
Time-Space Tradeoffs and Short Collisions in
Merkle-Damg̊ard Hash Functions

Akshima1, David Cash1, Andrew Drucker1, and Hoeteck Wee2,3

1 University of Chicago,
akshima@uchicago.edu, davidcash@uchicago.edu, andy.drucker@gmail.com

2 CNRS, ENS and PSL
wee@di.ens.fr

3 NTT Research

Abstract. We study collision-finding against Merkle-Damg̊ard hashing
in the random-oracle model by adversaries with an arbitrary S-bit aux-
iliary advice input about the random oracle and T queries. Recent work
showed that such adversaries can find collisions (with respect to a random
IV) with advantage Ω(ST 2/2n), where n is the output length, beating
the birthday bound by a factor of S. These attacks were shown to be
optimal.
We observe that the collisions produced are very long, on the order of
T blocks, which would limit their practical relevance. We prove several
results related to improving these attacks to find shorter collisions. We
first exhibit a simple attack for finding B-block-long collisions achieving
advantage Ω̃(STB/2n). We then study if this attack is optimal. We show
that the prior technique based on the bit-fixing model (used for the
ST 2/2n bound) provably cannot reach this bound, and towards a general
result we prove there are qualitative jumps in the optimal attacks for
finding length 1, length 2, and unbounded-length collisions. Namely, the
optimal attacks achieve (up to logarithmic factors) on the order of (S +
T)/2n, ST/2n and ST 2/2n advantage. We also give an upper bound on
the advantage of a restricted class of short-collision finding attacks via
a new analysis on the growth of trees in random functional graphs that
may be of independent interest.

1 Introduction

This work considers the security of random-oracle-based hash functions against
preprocessing adversaries which have a bounded amount of arbitrary auxiliary
information on the random oracle to help them. Attacks in this model were first
considered by Hellman [11], who gave a heuristic time-space tradeoff for inverting
cryptographic functions. We would like to understand the power of these attacks
in the context of finding collisions in hash functions, and in particular, salted
hash functions based on the widely used Merkle-Damg̊ard paradigm.

Finding short collisions. In this work, we focus on understanding the best
attacks for finding short collisions, as motivated by real-world applications. Con-
cretely, we put forth and study the following conjecture:

STB conjecture: The best attack with time T and space S for finding col-
lisions of length B in salted MD hash functions built from hash functions
with n-bit outputs achieves success probability Θ((STB + T 2)/2n).

The birthday attack achieves O(T 2/2n), and we will describe an attack that
achieves O(STB/2n). Short of proving circuit lower bounds, we cannot hope to
rule out better attacks, except in idealized models, where we treat the underlying
hash function as a random oracle.

The AI-RO model. We use the auxiliary-input random oracle (AI-RO) model
introduced by Unruh [15], which was originally motivated by dealing with the
non-uniformity of adversaries that is necessary for some applications of the
random-oracle model [1]. In the AI-RO model, two parameters S, T are fixed,
and adversaries are divided into two stages (A1,A2): The first has unbounded
access to a random function h, and computes an S-bit auxiliary input (or advice
string) σ for A2. Then the second stage accepts σ as input, and gets T queries
to an oracle computing h, and attempts to accomplish some goal involving the
function h. We think of the adversaries as information-theoretic and ignore run-
time.

Salted-collision resistance of MD hash functions at the AI-RO model was first
studied by Coretti, Dodis, Guo and Steinberger (CDGS) [3]. They proved the
STB conjecture in the setting B = T , showing an attack with success probability
ST 2/2n and proving its optimality.

Our results in a nutshell. We study the STB conjecture in the AI-RO
model, studying both upper bounds (better attacks) and lower bounds (ruling
out better attacks). Our contributions are as follows:

– Upper bounds. We present an attack with success probability O(STB/2n).
The attack exploits the existence of expanding depth-B trees of size O(B)
in random functional graphs defined by h.

– Limitations of prior lower bounds. We show that the CDGS [3] techniques
cannot rule out attacks with success probability ST 2/N , even for B = 2.
In particular, the crux of the CDGS technique is a O(ST/N) bound in an
intermediate idealized model (that translates to an AI-RO bound with a
multiplicative loss of T), and we provide a matching attack with B = 2 in
this intermediate model.

– A lower bound for B = 2. We present new techniques to prove the STB con-
jecture for B = 2 in the AI-RO model. That is, the optimal attack achieves
success probability Θ((ST + T 2)/N) for B = 2. This is the main technical
contribution of this work. Interestingly, this means that for B = 2, if the
space S ≤ T , then there is no better attack than the birthday attack!

– Bounding low-depth trees. We rule out the existence of expanding depth-B
trees of size Õ(B2) in random functional graphs, which shows that sim-
ple extensions of our attack cannot achieve success probability better than
STB/N .

2

1.1 Prior works

Collision-resistance in the AI-RO. We consider salted collision resistance
following Dodis, Guo and Katz [6], in order to rule out trivial attacks where
the adversary hardwires a collision on h. Assume, as we shall for the rest of the
paper, that the function has the form h : [N]× [M]→ [N], where [N] = [2n] and
[M] = [2m], which we identify with {0, 1}n and {0, 1}m respectively. In salted
collision-resistance in the AI-RO model, the second-stage adversary gets as input
a random “salt” a ∈ [N] (along with σ), and must find α 6= α′ ∈ [M] such that
h(a, α) = h(a, α′). The prior work obtained a bound of O(S/N + T 2/N) on
the success probability of any adversary, which is optimal (their result actually
covers a wider parameter range and different forms of h that are not relevant
for our results here). These results were interestingly proven via compression
arguments [10,9], where it is shown that an adversary that is successful too
often can be used to compress uniformly random strings, which is impossible
(cf. [14] for other applications of encoding arguments in computer science and
combinatorics).

In order to better model in-use hash functions, the aforementioned work of
Coretti, Dodis, Guo and Steinberger examined salted-collision-finding against
an MD hash function built from a random oracle h [3]. In their setting the
first stage adversary works as before, but the second adversary only needs to
find a collision in the iterated MD function built from h, starting at a random
salt; We give precise definitions in the next section. That work showed that
finding these collisions is substantially easier, giving an attack and matching
lower bound of O(ST 2/N). This was surprising in a sense, as it shows there
exists an S = T ≈ 260 attack against a hash function with 180-bit output, well
below the birthday attack with T ≈ 290.

A closer look at this attack reveals that the collisions it finds are very long
(on the order of T blocks), so in our example the colliding messages each consist
of 260 blocks. While technically violating collision-resistance, this adversary is
not damaging in any widely-used application we are aware of, as the colliding
messages are several petabytes long. Addressing whether or not this attack, or
the lower bound, can be improved to find shorter collisions is the starting point
for our work.

The results of [3] did not use compression. Instead they applied a tightening
of the remarkable and powerful bit-fixing (or presampling) method of Unruh [15],
which we briefly recall here. In the bit-fixing random oracle (BF-RO) model, the
adversary no longer receives an advice string. Instead the first stage adversary
can fix, a priori, some bits P of the table of h. Then the rest of h is sampled, and
the second stage attempts to find a salted collision as before. Building on Unruh’s
results, Coretti et al. showed (very roughly) that a bound of O((T +P)T/N) on
the advantage of any adversary in the BF-RO implies a bound of O(ST 2/N) in
the AI-RO. Moreover, the BF-RO bound was very easily proved, resulting in a
simple and short proof.

3

1.2 This work

Motivated by real-world hash functions like SHA-256, where N = 2n = 2256,
M = 2512, we are interested in parameter settings with B � T , such as S = 270,
T = 295 and B = 218, which corresponds to computing a 256-bit digest of
a 16MB message using SHA-256. Here, (ignoring constants) the CDG bound
is meaningless, since ST 2/N > 1, whereas the corresponding attack achieves
constant advantage when T = B ≈ 293, collisions which are several yottabytes
(= 1024 bytes) long.

We first observe that Hellman’s attack (or an easy modification of the attack
in [3]) can find length-B collisions with success probability roughly STB/N . We
make this formal in Section 3.

While the attack was easy to modify for short collisions, proving that it is
optimal is an entirely different matter with significant technical challenges. In
order to explain them, we recall the approach of [3] used to prove the O(ST 2/N)
bound for salted MD. They used a technical approach (with tighter parameters)
first developed by Unruh [15], which connects the AI-RO model to the bit-fixing
random oracle (BF-RO) model (we defer the definition to the next section).
Their work transfers lower bounds in the BF-RO model to lower bounds in the
AI-RO model.

We show that the BF-to-AI template inherently cannot give a lower bound
for finding short collisions, because finding short collisions in the BF-RO model
is relatively easy. That is, the lower bound of the form we would need for BF-
RO model simply does not hold. In the notation introduced above, we would
need to show that no adversary finding length-2 collisions can do better than
O((P + T)/N) advantage, but we give a simple attack in BF-RO model that
finds length-2 collisions with advantage Ω(PT/N). Thus another approach is
required.

Our lower bound technique. Given that the BF-to-AI technique cannot dis-
tinguish between short and long collision finding, we must find another approach.
There are two options from the literature: The previously-mentioned compres-
sion arguments, and another lesser-known but elegant method of Impagliazzo
using concentration inequalities.

Compression arguments which were previously observed [3] to be difficult
(or “intractable”) to apply to the setting of salted MD collision finding despite
working in the original non-MD setting [6]. Given that compression was already
difficult in this setting, it does not seem promising to extend it to the harder
problem of short collisions.

To address these difficulties, we introduce a new technique that first applies a
variant of the “constructive” Chernoff bound of Impagliazzo and Kabanets [13]
to prove time-space tradeoff lower bounds. The concentration-based approach to
time-space tradeoff lower bounds was, to our knowledge, first introduced by Im-
pagliazzo in an unpublished work, and then later elucidated in an appendix [12]
(there an older work of Zimand [17] is also credited). The high-level idea is to
first prove that any adversary (with no advice) can succeed on any fixed U ∈ [N]

4

of Ω(S) of inputs with probability εΩ(S). (In some sense bounding every suffi-
ciently large “moment of the adversary”). The argument continues by applying
a concentration bound to the random variable that counts the number of win-
ning inputs for this adversary, showing that it wins on a O(ε)-fraction of inputs
except with probability 2−Ω(S). In a final elegant step, one shows that every
advice string is likely to be bad via a union bound over all possible 2S advice
strings, to get a final bound of ε.

The technique of Impagliazzo gives a direct and simple proof for the optimal
bound on inverting a random permutation. There are two issues in applying it
to short MD collisions however. First, as we formally show later, it provably fails
for salted MD hashing. The issue is that the adversary may simply succeed with
probability greater than εS on some subsets U (see section 7), so the first step
cannot be carried out.

We salvage the technique by showing it is sufficient to bound the adversary’s
average advantage for random subsets U rather than all subsets. In the language
of probability, we use a concentration bound that only needs average of the
moments to be bounded by εΩ(S), rather than all of the moments; see Theorem 1.

