encryption, supporting degree-
2 functions in the secret part of the message, and arithmetic NC1 functions over the public
part of the message, assuming only standard assumptions over asymmetric pairing groups.

• We construct single-ciphertext secret-key functional encryption for all circuits with linear
key generation, assuming only the LWE assumption.

Simplification: Unlike prior works, our new techniques furthermore let us construct public-key
functional encryption for polynomial-sized circuits directly (without invoking any bootstrapping
theorem, nor security amplification, nor transformation from secret-key to public-key FE), and
based only on the polynomial hardness of underlying assumptions. The functional encryption
scheme satisfies a strong notion of efficiency where the size of the ciphertext grows only sublin-
early in the output size of the circuit and not its size. Finally, assuming that the underlying
assumptions are subexponentially hard, we can bootstrap this construction to achieve iO.

∗Please note that this paper subsumes the ePrint article published by three of the present authors in [JLS19].
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1Goldreich and follow-up works study Boolean pseudorandom generators with constant-locality, which can be
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1 Introduction

This paper studies the notion of indistinguishability obfuscation (iO) for general programs com-
putable in polynomial time [BGI+01, GKR08, GGH+13b], and develops several new techniques
to strengthen the foundations of iO. The key security property for iO requires that for any two
equivalent programs P0 and P1 modeled as circuits of the same size, where “equivalent” means that
P0(x) = P1(x) for all inputs x, we have that iO(P0) is computationally indistinguishable to iO(P1).
Furthermore, the obfuscator iO should run in probabilistically polynomial time.

This notion of obfuscation was coined by [BGI+01] in 2001. However, until 2013, there was
not even a single candidate construction known. This changed with the breakthrough work of
[GGH+13b]. Soon after, the floodgates opened and a flurry of over 100 papers were published
reporting applications of iO (e.g. [SW14, BFM14, GGG+14, HSW13, KLW15, BPR15, CHN+16,
GPS16, HJK+16]). Not only did iO enable the first constructions of numerous important cryp-
tographic primitives, iO also expanded the scope of cryptography, allowing us to mathematically
approach problems that were previously considered the domain of software engineering. A simple
example along these lines is the notion of crippleware [GGH+13b]: Alice, a software developer,
has developed a program P using powerful secrets, and wishes to sell her work. Before requiring
payment, Alice is willing to share with Bob a weakened (or “crippled”) version of her software.
Now, Alice could spend weeks developing this crippled version P̃ of her software, being careful not
to use her secrets in doing so; or she could simply disable certain inputs to cripple it yielding an
equivalent P′, but this would run the risk of Bob hacking her software to re-enable those disabled
features. iO brings this problem of software engineering into the realm of mathematical analysis.
With iO, Alice could avoid weeks of effort by simply giving to Bob iO(P′), and because this is
indistinguishable from iO(P̃), Alice is assured that Bob can learn no secrets.

Not only has iO been instrumental in realizing new cryptographic applications, it has helped
us advance our understanding of long-standing theoretical questions. One such recent example is
that of the first cryptographic evidence of the average-case hardness of the complexity class PPAD
(which contains of the problem of finding Nash equilibrium). In particular, [BPR15] constructed
hard instances for the End Of the Line (EOL) problem assuming subexponentially secure iO and
one-way functions.

What hardness assumptions suffice for constructing iO? Given its importance, a crucial
question is to identify what hardness assumptions, in particular, simple ones, suffice for constructing
iO. While it is hard to concretely measure simplicity in assumptions, important features include
i) having succinct description, ii) being falsifiable and instance independent (e.g., independent of
the circuit being obfuscated), and iii) consisting of only a constant number of assumptions, as
opposed to families of an exponential number of assumptions. However, research on this question
has followed a tortuous path over the past several years, as summarized in Table 1, and discussed
further below. So far, despite of a lot of progress, before our work, no known iO constructions were
based on assumptions that have all above features.

Our new assumption. In this work, we introduce a new simple-to-state assumption, that sat-
isfies all the features enumerated above. We show how to provably achieve iO based only on our
new assumption combined with standard assumptions, namely subexponentially secure Learning
With Errors (LWE) problem [Reg05], and subexponentially secure SXDH and bilateral DLIN as-
sumptions over bilinear maps [Jou00, BF01]. Let us now describe, informally, our new assumption.
In this introductory description, we will omit discussion of parameter choices; however, they are
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Complex Assumptions‡ Simple-to-State Assumptions‡

MMap poly-deg MMap [GGH+13b] ... §

O(1)-deg MMap [Lin16, AS17]

poly-deg Mmap∗ [GLSW14, PST14a]

O(1)-deg MMap∗ [LV16, Lin17, LT17]

No
MMap

Direct Construction [GJK18, BIJ+20a]

Noisy Linear FE [Agr19, AP20a]

∆RG (or PFG)† [AJL+19, JLMS19]

Split FHE [BDGM20]

This work

‡ In this table, every assumption categorized as complex is instance dependent and/or consists of
a family of an exponential number of assumptions; every assumption categorized as simple is
falsifiable, instance independent, and truly a single assumption.
∗ These assumptions over MMaps, even with degree 3, currently either are broken, or quite com-

plex [MZ18]. Note that this is important because the description of the MMap must be a part
of description of the assumption.
† The security of ∆RG and LWE with leakage on errors through ∆RG in [AJL+19, JLMS19] are

families of exponentially many assumptions. With a simple modification, they can be reduced
to families of polynomially many assumptions. Here, we categorize these works according to
assumptions stated in the papers.
§ See introduction for an extensive list of references.

Table 1: Summary of IO constructions and key cryptographic objects they rely on.

crucial (even for standard assumptions), and we discuss them in detail in our technical sections.
We start by describing the ingredients that will go into the assumption.

Constant-degree2 Boolean PRGs generalize constant-locality Boolean PRGs, as for Boolean
functions, locality upper bounds the degree. The latter is tightly connected to the fundamental
topic of Constraint Satisfaction Problems (CSPs) in complexity theory, and were first proposed for
cryptographic use by Goldreich [Gol00] 20 years ago. The complexity theory and cryptography
communities have jointly developed a rich body of literature on the cryptanalysis and theory of
constant-locality Boolean PRGs [Gol00, MST03, ABR12, BQ12, App12, OW14, AL16, CDM+18].
Our new assumption first postulates that there exists a constant d-degree Boolean PRG, G :

{0, 1}n → {0, 1}m with sufficient stretch m ≥ nd
d
2
e·(0.5+ε)+ρ for some constants ε, ρ > 0, whose

output r = G(x) should satisfy the standard notion of pseudorandomness. Furthermore, our
assumption postulates that the pseudorandomness holds even when its Boolean input x ∈ {0, 1}n
is embedded in LWE samples as noises, and the samples are made public. The latter is known as
Learning With Binary Errors (LWBE), which has been studied over the last decade [MP13, AG11,
CTA19, CSA20]. Our new assumption, combining Boolean PRGs and LWBE, is as follows:

The G-LWEleak-security assumption (informal).(
{ai, 〈ai, s〉+ ei mod p}i∈[n], G,G(e)

)
//e = (e1, . . . , en)← {0, 1}n, ai, s← Zn

0.5+ε

p (1)

≈
(
{ai, 〈ai, s〉+ ei mod p}i∈[n], G, r

)
//r ← {0, 1}m (2)

2throughout this work, unless specified, by degree of boolean PRGs, we mean the degree of the polynomial
computing the PRG over the reals.

2



As is evident here, this assumption is quite succinct, is falsifiable and instance-independent, does
not involve an exponential family of assumptions, and does not use multilinear maps. Furthermore,
the ingredients that make up the assumption – Constant-degree Boolean PRGs and LWBE – have
a long history of study within cryptography and complexity theory. As we discuss in detail in
Section 5.4, this assumption avoids attacks by all known cryptanalytic techniques. We note that
the parameter n of LWBE samples is chosen to be sub-quadratic in the length |s| of the secret. This
is needed in order to avoid Arora-Ge attacks on LWBE [AG11], and also avoid all known algebraic
attacks [CTA19]. Indeed, the parameter choices we make are not possible using the previous work
of [JLMS19], and the parameters used in [JLMS19] would render LWBE insecure.

Comparison to previous iO constructions. We now elaborate on Table 1 with an overview
of the assumptions underlying previous constructions of iO, and how these compare with our work.

Initial works [GGH13a, GGH+13b, BGK+14, BR14, PST14b, AGIS14, BMSZ16, CLT13, CLT15,
GGH15, CHL+15, BWZ14, CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16, DGG+16]
constructed candidate iO using high-degree multilinear maps with heuristic or “generic model”
arguments of security, and studied attacks on these candidates [CHL+15, BWZ14, CGH+15, HJ15,
BGH+15, Hal15, CLR15, MF15, MSZ16].

The work of [GLSW14] proposed clean and instance-independent assumptions in the context
of multilinear maps, which unfortunately was found to be broken when instantiated with then-
known multilinear map candidates [CHL+15, CLR15, CGH+15, BWZ14]. The work of [PST14b]
formulated the semantic security of multilinear map, which is falsifiable and instance indepen-
dent, but nevertheless similar in spirit to the Uber assumption. On the other hand, multilinear
maps of degree 2 – bilinear maps – are well-understood objects that have been used extensively in
cryptography, and for which we have standard computational hardness assumptions. Naturally, re-
search focused on decreasing the degree of the multilinear map used to build iO, down to a constant
[Lin16, LV16, AS17, Lin17, LT17] — note that prior constructions required a multilinear map whose
degree grew with the size of the obfuscated circuits. This line of work, initiated by Lin [Lin16],
led to the work of [LT17], which builds iO from a natural assumption called SXDH over 3-linear
maps. Again unfortunately, even this qualitatively weaker assumption is known to be broken when
instantiated with existing multilinear map candidates [BWZ14, CHL+15, CLR15, CGH+15]. Alter-
natively, one can instantiate the multilinear maps in this line of works with the complex candidate
multilinear maps of [MZ18] that are themselves based on “immunized obfuscation” techniques and
“weak generic multilinear map models” of [MSZ16, DGG+16], but this would involve incorporating
the complex multilinear map candidates into the hardness assumptions.

A number of recent works [GJK18, AJS18, Agr19, LM18, JLMS19, BIJ+20b, AP20b, BDGM20]
circumvent the use of multilinear maps. The works of [GJK18, BIJ+20b] gave direct constructions
of iO using new mathematics, but with only heuristic security arguments – where essentially the
underlying assumption is that the iO scheme itself is secure. The works of [Agr19, AP20b] and
[BDGM20] proposed new primitives called noisy linear FE and split FHE respectively, which are
sufficient for iO when combined with standard assumptions, and gave heuristic instantiations of
these new primitives. While noisy linear FE and split FHE are significantly simpler and apparently
weaker than iO, their security is not known to rely on a simple, instance-independent, single
assumption.

Noisy linear FE [Agr19] allows encrypting a vector v in a ciphertext ct and releasing many secret
keys ski, each of which associated with a vector ui, such that decryption reveals the inner product
〈v,ui〉+noisei perturbed by some noise dependent on v and ui. Security guarantees that ciphertexts
for two different vectors v and v′ are indistinguishable as long as they have approximately the
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same (instead of exactly the same) inner product with the vectors tied to the secret keys, i.e.,
|〈v,ui〉 − 〈v′,ui〉| ≤ B for some fixed polynomial bound B. As such, the security corresponds to a
family of exponentially many assumptions, one for each possible combination of vectors v,v′ and
ui’s satisfying the constraint. We note that [Agr19], when combined with techniques from [AJL+19,
JLMS19] or this work, also points to a pathway to iO if there exists 2-block-local PRG with
appropriate stretch that is not ruled out by existing attacks [BBKK17, LV17a]. However, there are
currently no unbroken instantiation of such 2-block-local PRGs (and hence omitted in Table 1).

On the other hand, the notion of split FHE proposed by [BDGM20] is as follows: Using an
FHE scheme, one can homomorphically evaluate many circuits C1, · · · , Cn on ciphertext ct′ of a
message m and obtain ciphertext ct of outputs y1, · · · , yn. In a split FHE, decryption contains two
syntactical steps: i) the first secret step uses the secret key, circuits C1, · · · , Cn, and the ciphertext
ct, to produce a decryption hint ρ, whose length is sub-linear in the length of the outputs (e.g.,
|ρ| = |y1, · · · , yn|1−ε for some ε > 0), then ii) the second public step recovers the outputs from
the decryption hint and the ciphertext ct. Importantly, the decryption hint ρ which is made pubic
should not hurt the semantic security of ct nor ct′. More precisely, for any two messages m0,m1

that produce the same outputs through C1, · · ·Cn, their ciphertexts should be indistinguishable
given the hint ρ for the the output ciphertext. This security, again, corresponds to a family of
exponentially many assumptions, one for each combination of messages and circuits.

Finally, closest to our work is the line of works by [AJL+19, Agr19, LM18, JLMS19], which
gets us close to having simple assumptions. They proposed a new way to construct iO without
multilinear maps, but instead by conjecturing and leveraging novel pseudorandomness properties of
low-degree polynomials over the integers. In the most recent work by [JLMS19], iO is constructed
from a new assumption, in addition to three standard assumptions: (1) subexponential security of
succinct assumptions over bilinear maps, (2) subexponential security of constant-locality Boolean
pseudorandom generators with polynomial expansion, and (3) subexponential security of LWE.

The new assumption of [JLMS19] postulates that there exist polynomials Q : Zn → Zm of
constant-degree and polynomial stretch (i.e, m = n1+ε) satisfying a weak pseudo-randomness prop-
erty, called weak perturbation-resilience: the outputs r = Q(x) can be used as “flooding” noises
to partially hide a smaller vector v by considering r + v. This property is then combined with
the LWE assumption as follows: for every small integer vector v ∈ Zm that is B bounded (i.e.,
‖v‖∞ ≤ B), no efficient adversary can distinguish the following two distributions with larger than
0.99 advantage, where χ is a narrow discrete Gaussian distribution, and λ is the security parameter
that is polynomially related with, but much smaller than n.(

{ai, 〈ai, s〉+ ei mod p}i∈[n], Q,Q(e) over Z
)
//e = (e1, . . . , en)← χn,ai, s← Zλp

weakly
≈

(
{ai, 〈ai, s〉+ ei mod p}i∈[n], Q,Q(e) + v over Z

)
//v ∈ ([−B,B] ∩ Z)m

The assumption of [JLMS19] is succinct, falsifiable, and instance independent, however, is a family
of exponentially many assumptions, one for each vector v with small magnitude. In addition, the
assumption has several novel, and therefore relatively unstudied, aspects:

1. It gives the adversary LWE samples with “leakage” on their noises Q(e) through a function
with some pseudo-randomness property.

2. It postulates pseudo-randomness property of constant-degree integer polynomials. Usually,
cryptographic pseudo-random objects are defined over a finite field like Zp for a prime p. Con-
sequently, there were no previous cryptanalysis literature to rely on when selecting candidate
polynomials. Moreover, computation over the integers may open the door to more attacks.
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For instance, degree-2 integer polynomials were successfully attacked using Sum-Of-Square
algorithms [BBKK18, BHJ+19].

3. The integer polynomials satisfy perturbation-resilience, which is a new, and therefore rela-
tively unstudied, weak pseudo-randomness property. The weakness of the pseudorandomness
property is required because no known constant-degree polynomial over the integers satisfy
the usual strong pseudorandomness properties satisfied by standard PRGs.

While it is interesting and important to study the pseudo-randomness properties of integer poly-
nomials and the security of the combined assumptions above, at this stage in the development of
iO, a primary goal is diversifying the set of assumptions sufficient for iO and basing iO on hard
computational problems that have as rich a history of study as possible. To this end, we formulate
our new assumption (Equation (1)) that is qualitatively different from the above assumption, and
replaces integer polynomials with the more standard notion of a Boolean PRG when combined with
LWE with binary errors, and show that it is sufficient for iO.

Comparison between our work and [JLMS19]. Let us compare our assumption with the as-
sumption used in [JLMS19]. Our new assumption retains the unusual aspect (1) that the ad-
versary sees LWBE samples with leakage on the noises, now through a PRGs. However, it mit-
igates the unusual aspect (2) by replacing the use of constant-degree integer polynomials with
constant-degree Boolean PRGs, which has a rich history of study. It also addresses the un-
usual aspect (3) by eliminating the need for a new notion of weak pseudo-randomness, and re-
place it with standard pseudorandomness. Both of the two ingredients, namely, the security
of Goldreich’s PRG and the security of LWE with binary errors have been studied for over a
decade. While studies on each ingredient individually do not directly justify the security of our
new assumption (which combines both), the rich literature on the cryptanalysis of Goldreich’s
PRG [Gol00, MST03, ABR12, BQ12, App12, OW14, AL16, CDM+18] and LWE with binary er-
ror [ACF+15, MP13, AG11, CTA19] provide ample techniques for attacks, defenses, and analysis.
Guided by them, we suggest concrete candidates PRGs and LWBE parameters, and verify that the
resulting assumption withstands a rich body of cryptanalysis techniques. In comparison, crypt-
analysis on integer polynomials started only after the recent works (see [BHJ+19]).

Figure 1: Our Framework.

Complexity and clarity in iO constructions. Another motivation for our work is to address
the complexity of existing iO constructions. Current constructions of iO are rather complex in the
sense they often rely on many intermediate steps, each of which incur a complexity blow up, both

5



Figure 2: Framework of the construction [JLMS19] to achieve functional encryption and obfusca-
tion.

in the sense of computational complexity and in the sense of difficulty of understanding. Ideally,
for the sake of simplicity, iO schemes would minimize the number of such transformations, and
instead aim at a more direct construction. In our case, we solely rely on the generic transformation
of [AJ15, BV15], which shows that iO can be build from Functional Encryption [SW05], a primitive
that was originally formulated by [BSW11, O’N10]. Roughly speaking, FE is a public-key or secret-
key encryption scheme where users can generate restricted decryption keys, called functional keys,
where each such key is associated with a particular function f . Such a key allows the decryptor to
learn from an encryption of a plaintext m, the value f(m), and nothing beyond that.

Previous constructions fell short in directly constructing a full-fledged FE needed for the im-
plication of iO [AJ15, BV15]. For example, as illustrated in Figure 2, the work of [JLMS19] first
obtain a “weak” FE that: i) is secret-key, ii) only generates function keys associated with function
computable only by NC0 circuits, iii) only ensures weak security, and iv) is based on subexponential
hardness assumptions. Then, generic transformations are applied to “lift” the function class sup-
ported and the security level, which inevitably makes the final FE and iO schemes quite complex.
Figure 2 depicts the blueprint of iO construction in [JLMS19].

An important factor that contributed to the complexity is the weakness of the pseudo-randomness
property of integer polynomials – it only partially hides, hence partially leaks, secret values (de-
noted by v above) to be protected. To compensate for the leakage, previous constructions rely on
heavy machinery, such as dense model theorems and advanced secret sharing schemes where it is
possible to compute directly functions over individual shares to obtain shares of the outputs.

This state of affairs motivates simplifying iO constructions, for efficiency and simplicity itself,
but also for making a technically deep topic more broadly accessible to the community.

Our contributions in a nutshell. We provide a simpler, more direct construction of iO. We do
this by formulating a new assumption, together with the standard assumptions of subexponential
LWE and subexponentially secure bilinear maps. Our new assumption is built upon computational
problems that are qualitatively different from and more extensively studied than that used in prior
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works. In particular, we replace the use of constant-degree polynomials over the integers having
weak pseudorandomness properties, with simply constant-degree Boolean PRGs, which has been
studied since 2000 [Gol00]. We also rely on the LWE assumption with binary errors, a natural
strengthening of the standard LWE (with small integer errors) that has been studied for the last
decade, see for instance [MP13, AG11, CTA19]. We combine them into a new assumption that
is simple to state, and instance-independent, and use it to prove iO security. On the front of
simplifying iO constructions, we give a direct construction of full-fledged FE needed by previous
works [AJ15, BV15] for the implication to iO. Notably, our direct construction gives an FE that
i) is public-key ii) handles the generation of function keys associated with functions computable
by any polynomial-size circuit, iii) guarantees standard security from the polynomial hardness of
the underlying assumptions. Hence, we circumvent the costly generic transformations for “lifting”
the function class supported and the security level applied in prior constructions, and avoid heavy
machinery such as dense model theorems and advanced secret sharing. This leads to simpler
constructions of both FE and iO, whose blueprints are depicted in Figure 1.

1.1 Our Results

Our main result is a simpler and more direct iO construction from the following assumptions.

Theorem 1.1. There is a construction of iO for obfuscating all polynomial-sized circuits based on
the following assumptions:

• There exists a constant-degree d Boolean PRG G : {0, 1}n → {0, 1}m with sufficient stretch

m ≥ nd
d
2
e·(0.5+ε)+ρ for some constant ε, ρ > 0, and satisfies subexponential G-LWEleak-security,

• the subexponential LWE assumption, and

• the subexponential bilateral DLIN and SXDH assumption over asymmetric pairing groups.

Our techniques and additional results. Our construction of FE and iO are enabled by our
new assumption and a number of new techniques designed to enable basing the security of iO on
simple-to-state assumptions. We briefly summarize them here, but we elaborate on how they are
used in the iO construction in the technical overview section immediately following this introduc-
tion.

New technique for hiding errors using polynomially bounded noises. A common technical problem
encountered in previous iO constructions is: how to hide a vector of small integer values v ∈ Zm of
some bounded magnitude B′, using another vector r ∈ Zm of larger but still polynomially bounded
magnitude, by adding them together r + v. Information theoretically, the sum does not hide v
completely. In this work, leveraging our new assumption, we use r that is uniformly distributed
in ([0, B] ∩ Z)m, where B is polynomially related to B′, and show that this suffices (in reality
this r will be generated using a Boolean PRG). We do so by proving a simple Bounded Leakage
Resilience Lemma (see Lemma 2.1), which informally says the following: suppose the vector to be
protected is statistically determined by some other value c, that is, v = V (c) with respect to a
potentially inefficient function V . Then, the sum r + v can be efficiently simulated using c alone,
that is, (c,v + r) and (c,Sim(c)) are indistinguishable w.r.t. an efficient simulator. This means if
c computationally hides v, it suffices to use polynomially bounded vector r to hide v. We believe
this simple lemma may be of independent interest.

Single-Ciphertext Functional Encryption with Linear Key Generation. We construct, assuming
only LWE, a single-ciphertext secret-key functional encryption scheme able to give functional keys
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associated with any polynomial-sized circuit, whose key generation and decryption algorithms have
certain simple structures: i) The key generation algorithm computes a linear function on the master
secret key and randomness, and ii) the decryption algorithm, given a ciphertext ct, a functional
secret key skf associated with a function f and the description of f itself, first performs some
deterministic computation on the ciphertext to get an intermediate ciphertext ctf , followed by
simply subtracting the skf from it, and then rounds to obtain the outcome. This object is previously
known as special homomorphic encryption in the literature [AR17a, Agr19, LM18]. However, prior
constructions only handles functional keys associated with NC0 circuits (for those based on LWE)
or NC1 circuits (for those based on ring LWE). In this work, we view it through the FE lens,
and construct it from LWE for all functions computable by polynomial-size circuits (Theorem 7.2).
Constructing such single-ciphertext (or single-key) FE (that do not have compact ciphertexts) from
standard assumptions is a meaningful goal on its own. In the literature, there are constructions
of single-ciphertext FE from the minimal assumption of public-key encryption [SS10a, GVW12a],
and several applications (e.g., [ABSV15]). However, they do not have the type of simple structures
(e.g., linear key generation algorithm) our construction enjoys, and consequently cannot be used in
our iO construction. These simple structural properties may also find uses in other applications.

Partially-Hiding Functional Encryption for NC1 Public Computation and Degree-2 Private Com-
putation. Partially-hiding Functional Encryption (PHFE) schemes involve functional secret keys,
each of which is associated with some 2-ary function f , and decryption of a ciphertext encrypting
(x,y) with such a key reveals f(x,y), x, f , and nothing more about y. Since only the input y
is hidden, such an FE scheme is called partially-hiding FE. The notion was originally introduced
by [GVW12b] where it was used to bootstrap FE schemes. A similar notion of partially-hiding
predicate encryption was proposed and constructed by [GVW15]. PHFE beyond the case of predi-
cate encryption was first constructed by [AJS18] for functions f that compute degree-2 polynomials
on the input y and degree-1 polynomials in x, under the name of 3-restricted FE, in the secret-key
setting. In this work, we construct a PHFE scheme from standard assumptions over bilinear pairing
groups, that is public-key and supports functions f that have degree 2 in the private input y, while
performs an arithmetic NC1 computation on the public input x (Theorem 8.1). More precisely,
f(x,y) = 〈g(x), q(y)〉 where g is computable by an arithmetic log-depth circuit and q is a degree-2
polynomial. The previous best constructions of partially-hiding FE were secret-key, and could only
handle NC0 computation on the public input [JLMS19].

This contribution is interesting in its own right, as a step forward towards broadening the class
of functions supported by FE schemes from standard assumptions. In particular, it can be used
to combine rich access-control and perform selective computation on the encrypted data. In that
context, the public input x represents some attributes, while the private input y is the plaintext.
Functional secret keys reveal the evaluation of a degree-2 polynomial on the private input if some
policy access, represented by an NC1 arithmetic circuit evaluates to true on the attributes. This
is the key-policy variant of a class of FE with rich access-control introduced in [ACGU20]. In the
latter, the authors build an FE scheme where ciphertexts encrypt a Boolean formula (the public
input) and a vector (the private input). Functional secret keys are associated with attributes and a
vector of weights, and decryption yields the weighted sum of the plaintexts if the formula embedded
in the ciphertext evaluates to true on the attributes embedded in the functional secret key. Their
construction, as ours, rely on standard pairing assumptions, but only permits computation of
degree-1 polynomials on the private input. They also give a lattice-based construction, which is
limited to identity-based access structures.
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Simplification. We considerably simplify the path to construct public-key functional encryption
and obfuscation. The overall framework in the prior works is given in Figure 2. In contrast,
our framework is more direct and arguably simpler. This is depicted in Figure 1. The detailed
explanation of these figures can be found in Section 2.7.

A tantalizing open question. Looking ahead, consider the following possibility: suppose it
is possible to “separate” the two ingredients in our assumption above — that is, basing iO on
LWBE and the security of Goldreich’s PRG with appropriate parameters separately. This would
give the first construction of iO relying on well-studied assumptions. We are optimistic about
this possibility based in part on the beautiful work of [GKPV10], which showed that assuming
separately LWE and sufficiently strong one-wayness, it is possible to establish leakage resilience of
LWE where the leakage is on the LWE secret s. What we would need is to find an analogue of
this result for LWBE, that considers classes of leakage functions over the errors (e1, . . . , en) that
contain Goldreich’s PRGs.

2 Technical Overview

Below, we will use several different encryption schemes, and adopt the following notation to refer to
ciphertexts and keys of different schemes. For a scheme x (e.g., a homomorphic encryption scheme
HE, or a functional encryption scheme FE), we denote by xct, xsk a ciphertext, or secret key of the
scheme x. At times, we write xct(m), xsk(f) to make it explicit what is the encrypted message m
and the associated function f ; and write xct(k,m), xsk(k, f) to make explicit what is the key k they
are generated from. We omit these details when they do not matter or are clear from the context.

