
Timelocked Bribing
Majid Khabbazian

∗

mkhabbazian@ualberta.ca

University of Alberta

Tejaswi Nadahalli
∗

tejaswin@ethz.ch

ETH Zürich

Roger Wattenhofer
∗

wattenhofer@ethz.ch

ETH Zürich

ABSTRACT
A Hashed Time Lock Contract (HTLC) is a central concept in cryp-

tocurrencies where some value can be spent either with the preim-

age of a public hash by one party (Bob) or after a timelock expires by

another party (Alice). We present a bribery attack on HTLC’s where

Bob’s hash-protected transaction is censored by Alice’s timelocked

transaction. Alice incentivizes miners to censor Bob’s transaction

by leaving almost all her value to miners in general. Miners follow

(or refuse) the bribe if their expected payoff is better (or worse).

We explore conditions under which this attack is possible, and how

HTLC participants can protect themselves against the attack. Appli-

cations like Lightning Network payment channels and Cross-Chain

Atomic Swaps use HTLC’s as building blocks and are vulnerable

to this attack. Our proposed solution uses the hashpower share of

the weakest known miner to derive parameters that make these

applications robust against this bribing attack.

KEYWORDS
bitcoin, HTLC, bribe

1 INTRODUCTION
Bitcoin started the modern cryptocurrency revolution by removing

trusted intermediaries and replacing them with a dynamic set of

miners. These miners validate transactions and are paid by the

system in the form of block rewards and also by transaction par-

ticipants in the form of fees. Rational miners will always choose

higher-fee transactions than lower-fee ones, and this behavior will

get reinforced over time as block rewards decrease to zero [11].

This setup has often raised ([21] [18] [20]) the possibility of miners

being bribed by transaction participants to favor one participant

over the other. Typical bribing attacks envision the paying party

(Alice) cheating the paid party (Bob) by Alice double-spending the

same value in a separate transaction paying back to Alice. Min-

ers are bribed by Alice to include the double-spending transaction

in the blockchain by forking it and orphaning the block with the

first transaction, thereby cheating Bob of the payment from the

first transaction. These bribery attacks, however, operate at a block

level because, to be cheated, Bob needs to be convinced that the

first transaction is buried in the blockchain by 𝑘 blocks (in Bitcoin,

𝑘 = 6). Before this happens, Bob should ideally not honor the first

transaction, but monitor the public Bitcoin blockchain. If a transac-

tion where Alice double-spends the same bitcoins back to herself

is seen, and Bob’s transaction is abandoned in an orphaned block,

Bob should not honor Alice’s first transaction by not giving Alice

the goods and services that were promised.

A more sophisticated concept of transactions exists where Bob

does want Alice to pay the transaction value back to herself, but

only after some time has elapsed. During this time, Bob reserves the

∗
Authors are listed alphabetically.

option of getting paid himself from the same payment source. This

complex transaction structure is the building block for financial

contracts like escrows, payment channels, atomic swaps, etc. The re-

quired time delay is implemented using a blockchain artefact called

timelocks. A rudimentary version of timelocks (nLocktime) was

in the first Bitcoin implementation by Satoshi Nakamoto in 2009

[22]. More sophisticated timelocks that lock transactions, specific

bitcoins, or specific script execution paths were added later [14]

[26] [12]. Bitcoin script allows for timelocks to be combined with

hashlocks in an OR condition to create a new kind of transaction

called Hash Timelocked Transactions (HTLC). As we will see later,

HTLC’s open the possibility of transaction level bribing of miners

where miners do not have to orphan mined blocks, but just have

to ignore a currently valid transaction and wait for the timelocked

bribe to become valid. Additionally, in this attack, the bribe is en-

dogenous to the transactions and does not have to be implemented

externally through public bulletin boards or other third party smart

contracts. Bribery attacks that operate at a transaction level are far

more insidious compared to block orphaning bribery attacks. Block

orphaning attacks undermine the native cryptocurrency’s trust

with the larger community and could be detrimental to the briber’s

financial position in general. Transaction level bribery, on the other

hand, targets specific contracts on the blockchain and could go

unnoticed as the larger cryptocurrency system hums along.

1.1 HTLC
HTLC’s are a type of smart contract that use preimage resistance

of cryptographic hash functions, along with timelocks, to enable

an escrow service. Say we have a buyer who has some bitcoin and

wants to buy some goods/services from a seller. The buyer commits

their bitcoin into a contract which is locked by an OR condition of:

• A cryptographic hash digest of a random secret preimage

that the buyer knows, and will reveal to the seller once the

buyer has possession of the goods/services. This sends the

funds to an address the seller controls. The exchange of

the preimage for the goods/services can be implemented in

variety of ways, leading to different applications.

• A timelock after which the funds are sent back to the buyer.

This is to ensure that the funds do not get locked in the

contract if the seller aborts.

In Bitcoin’s script-like pseudocode, an HTLC looks like this:

HTLC_TXN: {

txid: HTLC_TXN_TXID

vin: [{

txid: SOURCE_TXN_ID that pays the buyer.

scriptSig: <buyer 's sig for SOURCE_TXN_ID >

}]

vout: [{

value: <value >

scriptPubKey:

IF

OP_HASH160 <digest > OP_EQUALVERIFY

<seller_pubkey_1 >

OP_ELSE

<delay > OP_CSV OP_DROP <buyer_pubkey_1 >

OP_ENDIF

OP_CHECKSIG

}]

}

This transaction is broadcast and is confirmed on the Bitcoin

blockchain to a sufficient depth to be considered finalized. The seller

then exchanges their goods and services for the preimage of the

hash from the buyer. This exchange process is independent of the

transaction itself. Each application that uses HTLC’s has its own

way of doing this exchange. For example, Atomic Swaps rely on

another public blockchain to reveal the secret preimage. After the

exchange is done, the seller will attempt to move the funds from

HTLC_TXN to an address that the seller controls with a transaction

like this:

SELLER_TXN: {

txid: SELLER_TXN_TXID

vin: [{

txid: HTLC_TXN_TXID

scriptSig: <seller_sig_1 > <preimage > OP_TRUE

}]

vout: [{

value: <value >

scriptPubKey: <seller_pubkey_2 > OP_CHECKSIG

}]

}

1.2 Bribing Attack
At this point, the buyer already has the goods/services for which

the buyer commited the initial funds for. If the buyer acts in good

faith and does nothing, there is no attack. If the buyer acts in bad

faith, the buyer will try to censor the seller’s transaction from being

included in any future block. The buyer uses the refund arm of the

HTLC_TXN and attempts to move the funds to any miner by leaving

the output field empty:

BRIBE_TXN: {

txid: BRIBE_TXN_TXID

vin: [{

txid: HTLC_TXN_TXID

scriptSig: <buyer_sig_1 > OP_FALSE

sequence: <delay >

}]

vout: [{

// Empty output. Entire amount

// goes to the miner.