So far we have been able to reduce the problem of proving a lower bound
in AI-RO model to the problem of bounding the probability that an adversary
with no advice can succeed on every element of a random subset of inputs. For
the problems we considered, even this appeared to be complicated. To tame
the complexity of these bounds, we apply compression arguments; Note that
we are only proving the simpler bound needed for the Impagliazzo technique,
but using compression, when previously compression was used for the problem
directly. Our variation has the interesting twist that we can not only compress
the random function (as other work did), but also the random subset U on which
the adversary is being run. This turns out to vastly simplify such arguments.

Applications of our technique. We first apply our technique to reprove
the O(ST 2/N) bound for (non-short) collision finding against salted MD hash
functions. We then turn to the question of short collisions. Proving a general
bound (perhaps O(STB/N)) for finding length-B collisions appears to be very
difficult, so we start by examining the first new case of B = 2.

We show that there are qualitative gaps between finding length-1 collisions,
length-2 collisions, and arbitrary-length collisions. Specifically, while for length-
1 collisions we have ε = O((S + T 2)/N), we show that length-2 collisions are
easier when S > T , as the optimal bound is O((ST + T 2)/N). For arbitrary-
length collisions there is another gap, where the optimal bound is O(ST 2/N).
Our bound for length-2 collisions uses our new compression approach used above.

It appears that we could, in principle, obtain similar bounds for other small
length bounds like 3 and 4, but these proofs would be too long and complex for
us to write down; Going to arbitrary length bounds seems to be out of reach,
but there is no inherent obstruction in applying our technique to the general
case with new ideas.

Bound for a restricted class of attacks. Given the difficulty of proving
the general case, we instead consider ruling out the class of attacks that gives

5

optimal attacks in the known cases. Roughly speaking, these attacks use auxiliary
information consisting of S collisions at well-chosen points in the functional
graph. In the online phase, the attack repeatedly tries to “walk” to these points
by taking one “randomizing” step followed by several steps with zero-blocks.

For this class of attacks, we show that the best choice of collision points
will result in ε = O(STB/N). This result requires carefully analyzing the size
of large, low-depth trees in random functional graphs, a result that may be of
independent interest.

1.3 Discussion

On the non-existence of non-uniform attacks. A common argument
against studying lower bounds for non-uniform attacks4 is that we have no non-
trivial examples of better-than-generic non-uniform attacks on real-world hash
functions like SHA,-1 and that the complexity of the non-uniform advice may
anyway be prohibitive. Our STB conjecture, if true, would explain the non-
existence of these attacks: for small B,S where SB ≤ T , non-uniform attacks
do not achieve any advantage over the birthday attack!

Other related work. In addition to Hellman’s seminal work, we mention that
time-space trade-offs and lower bounds for other problems, including inverting
random functions and permutations and problems in the generic-group model,
and other models have been investigated [7,16,5,4,2].

Acknowledgements. We thank an anonymous reviewer at CRYPTO 2020 for
suggesting an improvement to Theorem 8. Previously the theorem only gave a
bound of O(STB2/N). The first two authors were supported in part by NSF
CNS-1453132.

2 Preliminaries

Notation. For non-negative integers N, k we write [N] for {1, 2, . . . , N} and(
[N]
k

)
for the collection of size-k subsets of [N]. For a set X, we write X+ for

tuples of 1 or more elements of X. Random variables will be written in bold,

and we write x
$← X to indicate that x is a uniform random variable on X.

Merkle-Damg̊ard (MD) hashing. We consider an abstraction of plain MD
hashing, where a variable-length hash function is constructed from a fixed-length
compression function that is modeled as a random oracle. For integers N,M
and a function h : [N]× [M]→ [N], Merkle-Damg̊ard hashing is defined MDh :
[N]× [M]+ → [N] recursively by MDh(a, α) = h(a, α) for α ∈ [M], and

MDh(a, (α1, . . . , αB)) = h(MDh(a, (α1, . . . , αB−1)), αB)

for α1, . . . , αB ∈ [M]. We refer to elements of [M] as blocks.

4An AI-adversary with S bits of advice and T queries can be compiled into a circuit
of size roughly O(S + T).

6

Game AI-CRh,a(A)

σ ← A1(h)

α, α′ ← Ah
2 (σ, a)

If α 6= α′ and MDh(a, α) = MDh(a, α′)
Then Return 1

Else Return 0

Game BF-CRh,a(B,L)

α, α′ ← BhL(a)
If α 6= α′ and MDhL(a, α) = MDhL(a, α′)

Then Return 1
Else Return 0

Fig. 1: Games AI-CRh,a(A) and BF-CRh,a(B,L).

2.1 Collision Resistance Definitions

We recall definitions for collision resistance against preprocessing and against
bit-fixing.

Auxiliary-input security. We formalize auxiliary-input security [15] for salted
MD hashing as follows.

Definition 1. For a pair of algorithms A = (A1,A2), a function h : [N] ×
[M]→ [N], and a ∈ [N] we define game AI-CRh,a(A) in Figure 1. We define the
auxiliary-input collision-resistance advantage of A against Merkle-Damg̊ard as

Advai-cr
MD (A) = Pr[AI-CRh,a(A) = 1],

where h
$← Func([N]× [M], [N]), a

$← [N] are independent.
We say A = (A1,A2) is an (S, T)-AI adversary if A1 outputs S bits and A2

issues T queries to its oracle (for any inputs and oracles). We define the (S, T)-
auxiliary-input collision resistance of Merkle-Damg̊ard, denoted Advai-cr

MD (S, T),
as the maximum of Advai-cr

MD (A) taken over all (S, T)-AI adversaries A.

We note that in our formalization, the games in the figures are not random-
ized, but just defined for any h and a. In the definition we use the games to
define random variables by applying the game as a function to random variables
h and a. This has the advantage of being explicit about sample spaces when
applying compression arguments.

We also consider bounded-length collisions as follows.

Definition 2. We say a pair of algorithms A = (A1,A2) is an (S, T,B)-AI
adversary if A1 outputs S bits, A2 issues T queries to its oracle, and the outputs
of A2 each consist of B or fewer blocks.

We define the (S, T,B)-auxiliary-input collision resistance of MD, denoted
Advai-cr

MD (S, T,B), as the maximum of Advai-cr
MD (A) taken over all (S, T,B)-AI

adversaries A.

Bit-fixing security. We recall the bit-fixing model of Unruh [15]. When f :

X → Y is a function on some domain and range, and L is a list (xi, yi)
|L|
i=1 where

xi ∈ X and yi ∈ Y for all i ∈ 1, . . . , |L| and all the xi are distinct, we define fL

7

as follows:

fL(x) =

{
yi if ∃(xi, yi) ∈ L such that x = xi

f(x) otherwise.

In other words, L is a list of input/output pairs, and fL is just f , but with
outputs overwritten by the tuples in L.

Definition 3. Let h : [N] × [M] → [N], and a ∈ [N]. For an adversary B
and a list L of input/output pairs for h we define BF-CRh,a(B,L) in Figure 1.
We define the bit-fixing collision-resistance advantage of (B,L) against Merkle-
Damg̊ard as

Advbf-cr
MD (B,L) = Pr[BF-CRh,a(B,L) = 1],

where h
$← Func([N]× [M], [N]), a

$← [N] are independent.
We say (B,L) is an (P, T)-BF adversary if L has at most P entries and B

issues T queries to its oracle (for any inputs and oracles). We define the (P, T)-
bit-fixing collision resistance of MD, denoted Advbf-cr

MD (P, T), as the maximum
of Advbf-cr

MD (B,L) taken over all (P, T)-BF adversaries (B,L).

As with AI security, we also consider bounded-length collision resistance
against BF adversaries.

Definition 4. We say (B,L) is an (P, T,B)-BF adversary if L has at most P
entries, B issues T queries to its oracle (for any inputs and oracles) and the
outputs of B each consist of B or fewer blocks. We define the (P, T,B)-bit-
fixing collision resistance of MD, denoted Advbf-cr

MD (P, T,B), as the maximum of
Advbf-cr

MD (B,L) taken over all (P, T,B)-BF adversaries (B,L).

Chernoff bounds. We will use the following variant of the Chernoff-type
bound proved by Impagliazzo and Kabanets [13]. It essentially says that if the
uth moments of a sum are bounded on average, then we can conclude the sum
is tightly concentrated, up to some dependence on u. Note that X1, . . . ,XN are
not assumed independent.

Theorem 1. Let 0 < δ < 1 and let X1, · · · ,XN be 0/1 random variables,
X = X1 + · · ·XN , and let U be an independent random subset of [N] of size u.
Assume

Pr[
∧
i∈U

Xi] ≤ δu.

Then
Pr[X ≥ max{6δN, u}] ≤ 2−u.

In their original version, instead of a random set U it was required that the
first inequality hold for all sets U of size u (so all uth moments must be bounded).
It is easy to show that our weaker condition is still sufficient, and the proof of
this version is almost identical and given in the appendix (Section 9) only for
completeness.

We will also apply the following standard multiplicative Chernoff bound in
Section 8.

8

Theorem 2. Let 0 < δ < 1 and let X1, · · · ,XN be independent 0/1 random
variables and put X = X1 + · · ·XN . Then

Pr[X ≥ (1 + δ) · E[X]] ≤ exp

(
−δ2 · E[X]

2 + δ

)
.

3 Bounded-Length Auxiliary-Input Attack

Coretti et al [2] gave an Ω(ST 2) attack where the adversary gets S-bit advice
and T oracle queries to find (unbounded length) collisions against MDh. It is
easy to adapt the attack to find length B collisions with advantage Ω(STB).
We describe this attack and its analysis in the appendix (Section 10).

Theorem 3. For any positive integers S, T,B such that B ≤ T < N/4, STB ≤
N/2 and M ≥ N ,

Advai-cr
MD (S, T,B) ≥ STB − 96S

48N logN
.

4 Length 2 Collisions are Relatively Easy in the BF
Model

Unruh in [15] proved a remarkable general relationship between the AI-RO and
BF-RO models that was sharpened by Coretti et al. [2]. We recall their theorem
now, and then show that this method, when applied to salted MD hashing, is
insensitive to the length of collisions found and hence cannot give the improved
bound we seek in the AI-RO model. We note that the second part of this theorem
was not stated there, but follows exactly from their proof.

Theorem 4. For any positive integers S, T, P and γ > 0 such that P ≥ (S +
log γ−1)T ,

Advai-cr
MD (S, T) ≤ 2Advbf-cr

MD (P, T) + γ.

Moreover, for any positive integer B,

Advai-cr
MD (S, T,B) ≤ 2Advbf-cr

MD (P, T,B) + γ.

The following is a simple extension of an attack of [3], which shows that
finding even just length-2 collisions in the BF model is much easier than finding
length-1 collisions, and in fact is as easy as finding general length collisions.

Theorem 5. For all positive integers P, T such that PT ≤ 2N , there exists a
(P, T, 2)-BF adversary (B,L) such that

Advbf-cr
MD (B,L) ≥

(
1− 1

e

)
PT

2N
.

9

Proof. We construct a (P, T, 2)-BF adversary (B,L) to prove the theorem. We
assume P is even for simplicity of notation. To define the list L, let α, α′ ∈
[M], a1, . . . , aP/2, y ∈ [N] be some arbitrary points, and let L consist of the P
entries

((a1, α), y), ((a1, α
′), y), . . . ((aP/2, α), y), ((aP/2, α

′), y).