2.1 Overview of Our FE Construction

Basic template of FE construction in prior works. We start with reviewing the basic
template of FE construction in recent works [Agr19, AJL+19, JLMS19]. FE allows one to generate
so-called functional secret key fesk(f) associated with a function f that decrypts an encryption of
a plaintext x, fect(x) to f(x). Security ensures that beyond the evaluation of the function f on x,
nothing is revealed about x. For constructing iO, it suffices to have an FE scheme whose security
is guaranteed against adversaries seeing only a single functional secret key, for a function with long
output f : {0, 1}n → {0, 1}m and where the ciphertexts are sublinearly-compact in the sense that
its size depends sublinearly in the output length m.

Towards this, the basic idea is encrypting the message using a Homomorphic Encryption scheme
HE, which produces the ciphertext hect(s,x), where s is the secret key of HE. It is possible to
publicly evaluate homomorphically any function f directly on the ciphertext to obtain an so-called
output ciphertext hect(s, f(x)) ← HEEval(hect, f), that encrypts the output f(x). Then, we use
another much simpler FE scheme to decrypt hect(s, f(x)) so as to reveal f(x) and nothing more.
Using this paradigm, the computation of the function f is delegated to HE, while the FE only
computes the decryption of HE. This is motivated by the fact that HE for arbitrary functions can
be built from standard assumptions, while existing FE schemes is either not compact, in the sense
that the ciphertext grows with the output size of the functions [SS10b, GKP+13], or are limited
to basic functions — namely, degree-2 polynomials at most, [BCFG17, Gay20] for the public-key
setting, [Lin17, AS17] for the private-key setting3Furthermore, known HE schemes have very simple

3As mentioned in the introduction, partially hiding functional encryption allows to further strengthen the function
class supported, by essentially adding computation on a public input, however computation on the private input is
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decryption — for most of them, it is simply computing an inner product, then rounding. That
is, decryption computes 〈hectf , s〉 = p/2 · f(x) + ef (mod p) for some modulus p, where s is the
secret key of HE, and ef is a small, polynomially bounded error (for simplicity, in this overview,
we assume w.l.o.g that f(x) ∈ {0, 1}). While there are FE schemes that support computing inner
products [ABDP15, ALS16], sublinearly compact FE that also computes the rounding are currently
our of reach. Omitting this rounding would reveal f(x), but also ef , which hurts the security of
HE. Instead, we will essentially realize an approximate version of the rounding — thereby hiding
the noise ef .

A natural approach to hide the noises ef is to use larger, smudging noises. Since ef depends
on the randomness used by HEEnc, and the function f , the smudging noises must be fresh for
every ciphertext. Hard-wiring the smudging noise in the ciphertext, as done in [AR17b], leads to
non-succinct ciphertext, whose size grows linearly with the output size of the functions. Instead,
we generate the smudging noises from a short seed, using a PRG. The latter must be simple enough
to be captured by state of the art FE schemes.

Previous constructions use a weak pseudo-random generator, referred to as a noise generator
NG, to generate many smudging noises r = NG(sd) for hiding ef . To see how it works, suppose
hypothetically that there is a noise generator computable by degree-2 polynomials. Then we can
use 2FE, an FE scheme that support the generation of functional key for degree-2 polynomials, to
compute p/2 · f(x) + ef + NG(sd), which reveals only f(x) as desired. This gives a basic template
of FE construction summarized below.

Basic Template of FE Construction (Intuition only, does not work)

fesk(f) contains : 2fsk(g)
fect(x) contains : hect(s,x), 2fct(s||sd)

The basic idea is using HE with a one-time secret key s to perform the computation and
using a simple FE for degree-2 polynomials, 2FE, to decrypt the output ciphertext and add
a smudging noise generated via a noise generator NG. That is, we would like g(s||sd) =
(p/2 · f(x) + ef + NG(sd)). However, there are many challenges to making this basic idea
work.

Unfortunately, to make the above basic idea work, we need to overcome a series of challenges.
Below, we give an overview of the challenges, how we solve them using new tools, new techniques,
and new assumptions, and how our solutions compare with previous solutions. In later subsec-
tions 2.2,2.3,2.5,2.4, we give more detail on our solutions.

Challenge 1: No Candidate Degree-2 Noise Generator. Several constraints are placed on
the structure of the noise generators NG which renders their instantiation difficult.

• Minimal Degree. To use degree-2 FE to compute NG, the generator is restricted to have
only degree 2 in the secret seed sd.

• Small (Poly-sized) Outputs. Existing degree-2 FE are implemented using pairing groups:
They perform the degree-2 computation in the exponent of the groups, and obtain the output
in the exponent of the target group. This means the output p/2 ·f(x)+ef +NG(sd) resides in
the exponent, and the only way to extract f(x) ∈ {0, 1} is via brute force discrete logarithm to

still limited to degree 2.
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extract the whole p/2·f(x)+ef+NG(sd). This in particular restricts NG to have polynomially
bounded outputs.

Previous works [AJL+19, JLMS19] used new assumptions that combine LWE with constant-
degree polynomials over the integers (see discussion in the introduction) to instantiate the noise
generator. The resulting generator do not have exactly degree 2, but “close” to degree 2 in following
sense:

Degree “2.5” Noise Generator: NG(pubsd, privsd) is a polynomial in a public seed pubsd and
a private seed privsd both of length n′, and has polynomial stretch. The seeds are jointly
sampled (pubsd, privsd) ← Dsd from some distribution and pubsd is made publc. Degree 2.5
means that NG has constant degree in pubsd and degree 2 in privsd.

Previous degree-2.5 noise generators produce small integer outputs, and can only satisfy certain
weak pseudo-randomness property (as opposed to standard pseudorandomness). To get a flavor,
consider the fact that the outputs of previous candidates are exactly the outputs of some constant-
degree polynomials computed over the integers. Individual output elements are not uniformly
distributed in any range, and two output elements that depend on the same seed element are
noticably correlated. Hence, they are not pseudorandom or even pseudo-independent. In this
work, our new assumption combines Learning With Binary Errors (LWBE) and constant-degree
Boolean PRGs, and gives new degree-2.5 noise generators with Boolean outputs as follows:

pubsd = {ci = (ai,ais+ ei)}i∈[n] //LWBE samples where s,ai ← Zn0.5+ε

p , ei ← {0, 1}
privsd = ⊗(s|| − 1)d

d
2
e //Tensoring (s|| − 1) for dd2e times

PRG(pubsd, privsd) = G(· · · ||ei = 〈ci, (s|| − 1)〉|| · · · ) = G(e) // G a constant degree Boolean PRG

When the PRG G has sufficient stretch m ≥ nd
d
2
e·(0.5+ε)+ρ for some constant ε, ρ > 0, our new

generator has polynomial stretch m = |pubsd||privsd|1+ε′ for some ε′ depending on ε, ρ. Constant-
degree Boolean PRGs are qualitatively different from constant-degree polynomials over the integers
and have been extensively studied. Furthermore, our new assumption implies that the outputs of
our generator are pseudo-random – in other words, we obtain a degree-2.5 Boolean PRG.

Not surprisingly, the stronger security property of degree-2.5 PRG lets us significantly simplify
the construction and security proof. We explain this next.

Challenge 2: How to Hide Errors using Polynomial-sized Noises? The role of the noise
generator NG is expanding out many smudging noises r to hide errors e as r + e. However,
under the constraint that r is polynomially bounded, r+ e is noticably far from r, meaning that e
cannot be completely hidden (e.g., one can distinguish whether e is zero or non-zero with noticeable
probability). Previous works [AJL+19, JLMS19] formulated weak NG security notions, perturbation
resilience [AJS18] and pseudo-flawed smudging [LM18], to capture that r+e only partially hides e.
In all known constructions, this is a source of inefficiencies. Typically one uses security amplification
transformations such as the one in [AJS18], to deal with such security properties. Further, this
also is a source of making stronger versions of standard assumption as in order to argue security
the hardness amplification transformations typically lose a subexponential factor in the size of the
adversary.

On the other hand, using our degree-2.5 Boolean PRG PRG, we show how to hide errors using
poly-sized noises, through a much simpler bounded leakage resilience technique4, so that our FE

4Although we still use ideas from the Dense Model Theorem.
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construction does not need to rely on a general purpose amplification theorem. Using the new
technique, we achieve standard polynomial security for our FE construction based on polynomial
hardness. More specifically, suppose the errors are B′-bounded, given a random Boolean vector r′

(which will be generated by our degree-2.5 PRG), we hide errors by choosing a sufficiently large B
that is polynomially related to B′ and m (the length of e) and compute:

e+ r where rj = ΣlogB−1
k=0 2kr′(j−1) logB+k where r′l is the l’th bit in r′ .

Since the rj ’s are independently and randomly distributed over [0, B − 1] ∩ Z, it can be shown
that at only a constant number of coordinates j, ej is leaked, and at all other coordinates, ej + rj
information-theoretically hides ej . From here, we prove the following bounded leakage resilience
lemma, which says that if additionally there is a “commitment” c that statistically binds e, then
the leakage can be efficiently simulated using c alone. Hence, e is hidden as long as c hides it.

Lemma 2.1 (Bounded Leakage Resilience Lemma). Let B′,m, s ∈ N, ε > 0. Let B ≥ (B′ + m)c

for a sufficiently large constant c. Then, for every distribution Dc over {0, 1}k and function V :
{0, 1}k → ([−B′, B′] ∩ Z)m (both potentially inefficient), there exists a simulator Sim, such that:

1. Sim has size bounded by s′ = poly(B,m) · ε−2 · s, and

2. The following two distributions are (s, ε)-indistinguishable5

{c← Dc, e← V (c), r ← ([0, B − 1] ∩ Z)m : c, e+ r } and {c← Dc : c, Sim(c)}

We emphasize again that the magnitude of the smudging noise r is polynomial B = poly(B′,m).
Moreover, simulation is relatively efficient comparing with the distinguishers, with a poly(B,m)·ε−2

factor slowdown. Therefore if c computationally hides e against (poly(B,m)ε−2s)-size adversaries,
c, e+r computationally hides e against s-size adversaries. Consider a more concrete example where
c = hect(s,x) and e = ef . Since the former statistically binds the latter (as hect binds s,x and
ef is a function of hect, s,x, and f), by our lemma, as long as hect is sufficiently hiding, smudging
with poly-sized noises e+ r suffices to hides e completely.

Challenge 3: How to Evaluate Degree 2.5 Polynomials? To evaluate our degree-2.5
Boolean PRG, we need an FE scheme that is more powerful than 2FE. The notion of Partially-
Hiding Functional Encryption PHFE, originally introduced by [GVW15] in the form of Partially
Hiding Predicate Encryption (PHPE), fits exactly this task. As mentioned in introduction, PHFE
strengthens the functionality of FE by allowing the ciphertext phfct(x,y) to encode a public in-
put x, in addition to the usual private input y. Decryption by a functional key phfsk(f) reveals
x and f(x,y) and nothing else. The works of [AJL+19, JLMS19] constructed private-key PHFE
for computing degree-2.5 polynomials (i.e., constant degree in x and degree 2 in y) from pairing
groups. (Like 2FE, the output is still computed in the exponent of the target group.) This suffices
for evaluating degree-2.5 noise generator or PRG in the FE construction outlined above. The only
drawback is that since PHFE is private-key, the resulting FE is also private-key.

In this work, we give a new construction of PHFE from pairing groups that is 1) public-key
and 2) supports arithmetic NC1 computation on the public input — more specifically, f(x,y) =
〈g(x), q(y)〉 where g is computable by an arithmetic log-depth circuit and q is a degree-2 polynomial.

Theorem 2.1 (Public-key (NC1, deg-2)-PHFE, Informal). There is a construction of a public-
key PHFE for arithmetic NC1 public computation and degree-2 private computation from standard
assumptions over asymmetric pairing groups.

5That is, ε-indistinguishable to all s sized distinguishers.

12



This new construction allows us to obtain public key FE directly. Furthermore, our construc-
tion supports the most expressive class of functions among all known FE schemes from standard
assumptions; we believe this is of independent interests.

Challenge 4: How to Ensure Integrity? Now that we have replaced 2FE with PHFE to
compute degree-2.5 polynomials, the last question is how to ensure that PHFE decrypts only the
right evaluated ciphertext hectf (instead of any other ciphertext)? The function g we would like to
compute via PHFE is g(s, pubsd, privsd) = 〈hectf , s〉+NG(pubsd, privsd). The difficulty is that hectf
is unknown at key-generation time or at encryption time (as it depends on both f and hect(s,x)),
and is too complex for PHFE to compute (as the homomorphic evaluation has high polynomial
depth). To overcome this, we replace homormophic encryption with a single-ciphertext secret-key
FE for P with linear key generation, denoted as 1LGFE, which has the following special structure.

Single Ciphertext FE with Linear Key Generation

PPGen(1λ) : generate public parameters pp
Setup(1λ, pp) : generate master secret key s ∈ Zλp
Enc(pp, s) : generates a ciphertext 1LGFE.ct
KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,

output f and secret key 1LGFE.sk(f) = 〈ppf , s〉 − r
Dec(1LGFE.ct, (f, 1LGFE.sk)) : 1LGFE.ctf ← EvalCT(1LGFE.ct, f)

output q
2y + ef + r ← 1LGFE.ct− 1LGFE.sk, |ef |∞ ≤ B′

The single-ciphertext FE has i) a key generation algorithm that is linear in the master secret
key s and randomness r, and ii) decryption first performs some computation on the cipher-
text 1LGFE.ct to obtain an intermediate ciphertext 1LGFE.ctf , and then simply subtracts the
secret key from 1LGFE.ctf , and obtains the output y perturbed by a polynomially-bounded
noise.

We replace the ciphertext hect(s,x) now with a ciphertext 1LGFE.ct(s,x) of 1LGFE. By the
correctness and security of 1LGFE, revealing 1LGFE.sk(f) only reveals the output f(x). Hence,
it suffices to use PHFE to compute the secret key. Thanks to the special structure of the key
generation algorithm, this can be done in degree 2.5, using pseudoradnomness r expanded out via
our degree-2.5 PRG. More concretely, PHFE computes the following degree-2.5 function g.

g(s||pubsd||privsd) = 〈ppf , s〉+ r = 1LGFE.sk(f), // g has degree 2.5

where rj =

logB−1∑
k=0

2kPRG(j−1) logB+k(pubsd, privsd) .

One more technical caveat is that known pairing-based PHFE schemes actually compute the secret
key 1LGFE.sk in the exponent of a target group element, which we denote by [1LGFE.sk]T , where
for any exponent a ∈ Zp, [a]T = gaT for a generator gT . Thanks to the special structure of the
decryption algorithm of 1LGFE — namely, it is linear in 1LGFE.sk — these group elements are
sufficient for decryption. A decryptor can first compute 1LGFE.ctf from 1LGFE.ct(s,x) and f in
the clear, then perform the decryption by subtracting [1LGFE.ctf − 1LGFE.sk]T in the exponent.
This gives [p/2 ·f(x)+ef +r]T , whose exponent p/2 ·f(x)+ef +r can be extracted by enumrating
all possible ef + r, which are of polynomial size, and f(x) ∈ {0, 1}.
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Our single-ciphertext FE with linear key generation is essentially the same notion as that of
Special Homomorphic Encryption (SHE) used in [Agr19, LM18]. SHE are homomorphic encryption
with a special decryption equation hectf − 〈ppf , s〉 = p/2 · f(x) + ef where ppf (as in 1LGFE) can
be computed efficiently from public parameters pp and f . We think it is more accurate to view
this object as a functional encryption scheme, since what the special decryption equation gives is
exactly a functional key 〈ppf , s〉 + r where r are smudging noises for hiding ef to guarantee that
only p/2 · f(x) is revealed.

Viewing this through the lens of FE brought us two benefits. First, previous works constructed
SHE by modifying the Brakerski-Vankuntanathan FHE scheme [BV11], but are limited to support-
ing NC1 computations based on RLWE [AR17b], and NC0 based on LWE [AR17b, LM18]. Instead,
the FE lens led us to search for ideas in the predicate encryption literature. We show how to
construct 1LGFE for P from LWE by modifying the predicate encryption scheme of [GVW15]. This
new construction allowed us to construct FE for P directly without invoking any bootstrapping
theorem from weaker function classes.

Theorem 2.2 (1LGFE from LWE, informal). There is a construction of a single-ciphertext FE for
P with linear key generation as described above, from LWE.

Second, constructing 1LGFE already requires us to resolve the challenge of hiding errors ef
with only poly-sized smudging noises r. Indeed, we apply our bounded leakage resilience lemma
(Lemma 2.1) in the construction of this simpler primitive to argue that poly-sized r is sufficient.
This leads to a simpler and more modular proof for the overall FE construction.

In summary, putting all the pieces together, our construction of FE for P is depicted below.
Comparing with previous constructions, it enjoys several features: 1) it is public key, 2) it can
be based on the polynomial-hardness of underlying assumptions, 3) it has simpler proofs (e.g., no
bootstrapping theorem, no security amplification step).

Our FE for P Construction

fesk(f) contains : phfsk(g)
fect(x) contains : 1LGFE.ct(s,x) phfct(s||pubsd||privsd)

FEDec(fect, (f, fesk)) : [1LGFE.sk]T ← PHFEDec(phfct, phfsk)
1LGFE.ctf ← EvalCT(1LGFE.ct, f)
[y + ef + r]T = 1LGFE.ctf − [1LGFE.sk]T
extract y + ef + r and round to recover y

The basic idea is using PHFE to compute a 1LGFE secret key 1LGFE.sk(f) in the exponent
of the target group, and then decrypting the ciphertext 1LGFE.ct(s,x) to reveal f(x) only.

2.2 Instantiating Our Assumption

To instantiate our assumption, we need to choose a degree d PRG with a stretch more than

nd
d
2
e·(0.5+δ)+ρ. The good news is that there is a rich body of literature on both ingredients of

our assumption that existed way before our work to guide the choice. Binary LWE was first con-
sidered by [AG11] and then by [MP13, ACF+15, BGPW16, CTA19]. Goldreich PRGs have been
studied even before that. There are many prior works spanning areas in computer science devoted
to cryptanalysis of these objects from lattice reduction algorithms and symmetric-key cryptanaly-
sis, to algebraic algorithm tools such as the Gröbner basis algorithm and attacks arising from the
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Constraint Satisfaction Problem and Semi-Definite Programming literature. Guided by them, we
list three candidates below. In Section 5, we survey many of these attack algorithms, and we com-
pute approximate running times of the attacks arising out of these algorithms on our candidates.
For the parameters we choose, all those attacks are subexponential time.

A Goldreich’s PRG G is defined by a predicate P : {0, 1}`′ → {0, 1}, where `′ is the locality
of the PRG, and a bipartiate input-output dependency graph Λ, which specifies for every output
index j ∈ [m], the subset Λ(j) ⊂ [n] of input indexes of size `′ it depends on – the j’th output
bit is simply set to G(j) = P (Λ(j)). Hence the degree of the PRG G is identical to the degree
of the predicate P . Usually, the input-output dependency graph Λ is chosen at random, and the
non-trivial part lies in choosing the predicate P .

Instantiation 1. The first instantiation is that of the predicate XORMAJ, which is a poplular
PRG predicate [AL16, CDM+18].

XORMAJ`,`(x1 . . . , x2`) = ⊕i∈[`]xi ⊕MAJ(x`+1, . . . , x2`).

The predicate above has a degree of 2·`; thus, our construction require expansion m > n
`
2

+`δ+ρ. The
predicate is `+ 1 wise independent and thus it provably resists subexponential time SoS refutation

attacks when m(n) ≤ n
`+1
2
−c for c > 0 [KMOW17]. All other known attacks that we consider and

even the algebraic attacks when instantiated in our combined assumption require subexponential
time. We refer the reader to Section 5 for a detailed discussion.

Instantiation 2. An slightly unsatisfactory aspect of the XORMAJ predicate is that the lower
bound on the stretch of the PRG instantiated by XORMAJ for it to be useful in our FE construction

is > n
`
2

+δ′ , whereas the upper bound on the stretch to withstand existing attacks is very close

≤ n
`+1
2
−c, leaving only a tiny margin to work with. This motivates us to we consdier predicates

with degree lower than the locality. One such predicate was analyzed in [LV17b] for stretch upto
n1.25−c for c > 0:

TSPA(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ ((x2 ⊕ x4) ∧ (x3 ⊕ x5)) .

What is nice about this predicate is that, it has locality 5 but only degree 3; thus, our construction
only require expansion m > nd

3
2
e(0.5+ε)+ρ = n1+2ε+ρ. In [LV17b], it was proven that the PRG

istantiated with TSPA resists subexponential time F2 linear and SoS attacks. We present analysis
against other attacks in Section 5, all taking subexponential time.

Instantiation 3. We present a degree reduction transformation that takes as input a non-linear
predicate g : {0, 1}k → {0, 1} and constructs a predicate P.

Pg(x1 . . . , x2k+1) = ⊕i∈[k+1]xi ⊕ g(xk+2 ⊕ x2, . . . , x2k+1 ⊕ xk+1).

We show in Section 5, that the predicate above has a locality of 2k+ 1 but a degree equal to k+ 1;

thus, our construction requires expansion m > nd
k+1
2
e(0.5+ε)+ρ. The predicate is also k + 1 wise

independent. We show that all known attacks run in subexponential time even when the stretch

is bounded by m ≤ n
k+1
2
−δ for some δ > 0. Thanks to the gap between the locality and degree,

we now have a very large margin between the lower and upper bounds on the stretch. Hence, our
work motivates the interesting question of studying such predicates.

Please refer to Table 2 for a summary of attacks on all these predicates as well as the combined
assumption.
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2.3 How to Hide Errors using Polynomial-sized Noises

Now we describe how to prove lemma 2.1. We recall it below.

Lemma 2.2 (Bounded Leakage Resilience Lemma). Let B′,m, s ∈ N, ε > 0. Let Bound ≥ B′ ·m3.
Then, for every distribution Dc over {0, 1}k and function V : {0, 1}k → ([−B′, B′] ∩ Z)m (both
potentially inefficient), and for every c ∈ N there exists a simulator Sim, such that:

1. Sim has size bounded by s′ = O(polyc(m,B
′) · ε−2 · s), and

2. The following two distributions are (s, ε+O( 1
mc ))-indistinguishable6

{c← Dc, e← V (c), r ← ([0, B − 1] ∩ Z)m : c, e+ r } and {c← Dc : c, Sim(c)}

We now describe a sketch of the proof here. Let c be sampled as described in the lemma above
using the distribution Dc. Let e ← V (c). Denote e = (e1, . . . , em). Now the idea is that we
consider the following process:

• Sample ri ← [0,Bound] for i ∈ [m] for some bound Bound which we set later.

• Set ti = ei + ri for i ∈ [m]. Set T = (t1, . . . , tm). Output (c,T).

Our goal is to simulate this distribution efficiently. First we make the following compression argu-
ment.

Information compression. Since Bound is much bigger than B′ and ri is uniform in [0,Bound],
sampling ti = ei+ri is equivalent to sampling uniformly from [ei, ei+Bound]. This is also equivalent
to sampling from.

• Sample ti uniformly from I = [B′ + 1,Bound − B′ − 1] with probability α = Bound−2B′−1
Bound+1 =

1−O( B′

Bound) and with probability 1− α from [ei, ei + Bound] \ I.

Notice that if Bound >> B′ then α is very large. We set Bound
B′ = m3. Thus, using this we build

another machine Mach that samples T as follows. It computes e = V (c). Then, it initializes a list
L to be empty.

• Sample coins β ← {0, 1}m where each βi = 1 with probability α.

• If βi = 0 we sample uniformly ti ← [ei, ei+Bound]\I and append (i, ti) into L. Mach outputs
L.

Notice that L is the only information that one needs to sample T efficiently and identically to the
original procedure as one can set ti = `i if (i, `i) is in the list L, otherwise set it to be a uniform
sample from I. We call this polynomial time procedure as Samp. Thus T = Samp(Mach(c))

However, notice that:

Pr[|L| ≥ k] ≤
(
m

k

)
· (1− α)k ≤ O(

1

m2k
) ·mk

Thus, Pr[|L| ≥ c] ≤ O( 1
mc ). Which means, that with very high probability the output of Mach is

small.

6That is, ε-indistinguishable to all s sized distinguishers.
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Why Information Compression Helps? We now recall the following theorem.

Theorem 2.3 (Imported Theorem [CCL18a]). Let k, t ∈ N, ε > 0, and Cleak be a family of dis-
tinguisher circuits from {0, 1}k × {0, 1}t → {0, 1} of size s(k). Then, for every distribution (X,Z)
over {0, 1}k × {0, 1}t, there exists a simulator h : {0, 1}k → {0, 1}t such that:

1. h is a circuit computable in size s′ = O(s · 2tε−2)

2. (X,Z) and (X,h(Z)) are indistinguishable by Cleak. That is, for every C ∈ Cleak,∣∣∣∣ Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]

∣∣∣∣ ≤ ε
Notice that the theorem above allows one to simulate auxiliary information Z about any distri-

bution X. Crucially, the size of h is only slightly bigger than the size s if the length of Z is small.
The idea is that, we can use this theorem to simulate the machine Mach where the size of the list
L is constrained to be less than c (otherwise, the machine just gives up). We call this machine as
Mach≤c. Consider T′ = Samp(Mach≤c(c)). Since the size of L is greater than c with probability
less than O( 1

mc ), the statistical distance between T and T′ is bounded by O( 1
mc ). Now we can

invoke the theorem 7.6 above. We replace Mach≤c with h. Observe that size of output is bounded
by c · (1 + 3 · log2m+ log2B

′). Thus, the size of h is O(m3c ·B′c · s · ε−2). Our required simulator
Sim is Samp(h(c)). The claim follows because Samp is a polynomial time procedure.

2.4 Single Ciphertext Functional Encryption with Linear Key Generation

We describe our construction of a single-ciphertext (secret-key) FE scheme for all polynomial-sized
circuits, that have the simple structure outlined in Section 2, denoted as 1LGFE, from LWE. In
particular, the key generation and decryption algorithms have the following form, where s is the
master secret key and pp is the public parameters.

KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,

output f and secret key 1LGFE.sk(f) = 〈ppf , s〉 − r
Dec(1LGFE.ct, (f, 1LGFE.sk)) : 1LGFE.ctf ← EvalCT(1LGFE.ct, f)

output q
2y + ef + r ← 1LGFE.ct− 1LGFE.sk, |ef |∞ ≤ B′

Importantly, decryption recovers a perturbed output where the error ef + r is polynomially
bounded. As mentioned before, this object is essentially the same as the notion of Special Homo-
morphic Encryption (SHE) in the literature [AR17b, LM18]. Previous SHE schemes are constructed
by modifying existing homomorphic encryption schemes of [BV11, BGV12]. These constructions
are recursive and quite complex, and the overhead due to recursion prevents them from supporting
computations beyond NC1. In this work, viewing through the FE lens, we search the literature
of predicate encryption, and show how to modify the predicate encryption scheme of [GVW15]
(GVW) to obtain single-ciphertext FE with the desired structure. The GVW predicate encryption
provide us with a single-ciphertext encryption scheme with the following properties:

• The public parameter generation algorithm PPGen samples a collection of random LWE
matrices Ai,Bj ← Zn×mp , and sets the public parameters to pp = ({Ai}, {Bj}).