}]

}

Note that the buyer can send an 𝜖 amount to themselves. This

makes the bribe not just a griefing attack (where the attacker does

not profit), but marginally profitable. Also note that SELLER_TXN
and BRIBE_TXN spend the same UTXO and are inherently incom-

patible. If one of them is confirmed on the blockchain, the other

becomes invalid.

Bitcoin’s consensus rules govern what transactions can be in-

cluded in a block by miners, but does not say anything about what

transactions miners can or cannot ignore. It gives the benefit of the

doubt to miners, allowing the possibility that miners have not seen

a specific transaction because of network delays/failures. Miners

could be (or not be) interested in a transaction because its fees are

high (or low). In our attack scenario, miners sees SELLER_TXN and

BRIBE_TXN at the same time. But as per the consensus rules, miners

cannot include BRIBE_TXN immediately because it is timelocked.

But crucially, there is no obligation to include the SELLER_TXN im-

mediately either. As blocks go by, BRIBE_TXN becomes valid and can

be included in the blockchain, and we have successfully censored

SELLER_TXN and have gotten the goods and services for nothing.

In the following sections, we show how the two main applica-

tions of HTLC’s: Lightning Payment Channels and Atomic Swaps,

are both vulnerable to this bribing attack.

1.3 Payment Channels
Payment channels [13], [23] are a promising solution to the scalabil-

ity problem in cryptocurrencies like Bitcoin and Ethereum, which

have low transaction throughputs. Lightning Network’s [23] pay-

ment channels rely on HTLC’s to enforce the revocation of older

commitment transactions. In our attack scenario, Alice and Bob

have a payment channel that they have updated over time using

many commitment transactions. Both Alice and Bob keep their

own copy of the commitment transaction, where their copy can be

broadcast by them, and will lock their side of the channel balance

with an HTLC and the counterparty’s side with a regular payment.

This means that in the case of a channel closure, the broadcaster has

to wait for his payment, but the counterparty can withdraw funds

immediately. Without loss of generality, we can assume that in one

such update (𝑢1), the entire channel balance was in Bob’s favor, and

Alice has zero balance in her favor. In a subsequent update (𝑢2),

Alice delivers some goods/services to Bob, and after 𝑢2, the entire

channel balance is in Alice’s favor and Bob has zero balance on his

side of the channel. As a part of the Lightning Protocol, during 𝑢2’s

negotiation, Bob gives Alice the preimage (𝑝1) of a hash that lets

her punish him if 𝑢1 ever makes it to the blockchain.

The briber (in our case, Bob) broadcasts an outdated commit-

ment transaction 𝑢1 (called Revoked Commitment Transaction in

Lightning). This has one output which is an HTLC. He then follows

it up by broadcasting the bribing transaction: BRIBE_TXN. Note
that the BRIBE_TXN is timelocked and should be invalid till the

timelock expires. The victim (Alice in our case), sees 𝑢1 on the

blockchain, and using her knowledge of the revocation preimage,

sends the corresponding SELLER_TXN (called Breach Remedy Trans-

action in Lightning) to the pool of transactions to be included in the

blockchain, Note that SELLER_TXN should be valid immediately as

it has no timelock on it. But if all miners wait for the BRIBE_TXN’s
timelock to expire, and during that time ignore the SELLER_TXN,
the bribing attack is successful. The amount that goes from the

BRIBE_TXN to the miner does not matter to Bob because he already

has the equivalent goods/services from Alice for that value. There-

fore, he is bribing with what he has already spent.

Lightning Network uses HTLC’s to also implement payment

hops from, say, Alice to Bob through Carol - where Alice and Bob

do not have a direct payment channel between each other, but

both have a channel to Carol. HTLC’s are used here to ensure that

2

Carol can use her channels to send funds from Alice to Bob without

Carol’s own funds being put at risk. Either the entire payment goes

through fromAlice to Bob through Carol (who gets the routing fees),

or the entire payment is aborted, and all parties retain their own

pre-payment balances. Using a series of messages [8], Alice, Bob,

and Carol communicate using an off-chain protocol and negotiate

a series of commitment transactions that each have an additional

HTLC that sends the new payment from Alice to Bob through Carol.

These HTLC’s have a different payment specific secret preimage

and its associated hash that locks the hashlock arm of the HTLC.

They also have a lower timeout value (compared to the channel’s

timeout value) that refunds this particular payment back to the

source in case any other node along the payment route aborts the

payment. These hops do not affect the bribing attack model: an

outdated commitment channels can still be broadcast by the briber

and the victim has to respond.

1.4 Atomic Swaps
Atomic Swaps are a way to exchange cryptocurrencies between two

separate public blockchain systems (say, between Bitcoin and Lite-

coin) without involving a trusted third party [16], [15]. TierNolan’s

classic Atomic Swap construction [3] relies on two HTLC_TXN’s
to get around the trusted third party. Alice and Bob have their

own HTLC_TXN’s in the blockchains whose assets they have. These

HTLC_TXN’s will enable corresponding SELLER_TXN’s to the other

party and BUYER_TXN’s to themselves. Alice initiates her side of the

swap by publishing an HTLC on her blockchain which has a time-

lock of 2 · 𝑡 and hash of a secret preimage that only she knows. Bob

accepts the swap by publishing his own HTLC on his blockchain

with a timelock of 1 · 𝑡 and the same hash whose preimage he

does not know. Alice then redeems Bob’s HTLC by revealing her

secret through a SELLER_TXN on Bob’s blockchain. Bob’s knowl-

edge of this secret (by monitoring Bob’s public blockchain) enables

Bob to publish his own SELLER_TXN on Alice’s blockchain, thereby

completing the swap.

In the atomic swap described above, Alice can try to censor

Bob’s SELLER_TXNwith her own BRIBE_TXN on her blockchain that

lets her keep assets on Bob’s blockchain, and leave most of her

bribing profits on her own blockchain to miners. This way, Alice

only profits if her attack succeeds, and has no possibility of a loss.

Ideally, this should not be possible because Bob’s SELLER_TXN is

valid from the moment he gets to know of Alice’s secret preimage,

and Alice’s BRIBE_TXN is invalid at that time. But if all miners are

made aware of Alice’s BRIBE_TXN, the bribing attack might succeed.

In atomic swaps, Bob would not agree to the swap if he sees

Alice’s opening HTLC being spent only by his SELLER_TXN and

a BRIBE_TXN that leaves all the rewards to a miner. A “standard”

atomic swap will instead have a BUYER_TXN that refunds the value

back to the swap initiator. Alice can then send a followup BRIBE_TXN
sending the value of this BUYER_TXN to the miner. For our purposes,

if we have a BUYER_TXN and a BRIBE_TXN in sequence, we can con-

sider it as a single BRIBE_TXN.

2 ANALYSIS
In this section, we analyze the parameters under which this bribing

attack is successful. As Alice and Bob both have to agree on the

HTLC for it to be valid, they can control these parameters to avoid

the attack. The HTLC parameters are:

• 𝑇 : denotes the number of blocks needed until the BRIBE_TXN
becomes valid. This is the HTLC’s timelock expressed in

terms of number of blocks.