Adversary B does the following on input a and oracle hL: Let α1, · · · , αT ∈ [M]
be arbitrary distinct points. For j = 1, . . . , T , query (a, αj) to the oracle hL. If
the output is an element of {a1, . . . , aP/2}, then output colliding messages αj‖α
and αj‖α′.

We lower bound Advbf-cr
MD (B,L). Let E be the event that the output of some

query made by B is in the set {a1, . . . , aP/2}. Clearly, when E happens, our
adversary wins the game. Thus

Advbf-cr
MD (B,L) ≥ 1− Pr[¬E] ≥ 1−

(
1− P

2N

)T
≥ 1− e−PT/2N ≥

(
1− 1

e

)
PT

2N

where the last inequality holds because 0 ≤ PT
2N ≤ 1.

This adversary shows that applying Theorem 4 can at best give Advai-cr
MD (S, T, 2) =

O(ST 2/N), which we show to be suboptimal in Section 6, where using compres-
sion techniques we prove a bound of Õ (ST/N).

5 Unbounded Length Collision AI Bound

In this section we give a different proof of the O(ST 2) bound of Coretti et al.[2],
formalized as follows.

Theorem 6. For any positive integers S, T ,

Advai-cr
MD (S, T) ≤ 192e(S + logN)T 2 + 1

N
.

Following Impagliazzo [13], we proceed by analyzing an adversary without
auxilliary input “locally.”

Definition 5. For a pair of algorithms A = (A1,A2) and positive integer u we
define

Advu-ai-cr
MD (A) = Pr[∀a ∈ U : AI-CRh,a(A) = 1],

where h
$← Func([N]× [M], [N]), and U

$←
(
[N]
u

)
are independent.

Lemma 1. For any positive integers S, T, u, and σ̂ ∈ {0, 1}S, let A = (A1,A2)
be an adversary where A1 always outputs σ̂, and A2 issues T queries to its oracle.
Then

Advu-ai-cr
MD (A) ≤

(
32euT 2

N

)u
.

10

This lemma is proved below. We first prove the theorem using the lemma.

Proof of Theorem 6. Let A = (A1,A2) be an (S, T)-AI adversary. We need to
bound Advai-cr

MD (A) as in the theorem. Call h easy for adversary A if

Pr[AI-CRh,a(A) = 1] ≥ 192e(S + logN)T 2

N
.

We will first show that h is unlikely to be easy for A, no matter how A1 computes
its S advice bits. Below, for each σ̂ ∈ {0, 1}S let Aσ̂ be A, except with A1

replaced by an algorithm that always outputs σ̂.
Fix some σ̂ ∈ {0, 1}S . For each a ∈ [N] let Xa be an indicator random vari-

able for the event that AI-CRh,a(Aσ̂) = 1. By Lemma 1 we have Pr[
∧
a∈U Xa] ≤

δu for any u and δ = 32euT 2/N . Then by Theorem 1 with u = S + logN , we
have

Pr[h is easy for Aσ̂] = Pr[

N∑
a=1

Xa ≥ 192euT 2] ≤ 2−(S+logN).

Let E be the event that there exists σ̂ ∈ {0, 1}S such that h is easy for Aσ̂. By
a union bound over σ̂ ∈ {0, 1}S ,

Pr[E] ≤ 2S2−(S+logN) = 1/N.

Finally we have

Pr[AI-CRh,a(A) = 1] ≤ Pr[AI-CRh,a(A) = 1|¬E] + Pr[E]

≤ 192e(S + logN)T 2

N
+

1

N
.

The last inequality holds because for each h /∈ E,

Pr[AI-CRh,a(A) = 1] ≤ max
σ̂∈{0,1}S

Pr[AI-CRh,a(Aσ̂) = 1] ≤ 192e(S + logN)T 2

N
.

Since this holds for any (S, T)-AI adversary A, we obtain the lemma.

5.1 Proof of Lemma 1

Colliding chains. We start with some useful definitions and a simplifying
lemma.

Definition 6. Let h : [N]× [M]→ [N]. A list of elements (x0, α0), . . . , (x`, α`)
from [N] × [M] is called an MD-chain (for h) when h(xi, αi) = xi+1 for i =
0, . . . , ` − 1. We say two chains (x0, α0), . . . (x`, α`) and (x′0, α

′
0), . . . (x′`′ , α

′
`′)

collide (for h) if h(x`, α`) = h(x′`′ , α
′
`′).

We will treat chains as strings (over [N] × [M]) and speak of prefixes and
suffixes with their usual meaning.

11

Lemma 2. Let C,C ′ be distinct non-empty colliding chains for h. Then C,C ′

contain prefixes C̃, C̃ ′ respectively, C̃ = (x0, α0), . . . (x`, α`) and C̃ ′ = (x′0, α
′
0), . . .

(x′`′ , α
′
`′), such that either (x`, α`) 6= (x′`′ , α

′
`′) or one of C̃, C̃ ′ is a strict suffix

of the other.

Proof. Induction on the maximum length of C,C ′. For length 1 this is obvious.
For the inductive step, suppose neither is a strict suffix of the other, and that
the final entries are equal. Then we can remove the final entries from both chains
to get two non-empty shorter chains and apply the inductive hypothesis.

Proof of Lemma 1. We prove the lemma by compression. Let U
$←
(
[N]
u

)
and

h
$← Func([N] × [M], [N]) be independent. Let A = (A1,A2) be an (S, T)-AI

adversary where A1 always outputs some fixed string σ̂. Observe that if, for all
a ∈ U, A2 never queries a point of h with input salt a′ ∈ U, a 6= a′ among
the T queries it makes for input a, and also that the chains produced for each
a are disjoint from the chains for a′, then it is relatively simple to carry out a
compression argument, by storing two pointers [T] to compress an entry in [N]
(which would translate to a bound of (T 2/N)u). But of course A might “cross
up” queries for the different salts. If we tried to prove a version of the lemma
for all U ⊆

(
[N]
u

)
(as was done in the original context of the appendix in [12])

rather than a random U, then the adversary could be specialized for the set U ;
In Section 7 we give an attack that finds collisions of B = 2 for a fixed subset
with greater probability than the upper bound on the advantage of attacking a
random subset of same size.

Also, when we choose U at random, a fixed A can’t be specialized for the set,
and the “crossed up” queries between salts are unlikely. Formally, if A queries
a salt a′ ∈ U while attacking a ∈ U, we take advantage of this by compressing
an entry of the random set U when a crossed-up query occurs. Very roughly,
this requires a pointer in [T] and saves a factor N/S (because we are omitting
one entry from an (unordered) set of size about S). The net compression is then
about ST/N per crossed-up query. The details are a bit more complicated, as
this compression actually experiences a smooth trade-off as more such queries
are compressed and the set shrinks. We handle the case when the chains for
a 6= a′ intersect via a simpler strategy that also results in ST/N factors.

Once the crossed-up queries are handled, the proof effectively reduces to the
simpler case without crossed-up queries.

Proof. For the rest of the proof we fix some A = (A1,A2), where A1 always
outputs some fixed σ̂. Let

G = {(U, h) | ∀a ∈ U : AI-CRh,a(A) = 1} ⊆
(

[N]

u

)
×H.

Let

ε = Advu-ai-crMD (A).

12

So |G| = ε
(
N
u

)
NMN . We define an injection

f : G → {0, 1}L

with L satisfying
2L(

N
u

)
NMN

≤
(

32euT 2

N

)u
.

Pigeonhole then immediately gives the bound on ε.
For (U, h) ∈ G, f(U, h) outputs an L-bit encoding, where L will be determined

below, of
(F,UFresh,Pred,Cases,Coll, h̃),

where the first output F is an integer between 1 and u, UFresh is a subset of U
of size F , Pred is a set of pointers, Cases is a list of elements in {1a, 1b, 2}, and
Coll is a list of pairs of pointers, and the last output h̃ is h but rearranged and
with some entries deleted. We now define these outputs in order.

Fresh salts and prediction queries. Fix some (U, h) ∈ G, and let U =
{a1, . . . , au}, where the ai are in lexicographic order. Let Qrs(ai) ∈ ([N]× [M])T

denote the queries A2 makes to its oracle when run on input (σ̂, ai). Let us abuse
notation by writing ai /∈ Qrs(aj) to mean that ai is not the first component of
any entry in Qrs(aj) (in other words, the salt ai is not queried when A2 runs on
aj).

We define UFresh ⊆ U inductively by

ai ∈ UFresh ⇐⇒ ∀1 ≤ j < i : aj ∈ UFresh =⇒ ai /∈ Qrs(aj).

The set UFresh trivially contains a1. For i > 1, ai ∈ UFresh if no prior salt in UFresh

causes A2 to query ai. Conversely, for any ai ∈ U \ UFresh, there is a prior salt
aj ∈ UFresh such that ai ∈ Qrs(aj).

Let us denote the size of UFresh by F , and let us write UFresh = {a′1, . . . , a′F }
where the a′j are in lexicographic order. From now on we will only need to deal
with the queries issued when the adversary is run on fresh salts. Let Qj = Qrs(a′j)
for j = 1, . . . , F and

QFresh = Q1‖ · · · ‖QF ∈ ([N]× [M])FT .

Going forward, we will sometimes use indices from [FT] to point to queries in
QFresh and sometimes indices from [T] to point to queries in Qj for some j.

For each a ∈ U \UFresh, there exists a minimum ta ∈ [FT] such that QFresh[ta]
is a query with input salt a. We define Pred ⊆ [FT], the prediction queries, to
be

Pred = {ta | a ∈ U \ UFresh} ⊆ [FT].

We have |Pred| = u− F .

New and old queries. Call an index r ∈ [FT] new if QFresh[r] does not appear
earlier in QFresh (more precisely, if s < r implies QFresh[s] 6= QFresh[r]). For j ∈ [F]

13

we will speak of an index t ∈ [T] being new in Qj , technically meaning that
(j − 1)T + t ∈ [FT] is new. Since we assume that the queries in Qj are distinct,
Qj [t] being new is equivalent to Qj [t] not appearing in Q1‖ · · · ‖Qj−1. When a
query is not new, we say it is old.

Claim. Let QFresh = Q1‖ · · · ‖QF ∈ ([N]× [M])FT be defined as above. Then for
each j, at least one of the following cases holds:

1. (a) There exists sj ∈ [T] such that sj is new in Qj and h(Qj [sj]) = a′j ,
(b) There exists s′j < sj ∈ [T] such that sj and s′j are new in Qj and

h(Qj [sj]) = h(Qj [s
′
j])

2. There exists sj ∈ [T] and s′j ∈ [FT] such that sj is new in Qj , s
′
j points to

query in Q1|| . . . ||Qj−1, and h(Qj [sj]) equals the input salt of QFresh[s
′
j].

These cases are depicted in Figure 2.

Qj

sj

Q1

···

Q2

···

Qj−1

(i) Case 1(a)

Qj

(sj , s
′
j)

···

Q1

Q2

···

Qj−1

(ii) Case 1(b)

Qj

Q1

····
···
·
·······

Qj−1

···

···

(sj , s
′
j)

(iii) Case 2

Fig. 2: Cases from claim 5.1. Box denotes an index. White box denotes query at the
index is new.