• The setup algorithm Setup samples a master secret key constaining an LWE secret s ← χn

drawn from the noise distribution χ.
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• The encryption algorithm to encrypt x, generates a ciphertext hect(x) containing two sets of
LWE samples of form ci = sTAi+x̂iG+ei and dj = sTBj+k̂jG+e′j , whereG ∈ Zn×mp is the
gadget matrix, vk is a freshly sampled secret key of a homomorphic encryption scheme, and
ei, e

′
j ← χm are LWE noises. Furthermore, x̂i is the i’th bit of a homomorphic encryption

ciphertext of x under key k.

• The predicate encryption scheme of [GVW15] provides two homomorphic procedures: The
EvalCT procedure homomorphically evaluate f on {ci,Ai} and {dj ,Bj} to obtain cf , and
the EvalPP seperately homormorphically evaluates on {Ai} and {Bi} to obtain Af .

• The homomorphic evaluation outcomes cf ,Af , has the property that the first coordinate cf,1
of cf and the first column Af,1 of Af satisfy the special decryption equation.

cf,1 − sTAf,1 = f(x)bp/2e+ ef mod p

The above described encryption scheme almost gives the FE scheme we want except for the issue
that it has super-polynomially large decryption error ef . Thus, we turn to reducing the norm of
the decryption error, by applying the rounding (or modulus switch) technique in the HE litera-
ture [BGV12]. Namely, to reduce the error norm by a factor of p/q for a q < p, we multiply cf,1 and
Af,1 with q/p over the reals and then round to the nearest integer component wise. The rounding
results satisfy the following equation

bq
p
cf,1e − sT b

q

p
Af,1e = f(x)bq/2e+ bq

p
efe+ error mod p

where the rounding error error is bounded by |hesk|1 +O(1), which is polynomially bounded as the
secret is sampled from the LWE noise distribution instead of uniformly.

We are now ready to instantiate the FE scheme we want. It uses the same public parameter gen-
eration, setup, and encryption algorithm. Now to generate a functional key for f , it first computes
Af ← EvalPP({Ai}, {Bj}) and sets ppf = b qpAf,1e, and then outputs a functional key 1LGFE.sk =
〈ppfs〉 − r where r is a random vector of smudging noises of sufficiently large but still polynomi-
ally bounded magnitude. The decryption algorithm decrypts a ciphertext 1LGFE.ct = ({ci}, {dj})
using a functional key 1LGFE.sk as follows: It first computes cf ← EvalPP({Ai, ci}, {Bj ,dj}), and
sets 1LGFE.ctf = b qpcf,1e, it then subtracts 1LGFE.sk from it, yielding f(x)bq/2e+b qpefe+error+r
as desired.

2.5 Our (NC1,deg-2) Partially Hiding Functional Encryption

We construct 1-key PHFE with fully compact ciphertext of size linear in the input length n, for
functions F (x,y, z) of the following form, from standard assumptions on asymmetric pairings. F
maps three vectors x,y, z ∈ Znp to a (potentially longer) output vector in Zmp (our construction
can handle any (polynomial) unbounded m), where each output element is computed by a function
f = Fk for k ∈ [m] as the following matrix product:

f(x,y, z) = f0f1(x)f2(x) · · · f `(x)f `+1(y ⊗ z), (3)

where f0 ∈ Z1×w
p , for all i ∈ [`], f i takes as input a vector x ∈ Zn and outputs a matrix f i(x) ∈

Zw×wp , the function f `+1 takes as input the vector y ⊗ z ∈ Zn2
and outputs a vector f `+1(y ⊗ z).

Here, w denotes the width of the branching program, ` its length. The function f i are affine, for all
i ∈ [`+ 1]. Such functions f can express computations such as L(g(x),y⊗z), where g is a Boolean
circuit in NC1, and L is a bilinear function, with degree one in y ⊗ z.
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Computing degree-2 polynomials on the private inputs.

Roughly speaking, we encrypt the private inputs y and z using encryption schemes with homo-
morphic properties that lets users manipulate the ciphertexts to obtain a new ciphertext, which
encrypts the value f `+1(y⊗ z), under a public key pkf`+1 that depends on the function f `+1. This

manipulation can be performed publicly for arbitrary linear function f `+1. At this point, providing
the secret key associated to pkf`+1 would reveal the value f `+1(y ⊗ z), and nothing else about the
private inputs y, z. Otherwise stated, this would constitute a valid functional encryption scheme
for degree-2 polynomials.

We implement this paradigm using cyclic groups G1, G2, GT equipped with a pairing e :
G1 × G2 → GT , and respectively generated by g1, g2, and e(g1, g2). For any exponent a ∈ Zp,
we denote by [a]T = e(g1, g2)a ∈ GT . To encrypt y and z, we make generic use of a function-

hiding inner product FE: the encryption of y comprises IPFE.Enc

(
gyi1

gr·αi1

)
for all coordinates of

y, where gαi1 is a random group elements from G1 that is part of the public key, r ←R Zp is
some fresh randomness, sampled at encryption time, and IPFE.Enc is the encryption algorithm

of IPFE. The encryption of z comprises IPFE.KeyGen

(
g
zj
2

g
βj
2

)
for all coordinate of z, where g

βj
2

is a random group elements from G2 that is part of the public key, and IPFE.KeyGen is the key
generation algorithm of IPFE. Correctness of IPFE yields the products [yizj+rαiβj ]T for all i, j ∈ [n].
Because IPFE is secure and function-hiding, these products are the only information revealed on
the private inputs y and z. It is possible to compute for any linear function f `+1 the elements:
[f `+1(y ⊗ z) + rf `+1(α⊗ β)]T , which can be seen as an encryption of the value f `+1(y ⊗ z) under
the public key pkf`+1 = [f `+1(α⊗ β)]T . Because the parameters of the scheme IPFE are generated
freshly during the encryption, even if IPFE is private-key —this is necessary for all function-hiding
FE— the PHFE is public-key.

Computing branching programs on the public input.

We want to additionally force a specific computation on the public input x ∈ Zn before decryp-
tion. To do so, we produce re-encryption tokens, each of which computes one step of the matrix
branching program directly on the ciphertext. That is, the token associated with the i-th prod-
uct transform an encryption of f i+1(x) · · · f `(x)f `+1(y ⊗ z) under pkf i+1···f`+1 into an encryption

f i(x) · · · f `(x)f `+1(y ⊗ z) under pkf i···f`+1 , which we denote by cti. Finally, we release the secret
key associated with the public key pkf0···f`+1 . To recover a meaningful information on the encrypted
data, decryption is forced to perform the computation that precisely corresponds to the function
f1 · · · f `+1 encoded in the secret key.

The challenge is to realize these re-encryptions without blowing up the size of the ciphertext
exponentially with the length `. Concretely, the public keys will be of the form pkf i···f`+1 =

[f i(ui) · · · f `(u`)f `+1(α⊗β)]T , where the vectors ui ←R Znp are part of the master secret key. These
keys encode the last ` − i steps of the computation. Crucially, these keys do not grow with the
length of the branching program, only its width. So is the case of the corresponding re-encryptions:
we can handle polynomially large length efficiently. The i-th re-encryption token is of the form:
[r(f i(ui)− f i(x))f i+1(ui+1) · · · f `+1(α⊗β)]T , which allows the decryption to transition from cti−1

to cti. Ultimately, the final ciphertext ct` = [f0f1(x) · · · f `+1(y⊗z) + rf0f1(u1) · · · f `+1(α⊗β)]T ,
is obtained. To decrypt it, we simply need a mechanism to recover the mask [rf0f1(u1) · · · f `+1(α⊗
β)]T . Providing [r]1 on the encryption side, and [f0f1(u1) · · · f `+1(α⊗β)]2 as the functional secret
key would already give a scheme secure in the generic-group model (and idealized model that
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captures attacks that do not rely on the algebraic structure of the underlying group). To obtain
security from standard assumptions, we encrypt [r]1 using an inner-product FE. The functional
key is the inner product FE key associated with the value [f0f1(u1) · · · f `+1(α ⊗ β)]2. This way,
decrypting the inner-product FE yields the mask to decrypt the PHFE. Note that the function is
described as [f0f1(u1) · · · f `+1(α ⊗ β)]2 in G2, and not in Z; revealing the value in Z would be
detrimental for the security of the PHFE.

Remains to find a way to generate these re-encryption tokens. To do so, we provide an encoding
of the public input x as part of the PHFE ciphertext — note that we choose the word encoding
rather than encryption, since the input x must not be hidden. This encoding is used with the
functional secret key to produce the tokens. We leverage the simple structure of each computational
step of the branching program. Namely, we use the fact that all the functions f i are affine. Thus,
we can use an inner-product FE encryption to generate the tokens. The encoding of x is an
inner-product FE encryption of [r, rx]1, and the keys are associated with the appropriate functions
depending on the f i and the vectors [ui]2, [α]2, [β]2. The challenging part is to prove security even
when the values [ui]2, [α]2, [β]2 are revealed. Indeed, such is the case when using a vanilla inner-
product FE, as opposed to function-hiding FE, where these values would be hidden, but which
would intrinsically be private-key.

Putting things together.

Each PHFE ciphertext contains IPFE.Enc

(
gyi1

gr·αi1

)
and IPFE.KeyGen

(
g
zj
2

g
βj
2

)
for all i, j ∈ [n], from

which can be computed the encryption of f `+1(y ⊗ z) under an associated public key pkf`+1 , for

all linear functions f `+1. The scheme IPFE is function-hiding, and is generated freshly by the
encryption. The PHFE ciphertext also contains another inner-product FE encryption of the values
[r, r · x]1. These are used with functional secret keys associated with f i, [ui]2, [α]2 and [β]2, to
generate tokens. The latter transform the encryption of f `+1(y⊗z) into and encryption of f(x,y, z)
under a public key that encodes the matrix branching program. This transformation is performed
step by step. At last, the mask of the form [rf0f1(u1) · · · f `(u`)f `+1(α⊗ β)]T is recovered exactly
as the tokens, using the inner-product FE encryption of [r]1 with a functional key associated with
[f0f1(u1) · · · f `+1(α⊗ β)]2.

2.6 Alternative Instantiation Using Polynomials over Integers

Our FE construction can be easily modified to use the noise generator, denoted as ∆RG, implied by
the assumption of [JLMS19] that combines LWE with constant-degree polynomials over the integers,
and even simplifying the set of assumptions needed in previous works [AJS18, AJL+19, JLMS19].
As discussed above, the outputs of ∆RG are exactly the output r of a constant-degree polynomial
computed over the integers and satisfy the notion of perturbation resilience that r + v is 0.9-
indistinguishable from r. In our construction, we can directly replace the 2.5 degree PRG given
by our new G-LWEleak assumption, with ∆RG. The resulting FE scheme inherits the weakness
of perturbation resilience, and only satisfies weak indistinguishability security that ciphertexts of
different messages cannot be distinguished with advantage over 0.9 (when the secret keys do not
separate them). Then, using the general purpose FE security amplification in [AJS18], we can
bootstrap this functional encryption scheme to a fully secure functional encryption scheme while
preserving sublinearity, which implies iO under subexponential security loss. Importantly, since our
construction directly gives a weakly secure FE for all polynomial-sized circuits. This circumvents
the use of FE bootstrapping theorem for ”lifting” the function class, and eliminates the need for
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constant-locality Boolean PRGs used in previous constructions. Therefore, we simplify the set of
assumptions for obtaining iO comparing with previous works [AJS18, AJL+19, JLMS19]. See the
formal theorem statements in Section 6.1.

2.7 Simplification

In comparison with the prior state-of -the-art work [JLMS19], our construction is arguably simpler
and more direct. Refer to Figure 2.7. The figure depicts the route to construct public-key functional
encryption and obfuscation considered in [AJL+19, JLMS19]. The big blocks contain the primitives
used in each step of the bootstrapping. The first step used secret-key (NC0,deg2) − PHFE along
with a homomorphic encryption scheme and the ∆RG assumption to construct a sublinear secret-
key functional encryption for NC0 with weak security. Then, this construction is bootstrapped to
a secret-key sublinear functional encryption scheme for all circuits with weak security. Then, an
expensive security amplification step is performed using the theorem in [AJS18, AJL+19]. This
step loses subexponential factor in the size of the adversary as well as the advantage. After that,
one can construct public-key functional encryption relying on the result of [BNPW16b] and then
obfuscation using the result of [AJ15, BV15]. Alternatively, one can construct obfuscation directly
using the transformation in [KNT18]. However, this transformation also includes two steps and is
even more inefficient in comparison to the route described via [BNPW16b], .

Figure 3: Framework of the construction [JLMS19] to achieve functional encryption and obfusca-
tion.

On the other hand, our framework is presented in Figure 2.7. We construct sublinear public-key
functional encryption scheme directly relying on the ingredients we build (public-key (NC1, 2) −
PHFE and a single-ciphertext secret-key functional encryption with linear key generation) and our
new assumption. Unlike prior works [AJL+19, JLMS19], our constructions construct functional
encryption incurring only polynomial loss in security (advantage of the adversary as well as the
size). This can be bootstrapped to iO relying on the result of [AJ15, BV15].
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Figure 4: Our Framework.

3 Preliminaries

In this section, we describe preliminaries that are useful for rest of the paper. We denote the
security parameter by λ. For any distribution X , we denote by x ← X (or x ←R X ) the process
of sampling a value x from the distribution X . Similarly, for a set X we denote by x ← X (or
x ←R X) the process of sampling x from the uniform distribution over X. For an integer n ∈ N
we denote by [n] the set {1, .., n}. A function negl : N→ R is negligible if for every constant c > 0
there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote the standard polynomial time computational indistinguishability. We say
that two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are (s(λ), ε(λ))− indistinguishable if for every

adversary A (modeled as a circuit) of size bounded by s(λ) it holds that:

∣∣∣∣Prx←Xλ [A(1λ, x) =

1]− Pry←Yλ [A(1λ, y) = 1]

∣∣∣∣ ≤ ε(λ) for every sufficiently large λ ∈ N.

For a field element a ∈ Fp represented in [−p/2, p/2], we say that a ∈ [−B,B] for some positive
integer B if its representative in [−p/2, p/2] lies in [−B,B].

Throughout, when we refer to polynomials in security parameter, we mean constant degree
polynomials that take positive value on non negative inputs. We denote by poly(λ) an arbitrary
polynomial in security parameter satisfying the above requirements of non-negativity. We now
describe the following theorem that have been used in many works before our work. We cite the
version from [AJL+12].

Theorem 3.1. Let B1 and B2 be two positive integers with B2 > B1 and let e1 ∈ [−B1, B1] be a
fixed integer. Consider two distributions:

• Distribution 1. Sample e2 ← [0, B2]. Output e1 + e2.

• Distribution 2. Sample e2 ← [0, B2]. Output e2.

Then, the statistical distance (or the total variation distance) between the distributions is bounded
by O(B1/B2).

We also recall the following lemma from hardness amplification literature which will form a
crucial pillar of our work from [JP14, CCL18b].
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Theorem 3.2 (Imported Theorem [CCL18b]). Let k, t ∈ N, ε > 0, and Cleak be a family of dis-
tinguisher circuits from {0, 1}k × {0, 1}t → {0, 1} of size s(k). Then, for every distribution (X,Z)
over {0, 1}k × {0, 1}t, there exists a simulator h : {0, 1}k → {0, 1}t such that:

1. h is a circuit computable in size bounded by s′ = O(s · 2t · ε−2)

2. (X,Z) and (X,h(Z)) are indistinguishable by Cleak. That is, for every C ∈ Cleak,∣∣∣∣ Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]

∣∣∣∣ ≤ ε
Now we recall the definitions of some of the primitives central to this work.

3.1 Pairing Groups

Let PGGen be a PPT algorithm that on input the security parameter 1λ, returns a description
PG = (G1,G2,GT , p, P1, P2, e) where for all s ∈ {1, 2, T}, Gs is an additive cyclic group of order p
for a 2λ-bit prime p. G1 and G2 are generated by P1 and P2 respectively, and e : G1 ×G2 → GT

is an efficiently computable (non-degenerate) bilinear map. Define PT := e(P1, P2), which is a
generator of GT , of order p. We use implicit representation of group elements. For s ∈ {1, 2, T}
and a ∈ Zp, define [a]s = a · Ps ∈ Gs as the implicit representation of a in Gs. More generally, for
a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit representation of A in Gs:

[A]s :=

a11 · Ps ... a1m · Ps

an1 · Ps ... anm · Ps

 ∈ Gn×m
s .

Given [a]1 and [b]2, one can efficiently compute [a · b]T using the pairing e. For matrices A and B
of matching dimensions, define e([A]1, [B]2) := [AB]T . For any matrix A,B ∈ Zn×mp , any group
s ∈ {1, 2, T}, we denote by [A]s + [B]s = [A + B]s.

For any prime p, we define the following distribution. The DDH distribution over Z2
p: Sample

a←R Zp, output a :=
(

1
a

)
. The DLIN distribution over Z3×2

p : a, b←R Zp, outputs A :=

a 0
0 b
1 1

.

Definition 3.1 (DDH assumption). For any adversary A, any group s ∈ {1, 2, T} and any security
parameter λ, let

advDDH
Gs,A(λ) := |Pr[1← A(PG, [a]s, [ar]s)]− Pr[1← A(PG, [a]s, [u]s)]|,

where the probabilities are taken over PG ←R PGGen(1λ), a ←R DDH, r ←R Zp, u ←R Z2
p, and

the random coins of A. We say DDH holds in Gs if for all PPT adversaries A, advDDH
Gs,A(λ) is a

negligible function of λ.

Definition 3.2 (SXDH assumption). For any security parameter λ and any pairing group PG =
(G1,G2,GT , p, P1, P2, e)←R PGGen(1λ), we say SXDH holds in PG if DDH holds in G1 and G2.

Definition 3.3 (Bilateral DLIN assumption). For any adversary A, any security parameter λ any
pairing group PG ← PGGen(1λ), let

advDLIN
PG,A(λ) :=

∣∣Pr
[
1← A

(
PG, {[A]s, [Ar]s}s∈[1,2]

)]
− Pr

[
1← A

(
PG, {[A]s, [u]s}s∈[1,2]

)]∣∣ ,
where the probabilities are taken over PG ←R PGGen(1λ), A←R DLIN, r ←R Z2

p, u←R Z3
p, and the

random coins of A. We say bilateral DLIN holds in PG if for all PPT adversaries A, advDLIN
PG,A(λ)

is a negligible function of λ.
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3.2 Lattice Preliminaries

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span
is Rm. The basis of Λ is a linearly independent set of vectors whose integer linear combinations are
exactly Λ. Every integer lattice is generated as the Z-linear combination of linearly independent
vectors B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zd×m

p , we define the “p-ary” integer lattices:

Λ⊥p = {e ∈ Zm|Ae = 0 mod p}, Λu
p = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
p is a coset of Λ⊥p .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,
let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter
σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We abbreviate this as DΛ,σ when c = 0. We note that DZm,σ is

√
mσ-bounded.

Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix R ∈ Rm×m
is defined to be supx∈Sm ||Rx||. The LWE problem was introduced by Regev [Reg05], who showed
that solving it on average is as hard as (quantumly) solving several standard lattice problems in
the worst case.

Definition 3.4 (LWE Assumption). For an integer p = p(d) ≥ 2, and an error distribution
χ = χ(d) over Zp, the Learning With Errors assumption LWEd,m,p,χ holds if it is hard to distinguish
between the following pairs of distributions:

{A, sTA + xT} and {A,uT}

where A←Zd×m
q , s←Zd

p, u←Zmp , and x← χm.

Gadget matrix. The gadget matrix described below is proposed in [MP12].

Definition 3.5. Let m = d · dlog pe, and define the gadget matrix G = g ⊗ Id ∈ Zd×m
p , where the

vector g = (1, 2, 4, ..., 2blog pc) ∈ Zdlog pe
p . We will also refer to this gadget matrix as “powers-of-two”

matrix. We define the inverse function G−1 : Zd×m
p → {0, 1}m×m which expands each entry a ∈ Zp

of the input matrix into a column of size dlog pe consisting of the bits of binary representations.
We have the property that for any matrix A ∈ Zd×m

p , it holds that G ·G−1(A) = A.

4 Functional Encryption Definitions

In this section, we define functional encryption notions to be used and constructed in our work along
with the efficiency and security properties. Throughout, we denote functionality by F : X×Y → Z.
The functionality ensemble F as well as the message ensembles X and Y are indexed by two
parameters: n and λ (for example Fn,λ), where λ is the security parameter and n is a length
parameter and can be viewed as a function of λ. We define the syntax of a partially hiding
functional encryption PHFE which is a generalization of functional encryption. The syntax of
functional FE encryption is essentially identical with the change that in a functional encryption
scheme the ensemble X is empty for all n and λ.

Definition 4.1. (Syntax of a PHFE/FE Scheme.) A partially hiding functional encryption scheme,
PHFE, for the functionality F : X × Y → Z consists of the following polynomial time algorithms:
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• PPGen(1λ, 1n) : The public parameter generation algorithm is a randomized algorithm that
takes as input n and λ and outputs a string crs.

• Setup(crs): The setup algorithm is a randomized algorithm that on input crs, returns a public
key pk and a master secret key msk.

• Enc(pk, (x, y) ∈ Xn,λ ×Yn,λ): The encryption algorithm is a randomized algorithm that takes
in a public key and a message (x, y) and returns the ciphertext ct along with the input x. x
is referred to as the public input whereas y is called the private input.

• KeyGen(msk, f ∈ Fn,λ): The key generation algorithm is a randomized algorithms that takes
in a description of a function f ∈ Fn,λ and returns skf , a decryption key for f .

• Dec(skf , (x, ct)): The decryption algorithm is a deterministic algorithm that returns a value
z in Z, or ⊥ if it fails.

Remark 4.1. (On Secret Key Schemes.) Above we define the syntax of a public key scheme. A
secret key scheme just has one change over the syntax above. The Encryption algorithm takes as
input the master secret key instead of the public key. Also, the setup does not produce any public
key.

Remark 4.2. (On FE vs PHFE.) The syntax of the functional encryption scheme is identical to
a partially hiding functional encryption scheme described above except that X is the empty set for
a functional encryption scheme, as there is no public input.

Definition 4.2. (Correctness of a PHFE scheme.) A partially hiding functional encryption scheme,
PHFE, for the functionality F : X × Y → Z is correct if for every λ ∈ N and every polynomial
n(λ) ∈ N, for every (x, y) ∈ Xn,λ × Yn,λ and every f ∈ Fn,λ, we have:

Pr


PPGen(1λ, 1n)→ crs
Setup(crs)→ (pk, sk)

Enc(pk, (x, y))→ (x, ct)
KeyGen(sk, f)→ skf

Dec(skf , x, ct)) 6= f(x, y)

 ≤ negl(λ)

for some negligible function negl.

The correctness of a functional encryption scheme is defined similarly. Now we define the
security notions associated with PHFE and FE.

4.1 Security Definitions

We discuss two security notions. The first one is the notion of simulation security. We define it for
a PHFE scheme.

Definition 4.3 (Simulation security). For any public-key PHFE scheme, PHFE, for functionality
F : X × Y → Z, any security parameter λ, any length parameter n, any PPT stateful adversary

A, and any PPT simulator S := (S̃etup, Ẽnc, K̃eyGen), we define the following two experiments.
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RealPHFEA (1λ, 1n):

(x, y) ∈ Xn,λ × Yn,λ ← A(1λ, 1n)
crs← PPGen(1λ, 1n)
(pk,msk)← Setup(crs)
(x, ct)← Enc(pk, (x, y))

α← AOKeyGen(·)(ct, pk)

IdealPHFEA,S (1λ, 1n):

(x, y) ∈ Xn,λ × Yn,λ ← A(1λ, 1n)
crs← PPGen(1λ, 1n)

(p̃k, m̃sk)← S̃etup(crs)

(x, c̃t)← Ẽnc(m̃sk, x)

α← AOK̃eyGen
(·)

(c̃t, p̃k)

In the real experiment, the key generation oracle OKeyGen, when given as input f ∈ Fn,λ, returns
KeyGen(msk, f). In the ideal experiment, the key generation oracle O

K̃eyGen
, when given as input

f ∈ Fn,λ, computes f(x, y), and returns K̃eyGen(m̃sk, f, f(x, y)).

We say that PHFE is SIM secure if there exists a PPT simulator S := (S̃etup, Ẽnc, K̃eyGen) such
that for any PPT adversary A, any constant c > 0, any large enough security parameter λ, any
polynomial n(λ) ∈ N:

advSIMPHFE,A(1λ, 1n) := |Pr[1← RealPHFEA (1λ, 1n)]− Pr[1← IdealPHFEA,S (1λ, 1n)]| < λ−c.

Next, we discuss the standard indistinguishability security for a functional encryption scheme.

Definition 4.4 (Indistinguishability security). For any FE scheme FE for functionality F : Y → Z,
any security parameter λ, any length parameter n, any PPT stateful adversary A, we define the
following experiment.

INDFE
A (1λ, 1n):

{xi0, xi1}i∈[Qct], {f j}j∈[Qsk] ← A(1λ, 1n)

crs← PPGen(1λ, 1n)
(pk,msk)← Setup(crs), b←R {0, 1}
∀i ∈ [Qct] : cti ← Enc(pk, xib), ∀j ∈ [Qsk] : skj ← KeyGen(msk, f j)
b′ ← A({cti}i∈[Qct], {skj}j∈[Qsk], pk)

Return 1 if b = b′ and ∀ i ∈ [Qct], j ∈ [Qsk], f
j(xi0) = f j(xi1), 0 otherwise.

We say FE is IND secure if for any PPT adversary A, any constant c > 0, any large enough
security parameter λ, any polynomial n(λ) ∈ N:

advINDFE,A(λ) := 2 · |1/2− Pr[1← INDFE
A (1λ, 1n)]| < λ−c.

Similarly, we can also define secret-key function hiding FE as follows.

Definition 4.5 (Function Hiding Indistinguishability security). For any secret-key FE scheme FE
for functionality F : Y → Z, any security parameter λ, any length parameter n, any PPT stateful
adversary A, we define the following experiment.

IND− FHFE
A (1λ, 1n):

{xi0, xi1}i∈[Qct], {f
j
0 , f

j
1}j∈[Qsk] ← A(1λ, 1n)

crs← PPGen(1λ, 1n)
msk← Setup(crs), b←R {0, 1}
∀i ∈ [Qct] : cti ← Enc(msk, xib), ∀j ∈ [Qsk] : skj ← KeyGen(msk, f jb )
b′ ← A({cti}i∈[Qct], {skj}j∈[Qsk])

Return 1 if b = b′ and ∀ i ∈ [Qct], j ∈ [Qsk], f
j
0 (xi0) = f j1 (xi1), 0 otherwise.

26



We say FE is IND-FH secure if for any PPT adversary A, any constant c > 0, any large enough
security parameter λ, any polynomial n(λ) ∈ N:

advIND−FHFE,A (λ) := 2 · |1/2− Pr[1← IND− FHFE
A (1λ, 1n)]| < λ−c.

Remark 4.3. In both the above games, the ciphertext and key queries are not required to be
bounded. We also consider Functional Encryption with (Qct, Qsk)−indistinguishability security
where the number of key and the ciphertext queries are bounded by Qct and Qsk respectively,
where Qct and Qsk are some polynomials in the security parameter. If there is no bound on the
number of keys or the ciphertext we will set the corresponding parameter by poly(λ) indicating
that it could be an arbitrary polynomial. For example, (Qct, poly(λ))−IND secure scheme denotes
an FE scheme with unbounded key queries but bounded ciphertext queries bounded by Qct.