• 𝑓 : fee offered by Alice to miners to confirm her SELLER_TXN.
• 𝑏: bribe offered by Bob to miners to confirm his BRIBE_TXN.
Note that 𝑏 is not explicitly called out in the transaction

because all unclaimed outputs of a transaction go to the

miner who confirms it. Typically, 𝑏 > 𝑓 .

There are parameters of the network that Alice and Bob do not

control. These are the percentages of the total hashpower that

identifiable miners control. Unidentifable miners are grouped in a

catch-all group. Let there be 𝑛 miners 𝑀𝑗 , 1 ≤ 𝑗 ≤ 𝑛, each with a

fraction 𝑝 𝑗 of the total hashpower.

2.1 Assumptions
• Miners are rational and choose the most profitable strategy

on what transactions to include in their blocks while con-

forming to the consensus rules of Bitcoin. Their goal is to

maximize expected payoff, and not mine altruistically. Ratio-

nality also implies that a miner will not chose a dominated

strategy when they can choose one that is not.

• Relative hashpowers of miners is common knowledge. Cur-

rently, almost all Bitcoin blocks are mined by mining pools,

and almost all of these blocks have an identifiable signature

in the coinbase transaction that allows them to identify this

relative share of hashpowers.

• The attacker and the victim of the bribery attack have no

hashpower of their own.

• Timelocks are expressed in number of blocks, andwe are thus

operating in a setting where block generation is equivalent

to clock ticks.

• Block rewards and fees generated by transactions external

to our setting are constant and have no bearing on the attack

itself.

• All miners can see timelocked transactions that are valid in

the future. Currently, the most popular Bitcoin implementa-

tion, Bitcoin Core, does not allow timelocked transactions

that are “valid in the future” to enter its pool. Consequently,

it does not forward such transactions through the peer to

peer network. This is not a consensus rule, but rather an

efficiency gain whereby allowing only valid transactions to

enter the pool and propagate across the peer to peer net-

work reduces network and memory load. We assume that

SELLER_TXN and BRIBE_TXN are visible to all miners imme-

diately after they are broadcast by their respective parties.

Also, some mining pools run “transaction accelerator” ser-

vices where they cooperate with other mining pools to get

visibility to transactions that pay an extra fee (on top of

the blockchain fee). We assume that malicious buyers have

access to such services.

2.2 Setting
We analyze this attack by modeling the sequence of blocks being

mined as a (Markov) game, called the bribing game. A bribing game

3

has 𝑛 miners, and runs in 𝑇 + 1 sequential stages. Stages represent
periods between two mined blocks. In each stage, every miner has

two possible actions: follow or refuse (corresponding to a miner

excluding the SELLER_TXN from the miner’s block template or not).

After all miners play their action, a single miner is randomly se-

lected as the leader of the stage. In other words, after all the miners

have decided on their block template, a single miner wins the proof

of work lottery and this miner’s block extends the blockchain.

Let 𝐵1, 𝐵2, . . . , 𝐵𝑇 be all the blocks that can include SELLER_TXN.
Let𝐵𝑇+1 be the block that includes BRIBE_TXN. Note that BRIBE_TXN
cannot be included in 𝐵1, 𝐵2, . . . , 𝐵𝑇 as it’s not valid then. Let E𝑖, 𝑗
denote the event that miner 𝑗 is selected as the leader of stage 𝑖 .

The events E𝑖, 𝑗 are independent of each other and the actions taken

by miners. E𝑖, 𝑗 represents block 𝐵𝑖 being mined by miner 𝑀𝑗 . In

addition, the selection probability of miner 𝑗 for block 𝑖 is given by:

∀𝑖, 𝑗 𝑃𝑟 (E𝑖, 𝑗) = 𝑝 𝑗 ,

which corresponds to the hashpower of miner 𝑀𝑗 . Each stage is

in one of two states: active and inactive. The game starts in an

active stage (i.e., the first stage is active). Stage 𝑖 , 𝑖 > 1, becomes

inactive if the leader of stage 𝑖 − 1 had played the action refuse
(correspond to including SELLER_TXN), or if stage 𝑖 − 1 is already
inactive. Therefore, if one stage becomes inactive, all the following

stages become inactive. This intuitively makes sense because once

SELLER_TXN is confirmed, it stays confirmed in subsequent blocks

and more importantly, BRIBE_TXN is invalid after that. The payoffs

for each stage 𝑖 are determined by whether 1 ≤ 𝑖 ≤ 𝑇 or if 𝑖 = 𝑇 + 1.
• 1 ≤ 𝑖 ≤ 𝑇 : If the leader plays refuse, the payoff is 𝑓 > 0. If

the leader plays follow, the payoff is 0. Non-leaders’ payoff

is always 0.

• 𝑖 = 𝑇 + 1: Leader’s payoff is 𝑏 > 0. Non-Leaders’ payoff is 0.

Let us call a miner𝑀𝑖 powerful if 𝑝𝑖 ≥ 𝑓

𝑏
; otherwise we call𝑀𝑖

weak. Note that the bribing attack is successful if all miners follow

the bribe (i.e., they always ignore SELLER_TXN). This corresponds
to the strategy profile in which all miners play the action follow
in all stages. Without loss of generality, there are two possible

distributions of hashpowers among miners:

• All miners are powerful; i.e., 𝑝𝑖 ≥ 𝑓

𝑏
for 1 ≤ 𝑖 ≤ 𝑛.

• At least one miner is weak; i.e, ∃𝑝𝑖 s.t. 𝑝𝑖 < 𝑓

𝑏
for 1 ≤ 𝑖 ≤ 𝑛.

In the next sections, we analyze both of these distributions.

2.3 All miners are powerful
Lemma 2.1. If all miners are powerful (i.e., 𝑝𝑖 ≥ 𝑓

𝑏
for 1 ≤ 𝑖 ≤ 𝑛),

then the strategy profile in which every miner plays follow in all
stages is an equilibrium.

Proof. Consider Miner 𝑖 , and assume that all other miners fol-

low the bribe in all stages. We show that following the bribe in all

stages is the best response for Miner 𝑖 as well. If Miner 𝑖 follows

the bribe in all stages, they will earn 𝑝𝑖 · 𝑏 in expectation. This is

because, when all miners play follow in all stages, stage 𝑇 + 1 will
be active, and its leader, which is Miner 𝑖 with probability 𝑝𝑖 , earns

𝑏.