Proof of claim. For each j, Qj contains a pair of colliding chains that both start
from a′j . Either some query in the chains is old, or else all the queries in both
chains are new.

Suppose first that some query is old, and focus on the chain containing the
old query. Since a′j is fresh, this old query cannot be the first query of the chain.
Thus, starting from the beginning of this chain, we eventually reach a query that
is new but the next query is old. Because these queries form a chain, this new
query will output the old query’s input salt. So we take sj to point to this new
query in Qj , and s′j to point to the earlier query in Q1‖ · · · ‖Qj−1, and Case 2 of
the claim holds.

Now suppose that all queries in the chains are new. By Lemma 2, we can
assume without loss of generality that either the last queries of the chains are
distinct, or that one chain is a strict suffix of the other. If the chains have distinct
final queries, then we can take sj , s

′
j to point to these distinct (new) queries in

Qj and Case 1b of the claim holds. If one chain is a strict suffix of the other,
then the longer chain must contain a (new) query that outputs a′j , since both
chains start with salt a′j . Then Case 1a of the claim holds.

14

Definition of f . On input (U, h), f(U, h) first computes UFresh and Pred as
defined above. It then computes QFresh, and Qj for each j = 1, . . . , F . It initializes:
(1) Array Cases and Coll, each of size F , the latter of which will hold entries from
domains depending on cases, (2) h̃ to be the table of h, but sorted to contain
the responses for QFresh, followed by the rest of the table in lexicographic order.

For j = 1, . . . , F , f examines Qj and determines which of the cases in the
claim occurs. It sets Cases[j] ∈ {1a, 1b, 2} and performs one of the following:

Case 1a: Set Coll[j] ← sj ∈ [T] and delete the entry corresponding to Qj [sj]

from h̃.
Case 1b: Set Coll[j] ← (sj , s

′
j) ∈ [T] × [T] and delete the entry corresponding

to query Qj [sj] from h̃.
Case 2: Set Coll[j] ← (sj , s

′
j) ∈ [T] × [FT] and delete the entry corresponding

to query Qj [sj] from h̃.

This completes the description of f . After this process, h̃ consists of the responses
to the queries of A2 when it is run on the salts in UFresh, except for the deleted
queries, followed by the remaining outputs of h in lexicographic order. Since at
least one case always holds by the claim, and we delete exactly one new query
from each Qj , we have h̃ ∈ [N]MN−F .

Analysis of f . We first argue that the output length of f is not too long, and
later that is it injective. Let the number of salts in UFresh having compression
type 1a, 1b and 2 be δ1, δ′1 and δ2, respectively. Then F = δ1+δ′1+δ2. We set the
output length L to the maximum of the following expression, over 1 ≤ F ≤ u,
and δ1 + δ′1 + δ2 = F , rounded to the next integer:

log

(
u · 22F

(
N

F

)(
FT

u− F

)
T δ1T 2δ′1(FT 2)δ2NMN−F

)
.

This formula is explained by considering the outputs of f in turn:

– F and UFresh account for log u+ log
(
N
F

)
bits together,

– Pred needs log
(
FT
u−F

)
bits,

– Cases is an array of size F , storing a ternary value in each entry, and thus
less than 2F bits total,

– Coll stores δ1 log T + δ′1 log T 2 + δ2 logFT 2 bits,
– h̃ stores (MN − F) logN bits.

We have

2L(
N
u

)
NMN

≤ max
F=δ1+δ′1+δ2

u · 22F ·
(
N
F

)(
FT
u−F

)(
N
u

) ·

(
T δ1 · (T 2)δ

′
1 · (FT 2)δ2

NF

)
.

We bound the middle term by(
N
F

)(
FT
u−F

)(
N
u

) ≤
(
eN

F

)F(
u

N

)u(
eFT

u− F

)u−F
=

(
eu

F

)F(
euFT

N(u− F)

)u−F

≤
(
e2u/F

)F(
e2u/(u−F)FT

N

)u−F
≤ (4e)u

(
FT

N

)u−F
.

15

Assuming f is injective, by pigeonhole we have 2L ≥ ε
(
N
u

)
NMN . Plugging this

in and using F ≤ u ≤ 2u, we obtain

ε ≤ max
F=δ1+δ′1+δ2

(32e)u
(
FT

N

)u−F (
T

N

)δ1 (T 2

N

)δ′1 (FT 2

N

)δ2
≤
(

32euT 2

N

)u
.

It remains to show that f is injective, i.e. that (U, h) is determined by
f(U, h) = (F,UFresh,Pred,Cases,Coll, h̃). The inversion algorithm works as fol-
lows:

1. Decode the binary input by reading off F from the first log u bits. The size
of UFresh, Pred, and Cases are determiend by F . Then Coll can be parsed out
using Cases, and finally h̃ can be parsed out easily.

2. Initialize h and QFresh to be empty tables.
3. For each a′j ∈ UFresh (in lexicographic order) the j-th entry of Cases indicates

the type of tuple of pointers stored in the j-th entry of Coll. Run A2 on a′j .

Respond to queries using the entries of h̃ in order (except if the query is a
repeat) and populating the entries of h and QFresh except when one of the
following happens:
(a) For Cases[j] = 1a, when Qj [sj] is queried, respond to the query with a′j .
(b) For Cases[j] = 1b, when Qj [sj] is queried, respond with h(Qj [s

′
j]) (using

the partial table for h).
(c) For Cases[j] = 2, when Qj [sj] is queried, respond with the input salt of

query QFresh[s
′
j].

After responding, continue running A2 on a′j and populating the tables.
4. After running A2 on all of the salts in UFresh, populate the rest of h using

the remaining entries of h̃ in order.
5. Finally, examine the queries QFresh, and form U by adding the salts pointed

to by the indices of Pred to UFresh. (More formally, output U = UFresh ∪
{input salt of QFresh[t] : t ∈ Pred}.)

We first argue inversion replies to the queries issued by A2 on a′j correctly, for

each a′j ∈ UFresh. For queries that are not deleted from h̃, these are simply copied

from h̃. By construction and Claim 5.1, the queries that were deleted will be
copied correctly. Finally, once QFresh is correctly computed, we have that U is
correctly recovered.

6 Length 2 Collision AI Bound

We next prove an upper bound on the advantage of an adversary producing
collisions of length at most 2.

Theorem 7. For any positive integers S, T ,

Advai-cr
MD (S, T, 2) ≤ 6 · (29e3) max

{(
(S + logN)T

N

)
,

(
T 2

N

)}
+

1

N
.

16

We prove this theorem in exactly the same fashion as Theorem 6, where an
adversary is analyzed without auxiliary input “locally,” as in the lemma below.
Proving the theorem from this lemma is similar to before, and details are given
in the appendix (Section 11).

Lemma 3. For any positive integers S, T, u, and σ̂ ∈ {0, 1}S, let A = (A1,A2)
be an adversary where A1 always outputs σ̂, and A2 issues T queries to its oracle
and attempts to output a collision of length at most 2. Then

Advu-ai-cr
MD (A) ≤ (29e3)u max

{(
uT

N

)u
,

(
T 2

N

)u}
.

6.1 Proof for Lemma 3

Intuition. At a high level this proof is similar to that of Lemma 1. The primary
difference is that we must avoid the ST 2 factors that come from chains hitting
old edges. This turns out to be quite subtle, as the adversary may have generated
some structures involving collisions in early queries and later hit them. But if
we try to compress these structures preemptively, we find they are not profitable
(i.e. the required pointers are bigger than the savings). In our proof, however,
this strategy is actually a gambit: We make some losing moves up front, and
then later are able to compress multiple edges and eventually profit. Looking
forward, this happens for either version of Case 4 in Figure 4, where the early
edges are blue. There it is not profitable to compress the second blue edge on
its own, but we later get a super-profit by compressing one or two black edges,
resulting in a net compression.

We now proceed with the formal compression proof. Let A = (A1,A2) be an
adversary as specified in the lemma. Let

G = {(U, h) | ∀a ∈ U : AI-CRh,a(A) = 1} ⊆
(

[N]

u

)
×H.

and ε = Advu-ai-crMD (A), so |G| = ε
(
N
u

)
NMN . We define an injection

f : G → {0, 1}L

with L satisfying

|{0, 1}L|(
N
u

)
NMN

≤ (29e3)u

(
max

{
T 2, uT

}
N

)u
.

Pigeonhole again immediately gives the bound on ε.
For (U, h) ∈ G, f(U, h) outputs an L-bit encoding, where L will be determined

below, of

(F,UFresh,Pred,Cases,Coll, Loops,Bulbs,Diamonds, h̃),

17

(i) (ii) (iii) (iv) (v) (vi)

Fig. 3: Types of queries used to obtain colliding chains for B = 2. Bold arrows indicate
that the query is necessarily new.

which we define below. The first, second and third outputs F , UFresh and Pred
are computed exactly as in the proof of Lemma 1, and in particular UFresh ⊆ U
and Pred ⊆ [FT], |Pred| = u− F , where |UFresh| = F .

In order to describe the remaining outputs of f , we need some definitions.
Write UFresh = {a′1, · · · , a′F } and let QFresh and Qj be defined exactly as in the
proof of Lemma 1. Without loss of generality, for each j ∈ [F], we assume that
an adversary makes distinct queries in Qj . In other words, for each fresh salt a′j ,
Qrs(a′j) contains distinct queries.

Used queries and their arrangements. For j = 1, . . . , F Qj contains a pair
of colliding chains of length at most 2, so their union is formed from at most 4
“used” entries of Qj . Note that one entry of Qj could appear multiple times in
the colliding chains (for instance, if there is a self loop, or both chains start with
the same edge).

For any pair of colliding chains, we can always find a subset of queries cor-
responding to one of the arrangements in Figure 3 (ignore colors and dashed
versus solid lines for now). This subset will be strict sometimes. For instance,
in case (iii), the adversary may have opted to add the same query to the end
of both chains, or even to add another pair of colliding queries; In these cases
we only consider the queries shown in the diagram, and if two such cases are
possible we choose one arbitrarily.

We define the used queries in Qj , denoted Usedj , to be the subset of [T] that
are indices of the queries corresponding to our chosen pair of colliding chains.
We have that 1 ≤ |Usedj | ≤ 4.

New, reused, and unused-old queries. For any j ∈ [F], a query in Qj is
said to be new if it does not appear in Q1|| · · · ||Qj−1. If query is not new, it
is said to be old. If a query in Qj is old, and that query appears amongst the
queries pointed to by Usedk for some k < j (i.e. the query equals Qk[s] for some
s ∈ Usedk), then we say the query is reused and otherwise it is unused-old.

Claim. Let QFresh, Qj , and Usedj be j = 1, . . . , F be defined as above. Then for
each j, at least one of the following cases (which are depicted in Figure 4) holds:

1. [Usedj contains only new queries.]