Remark 4.4 (On (s, ε)−security). Above, we give the definitions of security using standard indis-
tinguishability. At times, we will also use (s, ε)−security, where it will mean that the corresponding
distinguishing advantage is bounded by ε(λ) for any adversary of size bounded by s(λ). Standard
subexponential security means that in this notation ε is inverse subexponential for all polynomial
sized circuits.

4.2 Efficiency Features

We now define various efficiency variants that a PHFE/FE scheme may satisfy. First we define
the notion of linear efficiency of a PHFE scheme, PHFE, but the definition for an FE scheme is
identical except that the set X is empty.

Definition 4.6. (linear efficiency of a PHFE/FE scheme) We say a PHFE for the functionality
F : X × Y → Z satisfies linear efficiency if for any security parameter λ ∈ N, any polynomial
n(λ) ∈ N, any message (x, y) ∈ Xn,λ × Yn,λ the following holds:

• crs← PPGen(1λ, 1n)

• Let (pk,msk)← Setup(crs).

• Compute (x, ct)← Enc(pk, (x, y)).

Then the size of of ct is bounded by n · poly(λ) for a fixed polynomial in λ.

Now we define the notion of sublinearity. It was shown in a series of works [AJ15, BV15,
BNPW16a] that such FE schemes for P/poly imply obfuscation (assuming subexponential security).

Definition 4.7. (Sublinearity of a PHFE/FE scheme) We say a functional encryption scheme FE
for the functionality F : Y → Z satisfies sub-linear efficiency if for any security parameter λ ∈ N,
any polynomial n(λ) ∈ N, any message y ∈ Yn,λ the following holds:

• crs← PPGen(1λ, 1n)

• Let (pk,msk)← Setup(crs).

• Compute ct← Enc(pk, y).

Let sF denote the maximum size of the circuit in Fn,λ. Then the size of of ct is bounded by
(s1−ε
F + n) · poly(λ) for a fixed polynomial in λ and for some constant ε > 0. Further, we say that

the scheme is compaact if ε = 1.
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We also define the notion of output sublinearity, which is a strengthening of the notion above.

Definition 4.8. (Output Sublinearity of an FE scheme) We say a functional encryption scheme
FE for the functionality {Fn,λ,` : Yn,λ → {0, 1}`}λ,n,`∈N satisfies output sub-linear efficiency if for
any security parameter λ ∈ N, any polynomials n(λ) ∈ N and `(λ) and any message y ∈ Yn,λ the
following holds:

• crs← PPGen(1λ, 1n)

• Let (pk,msk)← Setup(crs).

• Compute ct← Enc(pk, y).

Then the size of of ct is bounded by (`1−ε + n) · poly(λ) for a fixed polynomial in λ and for some
constant ε > 0.

The functional encryption we describe in Section 6 actually satisfies the notion of sublinearity
above.

4.3 Structural Properties

Now we define some structural properties that are very specific to our construction. First we define
the notion of special structure which captures the property of a function key can be generated just
by applying a linear function of the master secret key over some field along with the fact that the
decryption of a ciphertext is “almost linear” (specified below).

Definition 4.9. (Special Structure.) We say that a functional encryption scheme FE satisfies
special structure if:

• (CRS Syntax.) The crs generated by the PPGen(1λ, 1n) algorithm consists of a modulus p
(which is a λc bit modulus for some constant c > 0).

• (Linear secret key structure.) The master secret key is a vector in s ∈ Zpoly(λ)
p for some

polynomial poly. For any function f ∈ Fn,λ, the functional secret key is of the form 〈crsf , s〉+e
mod p where crsf is some deterministic polynomial time computable function of the crs and
e is a randomly chosen field element from some distribution over Zp. Further |e| < p/16.

• (Linear + Round Decryption.) We require that for any ciphertext ct, the decryption for a
circuit f proceeds by first computing a deterministic (possibly complex) function of ct to output
ctf . Finally if ct was an honest encryption of m, then, given the secret key skf = 〈crsf , s〉+ e
mod p the decryption computes ctf−skf mod p = f(m)·dp/2e+ef−e where ef is polynomially
bounded in the security parameter in absolute value and |e| < p/16. The decryption algorithm
rounds and recover the output.

We also define the notion of Special Structure* where we additionally require that the decryption
noise is polynomially bounded. More formally, consider the following definition.

Definition 4.10. (Special Structure*.) We say that a functional encryption scheme FE satisfies
special structure if:

• (CRS Syntax.) The crs generated by the PPGen(1λ, 1n) algorithm consists of a modulus p
(which is a λc bit modulus for some constant c > 0).
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• (Linear secret key Structure.) The master secret key is a vector in s ∈ Zpoly(λ)
p for some

polynomial poly. For any function f ∈ Fn,λ, the functional secret key is of the form 〈crsf , s〉+e
mod p where crsf is some deterministic polynomial time computable function of the crs and e
is a randomly chosen field element from some distribution over Zp. Further |e| < poly(n, λ)
for some polynomial poly.

• (Linear + Round Decryption with polynomial decryption error.) We require that for any
ciphertext ct, the decryption for a circuit f proceeds by first computing a deterministic (pos-
sibly complex) function of ct to output ctf . Finally if ct was an honest encryption of m,
then, given the secret key skf = 〈crsf , s〉 + e mod p the decryption computes ctf − skf
mod p = f(m) · dp/2e + ef − e where ef is polynomially bounded in the security parame-
ter in absolute value and |e| < poly(n, λ) for some polynomial poly. The decryption algorithm
rounds and recover the output.

5 New Assumption

In this section, we describe our new assumption. We begin with some definitions.

Definition 5.1. (Pseudorandom Generator.) A stretch-m(·) pseudorandom generator is a Boolean
function PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to m(n)-bit outputs that is computable by a
uniform p.p.t. machine, and for any non-uniform p.p.t adversary A there exist a negligible function
negl such that, for all n ∈ N∣∣∣∣ Pr

r←{0,1}n
[A(PRG(r)) = 1]− Pr

z←{0,1}m
[A(z) = 1]

∣∣∣∣ < negl(n).

Definition 5.2. (Z-degree of a PRG.) Consider a stretch-m(·) pseudorandom generator PRG. For
all n ∈ N, and every i ∈ [m(n)], we denote by PRGn,i : {0, 1}n → {0, 1} the function that outputs
the i’th bit of the computation PRG : {0, 1}n → {0, 1}m, and dn,i its Z-degree, that is, the degree of
the unique multi-linear polynomial over Z[X1, ..., Xn] that agrees with PRGn,i on {0, 1}n. We define
the Z-degree of PRG as d(n) = maxi∈[m] dn,i.

From now, by degree of a stretch-m(·) pseudorandom generator G, we mean the Z degree of G
unless specified otherwise. We refer by F−degree, the degree of the polynomial over F.

Our new assumption is stronger than the one describe next. The assumption is widely known
in cryptography as the LWE with binary error assumption.

Definition 5.3 (LWBEε,ρ Assumption). For any constants ε > 0 and ρ > 0, we say that the as-
sumption LWBEε,ρ holds if for every modulus p = O(2n

ρ
) the following happens. We define two

distributions below. The assumption requires that the following distributions are computationally
indistinguishable:

PseudoRA(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;

ei ← {0, 1} ∀ i ∈ [n];

Output
(
{ai, 〈ai, s〉+ ei mod p}i∈[n]

)
RandomA(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;

ri ← Zp∀ i ∈ [n];

Output
(
{ai, ri}i∈[n]

)
Formally, we require that LWBEε,p holds if:

adv
LWBEε,p
A (1n) := |Pr[A(z1) = 1]− Pr[A(z2) = 1]| < negl(n),

where z1 ← PseudoRA(1n) and z2 ← RandomA(1n).
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We discuss the state of this assumption in Section 5.4. Next, we describe our main new assump-
tion which can be seen as an assumption arising from the interplay between the two assumptions
described above (the assumption of LWBE and that of a pseudorandom generator with large enough
stretch). We discuss the plausibility of this assumption too in Section 5.4.

Definition 5.4 (G-LWEleakd,ε,ρ Security). For any constant integer d > 0, constants ε > 0 and ρ ∈
(0, 0.5), we say that a degree d pseudorandom generator G of stretch at least m(n) ≥ nd

d
2
e·(0.5+ε)+ρ

satisfies G-LWEleakd,ε,ρ−security if for any modulus p = O(2n
ρ
), the following to distributions are

computationally indistinguishable:

PseudoRGA(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;

ei ← {0, 1} ∀ i ∈ [n];

Output
(
{ai, 〈ai, s〉+ ei mod p}i∈[n],G(e)

)

RandomG
A(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;

ei ← {0, 1} ∀ i ∈ [n];
r ← {0, 1}m;

Output
(
{ai, 〈ai, s〉+ ei mod p}i∈[n] , r

)
Formally, we say that G satisfies LWEleakd,ε,p if:

adv
LWEleakd,ε,ρ
G,A (1n) := |Pr[A(z1) = 1]− Pr[A(z2) = 1]| < negl(n),

where z1 ← PseudoRG
A(1n) and z2 ← RandomG

A(1n).

5.1 A Survey of the PRG Candidates

We consider Goldreich PRG candidates [Gol00]. We recall the definition of a hypergraph first.

Definition 5.5. We define an (n,m, d)−hypergraph H to be a hypergraph with n vertices and m
hyperedges of cardinality d. Each hyperedge σi for i ∈ [m] is of the form σi = {σi,1, . . . , σi,d} where
each σi,j1 ∈ [n] is distinct from σi,j2 ∈ [n] for every i ∈ [m] and j1 6= j2. Also, we assume that each
σi is an ordered set.

We now define Goldreich PRG candidates.

Definition 5.6. Goldreich’s candidate d-local PRG GH,P forms a family of local PRG candidates
where GH,P : {0, 1}n → {0, 1}m is parameterized by an (n,m, d)−hypergraph H = (σ1, . . . , σm)
and a boolean predicate P : {0, 1}d → {0, 1}. The functionality is defined as follows: On input
x ∈ {0, 1}n, GH,P return m-bit strings: (P(xσ1,1 , . . . , xσ1,d), . . . ,P(xσm,1 , . . . , xσm,d)).

Typically P is some predicate satisfying some nice properties, d is a constant integer greater
than equal to 5, and H is a randomly chosen graph from some distribution. The security should
hold with high probability over the choice of this graph.

Coming back to our assumption, intuitively, our assumption suggests that as long as other
parameters are chosen appropriately, any Goldreich PRG predicate of constant degree d admitting

a stretch of Ω(n
1
2
·d d

2
e+c) for any constant c > 0 can potentially form a nice choice to instantiate our

assumption. Traditionally Goldreich’s PRG has been a subject of extensive study (For example,
see [Gol00, MST03, ABR12, BQ12, App12, OW14, AL16, CDM+18].). The standard complexity
measure for a Goldreich’s PRG is locality of the predicate (and not the Z−degree.). Locality of the
predicate is the number of bits that the predicate takes as input. Since the predicate in a Goldreich
PRG is a boolean function, the locality of the predicate forms an upper bound on the Z-degree of
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the predicate. We now survey some known results below and we will remark about both locality
and Z−degree of the predicate. Analysis of the PRG predicates in literature has focused mainly,
on the following broad classes of attacks:

• F2 linear bias distinguishing attacks.

• Attacks from optimization literature such as (e.g. SoS based SDP algorithms.).

• Algebraic attacks that include, e.g. Gröbner Basis Attacks.

• Guess and Determine Attacks.

It is known from the work of [MST03], that in order to construct a PRG with polynomial stretch
the minimum locality needs to be 5. For such a locality, [OW14] proved an optimal stretch of
m(n) = n1.5−ε for the Goldreich PRG instantiated with the TSA predicate7, for any constant ε > 0,
against subexponential SDP adversaries and F2 linear bias adversaries.

This understanding can be generalized.

SoS Attacks. In fact for attacks relying on Semi-Definite Programming (SDP), there is a very
powerful infrastructure to prove systematic lower bounds. This is captured by the sum-of-squares
(SoS) hierarchy [Sho87, Par00, Nes00, Las01]. It was proven in [KMOW17] that the Goldreich PRG

with a stretch m(n) = n1+( k
2
−1)(1−δ) for some constant δ > 0, when instantiated using a random

hypergraph and a predicate P that is k−wise independent8, will require an SoS program of level
O(nδ) for deriving refutations. This translates (very roughly) to an SDP that requires 2O(nδ) time
to solve. This shows that for the TSA predicate with stretch of n1.5−c, the SDP approach will take
at least 2O(n2c) time perform refutations/inversion.

F2 Linear Bias. These attacks are distinguishing attacks. F2 linear bias security consists of
proving the following. For outputs y1, . . . , ym of the PRG, it requires that for every non-empty
set S ⊆ [n], it holds that

∣∣E[⊕i∈Syi] − 0.5
∣∣ ≤ 2−n

ε
for some constant ε > 0. Usually this is a

very hard property to prove in general. In fact, we only have sound analysis of very few predicates
[MST03, ABR12, OW14, AL16]. The analysis in [AL16] is the first incident where a general degree d
of the predicate is considered. Unfortunately, the analysis there can’t be applied in our case because
the parameters they achieve are not good enough for our setting. Unless a theorem already exists,
we won’t be discussing about these attacks for most of our candidates.

Algebraic Attacks / Guess and Determine Attacks. Algebraic attacks consists of resolu-
tion style attacks where some equations are set up and then they are manipulated until a search
or refutation is made. This class of attacks capture the Gröbner Basis Attacks. In order to avoid
the algebraic attacks with the stretch m(n) = ns, as outlined by [AL16], the predicate should have
a rational degree 9 greater than s. The reason for that is that, if the rational degree is lower than
s, then the following happens. Write P · Q = R where Q and R are degree e < s functions. Given
samples (y1, . . . , ym) one can write yi · Q(xSi) = R(xSi) where Si is the corresponding indices on
which the predicate P was applied to obtain yi. Note that these are m degree e equations. This

7Recall, TSA(x1, . . . , x5) = x1 ⊕ x2 ⊕ x3 ⊕ AND(x4, x5).
8A predicate is k−wise independent if for any set S of size at most k − 1, E[P (x1, . . . , xd)⊕i∈S xi] = 0.5.
9Recall that the rational degree of P is the minimum degree e such that there exist degree e predicates Q and R

such that PQ = R. Rational Degree is also known as algebraic immunity.
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system can be linearized if s > e. In [AL16], the authors also prove lower bounds for subexponen-
tial algorithms in this model but unfortunately they are too weak to be applied here. However,
in a very interesting work [CDM+18], this attack was further improved where the authors consid-
ered rational degrees of predicates obtained by fixing some bits of the input called the bit-fixing
algebraic immunity (hence the name Guess and Determine.). Thereby, under reasonable heuristic
assumptions fine-tuned trade-offs of stretch vs running time were obtained. Refer to Proposition
5, 7 and 8 in [CDM+18] for details. The paper is also an excellent source on the concrete security
of various candidates and a survey of state-of-the-art attacks. For our candidates, we estimate
running times of these algorithms by relying on the theorems from this work. All known attacks
for our candidates and required parameters require subexponential time. We discuss the state of
some of the major known algorithms and how they fare against our candidates in Table 2.

We now discuss our candidates below and how each of the attacks discussed above fare for these
candidates.

5.2 The XORMAJ`,` Predicate

As suggested earlier, for a general degree, there is a gap between provable security against the
classes of attacks discussed above and actual attacks known in practice. While for a general degree
d, the best known analysis in [AL16] only constructs a PRG predicate that has a provable stretch
10 of Ω(nd/38). As pointed out it in Corollary 2, and Proposition 8 in [CDM+18], any Goldreich
PRG instantiated with a predicate of the form (e.g. the XOR`MAJk predicates.)

P(x1 . . . , x`+k) = ⊕i∈[`]xi ⊕ g(x`+1, . . . , x`+k).

for a non-linear balanced predicate g of locality k, can be broken in polynomial time (under a

heuristic assumption) if the stretch of the PRG is more than Õ(nd
k
2
e+1). The predicate above if g

is balanced, is (`+ 1)−wise independent. Thus, in light of these attacks and the SDP atttacks, to
design a predicate of this form in general, one needs `+1

2 > 1
2 · d

k+`
2 e, because of the SDP condition,

and dk2e + 1 > 1
2 · d

k+`
2 e because of the attacks in [CDM+18]. This leaves us with a tight margin

to develop predicates in this manner. One might choose k = `, where ` is odd. Then, in the first
equation `+1

2 > `
2 and in the second equation, `+3

2 > `
2 . Thus, for an odd ` ≥ 3 define:

XORMAJ`,`(x1 . . . , x2`) = ⊕i∈[`]xi ⊕MAJ(x`+1, . . . , x2`).

This predicate above has been widely studied, and has been regarded as the gold standard PRG
predicate owing to the fact that Majority has the optimal rational degree [AL16].

SoS Attacks. We consider a stretch of n
`+1
2
−c for some constant c > 0. Under such circumstances

we can show an SoS lower bound relying on the result of [KMOW17] against subexponential sized
SoS programs. The exact parameters are computed in Table 2.

Algebraic Attacks. Unfortunately, we can’t use the theorems in [AL16] to argue provable se-
curity against such attacks, we show that these as well as the improved attacks in [CDM+18]
approximately take subexponential time for our parameter setting. The exact parameters are com-
puted in Table 2. In the table we rely on Proposition 5, 7 and 8 in [CDM+18] to populate the
parameters.

10Actually the result holds for locality.
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5.3 Low-Degree High-Locality Predicates

As pointed out in the previous section, in general, we just have small room of parameters to build

predicates with the stretch n
`
4

+ε where ` is the locality in the way described above.
That points us to the following issue. Much of the research has been done in optimizing locality

of the PRG predicates vs the stretch. However, in this work, we actually do not care much about
the locality. For us, it is the degree of the predicate of the integers that is crucial. This allows us
to design clever predicates that has much lower degree than the locality.

For example, consider the predicate proposed by Lombardi and Vaikunthanathan [LV17b] that
has a locality of 5, but a degree of just 3!

TSPA(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ ((x2 ⊕ x4) ∧ (x3 ⊕ x5)) .

At first sight, it does not appear to have a degree of 3, but on careful examination we can indeed
show this. We also extend this observation and design a family of predicates that have much lower
Z degree than the locality. We now discuss the status of known attacks for this particular predicate.

• SoS Attacks. Since the predicate is 3−wise independent, relying on the result of [KMOW17]
it can be shown that for a stretch of m(n) ≤ n1.5−c for any constant c ∈ (0, 0.5), the predicate
provably resists attacks via the sum-of-squares paradigm running in time O(2n

2c
).

• Linear Bias Attacks. In [LV17b] it was proven that for a stretch of n1.25−c for any c > 0, the
predicate provably resists linear bias distinguishing attacks relying on the dichotomy theorem
of [ABR12]. Also, authors conjecture, that for this candidate by a tighter analysis even a
stretch of n1.5−c should be possible against linear bias attacks.

• Algebraic and [CDM+18] Style Attacks. First observe that the rational degree of TSA
and TSPA is the same because the variables are just related by an invertible linear transfor-
mation. Namely,

TSPA(x1, . . . , x5) = TSA(x1, x2, x3, x4 ⊕ x2, x3 ⊕ x5).

Thus many of the ideas used to analyze TSA can be applied here. We work out the running
time of the known attacks as a function of stretch in Table 2 for these attacks.

Next, we consider the following instantiation inspired by the TSPA predicate above. We suggest
a general approach using which we construct a predicate of locality 2 ·k+1, and a Z−degree of just
k+1 for any constant integer k > 0. The predicate additionally satisfies (k+1)−wise independence.
Further, the non-linear part will have an F2 degree of k. This allows us to enlarge the margin in
parameters for constructing useful predicates as discussed above. Consider g, a non-linear boolean
function of F2 degree k. Then, the predicate is simply:

Pg(x1 . . . , x2k+1) = ⊕i∈[k+1]xi ⊕ g(xk+2 ⊕ x2, . . . , x2k+1 ⊕ xk+1).

Put it simply, this can also be written in the template above:

Pg(x1 . . . , x2k+1) = x1 ⊕ g′(x2, . . . x2k+1),

where,

g′(x2 . . . , x2k+1) = x2 ⊕ . . .⊕ xk+1 ⊕ g(xk+2 ⊕ x2, . . . , xk+1 ⊕ x2k+1).
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Now we argue (k + 1)−wise independence. The predicate above is (k + 1)−wise independent.
The reason for that is that in Fourier notation11:

P̂g(X1 . . . , X2k+1) = Πi∈[k+1]Xi · g(Xk+2 ·X2, . . . , X2k+1 ·Xk+1).

Also observe that in the Fourier expansion:

ĝ(Y1 . . . , Yk) =
∑
S⊆[k]

ĝSχS(Y1, . . . , Yk).

We substitute Yi = Xi+1 ·Xk+i+1. Thus, we get:

P̂g(X1 . . . , X2k+1) = Πi∈[k+1]Xi ·
∑
S⊂[k]

ĝSχS(X2 ·Xk+2, . . . , X2k+1 ·Xk+1).

Thus, the Fourier expansion of Pg is a homogeneous polynomial of degree k+1. Hence, the predicate
is (k + 1)−wise independent. From the above, it is also clear that Z degree of Pg is also k + 1.
Infact, TSPA is obtained as a special case of this compiler where g is just the AND function. For
an odd k ≥ 3, we consider PMAJk as one of our candidate. For this candidate, consider:

• SoS Attacks. Since the predicate is (k + 1)−wise independent, relying on the result of

[KMOW17] it can be shown that for a stretch of m(n) ≤ n
k+1
2
−c for any constant c > 0), the

predicate provably resists attacks via the sum-of-squares paradigm running in subexponential
time.

• Algebraic and [CDM+18] Style Attacks. First observe that the rational degree of PMAJk

and XORMAJk+1,k is same because the variables are just related by an invertible linear trans-
formation. Thus many of the ideas used to analyze XORMAJ can be applied here. We work
out the running time of the known attacks as a function of stretch in Table 2 for these attacks.

5.4 Justifying Security of the Combined Assumptions

We now discuss the plausibility of our assumptions along with the binary LWE leakage part. The
first category of attacks we discuss consists of attacks targeting the binary LWE part alone. Since
the standalone PRG security has been discussed above, we do not discuss it here. Then we discuss
the third category of attacks that consists of algebraic attacks over Fp that utilize both the LWE
samples and the PRG leakage on the error of the LWE samples.

5.4.1 Binary LWE Security

Binary LWE has been a subject of study in quite a few number of works [MP13, ACF+15, AG11,
CTA19]. Let n denote the dimension of the secret. While the problem is provably hard, and
backed by a security reduction from worst case lattice problems, when the the number of samples
m(n) = n(1 + Ω( 1

log2 n
)) [MP13], the problem is easy when m(n) ≥ Ω(n2), as shown by [AG11]. We

11Recall that for any boolean function f : {0, 1}n → {0, 1}, f(x1, . . . , xn), the fourier expansion of f , denoted by

f̂ : {−1,+1}n → {−1,+1}, is related as:

f̂(X1, . . . , Xn) =
∑
S⊆[n]

f̂S · χS(X1, . . . , Xn).

Here f̂(X1, . . . , Xn) = 1− 2 · f(x1, . . . , xn) and each Xi = 1− 2 · xi. For any set S, χS(X1, . . . , Xn) =
∏
i∈S Xi.
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work in the regime when the number of samples m(n) = ns for some s ∈ (1, 2). Under this regime,
there are two kinds of algorithms that are studied.

Gröbner Basis Attacks: Arora-Ge algorithm [AG11] is a special case of a whole family of
algebraic algorithms that consider all degree D algebraic constraints implied by the given equa-
tions for some large enough D so that the ideal generated by the unique solution can be recovered.
Depending on the constraints, the degree defines the running time of the algorithm. The run-
ning time of these algorithm typically roughly grows like nO(D). In [CTA19], it was proven that
Gröbner basis algorithm require 2O(nε) time to run assuming that the number of samples are given
by m(n) = n2−ε for some ε > 0. We will discuss this aspect again when we talk about the third
category of attacks.

Lattice Attacks: The only attacks based on lattice reduction techniques that we are aware of
apply to LWE more generally, and not just to binary-error LWE. The most relevant attack reduces
the LWE instance to a BDD problem and then use the BKZ algorithm [Sch94] to solve it (see,
e.g., [Ste] for details). With our setting of parameters, the time complexity of this attack would
be Ω(2n

0.5+ε−ρ
). Because ρ < 0.5, this yields at best a subexponential attack.

5.4.2 Algebraic Attacks on the Combined Assumption

A natural approach to combine the information from both the PRG and LWE samples can be to
form all equations that one can and then compute the Gröbner basis of the system generated by
the equations. Recall a typical instance of our assumption contains:

• LWE samples {ai, bi = 〈ai, s〉+ ei mod p} for i ∈ [n]. Here, s has dimension n0.5+ε for some
ε > 0.

• Degree-d PRG evaluations: y = G(e1, . . . , en) = (Gn,1(e), . . . ,Gn,m(n)(e)) where m(n) =

nd
d
2
e·(0.5+ε)+ρ.

This means, that one can form the following equations.

(bi − 〈ai, s〉)2 = (bi − 〈ai, s〉) ∀i ∈ [n],

yi = Gn,i(b1 − 〈a1, s〉, . . . , bn − 〈an, s〉) ∀i ∈ [m].

Here, the first equation is result of booleanity of the errors ei. We now consider an example of
this case when d = 3, and G is the Goldreich PRG instantiated with the TSPA predicate. We set
ε = 0.1, ρ = 0.04 and m = n1.24 = nd

3
2
e·(0.5+ε)+ρ. This enforces the dimension to be n0.6 = n0.5+ε.

Thus we have ` = m+ n equations. m of them are degree 3 equations and n of them are degree 2.
Let us denote these equations as {qi(s) = 0}i∈[`]. A quick and dirty way to approximately gauge
the performance of Gröbner basis algorithm is to fix a degree D, and then collect all equations of
the form:

h(s) · qi(s) = 0,

for all monomials h of degree upto D − deg(qi). Finally, if degree D is large enough, and there
exists a unique solution, there will exist a D at which point, we can perform gaussian elimination
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in n0.6·O(D) variables (variables corresponding to all monomials of degree less than or equal to D
generated by s) to recover the secret s.

For this strategy to succeed we want that the number of monomials of degree less than or equal
to D in s to be lesser than the number of equations formed. This happens when:

n ·
(
n0.6 +D − 2

D − 2

)
+ n1.24 ·

(
n0.6 +D − 3

D − 3

)
≥
(
n0.6 +D

D

)
.

Which means that D ≥ n0.1. We can also do a similar analysis for a general degree d, which will
require:

n ·
(
n0.5+ε +D − 2

D − 2

)
+m(n) ·

(
n0.5+ε +D − d

D − d

)
≥
(
n0.5+ε +D

D

)
.

Here, m = nd
d
2
e·(0.5+ε)+ρ. This requires D ≥ O(min(nε, n

1
d
·(b d

2
c−ρ))). In fact, the above approach

is really simplified and ignores many subtle issue but gives a lower bound on the actual degree D
that should be considered. For a brief discussion about this, please refer [CTA19]. We will use this
calculation to denote running times for various predicates under the column GB in Table 2.