If Miner 𝑖 plays refuse with non-zero probability in at least one

stage. Let 𝑥 > 0 be the probability that stage𝑇 + 1 becomes inactive

as the result of Miner 𝑖’s actions. In other words, 𝑥 is the probability

that Miner 𝑖 plays refuse in a Stage 1 ≤ 𝑖 ≤ 𝑇 in which they are

selected as the leader. Note that otherminers cannotmake stage𝑇+1
inactive as they always play follow and only Miner 𝑖 is including

SELLER_TXN in their block template. The expected payoff of Miner

𝑖 is, therefore, 𝑥 · 𝑓 + (1 − 𝑥) · 𝑝𝑖 · 𝑏, which is not more than 𝑝𝑖 · 𝑏,
because 𝑝𝑖 ≥ 𝑓

𝑏
and 𝑥 > 0. □

Note that when all miners are powerful, the equilibrium shown

in Lemma 2.1 (which favours bribery) exists no matter how large 𝑇

is. As of this writing, the average fees for Bitcoin transactions since

the beginning of 2019 is around 0.00003 BTC. The average balance

held by a lightning channel is 0.026 BTC. If we use these values, we

get the equilibrium stated in Lemma 2.1 exists if eachminer has over

0.115% of the total hash power of the entire Bitcoin network. Due

to the permissionless and anonymous nature of Bitcoin, however,

we can never be sure that the weakest miner has a hash power

above 0.115% of the total hash power. However, we can inspect the

Bitcoin blockchain to guesstimate the distribution of hashpowers

among known mining pools, and recommend channel parameters

based on that. We treat this in more detail in section 3. Next, we

consider the case where at least one miner is weak. We show that,

in this case, the value of 𝑇 matters.

2.4 One miner is weak
Recall that when a stage becomes inactive, all its followup stages

become inactive as well. Moreover, all miners receive zero payoff

in an inactive stage, irrespective of what they play. Note that, for

every miner (weak or powerful), playing follow at state 𝑇 + 1 is the
strictly dominant strategy if stage𝑇 +1 is active. This is because the
expected payoff of a miner in an active stage𝑇 +1 is 𝑝𝑖𝑏 if they play

follow, and 𝑝𝑖 𝑓 (which is smaller than 𝑝𝑖𝑏) if they play refuse. In the

next lemma, we show that in active stages other than stage 𝑇 + 1,
playing refuse is the strictly dominant strategy for weak miners.

Lemma 2.2. In any active stage 𝑖 , 1 ≤ 𝑖 ≤ 𝑇 , playing refuse is the
strictly dominant strategy for any weak miner.

Proof. A miner earns 𝑏 if stage 𝑇 + 1 is active and this miner is

selected as the leader of stage 𝑇 + 1. Therefore, the probability that

a Miner 𝑗 earns 𝑏 is at most 𝑝 𝑗 . From the definition of weakness,

for Miner 𝑗 , we have 𝑝 𝑗 · 𝑏 < 𝑓 . So, if stage 𝑇 + 1 is active, the

weak miner gets an expected payoff less than 𝑓 . Additionally, in

stages < 𝑇 , the probability that a miner earns 𝑓 is strictly less than

one, because, no matter how large 𝑇 is, there is always a non-zero

chance that the miner never get selected as a leader. Therefore,

across all stages up to and including stage𝑇 +1, the expected payoff
of a weak miner is always strictly less than 𝑓 .

Assume Miner 𝑗 is weak (i.e., 𝑝 𝑗 <
𝑓

𝑏
), and plays follow in an

active stage 𝑖 , 1 ≤ 𝑖 ≤ 𝑇 . We now show that playing refuse in stage 𝑖

will improve her payoff. Suppose Miner 𝑗 plays refuse instead of

follow in the active stage 𝑖 . If 𝑗 is not selected as the leader of stage 𝑖 ,

then the game remains the same as the case where 𝑗 played follow.
If 𝑗 is selected as the leader, however, they will earn 𝑓 . This is an

improvement over the expected payoff of Miner 𝑗 from the previous

paragraph, which is strictly less than 𝑓 .

□

4

2.5 The elimination of dominated strategies
By Lemma 2.2, playing refuse is the strictly dominant strategy for

every weak miner; any other strategy is strictly dominated. Hence,

we can simplify the analysis of the bribing game by eliminating

strictly dominated strategies. Let us call a bribing game safe if after
eliminating strictly dominated strategies, the only action left for

each miner (strong or weak) in stage one is to play refuse. If every
miner plays refuse in stage one, the game is effectively over as other

stages become inactive after that (with BRIBE_TXN being invalid

after stage one).

By Lemma 2.1, if all the miners are powerful, the bribing game

is not safe no matter how large 𝑇 is. By the next theorem, however,

the game is safe if there is at least one weak miner, and 𝑇 is large

enough.

Theorem 2.3. Suppose there is at least one weak miner, and

𝑇 >
log

𝑓

𝑏

log(1 − 𝑝𝑤)
, (1)

where 𝑝𝑤 is the sum of the selection probabilities of weak miners.
Then, the bribing game is safe.

Proof. By Lemma 2.2, playing refuse is the strictly dominant

strategy for every weak miner in each stage 𝑖 , 1 ≤ 𝑖 ≤ 𝑇 . By

eliminating the dominated strategies of weak miners, we get a

smaller game in which weak miners play refuse in every stage 𝑖 ,

1 ≤ 𝑖 ≤ 𝑇 .
Consider a powerful miner 𝑢, and suppose 𝑢 plays follow in

stage 1. Let 𝛼 be the probability that stage𝑇 + 1 will be active. Since
weak miners only play refuse in the first 𝑇 stages, we get

𝛼 ≤ (1 − 𝑝𝑤)𝑇

≤ (1 − 𝑝𝑤)
log

(
𝑓

𝑏 (1−𝑝𝑤)

)
log(1−𝑝𝑤)

=
𝑓

𝑏 (1 − 𝑝𝑤)
,

where (1 − 𝑝𝑤)𝑇 is the probability that no weak miner is selected

as a leader in the first 𝑇 stages. Thus, the expected payoff of 𝑢 at

stage 𝑇 + 1 is less than
𝑓

𝑏 (1 − 𝑝𝑤)
· (1 − 𝑝𝑤).𝑏 = 𝑓 ,

where
𝑓

𝑏 (1−𝑝𝑤) is an upper bound on the probability that stage𝑇 +1
is active, and (1 − 𝑝𝑤) is an upper bound on the probability that 𝑢

is selected as the leader of stage𝑇 + 1. Note that the probability that
𝑢 earns 𝑓 prior to stage 𝑇 + 1 is strictly less than one. Therefore,

at the beginning of stage 1, the expected payoff of 𝑢 is strictly less

than 𝑓 . Now, if 𝑢 plays refuse (instead of follow) in the first stage,

we will have two possibilities. First possibility is that 𝑢 is selected

as the leader of stage 1, in which case 𝑢 earns 𝑓 , which is strictly

more than its expected payoff. In the second possibility where 𝑢 is

not selected as the leader of stage 1, the game remains identical to

the original case were 𝑢 plays follow. This implies that 𝑢 is better

off playing refuse in the first stage, which concludes the proof. We

remark that this result does not imply that 𝑢 is better off playing

refuse in every stage. In fact, as the game proceeds to new stages,

the expected payoff of 𝑢 can change, and 𝑢 may choose to play

follow.
□

A bribing game with parameters 𝑓 and 𝑏 may be safe for a sig-

nificantly smaller 𝑇 than what is given in Theorem 1. In its proof,

we eliminated only strictly dominated strategies of weak miners. In

principle, we can continue the process by eliminating strictly domi-

nated strategies of powerful miners. To do so, we can first sort the

powerful miners according to their selection probabilities. Starting

with the powerful miner with the smallest selection probability, we

can calculate the minimum number of initial stages in which the

miner is strictly better off playing refuse. We then eliminate the

strictly dominated strategies of that miner, and move to the next

powerful miner. At the end of this iterated elimination process, if

all miners play refuse in the first stage, then the game is proven to

be safe.