(a) There exists sj ∈ [T] such that Qj [sj] is new and h(Qj [sj]) = a′j ,

(b) There exists s1j 6= s2j ∈ [T] such that Qj [s
1
j] and Qj [s

2
j] are new, and

h(Qj [s
1
j]) = h(Qj [s

2
j])

18

*

(i) Case 1(a)

*

(ii) Case 2

*

(iii) Case 3(a)

*

*

*

*

*

*

(iv) Case 3(b)

*

*

(v) Case 4(a)

*

**

(vi) Case4(b)

Fig. 4: Cases in Claim 6.1. Red dotted arrow represents a reused old query. Blue dashed
arrow represents an unused-old query. ‘*’ marks the queries that will be compressed
by f .

2. [Usedj contains at least one reused query.] There exists sj ∈ [T] and
tj ∈ [F] such that Qj [sj] is new and h(Qj [sj]) equals input salt of some query
in Qtj pointed to by Usedtj .

3. [Usedj contains exactly 1 unused old query.]
(a) There exists sj ∈ [T] and uj ∈ [FT] such that Qj [sj] is new, uj is new

(in its respective Qk, k < j) and h(Qj [sj]) and h(QFresh[uj]) both equal
the input salt of query QFresh[uj],

(b) There exists s1j 6= s2j ∈ [T] and uj ∈ [FT] such that Qj [s
1
j],Qj [s

2
j] are

new, and h(Qj [s
1
j]) equals the input salt of QFresh[uj], and h(Qj [s

2
j]) =

h(QFresh[uj]).
4. [Usedj contains exactly 2 unused old queries.]

(a) There exists sj ∈ [T] and u1j < u2j ∈ [FT] such that Qj [sj] is new, u2j
is new (in its respective Qk, k < j)5, the input salt of queries QFresh[u

1
j]

and QFresh[u
2
j] are equal, h(Qj [sj]) equals their common input salt, and

h(QFresh[u
2
j]) = h(QFresh[u

1
j]),

(b) There exists s1j 6= s1j ∈ [T], u1j < u2j ∈ [FT] such that Qj [s
1
j],Qj [s

2
j]

are new, u2j is new (in its respective Qk, k < j), h(Qj [s
1
j]) equals the

input salt of query QFresh[u
1
j], h(Qj [s

2
j]) equals the input salt of query

QFresh[u
2
j], and h(QFresh[u

2
j]) = h(QFresh[u

1
j]).

Proof of claim. Fix j ∈ [F] and consider Usedj . The queries in Qj corresponding
to Usedj fall into one of the cases in Figure 3. Since a′j is fresh, the queries with
input salt a′j must be new (otherwise a′j would be predicted). Thus the bold
edges in the figure must be new queries. The other queries can be new, reused
or unused-old.

Suppose all of the queries of Qj in Usedj are new. For cases (ii)–(vi) in Fig. 3
there are 2 distinct queries that have the same output, so we take s1j , s

2
j to point

to these queries in Qj and case 1(b) holds. In the remaining case (i), the output
of the query is a′j , so we take sj to point at the relevant query in Qj and case
1(a) of the claim holds.

5Query at u1
j is not compressed, so it does not matter whether it is new or not.

19

From now on we assume that not all queries are new. Next, suppose an edge
in Usedj is reused, say appearing in the used queries for Qk, k < j. Since a′j is
fresh, the reused query cannot be the first query in the chain, so it is the second
edge of one of the chains. As these queries form a chain, the output of the new
query will be the input of the reused query. So we take tj = k (i.e. to point to
the kth-salt a′k in UFresh from which the query is being reused), and sj ∈ [T] to
point to the new query in Qj that outputs the input salt of some query in Usedk,
and thus case 2 of the claim holds.

We have dealt with the case where the old query is a reused query. What
remains is if the old query is unused-old. There are either 1 or 2 unused-old
queries and we handle these separately.

Suppose there exists exactly one query in the colliding chains that is unused-
old. Again this query has to be the last edge of the chain. Since the chain has
length 2, we are in case (ii) or (iv)-(vi) of Figure 3. In case (ii), we have that case
3(a) of the claim holds as we can take uj ∈ [FT] to point to the loop. Otherwise
we can find queries pointed to by sj , s

′
j in Qj and uj ∈ [FT] such that case 3(b)

holds.

Finally suppose are exactly two unused-old queries in the colliding chains.
Then we must be in case (iv) or (vi) of Figure 3. By inspection we can find the
required pointers, and either case 4(a) or (b) holds.

Definition of f . On input (U, h), f(U, h) first computes UFresh and Pred (and
F) as before. It then computes QFresh, and Qj and Usedj for each j = 1, . . . , F .
It initializes: (1) Array Cases and Coll, each of size F , which will hold entries
from domains depending on cases, (2) A list Loops which will hold elements of
[FT] (i.e. “large pointers”) (3) A set Bulbs which will hold elements of [FT] (i.e.
“large pointers”) (4) A list Diamonds which will hold elements of [FT] × [FT],
(i.e. pairs of “large pointers”) (5) h̃ to be the table of h, but sorted to contain
the responses for QFresh, followed by the rest of the table in lexicographic order.

The computation of f next populates the sets Loops,Bulbs, and Diamonds.
Specifically, for j = 1, . . . , F , it checks which case holds; If case 3a, 4a, or 4b
holds, then it does the following:

Case 3a: Add uj to Loops and delete the entry corresponding to QFresh[uj] from

h̃,

Case 4a: Add u1j and u2j to Bulbs, and delete the entry corresponding to QFresh[u
2
j]

from h̃,

Case 4b: Add the pair (u1j , u
2
j) to Diamonds and delete the entry corresponding

to QFresh[u
2
j] from h̃.

There is a subtlety in Case 4a: It may be that two bulbs are hanging off of
the same vertex, when the adversary produces two Case-(iv) (from Figure 3)
collisions with the same intermediate node. In this case our algorithm will put
the second collision into Case 2 and not 4a, even though strictly speaking there
was no reused edge - only a reused node (which Case 2 allows). This ensures

20

that the queries in Bulbs will be partitioned into pairs with the same input salts,
which our inversion algorithm will leverage.

We have now defined all of the outputs of f except for Cases, Coll and h̃,
which we define now. For j = 1, . . . , F , f examines Qj and determines which of
the cases above occurs for Usedj . It sets Cases[j] ∈ {1a, 1b, 2, 3a, 3b, 4a, 4b} and
performs one of the following (see Figure 5):

Case 1a: Set Coll[j] ← sj ∈ [T] and delete the entry corresponding to Qj [sj]

from h̃.
Case 1b: Set Coll[j] ← (s1j , s

2
j) ∈ [T] × [T] and delete the entry corresponding

to query Qj [s
2
j] from h̃.

Case 2: Compute vj ∈ [4] to point to which of the (at most) four used queries
in Qtj is reused, and then set Coll[j]← (sj , tj , vj) ∈ [T]× [F]× [4] and delete

the entry corresponding to Qj [sj] from h̃.
Case 3b: Set Coll[j] ← (s1j , s

2
j , uj) and delete entries corresponding to queries

Qj [s
1
j] and Qj [s

2
j] from h̃.

Case 4a: Compute vj , index of u1j in Bulbs. Set Coll[j]← (sj , vj) ∈ [T]×[|Bulbs|]
and delete the entry corresponding to query Qj [sj] from h̃.

Case 4b: Set Coll[j]← (s1j , s
2
j) ∈ [T]× [T], and delete the entries corresponding

to queries Qj [s
1
j] and Qj [s

2
j] from h̃.

Thus, h̃ consists of the query responses for A2 when run on the salts in UFresh,
except for the queries indicated to be deleted by compressor, followed by the
remaining outputs of h in lexicographic order. This completes the description of
f .

Analysis of f . We first argue the output length of f is not too long, and later
that it is injective. Let the number of salts in UFresh having compression type
1(a) and 1(b) be δ1 and δ′1 respectively, compression type 2 be δ2, compression
type 3(b) to be δ3 and compression type 4(a) be δ4 = |Bulbs|/2. Let |Bulbs| = nb,
|Loops| = n` and |Diamonds| = nd. Then F = δ1 + δ′1 + δ2 + n` + δ3 + δ4 + nd.

Claim. The number of entries deleted from h̃ by f is equal to δ1 + δ′1 + δ2 +n`+
2δ3 + nb

2 + δ4 + 3nd.

Proof. Observe that f does the following:

– deletes 1 entry from h̃ for each index added to Loops. So, n` entries deleted
from h̃ when f populates Loops.

– deletes 1 entry from h̃ for each pair of indices added to Bulbs. So, nb/2 entries
deleted from h̃ when f populates Bulbs.

– deletes 1 entry from h̃ for each pair of indices added to Diamonds. So, nd
entries deleted from h̃ when f populates Diamonds.

– for every fresh salt of type 1a, 1b, 2 and 4a one entry corresponding to a new
query among the queries of the salt is deleted from h̃. Thus, δ1, δ′1, δ2 and
δ4 entries will be deleted by f from h̃ due to fresh salts belonging to Case
1a, 1b, 2 and 4a, respectively.

21

Qj

(sj)

Q1

···

Q2

···

Qj−1

(i) Type 1-a

Qj

(s1j , s
2
j)

···

Q1

Q2

···

Qj−1

(ii) Type 1-b

Qj

(sj , tj ,

Qtj

vj = 2)

Q1

···

···

Qj−1

···

···

(iii) Type 2

Qj

Q1

····
···
·
·······

Qj−1

···

···

· · · uj · · ·

List Loops

(sj)

(iv) Type 3-a

Qj

(s1j , s
2
j ,

Q1

····
···
·
·······

Qj−1

···

···

uj)

(v) Type 3-b

···

···

···

Q1

······

Qj−1

Qj

· · ·

queries with

equal input salt

· · · · · · Set Bulbs
(sj , vj)

(vi) Type 4-a

···

···

···

Q1

······

Qj−1

Qj

· · · · · ·(u1
j ,u

2
j)

List Diamonds

(s1j , s
2
j)

(vii) Type 4-b

Fig. 5: Compression of different cases for B = 2 by f . Boxes denote an index. Boxes
with blue stripes denote used queries in Qj . White box denotes query at the index is
new (and gets compressed).

– for every salt of type 3b and 4b, entries corresponding to two queries that
are new in Qrs of salt are deleted from h̃, thus 2δ3 and 2nd entries are
deleted by f from h̃ for fresh salts undergoing compression of type 3b and
4b, respectively.

This totals to δ1 + δ′1 + δ2 + n` + 2δ3 + nb

2 + δ4 + 3nd entries being deleted.
Therefore, to prove the claim, we need to show that f deletes the entry of any
query exactly once from h̃. To this end, we proceed in 3 steps as follows:

Claim. Any query belongs to at most one of Loops, Bulbs or Diamonds.

22

Proof. We prove the above claim by contradiction. Let’s assume there exists a
query q that belongs in both Loops and Bulbs. Without loss of generality, we
can assume that the query’s first occurrence is at index i ∈ [FT], it is added in
Loops for some fresh salt a′j of type 3a and added to Bulbs for some fresh salt a′k
of type 4a such that j, k ∈ [F] and j < k. However, as index i is added to Loops,
query q becomes a used query in Qj . When q is used in Qk, it will be a reused
query and hence a′k should be of type 2 instead of type 4a and q would not be
added to Bulbs, contradicting our assumption.