5.5 Summary: Our Assumptions

We start with a table of comparison of our three instantiations where we list four kinds of attacks.
SoS represent the sum-of-squares attacks applicable only to the PRG part of the instance. BKZ
represent the running time obtained by using BKZ algorithm only the binary LWE part of the
instance. GB represent an approximation of the running time of the algebraic attacks over Fp on
the combined assumption discussed in the previous section. Finally in the last column we compute
the running time for attacks on the PRG predicates using Propositions 5, 7 and 8 in [CDM+18].
We make the following assumption:

Assumption 5.1 (TSPA-LWEleak Assumption). The Goldreich pseudorandom generator construc-
tion instantiated with the TSPA predicate satisfies TSPA-LWEleak3,ε,ρ security for some constants
ε > 0 and ρ > 0.

Similarly, we make the following assumptions:

Assumption 5.2 (XORMAJ`,`-LWEleak Assumption). The Goldreich pseudorandom generator con-
struction instantiated with the XORMAJ`,` predicate for an odd integer ` ≥ 3 satisfies XORMAJ-LWEleak2·`,ε,ρ
security for some constants ε > 0 and ρ > 0.

Assumption 5.3 (PMAJk -LWEleak Assumption). The Goldreich pseudorandom generator construc-
tion instantiated with the PMAJk predicate for an odd integer k ≥ 3 satisfies PMAJk-LWEleakk+1,ε,ρ

security for some constants ε > 0 and ρ > 0.

6 Construction of Functional Encryption

In this section, we construct a sublinear public-key functional encryption scheme FE for circuit class
Cn,λ,γ which consists of all circuits with n input bits, depth bounded by λ and number of output
bits bounded by ` = n1+γ for some constant γ > 0. We need following ingredients to build such a
scheme:
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P d m1 m2 SoS BKZ GB [CDM+18]

TSPA 3 n1.45 n1+c n0.10 n0.71 n0.22 n0.4

XORMAJ5,5 10 n2.95 n2.5+c n0.025 n0.582 n0.082 n0.5125

PMAJ5 6 n2.95 n1.5+c n0.025 n0.97 n0.48 n0.51

Table 2: Running time for various known inversion attacks. Above P is a predicate of degree
d. m1 denotes the considered stretch, m2 is the minimum stretch required in order to construct
obfuscation via our assumption. c > 0 is arbitrary constant. SoS denotes the attacks known via
the Sum-of-Squares paradigm. BKZ denotes the running time of the attacks via the BKZ lattice
reduction algorithm. GB denotes the algebraic attacks on the combined assumption based on the
Gröbner Basis algorithm. The last column denotes the running time from the subexponential time
algorithm in [CDM+18] (Propositions 5,7 and 8). The cells represent Õ(log2(·)) of the running
times where we hide logarithmic factors. The value of ρ is chosen to be 0.01, and so the modulus

is p = O(2n
0.01

). We set ε so that, m1 = nd
d
2
e·(0.5+ε)+ρ.

• (Single Ciphertext FE with Linear Key Generation:) We use the secret key functional encryp-
tion scheme, denoted by 1LGFEB, constructed in Section 7.4. Note the following properties
of that scheme:

– The function class is Cn,λ. This consists of all polynomial sized circuits with n bit inputs,
depth bounded by λ, and with one bit output.

– Special structure*: The scheme satisfies special structure*. In particular, in that con-
struction as with all the constructions in this paper, there is an algorithm PPGen which
outputs crs that is used by all schemes in this paper. In particular, PPGen(1λ, 1n) out-
puts a string crs that contains a bilinear map description PG = (G1,G2,GT , p, P1, P2, e)
where the order of the group is p which is poly(λ) bit prime modulus for some polynomial
poly. The crs also consists of another modulus p1 along with a string PE.PK.

– The scheme can be instantiated to satisfy (1, Qsk)− indistinguishability security. Here
Qsk is set to be equal to `, the number of output bits for circuits in Cn,λ,γ .

– The noise used to generate the function secret keys is sampled from [0,Boundsmdg] where
Boundsmdg is some polynomial in `, λ and n.

• (Pseudorandom Generator G satisfying G-LWEleakd,ε,ρ:) Another ingredient is a pseudoran-
dom generator G that satisfies G-LWEleakd,ε,ρ assumption for a constant integer d > 0, and
some constants ε ∈ (0, 1) and ρ ∈ (0, 1). The modulus p that we use for this assumption is the
same as the order of the bilinear map. The modulus p is a poly(λ) bit modulus (instantiated
in Section 7.2), which for sufficiently large n(λ) is less than 2n

ρ
. The constant γ will be set

as some function of ε and ρ later.

• (PHFE for FO(n),d,p:) We require a simulation secure, public-key, partially hiding functional
encryption scheme PHFE with linear efficiency. The function class FO(n),d,p consists of all

functions f that takes an input of the form (x,y) ∈ ZO(n)
p × ZO(n)

p and computes f(x,y) =∑
j,k fj,k(x) · yj · yk where fj,k is a degree d polynomial over x. Finally given an encryption of
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(x,y) and a function secret key for f , the decryption reveals [f(x,y)]T in the target group.
Such a scheme is constructed in Section 8. The actual length denoted by O(n) here will be
described later.

We now describe the construction.

Parameters: We now describe the setting of the parameters. These parameters will only be
referred to in the proof of security and sublinearlity.

• The parameter instantiation for the modulus p and corresponding parameters for 1LGFEB can
be found in Section 7.2. In particular, p is a poly(λ) bit prime modulus for some polynomial
poly.

• We will refer to a parameter n′. This will be the length of input of G. We set n′ = dn
1

0.5+ε
· 1

d d2 e e.
This setting ensures that the ciphertext size grows linearly in n.

• Using the properties above, we prove that the number of output bits allowed, ` ≥ n1+ ρ
4d .

Thus, γ > ρ
4d . Therefore, by making a stronger assumption, we can obtain keys for circuits

with larger number of output bits.

Construction: Please refer to the construction in Figure 6.

Correctness: Now we argue the correctness of the construction. Consider any message m ∈
{0, 1}n and a circuit C ∈ Cn,λ,`. Let ct = (ct1, ct2) be an honest encryption of m. Also let
skC = (skC,1, . . . , skC,`) denote the function secret key for C. Let us now revisit the decryption
steps.

• Using the special structure* property of 1LGFEB, compute ctC,i by evaluating ct1 using the
circuit Ci.

• Compute gwiT ← PHFE.Dec(skCi , ct2).

• Compute zi = g
ctCi−wi
T .

• Try to bruteforce recover exponent of zi. If it is bounded by 100 ·Boundsmdg in absolute value,
set yi to be 0 and otherwise, if the recovery fails, set yi = 1.

• Output (y1, ..., y`).

We now describe correctness for all i ∈ [`]. Let’s first revisit decryption procedure for 1LGFEB.
In 1LGFEB, due to the linear + round decryption property of 1LGFEB given ct1 and 1LGFEB.skCi ←
1LGFEB.KeyGen(s1, Ci, `), the following holds. Let ctCi denote the evaluated ct1. Then, ctCi −
1LGFEB.skCi = Ci(m)dp2e+ err for some err which is bounded by 2 · Boundsmdg in absolute value.
Unfortunately, we are not given 1LGFEB.skCi . We are given skCi which is a PHFE secret key
for a function that computes something in the exponent of gT that is close to the secret key
1LGFE.skCi . In particular, if 1LGFEB.skCi = 〈crsCi , s2〉 + err mod p where err ← [0,Boundsmdg],

skCi allows one to compute gwiT = g
〈crsCi ,s2〉+

∑
j∈[t] 2j−1·G(i−1)·t+j(e1,...,en)

T . Observe that,
∑

j∈[t] 2j−1 ·
G(i−1)·t+j(e1, ..., en) allows one to compute some string in [0, 2t − 1]. Since t is logarithmic in
dlog2 Boundsmdge+ 1, this range is within [0, 4 · Boundsmdg]. Thus by decryption equation above,

|ctCi − wi − Ci(m)dp
2
e| ≤ 6 · Boundsmdg

Since Boundsmdg << p, this proves the claim.
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FE.PPGen(1λ, 1n) : Run 1LGFEB.PPGen(1λ, 1n) → crs. Implicit in the crs is a bilinear map
description and a modulus p.

FE.Setup(crs) : Run PHFE.Setup(crs) → (PHFE.pk,PHFE.msk). Sample vectors ai ← Zn′
0.5+ε

p for
i ∈ [n′] for n′ specified later. Set FE.pk = ({ai}i∈[n′],PHFE.pk) and FE.msk = PHFE.msk.

FE.Enc(FE.pk,m ∈ {0, 1}n) : Run s1 ← 1LGFEB.Setup(crs) and sample s2 ← Zn′
0.5+ε

p . Then
perform the following steps.

• Compute ct1 ← 1LGFEB.Enc(s1,m).

• Sample ei ← {0, 1} for i ∈ [n′]. Then compute bi = 〈ai, s2〉+ ei mod p.

• Compute S = (s2, 1)⊗d
d
2
e. In other words, S consists of all monomials generated from s2 of

degree less than or equal to dd2e.

• Denote b = (b1, ..., bn′)

• Parse FE.pk = ({ai}i∈[n′],PHFE.pk). Compute ct2 ← PHFE.Enc(PHFE.pk, (b, (s1, S))). Here
the public component of the ciphertext is b. Output ct = (ct1, ct2).

FE.KeyGen(FE.msk, C) : On input a circuit C : {0, 1}n → {0, 1}` where ` = n1+γ do the following.

Denote C = (C1, . . . , C`) where each Ci is the circuit computing ith bit of the circuit evaluation.

• For each i ∈ [`], from the linear key generation structure of 1LGFEB let crsCi denote the
coefficient vector over Zp, computable from crs determinstically, that is used to generate
secret key for circuit Ci.

• Compute skC,i ← PHFE.KeyGen(PHFE.msk, fi) where fi is described in Figure 6. Intuitively,
this function allows one to generate 1LGFEB secret keys for function Ci using the master
secret key s1. The noise for this is sampled using the pseudorandom generator G evaluated
on the error vector used to construct samples b. Output skC = (skC1 , . . . skC`)

FE.Dec(skC , ct) : Parse skC = (skC1 , ..., skC`) and ct = (ct1, ct2). For each bit i ∈ [`], do the
following:

• Using the special structure* property of 1LGFEB, compute ctC,i using the ciphertext ct1.

• Compute gwiT ← PHFE.Dec(skCi , ct2).

• Compute zi = g
ctCi−wi
T .

• Try to bruteforce recover exponent of zi. If it is bounded by 100 ·Boundsmdg in absolute value,
set yi to be 0 and otherwise, if the recovery fails, set yi = 1. Output (y1, ..., y`).

Figure 5: Construction of Functional Encryption Scheme FE.
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fi(b, (s1, S))
Hardwired :{ai}i∈[n′], crsCi , t = dlog2 Boundsmdge+ 1

1. Let G : {0, 1}n′ → {0, 1}m be the PRG with stretch m. Assume m ≥ t·`. Let Gi for i ∈ [m(n′)]
denote the function that computes ith bit of the PRG output.

2. Output fi(b, s1,S) = 〈crsCi , s1〉+
∑

j∈[1,t] 2j−1 · G(i−1)·t+j(e1, ...., en′)

Computability in FO(n),d,p:

• n′ is set such that S ∈ Znp . Note that S has (n
′0.5+ε

+ 1)d
d
2
e field elements. Note that n′ is set

so that S has O(n) field elements. This means that n′ < n. Dimension of s1 is also a fixed
polynomial in the security parameter. Thus the input consists of O(n) field elements.

• 〈crsCi , s1〉 is just a linear function in s1. Then, consider Gj(e1, ..., en′). This function is a
boolean function and has a unique representation over Z[e1, ..., en′ ], which can be obtained
by arithmetizing the function. Namely, replace e1 ⊕ e2 with e1 · (1 − e2) + e2 · (1 − e1) and
replace e1 ∧ e2 with e1 · e2. Further, the Z degree of G is d. Thus, Gj can be written as a
polynomial over Z[e1, ..., en′ ] which has a canonical representation over Zp[e1, ..., en′ ].

• Finally, we note that ei = bi−〈ai, s2〉 mod p for all i ∈ [n′]. This means that Gj(e1, ..., en′) =
Gj(b1 − 〈a1, s2〉, ..., bn′ − 〈an′ , s2〉) mod p. Thus, this can be implemented as a polynomial
that is degree 2 in S and degree d in b.

Figure 6: Circuit fi used in FE key generation procedure.
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Sublinearity: We now bound the size of the ciphertext. Assume in the analysis below that the
size of the modulus p is some fixed polynomial in security parameter, as instantiated in Section
7.2. Since the ciphertext have two components, ct1 and ct2, the size of the ciphertext ct is the sum
of |ct1| and |ct2|. By compactness of 1LGFEB scheme, |ct1| ≤ n · poly(λ) for some fixed polynomial
poly. Now, by linear efficiency of PHFE scheme, |ct2| ≤ (|s2| + |b| + |S|) · poly(λ) for some fixed
polynomial. Now, |s2| is some fixed polynomial in the security parameter.

Observe that |b| ≤ n′ · log2 p and |S| ≤ (2 · n′)(0.5+ε)·d d
2
e · log2 p = O((2 · n′)(0.5+ε)·d d

2
e · poly(λ)).

In order to guarantee, sublinearity, we set n′ as follows. Set n′ so that:

(2 · n′)(0.5+ε)·d d
2
e ≈ n

n′ ≈ n
1

0.5+ε
· 1

d d2 e · α.

Here α is some constant greater than 0. Now, with this n′, let us find out the value of γ and `.

Observe that the stretch m(n′) ≥ n′
1
2
·d d

2
e+d·ε+ρ. This can be written as:

m ≥n′
1
2
·d d

2
e·(0.5+ε)+ρ

≥β · n
1

d d2 e·(0.5+ε)
·(d d

2
e·(0.5+ε)+ρ)

≥β · n1+ ρ
3·d .

Above β is some constant greater than 0. Here the last inequality requires that d ≥ 3 and ε < 0.5.
Now the number of output bits can be lower bounded by ` ≥ m/t, since for every key query t

PRG output bits are used. Since t ≤ O(log2 λ), we have ` ≥ n1+ ρ
4·d . Thus γ can be set as ρ

4·d . This
proves sublinearity as this shows that the length of the ciphertext is O(n · poly(λ)) and the number
of output bits for circuits in Cn,λ,` tolerated are atleast ` ≥ n1+ ρ

4d . In fact, our scheme places no
restriction on the size of the circuit C, only the length of the output needs to be lesser than ` bits.
Thus it satisfies the notion of output sublinearity.

Security: We now prove security. Let the parameters be set as described in the construction.
Then, we prove the following:

Theorem 6.1. Assume that the following assumptions holds for some constants ε, ρ ∈ (0, 0.5), a
constant integer d ≥ 3 and the parameters described in Section 7.2.

• There exists a PRG G satisfying Definition 5.4 (instantiable using Assumption 5.1, or As-
sumption 5.2 or Assumption 5.3),

• LWE assumption, and,

• Standard assumptions over bilinear groups (SXDH and the Bilateral DLIN assumptions),

then, there exists a (output) sublinearly efficient public-key Functional Encryption scheme.

Since PHFE can be built assuming the SXDH and bilateral DLIN assumptions and 1LGFEB can
be built using the LWE assumption, the result follows from the following lemma:

Lemma 6.1. Assuming that there exists constant integer d ≥ 3 and constants ρ and ε in (0, 1)
such that:
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• G satisfies G-LWEleakd,ε,ρ security,

• 1LGFEB is a (1, n1+γ) − IND secure secret key functional encryption scheme where γ = ρ
4·d ,

and,

• PHFE is a public key simulation secure functional encryption scheme,

the construction above is a secure single key sublinear public key Functional Encryption scheme.

Proof Overview: The proof of the construction is straightforward. First, we start simulating
the PHFE ciphertext and the function keys. In doing this, the view of the adversary no longer
consists of S. Then, we start hardwiring the output values of the decryption using the randomness
sampled from a truly uniform distribution from [0, 2t − 1] as opposed to using the actual PRG
output. This jump is indistinguishable and follows from G-LWEleakd,ε,ρ security. Then, we invoke
the security of 1LGFEB to go to a hybrid independent of the challenge bit. We now write hybrids
and argue indistinguishability between them.
Hybrid0 :

• The adversary outputs m0,m1 ∈ {0, 1}n along with a circuit C ∈ Cn,λ,γ such that C(m0) =
C(m1).

• The challenger runs PPGen(1λ, 1n)→ crs. Note that crs has a modulus p.

• Sample ai ← Zn′
0.5+ε

p for i ∈ [n′].

• Run PHFE.Setup(crs)→ (PHFE.pk,PHFE.msk). Set FE.pk = ({ai}i∈[n′],PHFE.pk) and FE.msk =
PHFE.msk.

• Sample a bit µ← {0, 1}. Compute the challenge ciphertext as follows. Run s1 ← 1LGFEB.Setup(crs)

and sample s2 ← Zn′
0.5+ε

p . Then perform the following steps.

– Compute ct1 ← 1LGFEB.Enc(s1,mµ).

– Sample ei ← {0, 1} for i ∈ [n′]. Then compute bi = 〈ai, s2〉+ ei mod p.

– Compute S = (s2, 1)⊗d
d
2
e. In other words, S consists of all monomials generated from s2

of degree less than or equal to dd2e.
– Denote b = (b1, ..., bn′)

– Parse FE.pk = ({ai}i∈[n′],PHFE.pk). Compute ct2 ← PHFE.Enc(PHFE.pk, (b, (s1, S))).
Here the public component of the ciphertext is b.

– Output ct = (ct1, ct2).

• Compute a secret key for circuit C as follows. Denote C = (C1, . . . , C`) where each Ci is the
circuit computing ith bit of the circuit.

– For each i ∈ [`], from the linear key generation structure of 1LGFEB let crsCi denote the
coefficient vector used to generate secret key for circuit Ci.

– Compute skC,i ← PHFE.KeyGen(PHFE.msk, fi) where fi is the function in FO(n),d,p de-
scribed in the key generation procedure above.

– Output skC = (skC1 , . . . skC`)

• Hand over to the adversary (crs,FE.pk, ct = (ct1, ct2), skC = (skC,1, . . . , skC,`)).
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In the next hybrid, we simulate PHFE ciphertext and the secret keys.
Hybrid1 :

• The adversary on input outputs m0,m1 ∈ {0, 1}n along with a circuit C ∈ Cn,λ,γ such that
C(m0) = C(m1).

• The challenger runs PPGen(1λ, 1n)→ crs. Note that crs has a modulus p.

• Sample ai ← Zn′
0.5+ε

p for i ∈ [n′].

• [Change] Run PHFE.S̃etup(crs) → (PHFE.p̃k,PHFE.m̃sk). Set FE.pk = ({ai}i∈[n′],PHFE.p̃k)

and FE.msk = PHFE.m̃sk.

• Sample a bit µ← {0, 1}. Compute the challenge ciphertext as follows. Run s1 ← 1LGFEB.Setup(crs)

and sample s2 ← Zn′
0.5+ε

p . Then perform the following steps.

– Compute ct1 ← 1LGFEB.Enc(s1,mµ).

– Sample ei ← {0, 1} for i ∈ [n′]. Then compute bi = 〈ai, s2〉+ ei mod p.

– Compute S = (s2, 1)⊗d
d
2
e. In other words, S consists of all monomials generated from s2

of degree less than or equal to dd2e.
– Denote b = (b1, ..., bn′)

– [Change] Parse FE.pk = ({ai}i∈[n′],PHFE.p̃k). Compute ct2 ← PHFE.Ẽnc(PHFE.p̃k, b).
Here the public component of the ciphertext is b.

– Output ct = (ct1, ct2).

• Compute a secret key for circuit C as follows. Denote C = (C1, . . . , C`) where each Ci is the
circuit computing ith bit of the circuit.

– For each i ∈ [`], from the linear key generation structure of 1LGFEB let crsCi denote the
coefficient vector used to generate secret key for circuit Ci.

– [Change] Compute skC,i ← PHFE.K̃eyGen(PHFE.m̃sk, fi, θi = fi(b, (s2,S)) where fi is
the function in FO(n),d,p described in the key generation procedure above. Note that
θi = 〈crsCi , s1〉+

∑
j∈[t] 2j−1 · G(i−1)·t+j(e1, . . . , en).

– Output skC = (skC1 , . . . skC`)

• Hand over to the adversary (crs,FE.pk, ct = (ct1, ct2), skC = (skC,1, . . . , skC,`)).

Lemma 6.2. Assuming that the PHFE scheme satisfies simulation security, then, for any p.p.t
adversary A, |Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1)]| ≤ negl(λ).

Proof. The only difference between these two hybrids is that in Hybrid1, the public key pk, the
ciphertext ct2 and the PHFE function keys for fi for all i ∈ [`] are simulated, whereas, in Hybrid0

they were generated using the honest algorithms. Note that everything else in the hybrid can
be simulated and the master secret key of the PHFE scheme is not in the view of the adversary.
Thus, we can build a reduction to the security of the PHFE scheme where given an adversary A
distinguishing these two hybrids with probability δ, the reduction can break the simulation security
of PHFE with probability δ.

In the next hybrid, we use the assumption and replace Gj(e1, . . . , en) with random bits.
Hybrid2 :
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• The adversary on input outputs m0,m1 ∈ {0, 1}n along with a circuit C ∈ Cn,λ,γ such that
C(m0) = C(m1).

• The challenger runs PPGen(1λ, 1n)→ crs. Note that crs has a modulus p.

• Sample ai ← Zn′
0.5+ε

p for i ∈ [n′].

• Run PHFE.S̃etup(crs)→ (PHFE.p̃k,PHFE.m̃sk). Set FE.pk = ({ai}i∈[n′],PHFE.p̃k) and FE.msk =

PHFE.m̃sk.

• Sample a bit µ← {0, 1}. Compute the challenge ciphertext as follows. Run s1 ← 1LGFEB.Setup(crs)

and sample s2 ← Zn′
0.5+ε

p . Then perform the following steps.

– Compute ct1 ← 1LGFEB.Enc(s1,mµ).

– Sample ei ← {0, 1} for i ∈ [n′]. Then compute bi = 〈ai, s2〉+ ei mod p.

– Compute S = (s2, 1)⊗d
d
2
e. In other words, S consists of all monomials generated from s2

of degree less than or equal to dd2e.
– Denote b = (b1, ..., bn′)

– [Change] Parse FE.pk = ({ai}i∈[n′],PHFE.p̃k). Compute ct2 ← PHFE.Ẽnc(PHFE.p̃k, b).
Here the public component of the ciphertext is b.

– Output ct = (ct1, ct2).

• Compute a secret key for circuit C as follows. Denote C = (C1, . . . , C`) where each Ci is the
circuit computing ith bit of the circuit.

– For each i ∈ [`], from the linear key generation structure of 1LGFEB let crsCi denote the
coefficient vector used to generate secret key for circuit Ci.

– [Change] Compute skC,i ← PHFE.K̃eyGen(PHFE.m̃sk, fi, θ̃i) where fi is the function in

FO(n),d,p described in the key generation procedure above. Note that θ̃i = 〈crsCi , s1〉+ri
where ri ← [0, 2t − 1].

– Output skC = (skC1 , . . . skC`)

• Hand over to the adversary (crs,FE.pk, ct = (ct1, ct2), skC = (skC,1, . . . , skC,`)).

Lemma 6.3. Assuming that the pseudorandom generator G : {0, 1}n′ → {0, 1}m(n′) scheme satisfies
G-LWEleakd,ε,ρ security, then, for any p.p.t adversary A, |Pr[A(Hybrid1) = 1]−Pr[A(Hybrid2)]| ≤
negl(λ).

Proof. The only difference between these two hybrids is that in Hybrid1, for all i ∈ [`], θi is
generated as θi = 〈crsCi , s1〉 +

∑
j∈[t] 2j−1 · G(i−1)·t+j(e1, . . . , en). However, in Hybrid2, it is gen-

erated as θ̃i = 〈crsCi , s1〉 + ri where ri ← [0, 2t − 1]. Note, that in both the hybrids, the secret
vector s2 is not in the view of the adversary. The claim follows from the assumption as the tuple
(b,G(e1, ..., en)) is computationally indistinguishable to (b, (u1, . . . , um)) where ui ← {0, 1} for all
i ∈ [n′]. Then, one can set ri =

∑
j 2j−1 · u(i−1)·t+j for all i ∈ [`] to perform the reduction. If the

adversary can distinguish between these two hybrids with probability δ, then, the reduction can
win the G-LWEleakd,ε,p security game with advantage δ.
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Finally, we replace the encryption ct1 to an encryption of m0. This hybrid is independent of
the challenge bit µ.
Hybrid3 :

• The adversary on input outputs m0,m1 ∈ {0, 1}n along with a circuit C ∈ Cn,λ,γ such that
C(m0) = C(m1).

• The challenger runs PPGen(1λ, 1n)→ crs. Note that crs has a modulus p.

• Sample ai ← Zn′
0.5+ε

p for i ∈ [n′].

• Run PHFE.S̃etup(crs)→ (PHFE.p̃k,PHFE.m̃sk). Set FE.pk = ({ai}i∈[n′],PHFE.p̃k) and FE.msk =

PHFE.m̃sk.

• Sample a bit µ← {0, 1}. Compute the challenge ciphertext as follows. Run s1 ← 1LGFEB.Setup(crs)

and sample s2 ← Zn′
0.5+ε

p . Then perform the following steps.

– [Change] Compute ct1 ← 1LGFEB.Enc(s1,m0).

– Sample ei ← {0, 1} for i ∈ [n′]. Then compute bi = 〈ai, s2〉+ ei mod p.

– Compute S = (s2, 1)⊗d
d
2
e. In other words, S consists of all monomials generated from s2

of degree less than or equal to dd2e.
– Denote b = (b1, ..., bn′)

– Parse FE.pk = ({ai}i∈[n′],PHFE.p̃k). Compute ct2 ← PHFE.Ẽnc(PHFE.p̃k, b). Here the
public component of the ciphertext is b.

– Output ct = (ct1, ct2).

• Compute a secret key for circuit C as follows. Denote C = (C1, . . . , C`) where each Ci is the
circuit computing ith bit of the circuit.

– For each i ∈ [`], from the linear key generation structure of 1LGFEB let crsCi denote the
coefficient vector used to generate secret key for circuit Ci.

– Compute skC,i ← PHFE.K̃eyGen(PHFE.m̃sk, fi, θ̃i) where fi is the function in FO(n),d,p

described in the key generation procedure above. Note that θ̃i = 〈crsCi , s1〉 + ri where
ri ← [0, 2t − 1].

– Output skC = (skC1 , . . . skC`)

• Hand over to the adversary (crs,FE.pk, ct = (ct1, ct2), skC = (skC,1, . . . , skC,`)).

Lemma 6.4. Assuming 1LGFEB satisfies (1, `)−indistinguishability security, then, for any p.p.t
adversary A, |Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3)]| ≤ negl(λ).