This algorithm is described formally Algorithm 1. The FIND_T
procedure receives as input a list of mining hashpowers (leader

selection probabilities), and the values of parameters 𝑓 and 𝑏. As

output, it returns the lowest value of 𝑇 such that all miners refuse

the bribe in the first stage of the game. It uses the inner procedure

CALCULATE_BRIBERY_MATRIX to determine the behavior of more

powerful miners at each blockwhen less powerful miners’ strategies

get dominated.

Example (Table 1): Let’s take the case of 4 miners with hash-

power shares P = [0.1, 0.2, 0.3, 0.4], 𝑓 = 11, 𝑏 = 100. Applying

Theorem 2.3, we get an upper bound of 𝑇 to be 21. Running the

procedure CALCULATE_BRIBERY_MATRIX returns the matrix shown

in Table 1, with “1” standing for refuse and “0” standing for follow.
We now go through the actions of each miner.

Table 1: Bribery Matrix Example

Blocks 0.1 0.2 0.3 0.4

Block #1 1 1 1 1

Block #2 1 1 1 1

Block #3 1 1 1 1

Block #4 1 1 1 1

Block #5 1 1 1 1

Block #6 1 1 1 1

Block #7 1 1 1 1

Block #8 1 1 1 1

Block #9 1 1 1 1

Block #10 1 1 1 1

Block #11 1 1 1 1

Block #12 1 1 1 1

Block #13 1 1 1 1

Block #14 1 1 1 1

Block #15 1 1 1 1

Block #16 1 1 0 0

Block #17 1 0 0 0

Block #18 1 0 0 0

Block #19 1 0 0 0

Block #20 1 0 0 0

Block #21 1 0 0 0

5

1: procedure CALCULATE_BRIBERY_MATRIX(P, 𝑓 , 𝑏,𝑇)
2: B← [][] ⊲ Bribery Matrix where B[i][j] represents

whether𝑚𝑖𝑛𝑒𝑟𝑖 follows the bribe at 𝑏𝑙𝑜𝑐𝑘 𝑗
3: for 𝑖 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(P) do
4: if P[𝑖] < 𝑓 /𝑏 then
5: B[𝑖] ← [1, 1, ...1]︸ ︷︷ ︸

𝑇

6: else
7: B[𝑖] ← [0, 0, ...0]︸ ︷︷ ︸

𝑇

8: for 𝑡𝑖 ← 1 to 𝑇 do
9: 𝑃ℎ ← 1

10: for 𝑡 𝑗 ← 1 to 𝑡𝑖 do
11: 𝑠𝑢𝑚 ← 0

12: for 𝑗 ← 0 to 𝑖 do
13: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + B[𝑗] [𝑡 𝑗] · P[𝑗]
14: 𝑃ℎ ← 𝑃ℎ ∗ (1 − 𝑠𝑢𝑚)
15: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑏𝑟𝑖𝑏𝑒 = 𝑃ℎ ∗ P[𝑖] ∗ 𝑏
16: if 𝑓 > 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑏𝑟𝑖𝑏𝑒 then
17: B[𝑖] [𝑡𝑖] = 1

18: return B

19: procedure FIND_T(P, 𝑓 , 𝑏) ⊲ P is the array of miners’

hashpowers

20: assert(at least 1 value in P > 𝑓 /𝑏)
21: P = 𝑠𝑜𝑟𝑡𝑒𝑑 (P) ⊲ Ascending

22: 𝑇 = ⌈ log
𝑓

𝑏

log(1−𝑝𝑤) ⌉ ⊲ From Theorem 2.3

23: B = CALCULATE_BRIBERY_MATRIX(P, 𝑓 , 𝑏,𝑇)
24: for 𝑖 ← 1 to 𝑇 do
25: for 𝑗 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(P) do
26: if B[𝑗] [𝑖] == 0 then
27: return 𝑇 − (𝑖 − 1)
28: return 𝑇

Algorithm 1: Iterated Removal of Dominated Strategies

The miner with hashpower 0.1 (𝑝0) will play refuse at every

block because we have 𝑇 >
log

𝑓

𝑏

log(1−𝑝𝑤) . The miner with hashpower

0.2 (𝑝1) will play refuse as long as the expected bribe (payable at

𝑇 +1) calculated at a particular block is lower than the fees that they

would earn if they mine that block. In this case, (1−𝑝𝑤)𝑡 ·𝑝1 ·𝑏 < 𝑓

till 𝑡 = 6 for values of 𝑓 = 11, 𝑏 = 100, 𝑝𝑤 = 0.1. This means that

𝑝1 will start playing follow as we get closer to 𝑡 = 𝑇 (specifically

when we are 5 blocks away from𝑇). The miner with hashpower 0.3

(𝑝3) will play refuse along similar lines, by looking at the actions

of miners 𝑝0 and 𝑝1 over the different blocks. One thing to notice

is that at block #16, 𝑝2 will act assuming that 𝑝0 and 𝑝1 will both

play refuse. At block #17, 𝑝2 will act assuming that 𝑝0 will play

refuse and 𝑝1 will play follow. This is implemented in the algorithm

by using the 0’s and 1’s in the bribery matrix and using them as

factors in line #13 of the CALCULATE_BRIBERY_MATRIX procedure.
This way, on line #13, we only use miners who play refuse at each
block to calculate the expected bribe.

In the main procedure FIND_T, we then find the last block in

which all miners play refuse and return that as the result. In the

real world, we can give a 5-6 block cushion on top of this, and it

will still be significantly lower than the upper bound of 𝑇 .

3 SOLUTIONS
In the introduction, we pointed out that the two main applications

of HTLC’s: Lightning Channels and Atomic Swaps, are both vul-

nerable to this bribing attack. In this section, we first analyze the

Bitcoin blockchain to get an estimate of the hashpower share of

known mining pools. This lets us find parameters that can harden

the HTLC constructions in each of these applications such that

they are not vulnerable to the bribing attack. In the case of Atomic

Swaps, to use these parameters, we propose a modification to the

classic atomic swap protocol.

3.1 Mining Pools and their Hashpower Shares
We try to find the weakest known miners in the Bitcoin ecosystem

by analyzing the miners of the 16000 blocks from Block #601000.

We know the coinbase transaction indicators of larger mining pools.

Using these, we can attribute mined blocks to known mining pools.