We can similarly show that no query can simultaneously be in Loops and
Diamonds or Bulbs and Diamonds, thus proving the claim.

For every j ∈ [F] and for any value of Cases[j], f deletes an entry corre-
sponding to a new query in Qj from h̃ while populating Cases[j] and Coll[j]. Lets
assume there exists j, k ∈ [F] such that j < k and f deletes some query q while
populating Cases and Coll for both a′j and a′k. Then q should be a new query
both in queries of a′j and queries of a′k for it to be deleted. However, this is not
possible by the definition of new queries.

Claim. If f adds a query to one of Loops, Bulbs and Diamonds, then it never
deletes its entry from h̃ while populating Cases and Coll.

Proof. Lets assume otherwise that f adds some query q to Loops for some salt
a′j of type 3a and for some k ∈ [F], it deletes the entry corresponding to q from

h̃ while populating Cases[k] and Coll[k]. This means, q should be a used query
in both Qj and Qk. However, it can be a new query in at most one of Qj and
Qk and has to be an old query in the queries of the other salt depending on
whether j < k or j > k. Thus, q would be a reused query in one of Qj or Qk.
If j < k, then q is a reused query among the used queries of a′k. This means a′k
would be of type 2 (as it is not a new query and not the first query in the chain).
This means, q would not be deleted while processing Cases[k] and Coll[k]. This
contradicts our assumption. When j > k, then q would be a reused query among
the queries for a′j and then a′j should not be of type 3a, again contradicting our
assumption. Similarly, we can prove when a′j is of type 4a or 4b. This proves the
above claim.

We set the output length of L via the following equation, where the maximum
is taken over 1 ≤ F ≤ u and the δi, δ

′
1, n`, nb, nd summing to F :

2L = max

(
N

u

)
NMN · u · 23F ·

(
N
F

)(
FT
u−F

)(
N
u

) ·
(
T

N

)δ1
·
(
T 2

N

)δ′1
·
(

4FT

N

)δ2

·
(
FT

N

)n`

·
(
FT · T 2

N2

)δ3
·
(
FT
nb

)
(T · nb)δ4

Nnb/2+δ4
·
(

(FT)2T 2

N3

)nd

23

Then using Stirling’s approximation, we bound
(N
F)(FT

u−F)
(N
u)

≤ (4e)u
(
FT
N

)u−F
ex-

actly as before. Next, using nb/2 = δ4 ≤ F and T 2 ≤ N we simplify,(
FT
nb

)
· (T · nb)δ4

Nnb/2+δ4
≤
(
eFT

nb ·N

)nb

· (T · nb)nb/2 =

(
2e2F 2T 2 · T · nb

2n2bN
2

)nb/2

≤
(
e222F/nbFT 2 · T

2N2

)nb/2

≤ (2e2)F
(
FT

N

)nb/2(T 2

N

)nb/2

≤ (2e2)u
(
FT

N

)δ4
·
(
T 2

N

)nb/2

Thus, putting everything together and simplifying using F ≤ u ≤ 2u, and as-
suming f is injective, we obtain:

2L(
N
u

)
NMN

≤ 24u · (4e)u · (2e2)u ·
(
FT

N

)u−F
·
(
T 2

N

)δ1+δ′1
·
(

4FT

N

)δ2
·

(
FT

N

)n`

·
(
FT · T 2

N2

)δ3
·
(
FT

N

)δ4
·
(
T 2

N

)nb/2

·
(

(FT)2T 2

N3

)nd

≤ (29e3)u ·
(
uT

N

)u−F+δ2+n`+δ3+δ4+2nd

·
(
T 2

N

)δ1+δ′1+δ3+nb/2+nd

≤ (29e3)u ·max

{(
T 2

N

)u
,

(
uT

N

)u}
Next, we need to prove the assumption that f is injective. In other words, it

needs to be shown that given f(U, h) = (F,UFresh,Pred,Cases,Coll, Loops,Bulbs,
Diamonds, h̃), (U, h) can be uniquely determined. The inversion algorithm works
as follows:

1. Parse the inputs, starting with F , as with the previous proof.
2. Initialize h and QFresh to be empty tables and array U = UFresh.
3. For each a′j ∈ UFresh (in lexicographic order), the j-th entry of Cases indicates

the type of tuple of pointers stored in the j-th entry of Coll. Run A2 on a′j
and respond to queries using the entries of h̃ in order (except if the query is
a repeat) and populating the entries of h and QFresh except when one of the
following happens:
(a) For Cases[j] = 1a, when Qj [sj] is queried, respond to the query with a′j .

If Cases[j] = 1b continue until it reaches query at index s2j in Qj . To

respond to this query, return the output of the query Qj [s
1
j].

(b) For Cases[j] = 2, when Qj [sj] is queried, return the input salt of query
Qtj [Usedtj [vj]].

(c) For Cases[j] = 3b, if query pointed by s1j in Qj is made, return the input

salt of the query pointed by uj . If query pointed by s2j in Qj is made,
return the output of the query pointed by uj .

24

(d) For Cases[j] = 4a, when Qj [sj] is queried, return the input salt of the
query at index vj in the set Bulbs.

(e) For Cases[j] = 4b, when Qj [s
1
j] or Qj [s

2
j] is queried, return the input salt

of first and second query in the first unused element of list Diamonds,
respectively.

(f) The query is in Loops, then respond to the query with the input salt of
the query.

(g) The query is in Bulbs and there is a prior query with the same input salt
in Bulbs, then respond to the query with the output of this prior query.

(h) The second query of an element in Diamonds, then respond to the query
with the output of the first query of the same element in Diamonds.

After responding, continue running A2 on a′j and populating the tables.
4. After running A2 on all of the salts in UFresh, populate the rest of h using

the remaining entries of h̃ in order.
5. Finally, examine the queries QFresh, and form U by adding the salts of queries

in QFresh indexed by the elements of Pred to UFresh.

We first argue inversion replies to the queries issued by A2 on a′j correctly, for

each a′j ∈ UFresh. For queries that are not deleted from h̃, these are simply copied

from h̃. By construction, the queries that were deleted will be copied correctly.
Finally, once QFresh and Q are correctly computed, we have that U is correctly
recovered.

7 Modification of Impagliazzo and Kabanets’ result is
necessary

Here we show that the approach of [12] provably cannot work for the problem
of short MD collisions. This modification is necessary because we can show that
there exists an adversary that can achieve a better advantage on a fixed set U as
compared to the bound we prove for a random set U. We start with a definition
for this case and then state and prove our counterexample attack.

Definition 7. For a pair of algorithms A = (A1,A2) and set U ⊆ [N] we define

AdvU-ai-cr
MD (A) = Pr[∀a ∈ U : AI-CRh,a(A) = 1],

where h
$← Func([N]× [M], [N]).

Lemma 4. For any positive integers S, T, u such that uT 2 = θ(N), any set U of
size u and σ̂ ∈ {0, 1}S, there exists adversary A = (A1,A2) such that A1 always
outputs σ̂, and A2 issues T queries to its oracle and always outputs collision of
length at most 2. Then

AdvU-ai-cr
MD (A) =

(
Ω

(
T 2

N

))c·u
where c is a constant smaller than 1.

25

Proof. We construct such an adversary A = (A1,A2) to prove the lemma. When
A2 makes x queries to its oracle on input (a, σ̂), we denote the queries as Qrs(a) ∈
([N] × [M])x. For every i ∈ [x],Qrs(a)[i] denotes the ith query and satisfies
Qrs(a)[i] = (a, ·).

Our proposed A2 tries to reduce the size of set of salts for which it needs to
find collisions. A2 does that by finding pairs of salts in the given set that have
the same output after hashing with 1 block messages. We formally describe the
A2 next.

– Given: a fixed set U = {a1, . . . , au}, A2 makes t distinct, arbitrary queries
on every ai ∈ U , denoted Qrs(ai).

– Set U ′ = ∅
– for j in 2 to u:

1. for i in 1 to j − 1:
(a) If {h(Qrs(ai)[1]), . . . , h(Qrs(ai)[t])}∩{h(Qrs(aj)[1]), . . . , h(Qrs(aj)[t])} 6=
∅ and ai is not already merged:
• mark ai and aj as merged
• insert some element from
{h(Qrs(ai)[1]), . . . , h(Qrs(ai)[t])}∩{h(Qrs(aj)[1]), . . . , h(Qrs(aj)[t])}
in U ′

• break
– Insert non-merged salts from U in U ′.
– for every node in U ′: find collisions using t queries

Next we analyze this adversary A for the case where uT 2 = θ(N). Observe
A makes a total of uT = ut + u′t queries. This implies t = uT

u+u′ ≥
T
2 . Thus,

ut2 = θ(N) holds true in that case.
Let Ei,j be an indicator variable that

{h(Qrs(ai)[1]), . . . , h(Qrs(ai)[t])} ∩ {h(Qrs(aj)[1]), . . . , h(Qrs(aj)[t])} 6= ∅.

In words, Ei,j indicates that there is a repeated output in queries for ai and aj .
Then

Pr [ai, aj can be merged] ≥ Pr
[
Ei,j ∩ E1,i ∩ · · · ∩ Ei,j−1

]
= Pr

[
Ei,j |E1,i ∩ · · · ∩ Ei,j−1

]
· Pr

[
E1,i ∩ · · · ∩ Ei,j−1

]
=
t2

N
×
(

1− t2

N

)j−1
≥ t2

N
·
(

1− (j − 1)t2

N

)
≥ t2

N
·
(

1− ut2

N

)
= Ω

(
t2

N

)
Then, the expected number of merged nodes is:

u∑
j=2

j−1∑
i=1

Pr [ai, aj can be merged] =

u∑
j=2

j−1∑
i=1

Ω

(
t2

N

)
= Ω

(
u2t2

N

)
= Ω(u)

26

using that ut2 = θ(N). Thus, we can say E[|U′|] = c1 · u for some constant
c1 < 1. This implies, by Markov’s inequality we can get

Pr [|U′| ≥ c2 · c1u] ≤ c1u

c2 · c1u
=

1

c2

for some constant c2 > 1 that satisfies c2 · c1 < 1. Then, the probability that

adversary can find collisions of length 2 for every salt in U is
(
Ω
(
T 2

N

))c2·c1·u
.

This probability is strictly greater than that for finding collisions on ev-

ery salt in a random set of size u,
(
O
(
uT+T 2

N

))u
(bound shown in lemma 3)

for t ≥ u. To be able to prove theorem 7 without modifying Impagliazzo and

Kabanets’ technique, we need the bound
(
O
(
uT+T 2

N

))u
on the advantage of

finding collisions on fixed u-sized set to hold true, which does not.

8 Impossibility of Improving Zero-Walk AI Attacks

The attack in Section 3 and the attack of Corretti et al. follow the same template:
The first unbounded phase can find collisions for some salts a1, . . . , as, and then
the second phase tries to “walk” to these salts by querying a fixed message
repeatedly. The bounded-length version needs to restart the walk to obey the
length bound.

A obvious improvement to these attacks would be to examine the functional
graph6 for the function h0(·) := h(·, 0) and select a1, . . . , as that are especially
likely to be reached by the random walking stage. It is tempting to conjecture
such an attack is optimal for the bounded case, as it was for the unbounded
case, and we are not aware of a better attack.