Proof. The only difference between these two hybrids is how ct1 is generated. In Hybrid2, ct1 is
generated as ct1 = 1LGFEB.Enc(s1,mµ) where as in Hybrid3, ct1 = 1LGFEB.Enc(s1,m0). Now, in
both the hybrids, the secret keys for functions Ci for i ∈ [`] are geenrated as in honest algorithm of
1LGFEB. Also observe that for any µ ∈ {0, 1}, C(m0) = C(mµ) and the number of issued function
keys are bounded by `. Thus, the indistinguishability of these two hybrids can directly be reduced
to the security of 1LGFEB scheme.
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Remark 6.1 ((size, 1
λ)−security from (size, 1

λ) secure ∆RG). We now remark about how instead
of using the pseudorandom generator G to get polynomially secure functional encryption scheme,
we could have used a ∆RG (proposed by [AJS18, AJL+19, JLMS19] and defined in Section A)
to obtain a (size, 1

λ) secure FE. A fully secure FE can be obtained by relying on the security
amplification theorem in [AJS18]. The idea is that in the encryption algorithm we replace S with
the private part of the ∆RG seed, Seed.Priv = (Seed.Priv(1), Seed.Priv(2)). Further, we replace LWE
samples (b1, . . . , b

′
n) with the public part Seed.Pub of the ∆RG seed. The function key remains the

same except that it replaces the randomness generation function part with the part that computes
∆RG.Eval(Seed). The parameter B to use for ∆RG is the same as Boundsmdg. The proof is identical
except that the hybrids invoking standard security of G will be replaced with the hybrid invoking
the 1

λ security of the ∆RG.

Remark 6.2 (On Subexponential Security.). In the security proof, we proved standard polynomial
security of the scheme above. For obtaining iO, we actually need the scheme to be subexponentially
secure. This can be obtained if we assume PHFE, G, and 1LGFEB are subexponentially secure. This
can be obtained if we asssume SXDH, bilateral DLIN and G to be subexponentially secure and LWE
holds against subexponential time adversaries.

Remark 6.3 (Secret-key FE.). In order to build a public-key FE, we used a public-key PHFE that
can be built using SXDH and Bilateral DLIN as in Section 8. However, if we cared only for a
secret-key FE we could have used secret-key PHFE built in [JLMS19] from the SXDH Assumption.

6.1 Theorems for Indistinguishability Obfuscation

We obtain the following main result:

Theorem 6.2. Assuming the following assumptions hold:

• SXDH and bilateral DLIN assumptions over bilinear maps.

• Learning with Error assumption.

• A pseudorandom generator G satisfying G− LWEleakd,ε,ρ security (Can be instantiated using
Assumption 5.1, Assumption 5.2 or Assumption 5.3) for some constants d ≥ 3 and constants
ε, ρ ∈ (0, 0.5).

There exists a sublinearly efficient public-key Functional Encryption scheme for all polynomial sized
circuits.

For secret-key FE we could have just used SXDH instead of two assumptions as described
above. Since secret-key subexponentially secure FE implies iO [AJ15, BV15, KNT18], we obtain
the following result:

Theorem 6.3. Assuming the following assumptions hold:

• Subexponentially secure SXDH over bilinear maps.

• Learning with Error assumption against adversaries running in subexponential time.

• A subexponentially secure pseudorandom generator G satisfying G−LWEleakd,ε,ρ security (in-
stantiable using Assumption 5.1, or Assumption 5.2, or Assumption 5.3) for some constants
d ≥ 3 and constants ε, ρ ∈ (0, 0.5).
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There exists an iO scheme for all polynomial sized circuits.

Similarly, we can also obtain the following result assuming the existence of a perturbation re-
silient generator ∆RG computable by constant degree polynomials. We write the result for obtaining
both iO and FE.

Theorem 6.4. Assuming the following assumptions hold:

• SXDH assumption over bilinear maps holds against adversaries of subexponential size.

• Learning with Error assumption against adversaries of subexponential size.

• A (s, 1
λ) secure ∆RG computable by constant degree polynomials where s is some subexponential

function (See Section A for the definition.).

Then, there exists a secure iO scheme for all circuits and a secret-key functional encryption scheme
for all circuits.

7 Single Ciphertext Functional Encryption with Linear KeyGen
from LWE

In this section, we construct a variant of secret key functional encryption satisfying the following
specifications. We denote this primitive by 1LGFE.

• (Function Class F .) The function class for 1LGFE is Cn,λ which consists of all polynomial
sized boolean circuits that output a single bit, takes as input n input bits and has depth
bounded by λ. Here n is polynomially related to the security parameter.

• (Security.) Satisfies (1, Qsk)−IND security as in Definition 4.4. That is, the number of
ciphertexts is bounded by 1 and the number of secret keys are bounded by any desired
polynomial Qsk.

• (Efficiency.) Satisfies linear efficiency/compactness as in Definition 4.6. Further, the size of
the ciphertext is independent of the polynomial Qsk.

• Also admits Special Structure* defined in Definition 4.10.

To build this, we first show a scheme satisfying Special Structure (refer Definition 4.9) and then
show that the scheme can be modified very slightly to satisfy Special Structure* as in Definition
4.10.

We will construct such a scheme relying on the GVW predicate encryption scheme [GVW15].
Below we recall some preliminaries from there and then we construct 1LGFE.

7.1 GVW Preliminaries

Predicate Encryption. Now we recall the definition of predicate encryption scheme. A pred-
icate encryption is a functional encryption scheme as described in Section 4. There are following
differences.

• Encryptor encrypts messages of the form (attr,m) where attr ∈ {0, 1}n and m is a bit.

• The circuit class is in Cn+1,λ+1. Each circuit is of the form CP , where P is a predicate in Cn,λ.
CP on input (attr,m) outputs m if P (attr) = 1 and 0 otherwise.
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• Security definition allows adversary to ask for any number of functional keys corresponding
to predicates P1, ..., Pη as long as Pi(attr0) = Pi(attr1) = 0 where (attr0,m0) and (attr1,m1)
are the challenge messages. In such a setting the adversary needs to distinguish between
encryption of (attr0,m0) from encryption of (attr1,m1).

For a complete definition refer [GVW15]. For our construction, we require some special properties
from the predicate encryption scheme, such as efficiency, circuit homomorphism etc. All these
properties are satisfied by the construction of [GVW15], and we recall them next. The text below
will assume familiarity with some lattice preliminaries described in Section 3.2.

Properties of GVW Predicate Encryption Scheme. Let n = poly(λ) for any polynomial
poly. We now describe various algorithms and associated properties of the GVW predicate encryp-
tion scheme. We denote the scheme by PE.

Setup. The setup algorithm takes as input security parameter λ and n and outputs a public key
PK and a secret key SK. Namely, Setup(1λ, 1n)→ (PK,SK)

• As a part of PK is the modulus p1. Length of p1 is O(poly1(λ)). It also outputs dimensions
dim1 = poly2(λ) and dim2 = poly3(λ) where these are some fixed polynomials. These are the
dimensions of various matrices used in the scheme.

• PK consists of uniform matrices B1, ....,B`,A,D where ` = n · poly(λ) for some polynomial
poly. Each matrix is in Fdim1× dim2

p1 . This is also the space of the gadget matrix G.

Encryption. The encryption algorithm takes as input public key PK, attribute attr ∈ {0, 1}n
and a message m ∈ {0, 1} and does the following. Enc(PK, attr,m) → (ct1, ct2), Now we describe
in more detail.

• The encryption algorithm first samples a secret vector s from χdim1×1. Here χ is LWE error
distribution used by the scheme. Then, it encodes attr to output âttr = (âttrp, âttrs) ∈ F`p1 .

• Now ct1 is constructed as follows.

– Compute bi = sT (Bi + âttriG) + Ei for i ∈ [`]. Here Ei ← χ1×dim2 .

– Output ct1 = (b1, . . . , b`, âttrp)

• Now ct2 is constructed as follows.

– Compute a = sTA + E1. Here E1 ← χ1×dim2 .

– Compute d = sTD + E2 +mbp1/2c[1, 0, ..., 0]. Here E2 ← χ1×dim2 .

– Output ct2 = (a,d).

• By Enc1 we denote the algorithm that takes as input PK and secret s, attribute attr and
outputs ct1.

• Without loss of security we can assume s[1] = 1 (first component of vector s). This ensures
that v = sTG satisfies v[1] = 1.

• In our construction, we will use Enc1 algorithm instead of the encryption algorithm, thereby
not computing ct2 at all. This does not hamper security as we are just giving less information.
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Evaluation. There are two algorithms: EvalPK and EvalCT. First we describe the EvalPK()
algorithm. Formally, EvalPK(C,B1, ...,B`)→ BC . On input B1, . . . ,B` ∈ Fdim1× dim2

p1 and C ∈ Cn,λ
the algorithm deterministically outputs BC ∈ Fdim1× dim2

p1 .

EvalCT is also a deterministic algorithm that takes as input âttrp, b1, . . . , b` and C ∈ Cn,λ. Formally,

EvalCT(PK, C, âttrp, b1, . . . , b`)→ b̂C . Here, b̂C has the following structure:

b̂C = sT (BC + (C(attr)bp1/2c+ eC)G) + EC

Here ‖EC‖∞/p1 < 2−λ
c

and ‖eC‖/p1 < 2−λ
c

for some constant c > 0. In fact |eC | < poly(λ, n)
for some polynomial.

Remark 7.1. The algorithms described above are already close enough to imply a construction of
1LGFE where the encryption is simply Enc1 above, the master secret key is s and the function key
for any function C could just be computed as skC = 〈s,BC,1〉 + e. Here e is chosen freshly from
some bounded smudging distribution and BC,1 is the first column of BC . However, this leads to
the decryption of ciphertext ct resulting in the following equation:

EvalCT(PK, C, ct)− skC = C(attr) · dp1/2e+ eC + EC [1]− e

Above, EC [1] may not be polynomially bounded, and thus this does not fit in the requirements for
an 1LGFE scheme. To fix this issue, we introduce the following algorithm, which rounds the result
of evaluating the ciphertext to another modulus p so that the rounded version of the error E′C [1]
also becomes polynomially bounded.

Rounding-Evaluation. We now describe a procedure of rounding evaluation, which can be done
publicly. We denote this by RoundEval. RoundEval takes as input PK, ct1 = (âttrp, b1, . . . , b`), a
circuit C, another modulus p < p1.
More formally, RoundEval(PK, C, ct1, p) does the following:

1. First run EvalCT(PK, C, ct1)→ b̂C .

2. Now compute b̂′C = dp/p1 · b̂Cc. Namely multiply b̂C with p/p1 over the reals and then take
the nearest integer, component wise. b̂′C is now a vector over Fp.

3. Output b′C = b̂′C [1], the first element of vector b̂′C .

Now we observe the structure of b′C . First observe b̂C [1] has the following structure:

b̂C [1] = sT ·BC,1 + (C(attr)bp1/2c+ eC) · v[1, 1]) + EC [1].

Here BC,1 is the first column of BC and v = sT ·G. Since s[1] = 1, v[1] = 1 the following holds:

b̂C [1] = sTBC,1 + C(attr)bp1/2c+ eC + EC [1].

Let χ be a polynomially bounded distribution (bounded by polyχ(λ)), then, we observe the follow-
ing about b′C relying on the theorems proven in [BGV12] (see lemma 1 of the paper).

Theorem 7.1. Assuming:

• b̂C [1] = sTBC,1 + C(attr)bp1/2c+ eC + EC [1] where s is chosen from the distribution χdim1

• χ is a polynomially bounded distribution, bounded by, polyχ(λ).

Then b′C = sT · B′C,1 + C(attr)bp1/2c′ + e′C + E′C [1, 1] + error. Here B′C,1 is the rounded version
of BC,1, e′ is a rounded version of e, bp1/2c′ is rounded version of bp1/2c and E′C [1] is rounded
version of EC [1, 1]. error is the rounding error satisfying |error| < dim1 · polyχ(λ) + 3
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7.2 Parameters.

Now we set parameters that will be relevant for our constructions. All these parameters can be
realized using standard LWE assumption with subexponential approximation factors.

• dim1 and dim2 are chosen as in the [GVW15] predicate encryption scheme.

• Error distribution bound polyχ(λ) and the prime modulus p1 are chosen that circuits of depth
λ3 can be evaluated. The bit length is therefore poly(λ) for some polynomial poly.

• Now we describe how p is chosen. The magnitude of p is so that the rounded evaluation
error while computing circuits in Cn,λ is polynomially bounded. Namely, in the evaluation
equation:

b̂C [1] = sTBC,1 + C(attr)bp1/2c+ eC + EC [1],

In the construction of [GVW15] the evaluation error obtained by evaluating circuits of depth
λ circuit satisfies,

|EC [1]| ≤ O((dim1 + dim2)λ
2 · polyχ(λ))

Now p can be chosen so that:⌈
p · (dim1 + dim2)λ

2 · polyχ(λ)

p1

⌉
= O(poly(λ))

for some polynomial poly.

This can be achieved by setting:

p = O

(
p1

(dim1 + dim2)λ2

)
.

• p is chosen as above to satisfy the equation above. Looking ahead, it will come from a bilinear
map generation algorithm. It will be chosen to be a sufficiently large (subepxponential) prime
satisfying the equation above.

Example Parameters:

log2 p = θ(λ2) dim1 = O(λ4)
dim2 = O(λ7) polyχ = λ20

log2 p1 = θ(λ3)

As shown in [GVW15], these parameters can be instantiated using LWE with subexponential
approximation factors.

7.3 Construction of 1LGFE

With this the construction is really easy to follow. The construction can be found in Figure 7.3.

Remark 7.2. Observe that int the setup algorithm described in Figure 7.3, SK is just discarded.
Also observe that a bilinear map is sampled here but the scheme below don’t use it at all (except for
the modulus p). In fact, all our schemes (including the ones that use the bilinear maps) described
later will refer to the same PPGen algorithm.

Observe that correctness and syntactic properties are immediate due to the properties of the
predicate encryption scheme. For completeness, we sketch these below.
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1LGFE.PPGen(1λ, 1n) :

• Run a bilinear map setup to generate a description of the bilinear map PG =
(G1,G2,GT , p, P1, P2, e). Here the order of the group p is set according to parameter in-
stantiation as described in Section 7.2.

• Run PE.Setup(1λ, 1n)→ (p1,PK, SK). Parse PK = (B1, ...,B`). Set crs = (PG, p, p1,PK).

1LGFE.Setup(1λ, 1n, crs) : Sample s← χdim1×1. Set msk = s.

1LGFE.Enc(s,m): Run PE.Enc1(PK, s,m)→ ct. Output ct.

1LGFE.KeyGen(s, C) : Compute PE.EvalPK(PK, C) → BC . Let BC,1 be the first column of
BC . Round this column to modulus p. Let this be denoted by B′C,1. Compute skC = 〈B′C,1, s〉+ e
mod p where e is uniformly chosen from [−p/16, p/16].

1LGFE.Dec(skC , ct) : Compute PE.RoundEval(PK, C, ct, p) → b′C . Compute b′C − skC mod p = y.
If y ∈ [−p/4, p/4] output 0 otherwise output 1.

Figure 7: Construction of 1LGFE.

Correctness: If the setup, encryption and the key generation are done honestly, then from the
properties of the PE scheme, the following happens. Let ct denote a ciphertext encrypting m ∈
{0, 1}n, and let skC be a function secret key for a circuit C ∈ Cn,λ. Then, from the correctness
of the PE scheme, b′C = PE.RoundEval(pk, C, ct, p) has the following structure. b′C = 〈s,B′C,1〉 +
C(m)dp/2e + e′C + error mod p. If the parameters are chosen as prescribed in Section 7.2, then
e′C + error is bounded in absolute value by some polynomial Bound (See theorem 7.1). Now,
skC = 〈B′C,1, s〉+ e mod p where e ∈ [−p/16, p/16]. Further p is subexponentially large. Thus, in
the final step, y = b′C − skC mod p = C(m)dp/2e+ e′C + error − e. Because p is subexponentially
large and e′C + error is bounded by a polynomial bound Bound, if C(m) = 0 then y ∈ [−p/4, p/4]
and otherwise not.

Special Structure. Special structure is easier to justify. Observe that all three properties about
the crs syntax, linear key generation and linear + round decryption can be verified by inspection.

We now describe the proof of security.

Theorem 7.2. Assuming LWE assumption holds for the parameters described in Section 7.2,
the construction 1LGFE is a secure (1, poly(λ))−indistinguishability secure secret key functional
encryption scheme for any polynomial bound poly.

Proof Overview: The security of this construction can be proven by a reduction to the security
of the underlying PE scheme. In the first hybrid, the challenger encrypts mb for a randomly chosen
bit b ← {0, 1} and the keys are generated honestly as, skC = 〈B′C,1, s〉 + e mod p. In the next
hybrid, we switch to generating skC as b′C − C(m0)dp/2e + e mod p where b′C is computed using
RoundEval algorithm evaluated on the challenge ciphertext. As we show later these two hybrids are
statistically close due to the smudging lemma 3.1. Finally, since the keys are simulated just from
the ciphertext, in the last hybrid we switch the ciphertext to be an encryption of m0. This change
is indistinguishable due to the security of PE. This hybrid is independent of b.
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Hybrid0:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQ ∈ Cn,λ such that Ci(m0) =
Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s.

• Sample b← {0, 1} and compute ct← PE.Enc1(PK, s,mb).

• Also for all i ∈ [Q], compute skCi ← 〈B′Ci,1, s〉 + ei mod p where B′Ci,1 is generated as in
1LGFE key generation algorithm by rounding the first column of EvalPK(PK, Ci)→ BCi,1 and
ei is sampled uniformly from [−p/16, p/16].

• Give to the adversary {crs, ct, skC1 , ..., skCQ}

Hybrid1:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQ ∈ Cn,λ such that Ci(m0) =
Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s.

• Sample b← {0, 1} and compute ct← PE.Enc1(pk, s,mb).

• [Change] Also for all i ∈ [Q], compute s̃kCi ← PE.RoundEval(PK, Ci, ct, p)−Ci(m0)dp/2e+ei
mod p where ei is sampled uniformly from [−p/16, p/16].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

The two hybrids above are statistically close.

Lemma 7.1. If p = Ω(2λ
c
) for some constant c > 0, then, for any adversary A, |Pr[A(Hybrid0) =

1]− Pr[A(Hybrid1) = 1]| < Q · 2−λc
′

for some constant c′ > 0.

Proof. The only difference between the two hybrids is how the function key skCi are generated.
Note that in Hybrid0 it is generated as skCi = 〈B′Ci,1, s〉 + ei mod p. On the other hand in

Hybrid1, s̃kCi,1 ← PE.RoundEval(PK, Ci, ct, p)− C(m0)dp/2e+ ei mod p. Now observe that:

PE.RoundEval(PK, Ci, ct, p) = 〈B′Ci,1, s〉+ C(mb)dp/2e+ eCi + error

Above, both eCi and the rounding error error are bounded polynomially by some polynomial in
the security parameter poly(λ, n). Also Ci(m0) = Ci(m1). Thus,

s̃kCi = 〈B′Ci,1, s〉+ eCi + error + ei

Now note that since p is subeponentially large and ei is chosen from [−p/16, p/16] uniformly, the

statistical distance between eCi + error+ ei and ei is o(2−λ
c′

) for some constant c′ > 0. This follows
due to the smudging lemma 3.1. Thus, the claim holds.

Finally, we switch the encryption of mb with an encryption of m0.
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Hybrid2:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQ ∈ Cn,λ such that Ci(m0) =
Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s.

• [Change] Compute ct← PE.Enc1(PK, s,m0).

• Also for all i ∈ [Q], compute s̃kCi ← PE.RoundEval(PK, Ci, ct, p) − Ci(m0)dp/2e + ei mod p
where ei is sampled uniformly from [−p/16, p/16].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

Lemma 7.2. If PE is a secure predicate encryption scheme, then for any p.p.t. adversary A,
|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| < negl(λ) where negl is some negligible function.

Proof. The only difference between the hybrids is how ct is generated. In Hybrid1 it is generated
as an encryption of mb, whereas in Hybrid2 it is generated as an encryption of m0. Note that
neither the secret key s, nor the randomness in the ciphertext is used to simulate the function
secret keys. Thus, the claim holds due to a straightforward reduction to the security of PE.

7.4 1LGFE with Polynomially Bounded Decryption Error

The scheme described in the previous section suffers from an undesirable property. The property
is that upon decryption the adversary learns a value of the form y = C(m)dp/2e + ê where ê can
be subexponentially large. This is essential for the security proof due to the smudging lemma (See
theorem 3.1.). However, for our purposes we need this error to be polynomially bounded in the
security parameter as well as the parameter n as this computation would be done in the exponent
of a group element and then recovered by brute force.

Observe that ê = eC + error − e where eC + error is already polynomially bounded and comes
from the ciphertext. On the other hand, e is the smudging noise that comes from the function
secret key skC . This e was required to be subexponentially large for our proof strategy to work in
the previous section (mainly due to the smudging lemma).

What we show next is that even if the smudging noise is chosen from a polynomially bounded
distribution, not all hope is lost. In fact, with a polynomially bounded smudging noise we can
guarantee that the security holds as long as a bounded number of key queries are made. The exact
trade off between the bound on the smudging noise and the number of key queries is discussed next.

Let Qsk denote the number of queries we are interested in. Let Bound be the polynomial bound
as decribed in Section 7.2 on the magnitude of the noise generated during ciphertext evaluation.
The scheme described in the previous section ensured security by choosing the smudging noise e
used in the function secret key to be subexponentially larger than Bound. Now we show that, if
we sample uniformly this smudging noise from [0,Boundsmdg] for a sufficiently large but polynomial
Boundsmdg, we can still ensure security as long as upto Qsk function secret keys are given out. Note
that this does not affect the efficiency of the ciphertext at all, as the bit length of the modulus is
logarithmic in Qsk. We will let Boundsmdg > 4 ·λ ·Bound ·Qsk for the rest of the section below. We
will denote this scheme by 1LGFEB.
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1LGFE.PPGen(1λ, 1n) :

• Run a bilinear map setup to generate a description of the bilinear map PG =
(G1,G2,GT , p, P1, P2, e). Here the order of the group p is set according to parameter in-
stantiation as described in Section 7.2.

• Run PE.Setup(1λ, 1n)→ (p1,PK, SK). Parse PK = (B1, ...,B`). Set crs = (PG, p, p1,PK).

1LGFE.Setup(1λ, 1n, crs) : Sample s← χdim1×1. Set msk = s.

1LGFE.Enc(s,m): Run PE.Enc1(PK, s,m)→ ct. Output ct.

1LGFE.KeyGen(s, C,Qsk) : Compute PE.EvalPK(PK, C) → BC . Let BC,1 be the first col-
umn of BC . Round this column to modulus p. Let this be denoted by B′C,1. Compute
skC = 〈B′C,1, s〉+ e mod p where e is uniformly chosen from [0,Boundsmdg].

1LGFE.Dec(skC , ct) : Compute PE.RoundEval(PK, C, ct, p) → b′C . Compute b′C − skC mod p = y.
If y ∈ [−p/4, p/4] output 0 otherwise output 1.

Figure 8: Construction of 1LGFEB.

Constructing 1LGFEB: The construction is described in 1LGFEB.

Remark 7.3. Observe that the only change over the construction of 1LGFE is that the key gener-
ation procedure takes polynomially bounded noise to do the smudging.

Correctness and Special Structure*: As before, the correctness property is immediate and
follows similarly like the correctnes of the 1LGFE scheme. Also, the scheme above satisfies special
structure* (See Definition 4.10) since, like 1LGFE, it satisfies special structure, but in addition, the
decryption noise is polynomially bounded. This is because it is bounded by Boundsmdg + Bound in
absolute value. Since both Boundsmdg and Bound are polynomially bounded, the claim holds.

Now we prove security.

Theorem 7.3. Assuming LWE assumption holds for the parameters described in Section 7.2, the
construction 1LGFEB is a secure (1, Qsk)−indistinguishability secure secret key functional encryp-
tion scheme.

Proof Overview: The security of this construction can be proven by a reduction to the security
of the underlying PE scheme. However, this time we won’t be able to use the smudging lemma
(theorem 3.1). Instead, we would consider a non-uniform reduction and rely on rather a heavy
hammer from hardness amplification literature. We use the following lemma from [JP14, CCL18b].
We recall the variant from [CCL18b].

Theorem 7.4 (Imported Theorem [CCL18b]). Let k, t ∈ N, ε > 0, and Cleak be a family of dis-
tinguisher circuits from {0, 1}k × {0, 1}t → {0, 1} of size s(k). Then, for every distribution (X,Z)
over {0, 1}k × {0, 1}t, there exists a simulator h : {0, 1}k → {0, 1}t such that:

1. h has size bounded by s′ = O(s · 2tε−2)
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2. (X,Z) and (X,h(Z)) are indistinguishable by Cleak. That is, for every C ∈ Cleak,∣∣∣∣ Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]

∣∣∣∣ ≤ ε
Here is how we prove the theorem. First we consider a mental experiment. Suppose we are

given a tuple T = {δi + ei}i∈[Qsk] where |δi| < Bound and ei ← [0,Boundsmdg]. Looking ahead, each
δi represents the error in the evaluated ciphertext computed during the PE.RoundEval algorithm
(Namely, e′Ci + errori). Observe that δ1, ...., δQsk

are some complex function of ct and the circuits
C1, . . . , CQsk

. The idea is that if the parameters are chosen appropriately, we replace this tuple
T by one that is sampled “efficiently” using a non-uniform function h applied on the ciphertext
ct. Here by efficient we mean a circuit that is larger than the adversary, but only polynomially
larger. Due to this lemma above these hybrids are indistinguishable. Finally, we replace ct to be
an encryption of m0, thereby making the game independent of b. This step is also indistinguishable
due to the security of PE. We now describe the proof in more detail.

Theorem 7.5. Assuming LWE assumption holds against all polynomial time adversaries, then for
any p.p.t. adversary A, and any constant c > 0, and any large enough security parameter λ

advIND1LGFEB,A(λ) := 2 · |1/2− Pr[1← IND1LGFEB
A (1λ, 1n)]| < λ−c.

We now present hybrids where the first hybrid corresponds to the security game for 1LGFEB,
where as the last hybrid is independent of bit b. We argue indistinguishability between all these
hybrids thereby proving security.

Hybrid0:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Qsk].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s.

• Sample b← {0, 1} and compute ct← PE.Enc1(PK, s,mb).

• Also for all i ∈ [Qsk], compute skCi ← 〈B′Ci,1, s〉 + ei mod p where B′Ci,1 is generated as in
1LGFEB key generation algorithm by rounding the first column of EvalPK(PK, Ci) → BCi,1

and ei is sampled uniformly from [0,Boundsmdg].

• Give to the adversary {crs, ct, skC1 , ..., skCQsk
}

The next hybrid is inefficient. We define a machine Mach:

Mach(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)

1. Compute s by opening up Z by brute-force.

2. Compute vi = PE.RoundEval(PK, Ci, ct, p) for all i ∈ [Qsk]. Let e′Ci = vi −C(m0)dp/2e −
〈B′Ci , s〉 mod p.

3. Sample ei ← [0,Boundsmdg] for i ∈ [Qsk]. Let wi = ei − e′Ci .

4. Compute s̃kCi = PE.RoundEval(PK, Ci, ct, p)− Ci(m0)dp/2e+ wi mod p.
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5. Output {s̃kCi}i∈[QskCi
].

Hybrid1:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• [Change] Sample s← χdim1×1. Set msk = s. It also computes a perfectly binding commit-
ment of the secret key Z = Com(s).

• Sample b← {0, 1} and compute ct← PE.Enc1(pk, s,mb).

• [Change] Generate s̃kCi as follows. Run Mach(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)→
{s̃kCi}i∈[Qsk].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

Lemma 7.3. If Com is perfectly binding, then for any adversary A, |Pr[A(Hybrid0) = 1] −
Pr[A(Hybrid1) = 1]| = 0.