Looking at these blocks, we can estimate each of these mining

pools’ share of the total hashpower based on how many blocks they

have mined. Mining pools and their hashpower shares are shown

in Table 2. We see that the weakest known pools are under 1% of

the total hashpower, and this leads to our proposed fixes for both

Lightning Channels and Atomic Swaps.

Table 2: Hashpower of 16000 blocks from block #601000

Mining Pool Hashpower

PoolIn 16.8562%

F2Pool 15.1438%

BTC.com 13.2188%

AntPool 10.4563%

ViaBTC 6.3812%

Unknown 5.3438%

Huobi 4.7062%

58COIN 4.5375%

SlushPool 3.8625%

BTCTOP 3.6875%

BytePool 3.6812%

BitFury 3.0438%

CN6T 2.7625%

OKEX 2.3438%

OKPool 1.3375%

NovaBlock 1.1000%

SpiderPool 0.4562%

Bitcoin.com 0.3875%

NCKPool 0.2687%

UkrPool 0.2062%

Taal.com 0.2062%

BitclubNetwork 0.0063%

KanoPool 0.0063%

6

3.2 Lightning
In the Lightning Network specifications (specifically, from Bolt 2

[7]), we have the following parameters:

• channel_reserve_satoshis: Each side of a channel maintains

this reserve so it always has something to lose if it were to

try to broadcast an old, revoked commitment transaction.

Currently, this is recommended to be 1% of the total value of

the channel. This is the amount that the cheated party can

utilize as extra fees without dipping into their own side of

the channel.

• to_self_delay: This is the number of blocks that the counter-

party’s self outputs must be delayed in case a channel closes

unilaterally from the counterparty’s side. In one popular

Lightning client: c-lightning [9], this is set by default to 144

blocks (approximtely 1 day). In another popular Lightning

client: LND [10], it is scaled in a range from 1 day to 14 days

based on the channel value.

We do not find any documented reasons on why these important

parameters are set the way they are. Based on the analysis from

Sections 2.4 and 2.5, and the distribution of hashpowers, we can

formulate what these values ought to be. First, we note that chan-
nel_reserve_satoshis on the victim’s side of this bribing attack can

be used by the victim to increase their fees to thwart the attack. We

posit that channel_reserve_satoshis being at 1% is reasonable, given

that there are many known miners whose hashpower is less than

1% of the total hashpower of all miners. If it were lower than, say,

0.03%, as per Section 2.3, the channel would be always vulnerable

to this bribing attack.

We then set
𝑓

𝑏
to be 0.01, and calcualte the total weak hashpower

to be 0.0145 (from Table 2). Based on Theorem 2.3, we get 𝑇 > 316

blocks. This is substantially larger than the suggested default of

to_self_delay at 144 blocks. So, if the channel operator is paranoid,

they can set to_self_delay to this higher value of 316. We can plug

in the hashpowers from Table 2 into Algorithm 1, with 𝑓 = 1 and

𝑏 = 100 and we get a value of𝑇 = 35 blocks. If the channel operator

is #reckless and wants to eliminate strictly dominated strategies

of stronger miners, they can open channels with this much lower

timelock value.

3.3 Atomic Swaps
Atomic Swaps that have Bitcoin on one side need to take Bitcoin’s

block time of 10 minutes into account. Even if the other blockchain

in question (say Litecoin) has faster block generation, till Bitcoin’s

transactions are not confirmed, the atomic swap in question cannot

be considered executed. Commercial platforms like Komodo [4]

use 15,600 seconds (26 blocks) as the HTLC’s timelock value when

they setup swaps between Bitcoin like currencies or ERC-20 style

tokens. Other works [15], [24], [25] have suggested that a timelock

period of 1 day (144 blocks) is a good default.

Based on Theorem 2.3, we get
𝑓

𝑏
= 0.68 at 𝑇 = 26 blocks and

𝑓

𝑏
= 0.122 at 𝑇 = 144 blocks. A fee to bribe ratio of 0.68 (for 𝑇 = 26

blocks) is quite high. This suggests that 𝑇 = 26 blocks does not

provide enough security for reasonable values of fee to bribe ratios.

At 144 blocks, we have a reasonable fee to bribe ratio of 0.122.

Unlike Lightning channel’s channel_reserve_satoshis, due to its

inherently asymmetric nature, there is no simple way to encode

this extra fees in the atomic swap itself. Alice has to convince Bob

upfront that she will not attempt the bribing attack when it is Bob’s

turn to redeem his side of the swap. One way of achieving this is

for Bob to offer a lower value than what Alice wants. This way, if

Alice attempts the bribery attack, Bob can increase his SELLER_TXN
fees to the amount dictated by Theorem 2.3 or Algorithm 1. But if

Alice does not attempt to bribe, this atomic swap setup is unfair

to her as she is getting a lower value from Bob than what she is

offering to Bob.

To solve this, we present an extension to the classic Atomic Swap

protocol that allows a way for Alice to include extra fees in the

swap for Bob to use to “counter-bribe” only if Alice attempts to

bribe.

3.3.1 Risk Free Atomic Swap. Here, as with the classic protocol,

Alice creates a (random) secret preimage and hashes it to get her

“locking string”. Alice creates a transaction that commits her swap

amount such that Bob can claim this amount only if he knows the

preimage. The “refund” part of this transaction, instead of sending

the amount back to Alice after a timelock, sends it to a multisig

controlled by both Alice and Bob. Alice also creates a second trans-

action that uses this multisig controlled output as its first input,

and another unrelated input from Alice which adds the extra fees

required to make the swap risk free. The total output of this second

transaction is sent to Bob only if he has the secret preimage, or to

Alice after a timelock. This pair of transactions is created by Alice;

the second transaction is pre-signed by Bob and needs to be held

by Alice before she broadcasts the first transaction.

Based on whether Alice or Bob abort the swap, or Alice bribes

miners, a combination of the following transactions will be broad-

cast on the first blockchain by either Alice or Bob as depicted by the

flow chart in Figure 2. Transactions on the second blockchain are

unchanged from the classic Atomic Swap protocol. In the flow chart,

they are represented as just “init", “refund", and “reveal". Transac-

tions of the first and second blockchains are in the red and blue

boxes respectively.