In this section we formalize the approach in these attacks and show that these
“zero walk” attacks cannot do much better than the basic attack in Section 3.
Concretely, we will show that these attacks can do no better (up to logarithmic
factors) than O(STB/N) advantage. The bound of known attacks and our bound
matches up to logarithmic factors.

At the heart of this bound is a delicate concentration inequality for the size of
bounded-depth trees in random functional graphs, which may be of independent
interest: Essentially, we show that with high probability, in the functional graph
for a random f : [N] → [N], all of the directed depth-D trees will have at
most Õ(D2) nodes. Typical results in this area (cf. [8]) only give asymptotic
expectations.

Below we formalize the notion of zero-walk adversaries and then state and
prove our bound.

Definition 8. An (S, T,B)-AI adversary A = (A1, A2) is said to be a zero-walk
adversary if it has the following form:

6The functional graph for f : [N]→ [N] is defined to have vertex set [N] and edges
directed from a to f(a) for all a ∈ [N].

27

1. The first stage A1 always produces a bit-encoded output of the form σ =
{(a1, α1, α

′
1), . . . , (as, αs, α

′
s)} where s = S/d(logN + 2 logM)e, ai ∈ [N],

αi, α
′
i ∈ [M].

2. The second stage A2, on input a and σ = {(a1, α1, α
′
1), . . . , (as, αs, α

′
s)} and

given oracle h, does the following:
If a ∈ {a1, . . . , as}, say a = ak, then output αk and α′k.
Else: For i in 1, . . . , bT/Bc:
(a) Choose α̂i

$← [M]. Query c0 ← h(a, α̂i).
(b) For j in 1, . . . , B − 1:

If cj−1 ∈ {a1, . . . , as}, say cj = ak, then output α̂i‖0j−1‖αk and α̂i‖0j−1‖
α′k.
Else: Query cj ← h(cj−1, 0).

Theorem 8. For any positive integers S, T,B such that B ≤ T , SB ≥ T and
any zero-walk (S, T,B)-AI adversary A,

Advai-cr
MD (A) = O

(
STB ln(NB)

N

)
.

This theorem follows easily from Lemma 5 which we state now, but the proof
of that lemma is technical. For a function f ∈ Func([N], [N]), an element a ∈ [N],
and non-negative integer g, we define f−g(a) =

⋃g
i=0{a′ ∈ [N] : f i(a′) = a},

where we define f0 to be the identity function. Note that f−g(a) includes all of
the elements that iterate to a in g or fewer steps, so we have in particular that
a ∈ f−g(a) for any g ≥ 0. We say that an element a ∈ [N] is (r,B′)-rich for f if
|f−B′(a)| ≥ r.

Lemma 5. Let f
$← Func([N], [N]). Define r = d1000(B′)2 ln(NB′)e+1 and let

ε be the probability that there exists a ∈ [N] that is (r,B′)-rich for f . Then

ε < 1/N.

We remark that lemma is easier to prove if we settle for a weaker result with
r proportional to Ω̃(B′3).

Proof of Theorem 8. Let C be a constant to be fixed later. Let A be zero-
walk adversary, and write h0(·) for h(0, ·). Let E be the event that there exist

a1, . . . , as such that
⋃s
i=1 h

−(B−2)
0 (ai) has size at least CSB2 ln(NB). Then

Pr[AI-CRh,a(A) = 1] ≤ Pr[AI-CRh,a(A) = 1|¬E] + Pr[E]

≤

 ∑
i∈[bT/Bc]

CSB2 ln(NB)

N

+
1

N
= O

(
STB ln(NB)

N

)
.

The first probability bound holds because for a fixed h, we have that A wins

only if one of its T chosen c0 values lies in
⋃s
i=0 h

−(B−2)
0 (ai), which has size

at most CSB2 ln(NB) when E does not hold; We simply apply a union bound
over the bT/Bc choices of c0. The second probability bound is by Lemma 5, with
B′ = B − 2 and the constant C set appropriately.

28

8.1 Proof of Lemma 5

Proof. In this section we dispense with writing random variables in bold.
Let f ∈ Func([N], [N]) be uniformly random, and fix a ∈ [N]. Define gener-

ations Gj (random variables), j = 0, . . . , B′, by G0 = {a} and for j > 0

Gj = f−1(Gj−1) \ (
⋃
l<j

Gl).

Thus, Gj consists of elements a′ ∈ [N] such that f j(a′) = a but for all l < j,
f l(a′) 6= a. Define the jth population as Pj = |Gj |. Then a being (r,B′)-rich is

equivalent to
B′∑
j=0

Pj ≥ r.

We are going to analyze the probability that any individual Pj is exception-
ally large, but this is complicated by the fact that they will typically grow to a
reasonable size.

We define Pj to be:

“small” if Pj < 100B′ ln(NB′),
“big” if Pj ≥ 100B′ ln(NB′),
“really big” if Pj ≥ 200B′ ln(NB′),
“huge” if Pj ≥ 1000B′ ln(NB′).

We will show that with probability at least 1 − 1/N , there are no huge values
Pj . Then Theorem 8 follows by summing Pj over j = 0, . . . , B′.

Claim. For any subsets g0, . . . , gj ⊆ [N] such that Pr[G0 = g0, . . . , Gj = gj] 6= 0,
the distribution of Pj+1, conditioned on G0 = g0, . . . , Gj = gj , is stochastically

dominated by a binomial sum of nj+1 = N−
∑j
i=0 |gi| i.i.d. 0/1 random variables

with expectation pj+1 · nj+1 ≤ |gj |.

Proof of claim. Condition on some g0, . . . , gj . We know that none of the elements

of these previous generations can appear in Gj+1, so for any a′ 6∈
⋃j
i=0 gi, the

conditional distribution of f(a′) is uniform over [N] \
⋃j−1
i′=0 gi′ . Moreover, for

these a′, f(a′) is independent of any other value of f(a′′) under our conditioning.
Thus

Pr[a′ ∈ Gj+1|G0 = g0, . . . , Gj = gj] = pj+1 where pj+1 =
|gj |

N −
∑j−1
i′=0 |gi′ |

.

The random variable Pj+1, conditioned upon g0, . . . , gj , is equal to the sum
over a′ of indicator random variables for the event a′ ∈ Gj+1, which gives the
claim.

We first bound the probability that either there is ever a jump from small
directly to really big (or huge). Once that possibility has been dealt with, the
only other way a huge generation can come about is if there is a consecutive
series of generations that are all big or really big that immediately precede a
huge generation. This plan is formalized in the next two claims.

29

Claim. The probability that there exists j = 0, . . . , B′ − 1 such that Pj is small
and Pj+1 is really big is at most N−30.

Proof of claim. Fix some j and condition on any g0, . . . , gj that occur with non-
zero probability and assume |gj | < 100B′ ln(NB′). Then by the first claim Pj+1

is stochastically dominated by a binomial random variable X with expectation
at most 100B′ ln(NB′). By the multiplicative Chernoff bound we have that X ≤
200B′ ln(NB′) except with probability

exp

(
−1 · 100B′ ln(NB′)

2 + 1

)
< (NB′)−33B

′

Since this holds conditioned on any g0, . . . , gj , it holds without the conditioning.
Finally taking a union bound over j = 0, . . . , B′ − 1 gives the claim (with a lot
of slack to spare).

Obtaining a cubic bound. A variant of the previous claim is already enough
to prove the aforementioned weaker version of the lemma, where r is cubic in
B′. We sketch how now. Instead of focusing on a jump from small to really big,
we simply bound the probability that, say, Pj ≥ 100jB′ ln(NB′). Conditioned
on the previous generations not violating this bound, a simple application of
Chernoff shows that Pj is very unlikely to violate this bound. Taking a union
bound, we can show that for all j, Pj < 100jB′ ln(NB′) with high probability.
Finally summing these bounds up to j = B′ gives the cubic bound.

We now return to obtaining the tighter quadratic bound. This will depend
on the next claim.

Claim. The probability that for some `′ and `, P`′ is big but not really big,
P`′ , . . . , P`−1 are big or really big, and P` is huge, is at most N−4.2.

The proof of this claim is longer and more delicate. We observe that the proof
of the lemma will be complete using these two claims and a union bound over
a ∈ [N]; The key is that both claims sum to a bound below N−2.

Proof of claim. Define random variables δj by

Pj = (1 + δj)Pj−1.

We have δj ≥ −1. If we condition on some (g0, . . . , gj), we have the expected
value of δj ≤ 0 by the first claim. Moreover, we have for any 0 < δ < 1

Pr[δj+1 ≥ δ | g0, . . . , gj] = Pr[Pj+1 ≥ |gj |(1 + δ) | g0, . . . , gj].

By the first claim and the multiplicative Chernoff bound,

Pr[δj+1 ≥ δ | g0, . . . , gj] ≤ exp

(
−δ2 · 100B′ ln(NB′)

3

)
< (NB′)−33δ

2B′ . (1)

On the other hand, if P` is huge and P`′ is not really big, we have P` ≥ 5P`′ . In
terms of the δj this means

∏`
j=`′+1(1 + δj) ≥ 5. By 1 +x ≤ ex, if this inequality

30

holds then
∑`
j=`′+1 δj ≥ 1.6. We let Q =

∑`
j=`+1 δj and now aim to bound

Pr[Q ≥ 1.6] ≤ N−4.2, which is small enough to allow us to take a final union
bound over all a ∈ [N].

To streamline what follows, we actually consider random variables

δ′j :=

{
δj if Pj−1 is big,

−N100 otherwise
.

Note that δ′j ≤ δj and for the event {Q ≥ 5} ∩ {Pl′ , . . . , Pl big} to hold it is
necessary and sufficient that Q′ :=

∑
l′<j≤l

δ′j > 1.6.

Bounding this probability is a delicate operation as the summands of Q′ are
only quasi-independent, and yet we still want to apply a Chernoff bound to this
sum. Our plan is to apply a version of the “exponential method” usually used
for Chernoff-like bounds. Namely, let u(x) = x3, so by Markov’s inequality

Pr[Q′ ≥ 1.6] ≤ Pr[u(Q′) ≥ N4.5] ≤ E[u(Q′)]

N4.5
=
E
[∏`

j=`′+1N
3δ′j

]
N4.5

. (2)

Thus we need to bound this expectation. We will do this by showing, for any
of the relevant j, and any g0, . . . , gj−1, that E[Nδ′j |g0, . . . , gj−1] is not too large.
Since this conditioning is arbitrary, we will get that the expectation of the prod-
uct of Nδ′j is bounded by the product of the bounds.

We now bound E[Nδ′j |g0, . . . , gj−1]. If the condition puts gj−1 as small, then

δ′j = −N100 and we easily have E[Nδ′j |g0, . . . , gj−1] < 21/B
′
.