Proof. The difference between two hybrids is that in Hybrid0, the secret keys skCi are generated as
in the honest secret key generation algorithm. In Hybrid1, the function secret keys are generated
by an inefficient algrorithm Mach, which first inverts the commitment Z to recover s first. Then it
computes PE.RoundEval(PK, Ci, ct, p) = 〈B′Ci,1, s〉+Ci(m0)dp/2e+ e′Ci . It first finds out e′Ci . Then
it subtracts from this, e′Ci−ei where ei is chosen at random from [0,Boundsmdg] along with Ci(m0).
If s is recovered correctly, then,

s̃kCi = 〈B′Ci,1, s〉+ ei mod p

where ei ← [0,Boundsmdg]. This is identical to the distribution of skCi in Hybrid0.

The next hybrid relies on the following basic fact. Let δ ∈ [−Bound,Bound]. Then, consider
sampling e ← [0,Boundsmdg]. If Boundsmdg > 2 · Bound then the distribution corresponding to
µ = δ + e is uniform over [δ,Boundsmdg + δ]. Thus µ can equivalently be sampled by sampling

uniformly from (Bound,Boundsmdg − Bound) with probability α =
Boundsmdg−2·Bound−1

Boundsmdg+1 and with

probability 1− α, sampling uniformly from [δ,Boundsmdg + δ] \ (Bound,Boundsmdg − Bound).

Mach1(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)

1. Compute s by opening up Z by brute-force.

2. Compute vi = PE.RoundEval(PK, Ci, ct, p) for all i ∈ [Qsk]. Let e′Ci = vi −C(m0)dp/2e −
〈B′Ci , s〉 mod p.

3. Compute L ← Machinner({e′Ci}i∈Qsk
). For each i ∈ [Qsk], if (i, ui) ∈ L, for some ui, set

wi = ui, else sample wi ← [Bound + 1,Boundsmdg − Bound− 1].

4. Compute s̃kCi = PE.RoundEval(PK, Ci, ct, p)− C(m0)dp/2e+ wi mod p.
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5. Output {s̃kCi}i∈[QskCi
].

Here, Machinner is implemented using the following algorithm:

Machinner({e′Ci}i∈[Qsk])

1. Maintain a list L. Initialise it to be empty.

2. For each i ∈ [QskCi
], sample ei ← [0,Boundsmdg]. Compute ui = ei − e′Ci . If ui /∈

[Bound + 1,Boundsmdg − Bound− 1] append (i, ui) in the list L.

Hybrid2:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s. It also computes a perfectly binding commitment of the
secret key Z = Com(s).

• Sample b← {0, 1} and compute ct← PE.Enc1(pk, s,mb).

• [Change] Generate s̃kCi as follows. Run Mach1(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)→
{s̃kCi}i∈[Qsk].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

Lemma 7.4. For any adversary A, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| = 0.

Proof. The difference between these two hybrids is how wi is sampled. We prove a claim next,
which will be useful to prove this hybrid.

Claim 7.1. Fix a δ ∈ [−Bound,Bound]. Consider the following two distributions:
Distribution 1 :

• Sample e← [0,Boundsmdg].

• Output µ = e+ δ.

Distribution 2 :

• Sample e1 ← [0,Boundsmdg]. If µ = δ + e1 /∈ [Bound + 1,Boundsmdg − Bound− 1], output µ.

• Otherwise output µ← [Bound + 1,Boundsmdg − Bound− 1]

These two distributions are identical.

Proof. The proof of this claim is straightforward. Consider distribution 1. For any µ ∈ [δ,Boundsmdg+
δ], the probability that the distribution samples µ is 1

Boundsmdg+1 . For the second distribution, we

consider two cases and compute probabilities.

• µ ∈ [δ,Boundsmdg+δ]\[Bound+1,Boundsmdg−Bound−1] : This event happens only if µ shows
up in Step 1 of the sampling algorithm. The probability of this happening is 1

Boundsmdg+1 .
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• µ ∈ [Bound+ 1,Boundsmdg−Bound−1] : This event happens if in the first step, an element is
sampled from [Bound + 1,Boundsmdg − Bound− 1] and then µ is sampled in the second step.

This happens with probability
Boundsmdg−2·Bound−1

Boundsmdg+1 · 1
Bsmdg−2·Bound−1 = 1

Boundsmdg+1 . This step

assumes |δ| ≤ Bound.

Thus, these two distributions are identical.

With this claim at our disposal, we observe that the only difference in the hybrids Hybrid1 and
Hybrid2 is how wi is sampled for each i. Let e′Ci be computed by Mach and Mach1 respectively.
In Hybrid1, wi is generated as ei − e′Ci where e′Ci ∈ [−Bound,Bound] and ei ← [0,Boundsmdg]. In
Hybrid2, wi is generated using sampler for distribution 2 by setting δi = −e′Ci where the first step
is computed by Machinner and the second by Mach1. These two distributions are identical by the
claim and hence the lemma holds.

The following hybrid is the same as the previous on except that the representation changes. In
particular, Machinner,1 remains the only inefficient algorithm.

Mach2(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)

1. Compute L ← Machinner(Z, crs, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0)). For each i ∈ [Qsk], if
(i, ui) ∈ L, for some ui, set wi = ui, else sample wi ← [−Boundsmdg+Bound,Boundsmdg−
Bound].

2. Compute s̃kCi = PE.RoundEval(PK, Ci, ct, p)− Ci(m0)dp/2e+ wi mod p.

3. Output {s̃kCi}i∈[QskCi
].

Here, Machinner,1 is implemented using the following algorithm:

Machinner,1(Z, crs, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0))

1. Compute s by opening up Z by brute-force.

2. Compute vi = PE.RoundEval(PK, Ci, ct, p) for all i ∈ [Qsk]. Let e′Ci = vi−Ci(m0)dp/2e−
〈B′Ci , s〉 mod p.

3. Maintain a list L. Initialise it to be empty.

4. For each i ∈ [QskCi
], sample ei ← [0,Boundsmdg]. Compute ui = ei − e′Ci . If ui /∈

[Bound + 1,Boundsmdg − Bound− 1] append (i, ui) in the list L.

Hybrid3:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s. It also computes a perfectly binding commitment of the
secret key Z = Com(s).

• Sample b← {0, 1} and compute ct← PE.Enc1(pk, s,mb).
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• [Change] Generate s̃kCi as follows. Run Mach2(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)→
{s̃kCi}i∈[Qsk].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

Lemma 7.5. For any adversary A, |Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1]| = 0.

Proof. The difference between the two hybrids is only the functionality of Mach1 and Mach2. Their
functionality is identical except that the only inefficient step of breaking the commitment is done
by Mach1 in Hybrid1, where as it is done by Machinner,1 as a soubroutine, by Mach2 in Hybrid2.
Thus the claim holds.

In the next hybrid, we abort if the size of list L is more than c∗ = c+ 1. Consider the following
machine.

Mach3(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)

1. Compute L ← Machinner,2(Z, crs, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0)). If L = ⊥, output
⊥, otherwise, for each i ∈ [Qsk], if (i, ui) ∈ L, for some ui, set wi = ui, else sample
wi ← [Bound + 1,Boundsmdg − Bound− 1].

2. Compute s̃kCi = PE.RoundEval(PK, Ci, ct, p)− Ci(m0)dp/2e+ wi mod p.

3. Output {s̃kCi}i∈[QskCi
].

Machinner,2(Z, crs, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0))

1. Compute s by opening up Z by brute-force.

2. Compute vi = PE.RoundEval(PK, Ci, ct, p) for all i ∈ [Qsk]. Let e′Ci = vi−Ci(m0)dp/2e−
〈B′Ci , s〉 mod p.

3. Maintain a list L. Initialise it to be empty.

4. For each i ∈ [QskCi
], sample ei ← [0,Boundsmdg]. Compute ui = ei − e′Ci . If ui /∈

[Bound + 1,Boundsmdg − Bound − 1] append (i, ui) in the list L. If L has more than c∗

tuples output ⊥, otherwise output L.

Hybrid4:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s. It also computes a perfectly binding commitment of the
secret key Z = Com(s).

• Sample b← {0, 1} and compute ct← PE.Enc1(pk, s,mb).

• [Change] Generate s̃kCi as follows. Run Mach3(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs).

If the output is ⊥, then abort, otherwise let the output be {s̃kCi}i∈[Qsk].
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• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

Lemma 7.6. For any adversary A, |Pr[A(Hybrid3) = 1]− Pr[A(Hybrid4) = 1]| < λ−c
∗
.

Proof. The difference between two hybrids is that in Hybrid4, we abort if the list L has more than
c∗ elements. This probability is the same as the probability that out of w1, ..., wQsk

, more than
c∗ elements are sampled to be not in [Bound + 1,Boundsmdg − Bound − 1]. The probability of a

single element not in [Bound + 1,Boundsmdg − Bound− 1] is 1− Boundsmdg−2·Bound−1
Boundsmdg+1 = 2Bound+2

Boundsmdg+1 .

This probability is at most Qc
∗
sk · (

2Bound+2
Boundsmdg+1)c

∗
whenever c∗ is an integer greater than 3. We used

sterling approximation here:
(
n
k

)
≤ ( e·nk )k for any positive integers n > k > 0. Then, substitute

Boundsmdg > 4 · λ ·Qsk · Bound. We obtain this probability:

Qc
∗
sk · (

2Bound + 2

Boundsmdg + 1
)c
∗ ≤ Qc∗sk · (

4

4 ·Qskλ+ 1
Bound

)c
∗

≤ 1

λc∗
.

This concludes our proof.

In the next hybrid, we invoke the following theorem:

Theorem 7.6 (Imported Theorem [CCL18b]). Let k, t ∈ N, ε > 0, and Cleak be a family of dis-
tinguisher circuits from {0, 1}k × {0, 1}t → {0, 1} of size s(k). Then, for every distribution (X,Z)
over {0, 1}k × {0, 1}t, there exists a simulator h : {0, 1}k → {0, 1}t such that:

1. h has size bounded by s′ = O(s · 2tε−2)

2. (X,Z) and (X,h(Z)) are indistinguishable by Cleak. That is, for every C ∈ Cleak,∣∣∣∣ Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]

∣∣∣∣ ≤ ε
In the hybrid below, we will replace Machinner,2 with an efficient circuit that is guaranteed

to us by the lemma above. Note that in the previous hybrid, the output length of Machinner,2
can be upper bounded by `h = c∗ · (log2Qsk + log2(Boundsmdg + Bound) + 1) + 1. Let sA denote
the size of the adversary A. Set ε = λ−c−1. Thus, this means there exists a a circuit h of size
sh = O((sA+ poly(λ,Qsk)) · (Qsk ·Boundsmdg +Bound)c

∗
) that efficiently simulates Machinner,2 and

fools any adversary of size sA + poly(λ,Qsk) for any fixed polynomial poly by advantage ε. Here is
the new machine. We will set this polynomial poly below.

Mach4(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs)

1. Compute L← h(Z, crs, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0)). If L = ⊥, output⊥, otherwise,
for each i ∈ [Qsk], if (i, ui) ∈ L, for some ui, set wi = ui, else sample wi ← [Bound +
1,Boundsmdg − Bound− 1].

2. Compute s̃kCi = PE.RoundEval(PK, Ci, ct, p)− Ci(m0)dp/2e+ wi mod p.

3. Output {s̃kCi}i∈[QskCi
].
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Hybrid5:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s. It also computes a perfectly binding commitment of the
secret key Z = Com(s).

• Sample b← {0, 1} and compute ct← PE.Enc1(pk, s,mb).

• [Change] Generate s̃kCi as follows. Run Mach4(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs).

If the output is ⊥, then abort, otherwise let the output be {s̃kCi}i∈[Qsk].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

Lemma 7.7. There exists an instantiation of the polynomial poly such that for any adversary A,
|Pr[A(Hybrid4) = 1]− Pr[A(Hybrid5) = 1]| < ε = λ−c−1.

Proof. To prove this, we choose ε = λ−c−1. Let sHybrid denote the size of the circuit used to run
the process of the challenger in Hybrid4 except the Machinner,2. We use the theorem above to
construct an h, that fools an adversary of size sA + sHybrid with probability ε where sA is the size
of the adversary.

This can now be proven using a reduction to the leakage simulation lemma 7.6. The only differ-
ence between Hybrid4 and Hybrid5 is how L is generated. In Hybrid4, L is generated by running
an inefficient machine Machinner,2 on Z, crs, C1, ..., CQsk

, C1(m0), ..., CQsk
(m0) where as in Hybrid5

it is generated by running h on the same input. We can build a reduction as follows. The challenger
gets as input L which is either Machinner,2 evaluated on Z, crs, C1, ..., CQsk

, C1(m0), ..., CQsk
(m0) or

h evaluated on the same input. Then L is used to simulate either Hybrid5 or Hybrid4 (depending
on how L was computed). To do this, the reduction needs to run A and sample tuples as described
in the hybrids. Note that the output length of both h and Machinner,2 is bounded by `. The hybrid
can be simulated in time sHybrid = poly(Qsk, λ). Finally if A guesses Hybrid4 then the reduction
guesses that an inefficient machine was used to generate L, otherwise it guesses that h was used
to generate L. The advantage of the reduction is the same as the advantage of A in distinguishing
between hybrids. Finally, if h fools circuits of size sA + sHybrid with advantage ε, then the claim
holds.

In the next hybrid, we replace Z with a commitment of 0 of appropriate length.

Hybrid6:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• [Change] Sample s← χdim1×1. Set msk = s. It also computes a perfectly binding commit-
ment of the secret key Z = Com(0|s|).

• Sample b← {0, 1} and compute ct← PE.Enc1(pk, s,mb).
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• Generate s̃kCi as follows. Run Mach4(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs). If the out-

put is ⊥, then abort, otherwise let the output be {s̃kCi}i∈[Qsk].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

Lemma 7.8. If Com is secure against adversaries of all polynomial sized circuits, then for any
p.p.t. adversary A, |Pr[A(Hybrid5) = 1] − Pr[A(Hybrid6) = 1]| < negl(λ) for some negligible
negl.

Proof. The only difference between Hybrid5 and Hybrid6 is how Z is generated. In Hybrid5,
it is generated as a commitment of s, whereas, in Hybrid6 it is generated as a commitment of
0|s|. One can build a reduction to the security of the commitment scheme as follows: the reduction
either gets a commitment of s or a commitment of 0. The reduction interacts with the adversary
as in Hybrid6 (or Hybrid5) using Z as this commitment. Note that the view of the adversary can
be simulated by an algorithm of size sh + sHybrid which is a polynomial in the security parameter.
Finally if A guesses that it is in Hybrid5, the reduction guesses that Z as a commmitment of s
otherwise it guesses it as a commitment of 0. Advantage of reduction is equal to the advantage of
the adversary in distinguishing the commitment scheme.

Finally, we replace ct to be an encryption of m0.

Hybrid7:

• Adversary specifies (m0,m1) ∈ {0, 1}n along with circuits C1, ..., CQsk
∈ Cn,λ such that

Ci(m0) = Ci(m1) ∀i ∈ [Q].

• Challenger generates the crs = (p, p1,PK,PG) as in the algorithm.

• Sample s← χdim1×1. Set msk = s. It also computes a perfectly binding commitment of the
secret key Z = Com(0|s|).

• [Change] Compute ct← PE.Enc1(pk, s,m0).

• Generate s̃kCi as follows. Run Mach4(Z, ct, C1, ..., CQsk
, C1(m0), ..., CQsk

(m0), crs). If the out-

put is ⊥, then abort, otherwise let the output be {s̃kCi}i∈[Qsk].

• Give to the adversary {crs, ct, s̃kC1 , ..., s̃kCQ}

This hybrid is independent of b.

Lemma 7.9. If PE is secure against adversaries of all polynomial sized circuits, then for any p.p.t.
adversary A, |Pr[A(Hybrid6) = 1]− Pr[A(Hybrid7) = 1]| < negl(λ) for some negligible negl.

Proof. The only difference between Hybrid5 and Hybrid6 is how ct is generated. In Hybrid6,
it is generated as an encryption of mb, whereas, in Hybrid7 it is generated as an encryption of
m0. One can build a reduction to the security of the PE scheme as follows: the reduction either
gets an encryption of mb or an encryption of m0. The reduction interacts with the adversary as
in Hybrid6 (or Hybrid7) using ct as this encryption. Note that the view of the adversary can be
simulated by an algorithm of size sh + sHybrid which is a polynomial in the security parameter.
Finally if A guesses that it is in Hybrid6, the reduction guesses that ct as an encryption of mb

otherwise it guesses it as an encryption of m0. Advantage of reduction is equal to the advantage
of the adversary in the PE security game.
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Finishing up the Proof. Note that both the commitment scheme as well as the PE scheme can
be instantiated from LWE. Combining all these lemmata above, the advantage of A in the security
game is bounded by negl(λ) + 4

λc+1 < λ−c.

Remark 7.4 (On Subexponential Security). Above, we prove polynomial security but we could
have proved subexponential security by allowing the set of indices in L to be bounded by λO(1)

as opposed to a constant. This will mean that the size of h will also be subexponentially large.
The argument can be made to go through relying on LWE secure against subexponential sized
adversaries.

Thus,

Theorem 7.7. Assuming subexponential time hardness of LWE with parameters in Section 7.2,
the construction of 1LGFEB above is subexponentially secure.

8 Our (NC1, deg 2)-PHFE from Pairings

In Fig.8.2 we present a Partially-Hiding FE (PHFE) for the functionality Fphfe
PG,n,`,w, parameterized

by a pairing group PG = (G1,G2,GT , p, P1, P2, e) ← PGGen(1λ) and integers n, `, w = poly(λ).

Each function of Fphfe
PG,n,`,w is represented by a tuple (f0, . . . , f `+1) such that for all inputs (x,y, z) ∈

(Zn)3, it outputs
[
f0
∏`
i=1 f

i(x)f `+1(y ⊗ z)
]
T
∈ GT , where f0 ∈ Z1×w

p , {f i(x) ∈ Zw×wp }i∈[d],

f `+1(y ⊗ z) ∈ Zwp , and all functions f i for i > 0 are linear. That is, for all i ∈ [d], f i : Zn → Zw×wp

is such that for all x,x′ ∈ Zn, f i(x + x′) = f i(x) + f i(x′). Similarly, f `+1 : Zn2 → Zw×wp is

such that for all u,u′ ∈ Zn2
, f `+1(u + u′) = f `+1(u) + f `+1(u′). The computation is performed

in the exponent of a generator of the cyclic group GT , of order p. This model of computation
captures functions f of the form: f(x,y, z) = w(g(x),y ⊗ z), where w is a multilinear degree two
polynomial (with degree one in y⊗ z) and g is a matrix branching program of width w and length
` over Zp. By Barrington’s theorem, for sufficiently large `, w, log(p) = poly(λ), it also contains the
case when g is a Boolean NC1 circuit (x being restricted to be a binary vector in this case). Note
that to realize Boolean NC1 circuits, we need each function f i to be affine, which can be ensured
by setting, say, x1 = 1.

We give a modular construction of PHFE for the functionality Fphfe
PG,n,`,w in Section 8.2 that

builds upon inner-product FE, defined in Section 8.1. Our construction is linearly efficient as per
Definition 4.6. That is, the ciphertext size is |ct| = n · poly(λ) for a fixed polynomial, where λ
denotes the security parameter and n is dimension of the vectors being encrypted. As such, our
PHFE can be used to build general purpose FE in Section 6. Finally, we build the concrete inner-
product FE scheme that underlies our PHFE in Section 8.3. The security of all of our constructions
rely on standard assumptions in pairing groups.

8.1 Ingredients: Inner-Product FE

For any dimension dim ∈ N and pairing group PG = (G1,G2,GT , p, P1, P2, e) ← PGGen(1λ) we

define the functionality F ipfe
PG,dim : Gdim

1 → GT , where every function is described by a vector

[y]2 ∈ Gdim
2 , and on input [x]1 ∈ Gdim

1 , outputs [x>y]T ∈ GT . We define the functionality

F ipfe′

PG,dim : Zdim → GT similarly except the inputs x are in Zdim instead of Gdim
1 . To build an FE for

Fphfe
PG,n,`,w, we rely on a private-key IND-function-hiding FE ÎPFE for the functionality F ipfe

PG,3 and an

FE IPFE for the functionality F ipfe′

PG,n+1. We only require that the scheme IPFE satisfies a simulation
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security that is slightly weaker than defined Definition 4.3, in the sense that the simulator generates
the functional secret keys for a function [y]2 only knowing the output [x>y]2 in G2 or [x>y]1 in
G1, as opposed to GT , where x denotes the challenge (see Definition 8.1).

Definition 8.1 (Weak simulation security). wet FE be an FE scheme for the functionality F ipfe′

PG,dim
defined above, with dimension dim ∈ N and pairing group PG ← PGGen(1λ). We say that FE
is weakly simulation secure if for any PPT adversary A, there exists a PPT simulator S :=

(S̃etup, Ẽnc, K̃eyGen1, K̃eyGen2) such that:

• for all y ∈ Zdim, v ∈ Zp, the following are identically distributed:

K̃eyGen1(m̃sk, [y]1, [v]1) and K̃eyGen2(m̃sk, [y]2, [v]2),

where (p̃k, m̃sk)← S̃etup(1λ,F ipfe′

PG,dim).

• For any security parameter λ, we have:

advweak-SIMFE,A (λ) := |Pr[1← RealFEA (1λ)]− Pr[1← IdealFEA,S(1λ)]| = negl(λ),

where the experiments are defined below.

RealFEA (1λ):

[x]1 ← A(1λ)

(pk,msk)← Setup(1λ,F ipfe
PG,dim)

ct← Enc(pk, [x]1)

α← AOKeyGen(·)(ct, pk)

IdealFEA,S(1λ):

[x]1 ← A(1λ)

(p̃k, m̃sk)← S̃etup(1λ,F)

ct← Ẽnc(m̃sk)

α← AOKeyGen(·)(ct, p̃k)

In the real experiment, the key generation oracle OKeyGen, when given as input [y]2 ∈ Gdim
2 , returns

KeyGen(msk, [y]2). In the ideal experiment, the key generation oracle OKeyGen, when given as input

[y]2 ∈ Gdim
2 , computes [x>y]2, and returns K̃eyGen2(m̃sk, [y]2, [x

>y]2). Note that this differs from

Definition 4.3, where the algorithm K̃eyGen gets as input [x>y]T ∈ GT , not in G2.

8.2 Modular Construction of the Partially-Hiding FE

In Fig.8.2 we present a modular construction of PHFE for the functionality Fphfe
PG,n,`,w, which relies

on an IND-function-hiding FE for the functionality F ipfe
PG,3 and weakly simulation-secure FE for the

functionality F ipfe′

PG,n+1. The simulation security of our PHFE relies on the security of the underlying
building blocks and the SXDH assumption in PG.

Linear efficiency:

By linear efficiency of ÎPFE for all i, j ∈ [n], we have |cti|, |ct′j | = poly(λ). By linear efficiency of

IPFE, we have |ct| = n · poly(λ). Overall, we have |ct| = n · poly(λ).

Correctness:

By correctness of ÎPFE, for all i, j ∈ [n], we have:

[θi,j ]T = [yizj + rsa>i bj ]T and [θ]T = f(x,y, z) + rsf(x,a, b),

64



Setup(1λ,Fphfe
PG,n,`,w):

Given PG = (G1,G2,GT , p, P1, P2, e) ←R GGen(1λ), it computes (pk,msk) ← Setup(1λ,F ipfe′

PG,n+1).

For all i, j ∈ [n]: ai, bj ←R DDH, for all k ∈ [`], uk ←R Znp . Return pk :=
(
pk, {[ai]1, [bj ]2}i,j∈[n]

)
and msk :=

(
msk, {ai, bj ,uk}i,j∈[n],k∈[`]

)
.

Enc(x,y, z ∈ (Zp)3):

r, s ←R Zp, (p̂k, m̂sk) ← Ŝetup(1λ,F ipfe
PG,3), ct ← Enc

(
pk,

(
rsx
rs

))
. For all i, j ∈ [n]:

cti ← Ênc

(
m̂sk,

[
yi
air

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
zj
bjs

]
2

)
. Return

(
ct, {cti, ct′j}i,j∈[n]

)
.

KeyGen
(
msk, (f0, . . . , f `+1)

)
:

For all t ∈ [`], we write [Mt]2 ∈ G
(n+1)×w
2 , the linear function such that for all

[
v
α

]
1

∈ Gn+1
1 ,[

M>
t

(
v
α

)]
T

=
[(
α · f t(ut)− f t(v)

)∏
t<i≤` f

i(ui)f
`+1(a⊗ b)

]
T
∈ Gw

T , and [m`+1]2 ∈ Gn+1
2 the

linear function such that for all

[
v
α

]
1

∈ Gn+1
1 ,

[
m>`+1

(
v
α

)]
T

=
[
α · f0

∏
i∈[`] f

i(ui)f
`+1(a⊗ b)

]
T
∈

GT , where a ⊗ b = (a>i bj)i,j∈[n] ∈ Zn2
. For all t ∈ [`], skt ← KeyGen(msk, [Mt]2), and

sk`+1 ← KeyGen(msk, [m`+1]2). Return {skt}t∈[`+1].

Dec(ct, sk):

Parse ct =
(
ct, {cti, ct′j}i,j∈[n]

)
and sk = {skt}t∈[`+1]. For all i, j ∈ [n]: [θi,j ]T ← D̂ec(cti, ct

′
j) ∈ GT .

[θ]T =
[
f0
∏
i∈[`] f

i(x)f `+1(θi,j)i,j∈[n]

]
T
∈ GT . For all t ∈ [`], [wt]T ← Dec(ct, skt) ∈ Gw

T ,

[θ`+1]T ← Dec(ct, sk`+1) ∈ GT . Return [θ]T +
[∑

t∈[`] f
0
(∏

0<m<t f
m(x)

)
wt

]
T
− [θ`+1]T .

Figure 9: This is PHFE, a simulation-secure FE scheme for the functionality Fphfe
PG,d,n,w. Here,

ÎPFE := (Ŝetup, Ênc, K̂eyGen, D̂ec) is an IND-function-hiding FE for the functionality F ipfe
PG,3, and

IPFE := (Setup,Enc,KeyGen,Dec) is a weakly simulation-secure FE for the functionality F ipfe′

PG,n+1.
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where f(x,a, b) = f0
∏
i∈[`] f

i(x)f `+1(a⊗ b), with a⊗ b = (a>i bj)i,j∈[n] ∈ Zn2
.

By correctness of IPFE, for all t ∈ [`], we have:

[wt]T =

rs(f t(ut)− f t(x)
) ∏
t<i≤`

f i(ui)f
`+1(a⊗ b)


T

.

Besides, we have:

[θ`+1]T =

rsf0
∏
i∈[`]

f i(ui)f
`+1(a⊗ b)


T

.

Thus, the telescoping sum is of the form:∑
t∈[`]

f0
∏

0<i<t

f i(x)wt


T

= [θ`+1 − rsf(x,a, b)]T .

Consequently, we have:

[θ]T +

∑
t∈[`]

f0
∏

0<i<t

f i(x)wt


T

− [θ`+1]T = [f(x,y, z)]T .