ALICE_TX1: {

txid: ALICE_TX1_TXID ,

vin: [{

txid: PREV_TX1_TXID // Pays amount X to Alice

scriptSig: <Alice 's sig >

}]

vout: [{

value: X

scriptPubKey:

IF

OP_HASH160 <digest > OP_EQUALVERIFY

<bob_pubkey_first_exit > OP_CHECKSIG

OP_ELSE

2 <alice_pubkey_1 > <bob_pubkey_1 > 2

OP_CHECKMULTISIG

OP_ENDIF

}]

}

ALICE_TX2: {

txid: ALICE_TX2_TXID ,

vin: [{

txid: ALICE_TX1_TXID

7

scriptSig: 0 <alice_sig_1 > <bob_sig_1 > OP_FALSE

}, {

txid: PREV_TX2_TXID // Pays F to Alice

scriptSig: <Alice 's sig >

}]

vout: [{

value: X + F

scriptPubKey:

IF

OP_HASH160 <digest > OP_EQUALVERIFY

<bob_pubkey_second_exit >

OP_ELSE

`to_alice_delay `

OP_CSV

OP_DROP

<alice_pubkey_2 >

OP_ENDIF

OP_CHECKSIG

}]

}

ALICE_BRIBE_TX: {

txid: ALICE_BRIBE_TXID

vin: [{

txid: ALICE_TX2_TXID

scriptSig: <alice_sig_2 > OP_FALSE

sequence: `to_alice_delay `

}]

vout: [{

value: 0 // Leaves X + F as bribe to miners.

}]

}

ALICE_REFUND_TX: {

txid: ALICE_REFUND_TXID

vin: [{

txid: ALICE_TX2_TXID

scriptSig: <alice_sig_2 > OP_FALSE

sequence: `to_alice_delay `

}]

vout: [{

value: X + F // Refund to Alice

scriptPubKey: <alice_pubkey_refund > OP_CHECKSIG

}]

}

BOB_SWAP_TX: {

txid: BOB_SWAP_TXID

vin: [{

txid: ALICE_TX1_TXID

scriptSig: <bob_sig_first_exit > <preimage > OP_TRUE

}]

vout: [{

value: X // No extra fees for Bob

scriptPubKey: <bob_pubkey_swap > OP_CHECKSIG

}]

}

BOB_COUNTER_BRIBE_TX: {

txid: BOB_COUNTER_BRIBE_TXID

vin: [{

txid: ALICE_TX2_TXID

scriptSig: <bob_sig_second_exit > <preimage > OP_TRUE

}]

vout: [{

value: X // Leaves F to the miners

scriptPubKey: <bob_pubkey_swap > OP_CHECKSIG

}]

}

Alice prepares ALICE_TX1 and ALICE_TX2;
Alice gets ALICE_TX2 presigned by Bob

Alice broadcasts

ALICE_TX1

Bob

aborts?

Alice broadcasts ALICE_TX2
and ALICE_REFUND_TX

Bob

broadcasts

“init”

Alice

aborts?

Bob

broadcasts

“refund”

Alice

broadcasts

“reveal”

Alice

bribes?

Alice broadcasts ALICE_TX2
and ALICE_BRIBE_TX

Bob broadcasts

BOB_COUNTER_BRIBE_TX
Bob broadcasts

BOB_SWAP_TX

Yes

No

Yes

No

Yes

No

Algorithm 2: Risk Free Atomic Swap; red = first blockchain;
blue = second blockchain;

The second blockchain transactions are unchanged from the

classic Atomic Swap protocol. This is because, unlike Lightning

channels, in an Atomic Swap, only the swap initiator (in this case,

Alice) can attempt to cheat by bribing the first blockchain’s miners

after she claims her side of the swap on the second blockchain. So,

the modification to the classic swap that brings in the “counter

bribe fees" is done only on Alice’s side of the swap as shown above

with the intermediate multisig.

8

4 RELATEDWORK
There have been many proposed attacks on cryptocurrencies which

attempt to censor specific transactions. One of the earlier ones

discussed on bitcointalk.org was that of feather forking [21]. In

this attack, a miner wants to censor a specific transaction and

announces on some public bulletin board that they will not add

blocks on top of any block that contains this specific transaction.

If this miner has a reasonable chance of getting a block, other

rational miners will follow them instead of mining “normally” and

thereby getting the fees of the censored transaction. This attack has

been used in other contexts as well [19]. Feather forking relies on

censoring a transaction with the cooperation of a miner by forking

the blockchain away from a block that contains the said transaction.

In our attack, the attacker is not necessarily a miner, and does not

have to convey any out of band information about their intentions

to other miners. Just releasing the bribing transaction into the

network constitutes the bribe, and if all miners see this transaction,

it can be effective based on the numerical parameters that govern

it.

Miners can be incentivized to fork the Bitcoin blockchain with

“Whale Transactions” [18]. Here, the attacker waits for a target

transaction to be confirmed to a sufficient depth to get the cor-

responding goods and services from their victim. After that, the

attacker tries to fork the blockchain by successively broadcasting

transactions that have high fees (whale transactions) and also re-

verse the target transaction. These whale transactions are then

included in blocks of the blockchain fork that rational miners might

follow. The authors evaluate the relationship between confirmation

depth, the attacker’s secret mining lead, the attacker’s hashpower,

the whale transaction fees and whether these attacks are profitable.

External smart contracts on platforms like Ethereum can be used

[20] to incentivize Bitcoin miners to abandon the honest blockchain

suffix and mine on top of a briber’s fork.

Most of these attacks rely on attackers being able to incen-

tivize rational miners to orphan a reasonable length suffix of the

blockchain. If done after the primary transaction has been thought

confirmed by the victim, the attack succeeds. Given that most proof-

of-work cryptocurrencies have a probabilistic notion of finality,

these attacks are feasible. On the other hand, Bitcoin has seen fewer

and fewer orphan blocks over time [6], and the possibility of this

kind of attack is considerably lower now than they were in, say,

2015.

On the other hand, blocking specific transactions (and not or-

phaning entire blocks) needs the censorship details to be distributed

to all miners. One approach involves the use of external smart con-

tract platforms [27] [17]. In these attacks, for example, Bitcoin

transactions could be censored using smart contracts published on

the Ethereum platform. The attacker would create an Ethereum

smart contract that has guaranteed rewards if a miner follows a

specific block template of transactions (that excludes the victim’s

transaction). There are many other flavors of these attacks which

make use of the full potential of smart contracts to create proper

incentives for miners to deviate from the normal mining protocol.

Another class of censorship attacks in Bitcoin target specific

transactions in the mempool. These attacks force the victim to

monitor the “global mempool” along with the blockchain. Most

interested parties operate their own Bitcoin nodes, and monitor

their local mempool for attacks. In Transaction Pinning [2], an

attacker chains multiple low fee-rate transactions to a target trans-

action to make the package unprofitable to mine. The victim can

use CPFP carve-outs [1] to bump up the fee-rate of the censored

transaction and still get it confirmed by a miner. To enable this,

Lightning Channels will allow so called “anchor outputs” [5] to let

either counterparty bump up their fees.