Next suppose the condition puts gj−1 as big. Recall that for any non-negative

random variable X, E[X] =
∫∞
0
P [X ≥ x]. Apply this to X = N3δ′j and splitting

the sum, we have

E[N3δ′j |g0, . . . , gj−1] ≤ Pr[δ′j ≤ 0.2/B′] ·N0.2/B′ +

∫ ≤N3

N0.2/B′
Pr[N3δ′j ≥ c] dc

(3)

+

∫
c>N3

Pr[N3δ′j ≥ c] dc ≤ N0.2/B′ + I1 + I2,

using I1, I2 to denote the two integrals above.
The probability appearing in I1 is Pr[δ′j ≥ δ] where δ := ln c

3 lnN , a value in(
0.06
B′ , 1

)
. By Eq. (1),

Pr[δ′j ≥ δ] ≤ (NB′)−33δ
2·B′ ≤ (NB′)−33(0.06/B

′)δ·B′ < (NB′)−1.8δ

= exp

(
−1.8 ln(NB′) ln(c)

3 lnN

)
≤ c−0.6 ln(NB′).

Then,

I1 ≤
∫
N0.2/B′≤c≤N3

c−0.6 ln(NB′) dc <
N−0.12 ln(NB′)/B′+0.2/B′

0.6 ln(NB′)− 1

31

Bounding I2 is similar. Applying Chernoff with δ = ln c
3 lnN ≥ 1, we have

Pr[δ′j ≥ δ] ≤ (NB′)−33δ
2B′/(1+δ) ≤ (NB′)−15B

′δ ≤ exp

(
−15B′ ln(NB′) ln(c)

3 lnN

)
≤ c−5B

′
,

and then

I2 ≤
∫
c>N3

c−5B
′
dc < N−B

′
.

Combining our three terms in (3), and the easy case where Pj−1 was small,
we have under any conditioning that

E[N3δ′j |g0, . . . , gj−1] ≤ N .3/B′

since the first of the three segments in the split integral dominates. We can now
apply this bound and get

E[u(Q′)] ≤ (N .3/B′)`−`
′
≤ N .3

since ` − `′ ≤ B′. By (2) this proves Pr[Q′ ≥ 1.6] < N .3−4.5 = N−4.2 and
establishes the third claim.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, editors, ACM CCS 93: 1st Conference on Computer and Communica-
tions Security, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM Press.

2. S. Coretti, Y. Dodis, and S. Guo. Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In H. Shacham and A. Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes
in Computer Science, pages 693–721, Santa Barbara, CA, USA, Aug. 19–23, 2018.
Springer, Heidelberg, Germany.

3. S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and non-
uniformity. In J. B. Nielsen and V. Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes in Computer Science,
pages 227–258, Tel Aviv, Israel, Apr. 29 – May 3, 2018. Springer, Heidelberg,
Germany.

4. H. Corrigan-Gibbs and D. Kogan. The discrete-logarithm problem with prepro-
cessing. In J. B. Nielsen and V. Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages
415–447, Tel Aviv, Israel, Apr. 29 – May 3, 2018. Springer, Heidelberg, Germany.

5. A. De, L. Trevisan, and M. Tulsiani. Time space tradeoffs for attacks against
one-way functions and PRGs. In T. Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 649–665,
Santa Barbara, CA, USA, Aug. 15–19, 2010. Springer, Heidelberg, Germany.

6. Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random oracles
with auxiliary input, revisited. In J. Coron and J. B. Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in
Computer Science, pages 473–495, Paris, France, Apr. 30 – May 4, 2017. Springer,
Heidelberg, Germany.

32

7. A. Fiat and M. Naor. Rigorous time/space tradeoffs for inverting functions. In 23rd
Annual ACM Symposium on Theory of Computing, pages 534–541, New Orleans,
LA, USA, May 6–8, 1991. ACM Press.

8. P. Flajolet and A. M. Odlyzko. Random mapping statistics. In J.-J. Quisquater
and J. Vandewalle, editors, Advances in Cryptology – EUROCRYPT’89, volume
434 of Lecture Notes in Computer Science, pages 329–354, Houthalen, Belgium,
Apr. 10–13, 1990. Springer, Heidelberg, Germany.

9. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of
generic cryptographic constructions. SIAM J. Comput., 35(1):217–246, July 2005.

10. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic crypto-
graphic constructions. In 41st Annual Symposium on Foundations of Computer
Science, pages 305–313, Redondo Beach, CA, USA, Nov. 12–14, 2000. IEEE Com-
puter Society Press.

11. M. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theor.,
26(4):401–406, July 1980.

12. R. Impagliazzo. Relativized separations of worst-case and average-case complexi-
ties for np. In Proceedings of the 2011 IEEE 26th Annual Conference on Compu-
tational Complexity, CCC ’11, pages 104–114. IEEE Computer Society, 2011.

13. R. Impagliazzo and V. Kabanets. Constructive proofs of concentration bounds. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 13th International Workshop, APPROX 2010, and 14th International
Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings,
pages 617–631, 2010.

14. P. Morin, W. Mulzer, and T. Reddad. Encoding arguments. ACM Comput. Surv.,
50(3):46:1–46:36, July 2017.

15. D. Unruh. Random oracles and auxiliary input. In A. Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science,
pages 205–223, Santa Barbara, CA, USA, Aug. 19–23, 2007. Springer, Heidelberg,
Germany.

16. A. C.-C. Yao. Coherent functions and program checkers (extended abstract). In
22nd Annual ACM Symposium on Theory of Computing, pages 84–94, Baltimore,
MD, USA, May 14–16, 1990. ACM Press.

17. M. Zimand. How to privatize random bits. Technical report, University of
Rochester, 04 1996.

9 Proof of Theorem 1

Proof. Define the r.v. Z by

Z = |{U ⊆ [N] : |U | = u,
∑
i∈U

Xi = u}|.

Then

E [Z] ≤
(
N

u

)
δu ≤

(
eδN

u

)u
.

33

We first handle the case where 6δN ≥ u. Observe that if
∑N
i=1 Xi ≥ 6δN , then

Z ≥
(
6δN
u

)
, and by Markov’s inequality we have

Pr[

N∑
i=1

Xi ≥ 6δN] ≤ Pr[Z ≥
(

6δN

u

)
] ≤

(
eδN

u

)u
·
(

6δN

u

)−1

≤
(
eδN

u

)u
·
(u

6δN

)u
= (e/6)u < 2−u.

In the other case, where u > 6δN , we have E [Z] ≤ 2−u, and Markov’s gives

Pr[

N∑
i=1

Xi ≥ u] ≤ Pr[Z ≥ 1] ≤ 2−u.

10 Proof of Theorem 3

We construct an (S, T,B)-AI adversary A = (A1,A2) with the required advan-
tage for the case M = N . This attack easily extends to the case where M > N ,
since given h : [N] × [M] → [N], we can run the attack on for the function
h′ : [N]× [N]→ [N] that coincides with h on all its inputs.

Below we write h0(·) = h(·, 0). The adversary A = (A1,A2) works as follows:

– A1(h): For i = 1, . . . , S/(3dlogNe), do the following:

1. Pick ai
$← [N].

2. Compute yi ← hB
′

0 (ai), where B′ = bB/2c − 1.
3. If there exist α, α′ ∈ [M] such that α 6= α′ and h(yi, α) = h(yi, α

′), then
set (αi, α

′
i) = (α, α′). If not, then set (αi, α

′
i) = (⊥,⊥).

Output the triples (yi, αi, α
′
i) for i = 1, . . . , S/3dlogNe.

– Ah2 (σ, a): If a = yi for some i, return (αi, α
′
i). Otherwise, for j = 1, . . . , bT/Bc

do the following:
1. Compute â0 = h(a, j).
2. For k = 1, . . . , B − 1:

(a) If âk−1 = yi for some i, return j||0k−1||αi and j||0k−1||α′i.
(b) If âk−1 = âj for some j < k − 1, return j||0j and j||0k−1.
(c) Compute âk = h0(âk−1).

If no collision is found, output ⊥ to indicate failure.

Next, we analyze the advantage of A. This proof is very similar to the proof
of Lemma 5 in [2], but we include it for completeness.

We first bound the probability that A1 ever fails to find a collision in step 3
(i.e. that some (αi, α

′
i) is set to (⊥,⊥)) by

S

3 logN

N !

NN
≤ S

3 logN
· e−(N−1)/2 ≤ 2S

N logN
.

34

The attack succeeds if â ∈ G during an iteration with k ≤ B/2, because after
that there will be enough steps left to reach the end of the chain. Let R be the
event that â repeats at some point during the algorithm. Let Ft be the event
that â ∈ G for the first time on the (t + 1)th iteration of the next loop in A2

(1 ≤ t ≤ T). Then for any A ⊆ [N],

Pr[Ft|¬R,G = A] =
|A|

N − t+ 1

t∏
i=1

(
1− |A|

N − i+ 1

)

≥ |A|
N

(
1− 2|A|

N

)t
≥ |A|

N

(
1− 2t|A|

N

)
≥ |A|

2N
.

The Ft are disjoint, so the probability that Ft occurs for some t within B/2 steps
of a start point, conditioned on not-R and G = A, is at least

T |A|
4N

.

Putting this together we have

Advai-cr
MD (A) ≥ E

[
T |G|
4N

]
− Pr[R] + Pr[R]− 2S

NdlogNe
.

Finally we bound E[|G|] ≥ SB/12 logN in exactly the same manner as [2].

11 Proof of Theorem 7

Let A = (A1,A2) be an (S, T, 2)-AI adversary. We need to bound Advai-cr
MD (A)

as in the theorem. Call h easy for adversary A if

Pr[AI-CRh,a(A) = 1] ≥ 6(29e3) max{(S + logN)T, T 2}
N

.

We will first show that h is unlikely to be easy for A, no matter how A1 computes
its S advice bits. Below, for each σ̂ ∈ {0, 1}S let Aσ̂ be A, except with A1

replaced by an algorithm that always outputs σ̂.
Fix some σ̂ ∈ {0, 1}S . For each a ∈ [N] let Xa be an indicator random vari-

able for the event that AI-CRh,a(Aσ̂) = 1. By Lemma 3 we have Pr[
∧
a∈U Xa] ≤

δu for any u and δ = (29e3) max
{(

uT
N

)
,
(
T 2

N

)}
. Then by Lemma 1 with u =

S + logN , we have

Pr[h is easy for Aσ̂] = Pr[

N∑
a=1

Xa ≥ 6(29e3) max{(S+logN)T, T 2}] ≤ 2−(S+logN).

35

Let E be the event that there exists σ̂ ∈ {0, 1}S such that h is easy for Aσ̂. By
a union bound over σ̂ ∈ {0, 1}S ,

Pr[E] ≤ 2S2−(S+logN) = 1/N.

Finally we have

Pr[AI-CRh,a(A) = 1] ≤ Pr[AI-CRh,a(A) = 1|¬E] + Pr[E]

≤ 6 · (29e3) max{(S + logN)T, T 2}
N

+
1

N
.

The last inequality holds because for each h /∈ E,

Pr[AI-CRh,a(A) = 1] ≤ max
σ̂∈{0,1}S

Pr[AI-CRh,a(Aσ̂) = 1]

≤ 6 · (29e3) max{(S + logN)T, T 2}
N

.

Since this holds for any (S, T, 2)-AI adversary A, we obtain the lemma.

36

	Time-Space Tradeoffs and Short Collisions in Merkle-Damgård Hash Functions