Theorem 8.1 (Simulation security). The scheme presented in Fig.8.2 is simulation secure (as

defined in Definition 4.3), provided the underlying ÎPFE is indistinguishability function-hiding se-
cure (as defined in Definition 4.5), and IPFE is simulation secure as per Definition 8.1, which is
implied by the notion given in Definition 4.3. Namely, for any PPT adversary A, there exist PPT
adversaries B1, B2, B3 and B4 such that:

advSIMPHFE,A(λ) ≤ advweak-SIM
IPFE,B1

(λ) + (`+ 1) · advDDH
G2,B2(λ) + 3 · advDDH

G1,B3(λ) + advIND-FH
ÎPFE,B4

(λ) +
2

p
.

Proof. The proof proceeds using a series of hybrid games, described below. Let A be a PPT
adversary against the simulation security of the scheme. For any game Hybridi, we denote by
advi := Pr[1← Hybridi(A)] the probability that Hybridi returns 1 when interacting with A.

• Hybrid0: is the real experiment as given in Definition 4.3.

• Hybrid1: is the same as Hybrid0, except we replace the scheme (Setup,Enc,KeyGen) by its

simulator (S̃etup, Ẽnc, K̃eyGen2). That is, we sample (p̃k, m̃sk) ← S̃etup(1λ,F ipfe′

PG,n+1), instead of

(pk,msk)← Setup(1λ,F ipfe′

PG,n+1).

The challenge ciphertext is generated using ct← Ẽnc
(
m̃sk

)
instead of ct← Enc

(
pk,

(
rsx
rs

))
.

The functional secret keys are generated using, for all t ∈ [`]:

skt ← K̃eyGen2

m̃sk, [Mt]2 ,

rs(f t(ut)− f t(x)
) ∏
t<i≤`

f i(ui)f
`+1(a⊗ b),


2


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and

sk`+1 ← K̃eyGen2

m̃sk, [m`+1]2,

rsf0
∏
i∈[`]

f i(ui)f
`+1(a⊗ b)


2

 ,

where a⊗ b = (a>i bj)i,j∈[n] ∈ Zn2
.

This transition is justified by the simulation security of IPFE. Namely, there is a PPT adversary
B0 such that:

|adv0 − adv1| ≤ advweak-SIM
IPFE,B0

(λ).

•Hybrid2: is the same as Hybrid1, except we replace the vectors {uk}k∈[`] by {uk+x}k∈[`]. These
values are identically distributed, since the vectors uk are sampled uniformly over Znp , independently
of the challenge x, which is chosen beforehand. Consequently, the functional secret keys are now
generated using, for all t ∈ [`]:

skt ← K̃eyGen2

m̃sk, [Mt]2 ,

rsf t(ut) ∏
t<i≤`

f i(ui + x)f `+1(a⊗ b),


2


and

sk`+1 ← K̃eyGen2

m̃sk, [m`+1]2,

rsf0
∏
i∈[`]

f i(ui + x)f `+1(a⊗ b)


2

 .

Here, we use the fact that the functions f i for all i > 0 are linear. We have:

adv1 = adv2.

• Hybrid3: is the same as Hybrid2, except we replace the vectors [suk]2 by fresh [sk]2 ←R Gn
2

for all k ∈ [`], using the DDH assumption in G2. Consequently, the functional secret keys are now
generated using, for all t ∈ [`]:

skt ← K̃eyGen2

m̃sk, [Mt]2 ,

rf t(st) ∏
t<i≤`

f i(ui + x)f `+1(a⊗ b),


2


and

sk`+1 ← K̃eyGen2

(
m̃sk, [m`+1]2, [v]2

)
,

where

[v]2 =

rsf(x,a, b) + r
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(a⊗ b)


2

.

We proceed via a hybrid argument, switching the vector [suk]2 to uniformly random [sk]2 ←R Znp
one index k ∈ [`] at a time. That is, we define Hybrid2.ρ for all ρ ∈ [0, d] as Hybrid2, except the
first ρ-th functional keys are computed as in Hybrid3. For all ρ ∈ [`], we show there exists a PPT
adversary B2.ρ such that |adv2.ρ−1 − adv2.ρ| ≤ advDDH

G2,B2.ρ(λ).
The adversary B2.ρ takes as input a tuple ([s]2, [uρ]2, [sρ]2) where the value [sρ]2 is either of

the form [suρ]2 (case 1), or uniformly random over Gn
2 (case 2). The adversary B2.ρ samples

r ←R Zp, ai, bj ←R DDH for all i, j ∈ [n], um ←R Znp for all m 6= ρ, st ←R Znp for all t < ρ,
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(m̃sk, p̃k) ← S̃etup(1λ,F ipfe′

PG,n+1), upon which it can simulate the view of the adversary A. In case
1, B2.ρ simulates Hybrid2.ρ−1 to A, whereas it simulates Hybrid2.ρ in case 2.

Putting everything together, we have the existence of a PPT adversary B2 such that:

|adv2 − adv3| ≤ ` · advDDH
G2,B2(λ).

• Hybrid4: is the same as Hybrid3, except that we replace the values [bjs]2 used for generating

functional secret keys by fresh [wj ]2 ←R G2
2 for all j ∈ [n], using the DDH assumption in G2.

Consequently, the challenge ciphertext now contains:

ct′j ← K̂eyGen

(
m̂sk,

[
zj
−wj

]
2

)
.

Moreover, the functional secret keys are now generated using:

sk`+1 ← K̃eyGen2

(
m̃sk, [m`+1]2, [v]2

)
,

where

[v]2 =

rf(x,a,w) + r
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(a⊗ b)


2

.

We show there exists a PPT adversary B3 such that:

|adv3 − adv4| ≤ advDDH
G2,B3(λ).

The adversary B1 takes as input a tuple ([s]2, {[bj ]2, [wj ]2}j∈[n]) where the values [wj ]2 are
either of the form [bjs]2 (case 1), or uniformly random over G2

2 (case 2). The adversary B3 samples

r ←R Zp, (m̃sk, p̃k) ← S̃etup(1λ,F ipfe′

PG,n+1), ai ←R DDH for all i ∈ [n], uk, sk ←R Znp for all k ∈ [`],
upon which it can simulate the view of the adversary A straightforwardly. In case 1, it simulates
Hybrid3 to A, whereas it simulates Hybrid4 in case 2.

• Hybrid5: is the same as Hybrid4, except we use the key generation algorithm K̃eyGen1, which

takes inputs from G1 instead of K̃eyGen2, which takes inputs from G2. Namely, the secret keys are
now generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

rf t(st) ∏
t<i≤`

f i(ui + x)f `+1(a⊗ b),


1


and

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =

rf(x,a,w) + r
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(a⊗ b)


1

.

By definition of the weak simulation security (cf Definition 8.1), the output of K̃eyGen1 and K̃eyGen2

are identically distributed, thus:
adv4 = adv5.
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• Hybrid6: is the same as Hybrid5, except that we replace the values [air]1 by fresh [vi]1 ←R G2
1

for all i ∈ [n], using the DDH assumption in G1. Consequently, the challenge ciphertext now
contains:

cti ← K̂eyGen

(
m̂sk,

[
yi
vi

]
1

)
.

Moreover, the secret keys are now generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

f t(st) ∏
t<i≤`

f i(ui + x)f `+1(v ⊗ b),


1


and

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =

f(x,v,w) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v ⊗ b)


1

.

We show there exists a PPT adversary B5 such that:

|adv5 − adv6| ≤ advDDH
G1,B5(λ).

The adversary B5 takes as input a tuple
(
[r]1, {[ai]1, [vi]1}i∈[n]

)
where the values [vi]1 are either

of the form [air]1 (case 1), or uniformly random over G2
1 (case 2). The adversary B5 samples

(m̃sk, p̃k)← S̃etup(1λ,F ipfe′

PG,n+1), bj ←R DDH, wj ←R Z2
p for all j ∈ [n], uk, sk ←R Znp for all k ∈ [`],

upon which it can simulate the view of the adversary A straightforwardly. In case 1, it simulates
Hybrid5 to A, whereas it simulates Hybrid6 in case 2.

• Hybrid7: is the same as Hybrid6, except we replace the values {vi}i∈[n] by {vi + yih}i∈[n],

where h ←R Z2
p. These values are identically distributed, since the vi are sampled uniformly over

Z2
p, independently of the challenge {yi}i∈[n], which is chosen beforehand. Therefore, we have:

adv6 = adv7.

Consequently, the challenge ciphertext now contains:

cti ← K̂eyGen

(
m̂sk,

[
yi

vi + yih

]
1

)
.

Moreover, the secret keys are now generated using for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

f t(st) ∏
t<i≤`

f i(ui + x)f `+1((v + y ⊗ h)⊗ b),


1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

69



where

[v]1 =

f(x,v + y ⊗ h,w) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v + y ⊗ h)⊗ b)


1

,

where y ⊗ h = (yj · h)j∈[n] ∈ Z2n, and (v + y ⊗ h)⊗ b = ((vi + yih)>bj)i,j∈[n] ∈ Zn2
.

• Hybrid8: is the same as Hybrid7, except that we replace the values [vi + yih]1 by [dri + yih]1
with d← DDH and ri ←R Zp for all i ∈ [n], using the DDH assumption in G1. Consequently, the
ciphertexts now contains:

cti ← K̂eyGen

(
m̂sk,

[
yi

dri + yih

]
1

)
.

Moreover, the secret keys are now generated using for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

f t(st) ∏
t<i≤`

f i(ui + x)f `+1((r ⊗ d+ y ⊗ h)⊗ b),


1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =

f(x, r ⊗ d+ y ⊗ h,w) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(r ⊗ d+ y ⊗ h)⊗ b)


1

,

where r ⊗ d = (ri · d)i∈[n] ∈ Z2n, and (r ⊗ d+ y ⊗ h)⊗ b = ((dri + yiv)>bj)i,j∈[n] ∈ Zn2
.

We show there exists a PPT adversary B7 such that:

|adv7 − adv8| ≤ advDDH
G1,B7(λ).

The adversary B7 takes as input a tuple ([d]1, {[vi]1}i∈[n]) where the values [vi]1 are either of the
form [dri]1 (case 1), or uniformly random over G2

1 (case 2). The adversary B7 samples h ←R Z2
p,

(m̃sk, p̃k) ← S̃etup(1λ,F ipfe′

PG,n+1), ai, bj ←R DDH, wj ←R Z2
p for all i, j ∈ [n], uk, sk ←R Znp for all

k ∈ [`], upon which it can simulate the view of the adversary A straightforwardly. In case 1, it
simulates Hybrid8 to A, whereas it simulates Hybrid7 in case 2.

• Hybrid9: is the same as Hybrid8, except 1) we change the distribution of h from uniformly

random over Z2
p to uniformly random over Z2

p \ Span(d), which only induces a statistical change

of 1/p, given Span(d) is of size at most p; 2) we replace the values {wj}j∈[n] by {wj + zid
⊥}j∈[n],

where d⊥ ∈ Z2
p is such that d>d⊥ = 0 and h>d⊥ = 1 (note that such a vector exists as long as

h /∈ Span(d)). These values are identically distributed, since the wj are sampled uniformly over
Z2
p, independently of the challenge {zj}j∈[n], which is chosen beforehand. Therefore, we have:

|adv8 − adv9| ≤
1

p
.
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Consequently, the ciphertexts now contains:

ct′j ← K̂eyGen

(
m̂sk,

[
zj

−wj − zjd⊥
]

1

)
.

Moreover, the secret keys are now generated using:

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =
[
f(x, r ⊗ d+ y ⊗ h,w) + f(x,y, z)+∑

i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1

(
(r ⊗ d+ y ⊗ h)⊗ b)

)]
1
.

• Hybrid10: is the same as Hybrid9, except the challenge ciphertext contains:

cti ← Ênc

(
m̂sk,

[
0

dri + yih

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
0
−wj

]
1

)
instead of

cti ← Ênc

(
m̂sk,

[
yi

dri + yih

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
zj

−wj − zjd⊥
]

1

)
.

This transition is justified by the function-hiding IND security of ÎPFE, which can be used since

for all i, j ∈ [n], we have
(

yi
dri+yih

)>( zj
−wj−zjd⊥

)
=
(

0
dri+yih

)>( 0
−wj

)
. The equality uses the fact that

d>d⊥ = 0 and h>d⊥ = 1.
There exists a PPT adversary B9 such that:

|adv9 − adv10| ≤ advIND-FH
ÎPFE,B9

(λ).

The adversary B9 first samples d←R DDH, h←R Z2
p \ Span(d), d⊥ ∈ Z2

p such that d>d⊥ = 0 and

h>d⊥ = 1, (m̃sk, p̃k)← S̃etup(1λ,F ipfe′

PG,n+1), ri ←R Zp, ai, bj ←R DDH, wj ←R Z2
p for all i, j ∈ [n],

uk, sk ←R Znp for all k ∈ [`]. It sends the challenge{[
yi

dri + yih

]
1

,

[
0

dri + yih

]
1

}
i∈[n]

,

{[
zj

−wj − zjd⊥
]

1

,

[
0
−wj

]
1

}
j∈[n]

to its own experiment, upon which it receives {cti}i∈[n], encryptions of the left or right challenges;
together with {ct′j}j∈[n], functional secret keys associated with the left or right challenges. In the
left case, B9 simulates Hybrid9 to A, whereas it simulates Hybrid10 in the right case.

• Hybrid11: is the same as Hybrid10, except 1) we change the distribution of h from uniformly

random over Z2
p \Span(d) to uniformly random over Z2

p; this introduces a statistical distance of 1/p
since the size of Span(d) is at most p; 2) we replace the values {[dri+yih]1}i∈[n] by {[vi+yih]1}i∈[n],
where vi ←R Z2

p for all i ∈ [n], using the DDH assumption in G1. This transition is the reverse to
the transition from Hybrid5 to Hybrid6.
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Consequently, the challenge ciphertext now contains:

cti ← Ênc

(
m̂sk,

[
0

vi + yih

]
1

)
,

and the secret keys are now generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

f t(st) ∏
t<i≤`

f i(ui + x)f `+1((v + y ⊗ h)⊗ b),


1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =
[
f(x,v + y ⊗ h,w) + f(x,y, z)+∑

i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1

(
(v + y ⊗ h)⊗ b

)]
1
.

We show there exists a PPT adversary B10 such that:

|adv10 − adv11| ≤ advDDH
G1,B10(λ) +

1

p
.

The adversary B10 takes as input a tuple ([d]1, {[vi]1}i∈[n]) where the vectors [vi]1 are either of the
form [dri]1 (case 1), or uniformly random over G2

1 (case 2). The adversary B10 samples h←R Z2
p,

(m̃sk, p̃k)← S̃etup(1λ,F ipfe′

PG,n+1), ai, bj ←R DDH, wj ←R Z2
p for all i, j ∈ [n], uk, sk ←R Znp and for

all k ∈ [`], upon which it can simulate the view of the adversary A straightforwardly. In case 1, it
simulates Hybrid11 to A, whereas it simulates Hybrid10 in case 2.

• Hybrid12: is the same as Hybrid11, except we replace the values {vi+yih}i∈[n] by {vi}i∈[n].

These values are identically distributed, since the vi are sampled uniformly over Z2
p, independently

of the challenge {yi}i∈[n], which is chosen beforehand. Therefore, we have:

adv11 = adv12.

This transition is the reverse of the transition from Hybrid6 to Hybrid7. The secret keys are now
generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

f t(st) ∏
t<i≤`

f i(ui + x)f `+1(v ⊗ b),


1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =

f(x,v,w) + f(x,y, z) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v ⊗ b)


1

.
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In Hybrid13, the challenge ciphertext
(
ct, {cti, ct′j}i,j∈[n]

)
is as follows. ct ← Ẽnc

(
m̃sk

)
. For

all i, j ∈ [n]: cti ← Ênc

(
m̂sk,

[
0
vi

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
0
−wj

]
2

)
, ct← Ẽnc

(
m̃sk

)
.

This exactly corresponds to the experiment IdealFEA,S(1λ) for the simulator S = (S̃etup, Ẽnc, K̃eyGen)
defined in Fig.8.2.

Summing up, we have PPT adversaries B1, B2, B3 and B4 such that:

advSIMPHFE,A(λ) ≤ advweak-SIM
IPFE,B1

(λ) + (`+ 1) · advDDH
G2,B2(λ) + 3 · advDDH

G1,B3(λ) + advIND-FH
ÎPFE,B4

(λ) +
2

p
.

S̃etup(1λ,Fphfe
PG,n,`,w):

PG = (G1,G2,GT , p, P1, P2, e) ←R PGGen(1λ), (p̃k, m̃sk) ← S̃etup(1λ,FIPFE,PG,n+1). For all

i, j ∈ [n]: ai, bj ←R DDH, vi,wj ←R Z2
p. For all k ∈ [`]: uk ←R Znp . p̃k :=

(
p̃k, {[ai]1, [bj ]2}i,j∈[n]

)
,

m̃sk :=
(
m̃sk, {ai, bj ,vi,uk}i,j∈[n],k∈[`]

)
. Return p̃k, m̃sk.

Ẽnc(m̃sk):

(p̂k, m̂sk) ← Ŝetup(1λ,F ipfe
PG,3), ct ← Ẽnc

(
m̃sk

)
. For all i, j ∈ [n]: cti ← Ênc

(
m̂sk,

[
0
vi

]
1

)
,

ct′j ← K̂eyGen

(
m̂sk,

[
0
−wj

]
2

)
. Return

(
ct, {cti, ct′j}i,j∈[n]

)
.

K̃eyGen(m̃sk, (f0, . . . , f `+1), f(x,y, z),x):

For all t ∈ [`], skt ← K̃eyGen1

(
m̃sk, [Mt]1 ,

[
f t(st)

∏
t<i≤` f

i(ui + x)f `+1(v ⊗ b),
]

1

)
,

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
, where

[v]1 =

f(x,v,w) + f(x,y, z) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v ⊗ b)


1

.

Return {skt}t∈[`+1].

Figure 10: Simulator for the FE scheme depicted in Fig.8.2 for the functionality Fphfe
PG,n,`,w.

8.3 Constructing Inner-Product FE

Here, we build a public-key FE inner products, that is, the functionality F ipfe′

PG,dim for some pairing

group PG ← PGGen(1λ) and dimension dim ∈ N. Our scheme is presented in Fig.8.3.
It builds upon the inner-product FE from [ALS16], that relies on the DDH assumption in

pairing-free cyclic groups. We instead use a pairing group PG = (G1,G2,GT , p, P1, P2, e), where
the ciphertexts will consist of group elements in G1, and the ALS functional secret key are embedded
in G2, instead of Zp. Decryption now yields the inner product in GT .
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This simple modification of ALS scheme already satisfies a simulation-security where the sim-
ulator needs to know the values [x>y]2 ∈ G2 and [y]2 ∈ Gdim

2 in order to simulate the challenge
ciphertext that encrypts [x]1 ∈ Gdim

1 and the functional secret key associated to [y]2 ∈ Gdim
2 . This

security property is inherited from the ALS scheme, which was proven simulation-secure in [Wee17]
(see also [AGRW17, Appendix A]). Note that this is weaker than the standard simulation security
notion, given in Definition 4.3, where the simulator gets the output of the function, which in this
case, is [x>y]T ∈ GT , not [x>y]2.

For our purposes, we want it to be possible for the simulator to choose whether it simulates the
adversary’s view from the values [x>y]2, [y]2 or [x>y]1, [y]1. We achieve this by giving two copies
of the encryption, one in G1, one G2, and splitting each functional secret key in two additive secret
shares summing up to the actual key, one in G2 and one in G1. This simulation security relies on
the fact that it is possible to produce both of these shares knowing the secret either in G1 or G2.

Setup(1λ,F ipfe′

PG,dim):

Given PG = (G1,G2,GT , p, P1, P2, e) ←R PGGen(1λ), it computes a ←R DDH, W ←R Zdim×2
p ,

Return pk := {[a]s, [Wa]s}s∈[1,2] and msk = W.

Enc(pk,x ∈ Zdim):

r ←R Zp, c =

(
ar

x+ War

)
. Return ([c]1, [c]2).

KeyGen(msk,y ∈ Zdim):

u←R Z2+dim
p , k =

(
−W>y
y

)
. Return ([u]1, [k − u]2).

Dec(ct, sk):

Parse ct = ([c1]1, [c2]2) and sk = ([k1]1, [k2]2). Return [c>1 k1 + c>2 k2]T .

Figure 11: This is IPFE, an FE scheme for the functionality F ipfe′

PG,dim, with weak-simulation security.

Linear efficiency.

The encryption of any x ∈ Zdim comprises dim + 2 group elements from G1 and dim + 2 group
elements from G2, each of which is poly(λ) bits.

Correctness.

For any x,y ∈ Zdim:
[c>1 k1 + c>2 k2]T = [c>k]T = [x>y]T .

Theorem 8.2 (Weak-simulation security). The scheme presented in Fig.8.3 is weakly-simulation
secure (as per Definition 8.1) assuming the bilateral DLIN assumption. Namely, for any PPT
adversary A, there exists a PPT adversary B such that:

advweak-SIMIPFE,A (λ) ≤ advDLIN
PG,B(λ) +

1

p
.
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Proof. The proof proceeds using a series of hybrid games, described below. Let A be a PPT ad-
versary against the weak simulation security of the scheme. For any game Hybridi, we denote by
advi := Pr[1← Hybridi(A)] the probability that Hybridi returns 1 when interacting with A.

• Hybrid0: is the real experiment as given in Definition 8.1.

• Hybrid1: is the same as Hybrid0, except the challenge ciphertext is computed using c =(
u

x+ Wu

)
with u ←R Z2

p instead of c =

(
ar

x+ War

)
with r ←R Zp, using the bilateral DLIN

assumption. We show there exists a PPT adversary B such that:

|adv0 − adv1| ≤ advDLIN
PG,B(λ).

The adversary B takes as input a tuple ([A]s, [z]s)s∈[1,2], where the vectors [z]s are of the form
[Ar]s with r ←R Z2

p (case 1) or uniformly random over G2
s (case 2). The adversary B samples

W ←R Zdim×3
p , upon which it can simulate the view of the adversary A straightforwardly. In case

1, it simulate Hybrid0, whereas it simulates Hybrid1 in case 2.

• Hybrid2: is the same as Hybrid1, except the challenge ciphertext is computed using u ←R

Z3
p \ Span(A) instead of u ←R Z3

p. This only induces a statistical change of 1/p since the size of
Span(A) is at most p2. Thus:

|adv1 − adv2| ≤
1

p
.

• Hybrid3: is the same as Hybrid2, except the challenge ciphertext is computed using:

c =

(
u

Wu

)
,

where u←R Z3
p \ Span(A). Besides, the functional keys are computed using:

k =

(
x>y −W>y

y

)
.

We show that these two games are identically distributed, using the fact that for any x ∈ Zdim and
a⊥ ∈ Z3

p, the following are identically distributed:

W and W − x(a⊥)>,

with W ←R Zdim×3
p . We use that fact with x the challenge chosen by the adversary, which is

chosen beforehand, and therefore, independently of msk = W; and a⊥ ∈ Z3
p such that A>a⊥ = 0

and u>a⊥ = 1. Note that such a vector exists since u /∈ Span(A). The leftmost distribution
corresponds to Hybrid2, whereas the rightmost distribution corresponds to Hybrid3. Thus:

adv2 = adv3.

It is clear hat Hybrid3 corresponds to IdealIPFEA,S (1λ) with the simulator S described in Fig.8.3.
Consequently, we have:

advweak-SIMIPFE,A (λ) ≤ advDLIN
PG,B(λ) +

1

p
.
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S̃etup(1λ,F ipfe′

PG,dim):

A ←R DLIN, W ←R Zdim×3
p , u ←R Z3

p \ Span(A), a⊥ ∈ Z3
p such that A>a⊥ = 0 and u>a⊥ = 1.

Return p̃k = {[A]s, [WA]s}s∈[1,2]} and m̃sk = (W,u,a⊥).

Ẽnc(m̃sk):

c =

(
u

Wu

)
. Return ([c]1, [c]2).

For all s ∈ [1, 2], K̃eyGens(m̃sk, [x>y]s, [y]s):

Return

[
x>y · a⊥ −W>y

y

]
s

.

Figure 12: Simulator for the FE scheme from Fig.8.3 for the functionality F ipfe′

PG,dim.
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A Perturbation Resilient Generators

Now we describe the notion of a Perturbation Resilient Generator (∆RG for short), proposed by
[AJS18, AJL+19, JLMS19]. A ∆RG consists of the following algorithms:

• Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a security parameter λ,
the length parameter 1n and a polynomial B = B(λ) and outputs a seed Seed ∈ {0, 1}∗ and
public parameters pp.

• Eval(pp,Seed)→ (h1, ..., h`), evaluation algorithm output a vector (h1, ..., h`) ∈ Z`. Here ` is
the stretch of ∆RG.

We have following properties of in a ∆RG scheme.

Efficiency: We require for Setup(1λ, 1n, B)→ (pp, Seed) and Eval(pp,Seed)→ (h1, ..., h`),

• |Seed| = n · poly(λ) for some polynomial poly independent of n. The size of Seed is linear in
n.

• For all i ∈ [`], |hi| < poly(λ, n). The norm of each output component hi in Z is bounded by
some polynomial in λ and n.

(s, adv)−Perturbation Resilience: We require that for large enough security parameter λ, for
every polynomial B, there exists a large enough polynomial nB(λ) such that for any n > nB, we
have that for any distinguisher D of size s and any (a1, .., a`) ∈ [−B,B]`

|Pr[D(x
$←− D1) = 1]− Pr[D(x

$←− D2) = 1]| < adv

Here D1 and D2 are defined below:

• Distribution D1: Compute Setup(1λ, 1n, B)→ (pp, Seed) and H(pp, Seed)→ (h1, ..., h`). Out-
put (pp, h1, ..., h`).

• Distribution D2: Compute Setup(1λ, 1n, B) → (pp, Seed) and Eval(pp,Seed) → (h1, .., h`).
Output (pp, h1 + a1, ..., h` + a`).

Now we describe the notion of Perturbation Resilient Generator implementable in a function
class F (F-∆RG for short.)
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∆RG implementable in F . A ∆RG scheme implementable in function class F = {Fn}n∈N
(F-∆RG for short) is a perturbation resilient generator with additional properties. We describe
syntax again for a complete specification.

• Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a security parameter λ,
the length parameter 1n and a polynomial B = B(λ) and outputs a seed Seed and public
parameters pp. Here, Seed = (Seed.pub,Seed.priv(1), Seed.priv(2)) is a vector on Fp. Also,
pp = (Seed.pub(1), q1, .., q`). We require syntactically there exists two algorithms SetupSeed
and SetupPoly such that Setup can be decomposed follows:

1. SetupSeed(1λ, 1n, B)→ Seed. The SetupSeed algorithm outputs the seed.

2. SetupPoly(1λ, 1n, B)→ q1, ..., q`. The SetupPoly algorithm outputs q1, .., q`.

• Eval(pp, Seed) → (h1, ..., h`), evaluation algorithm output a vector (h1, ..., h`) ∈ Z`. Here for
i ∈ [`], hi = qi(Seed) and ` is the stretch of F-∆RG. Here each qi is in Fn.

The security and efficiency requirements are same as before.
Remark: Few remarks are in order,

1. To construct iO we need the stretch of F-∆RG to be equal to ` = n1+ε for some constant
ε > 0.

2. Looking ahead, we will use a F-∆RG for a function class F , that is also the function class for
a PHFE scheme.

We refer a reader for assumptions under which we can build ∆RG to [JLMS19].
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