5 CONCLUSION
In this work, we observe that HTLC’s are vulnerable to an “in-band”

bribing attack where the HTLC initiator (buyer, in our case) can

receive goods and services offline and then bribe their way out of

paying the counterparty (seller, in our case). This bribe can only

work if the “time value” of waiting for the bribe is worthwhile for all

miners. A rather self-evident observation is that when the timelock

on the bribe expires and the bribe transaction is still valid, it will be

claimed in the immediate next block as the fee on it is considerably

higher than normal transaction fees. Additionally, stronger miners

are likely to mine any specific block - and therefore more likely to

mine the block in which the bribe is valid and available. Therefore,

we posit that weaker miners will ignore the bribe altogether and

will attempt to mine the seller’s transaction while the timelock

holds and the fee on the seller’s transaction is good enough. This

leads us to the relationship between the fee to bribe ratio and the

distribution of miners’ hashpowers. Based on this analysis, we

propose Lightning Channel parameters that make them resistant

to this kind of bribing attack. In Atomic Swaps, our analysis also

proposes a fee for the victim to safeguard themselves. To enable

that, we propose a modification to the classic Atomic Swap protocol

that can bring in this fee into the swap and still keep the it fair for

both parties.

REFERENCES
[1] [n.d.]. CPFP Carve-out. https://bitcoinops.org/en/topics/cpfp-carve-out/.

[2] [n.d.]. Transaction Pinning. https://bitcoinops.org/en/topics/

transaction-pinning/.

[3] 2013. Atomic Swaps. https://bitcointalk.org/index.php?topic=193281.

msg2224949.

[4] 2018. Atomic Swaps Explained: The Ultimate Beginner’s Guide. https://

komodoplatform.com/atomic-swaps/. [Accessed: 2020-05-07].

[5] 2019. Anchor Outputs. https://github.com/lightningnetwork/lightning-rfc/pull/

688.

[6] 2019. An orphan block on the bitcoin (BTC) blockchain. https://en.cryptonomist.

ch/2019/05/28/orphan-block-bitcoin-btc-blockchain/.

[7] Bolt Authors. [n.d.]. Lightning Network Specifications, Bolt 2. https://github.com/

lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md. [Accessed:

2020-05-07].

[8] Bolt Authors. [n.d.]. Lightning Network Specifications, Bolt 3. https://github.

com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md. [Accessed:

2020-05-07].

[9] C-Lightning authors. [n.d.]. c-lightning - a Lightning Network implementation

in C. https://github.com/ElementsProject/lightning. [Accessed: 2020-05-07].

[10] LND authors. [n.d.]. LND: The Lightning Network Daemon. https://github.com/

lightningnetwork/lnd. [Accessed: 2020-05-07].

[11] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A

Kroll, and Edward W Felten. 2015. Sok: Research perspectives and challenges for

bitcoin and cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy.
IEEE, 104–121.

[12] BtcDrak, Mark Friedenbach, and Eric Lombrozo. 2015. BIP112: CHECK-

SEQUENCEVERIFY. https://github.com/bitcoin/bips/blob/master/bip-0112.

mediawiki [Accessed: 2020-05-07].

[13] Christian Decker and Roger Wattenhofer. 2015. A fast and scalable payment

network with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems. Springer, 3–18.

9

https://bitcoinops.org/en/topics/cpfp-carve-out/
https://bitcoinops.org/en/topics/transaction-pinning/
https://bitcoinops.org/en/topics/transaction-pinning/
https://bitcointalk.org/index.php?topic=193281.msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949
https://komodoplatform.com/atomic-swaps/
https://komodoplatform.com/atomic-swaps/
https://github.com/lightningnetwork/lightning-rfc/pull/688
https://github.com/lightningnetwork/lightning-rfc/pull/688
https://en.cryptonomist.ch/2019/05/28/orphan-block-bitcoin-btc-blockchain/
https://en.cryptonomist.ch/2019/05/28/orphan-block-bitcoin-btc-blockchain/
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/ElementsProject/lightning
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

[14] Mark Friedenbach, BtcDrak, Nicholoas Dorier, and kinoshitajona. 2015. BIP68:

Relative lock-time using consensus-enforced sequence numbers. https://github.

com/bitcoin/bips/blob/master/bip-0068.mediawiki [Accessed: 2020-05-07].

[15] Runchao Han, Haoyu Lin, and Jiangshan Yu. 2019. On the Optionality and

Fairness of Atomic Swaps. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies (AFT ’19). Association for Computing Machinery, New

York, NY, USA, 62–75. https://doi.org/10.1145/3318041.3355460

[16] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing. ACM, 245–254.

[17] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal,

Peter Gazi, Sarah Meiklejohn, and Edgar Weippl. 2019. Pay-To-Win: Incentive

Attacks on Proof-of-Work Cryptocurrencies. Cryptology ePrint Archive, Report

2019/775. https://eprint.iacr.org/2019/775.

[18] Kevin Liao and Jonathan Katz. 2017. Incentivizing blockchain forks via whale

transactions. In International Conference on Financial Cryptography and Data
Security.

[19] Antonio Magnani, Luca Calderoni, and Paolo Palmieri. 2018. Feather forking as

a positive force: incentivising green energy production in a blockchain-based

smart grid. In Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains
for Distributed Systems. ACM, 99–104.

[20] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. 2018. Smart contracts

for bribing miners. Cryptology ePrint Archive, Report 2018/581. https://eprint.

iacr.org/2018/581.

[21] Andrew Miller. 2013. Feather-forks: enforcing a blacklist with sub-50% hash

power. https://bitcointalk.org/index.php?topic=312668.0.

[22] Satoshi Nakamoto. 2009. Bitcoin Core Source Code, Version 0.1.0. https:

//bitcointalk.org/index.php?topic=68121.0.

[23] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments.

[24] BitMEX Research. [n.d.]. Atomic Swaps and Distributed Ex-

changes: The Inadvertent Call Option. https://blog.bitmex.com/

atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/.

[Accessed: 2020-05-07].

[25] Dan Robinson. 2019. HTLCs Considered Harmful. https://cyber.stanford.edu/

sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf. [Accessed: 2020-05-07].

[26] Peter Todd. 2014. BIP68: CHECKLOCKTIMEVERIFY. https://github.com/bitcoin/

bips/blob/master/bip-0065.mediawiki [Accessed: 2020-05-07].

[27] FredrikWinzer, BenjaminHerd, and Sebastian Faust. 2019. Temporary Censorship

Attacks in the Presence of Rational Miners. In IEEE Security & Privacy on the
Blockchain (IEEE S & B). https://eprint.iacr.org/2019/748.

10

https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://doi.org/10.1145/3318041.3355460
https://eprint.iacr.org/2019/775
https://eprint.iacr.org/2018/581
https://eprint.iacr.org/2018/581
https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=68121.0
https://bitcointalk.org/index.php?topic=68121.0
https://blog.bitmex.com/atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/
https://blog.bitmex.com/atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://eprint.iacr.org/2019/748

	Abstract
	1 Introduction
	1.1 HTLC
	1.2 Bribing Attack
	1.3 Payment Channels
	1.4 Atomic Swaps

	2 Analysis
	2.1 Assumptions
	2.2 Setting
	2.3 All miners are powerful
	2.4 One miner is weak
	2.5 The elimination of dominated strategies

	3 Solutions
	3.1 Mining Pools and their Hashpower Shares
	3.2 Lightning
	3.3 Atomic Swaps

	4 Related Work
	5 Conclusion
	References

