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Abstract. A weak pseudorandom function (weak PRF) is one of the
most important cryptographic primitives for its efficiency although it
has lower security than a standard PRF.
Recently, Boneh et al. (TCC’18) introduced two types of new weak PRF
candidates, which are called a basic Mod-2/Mod-3 and alternative Mod-
2/Mod-3 weak PRF. Both use the mixture of linear computations defined
on different small moduli to satisfy conceptual simplicity, low complexity
(depth-2 ACC0) and MPC friendliness. In fact, the new candidates are
conjectured to be exponentially secure against any adversary that allows
exponentially many samples, and a basic Mod-2/Mod-3 weak PRF is
the only candidate that satisfies all features above. However, none of the
direct attacks which focus on basic and alternative Mod-2/Mod-3 weak
PRFs use their own structures.
In this paper, we investigate weak PRFs from two perspectives; attacks,
fixes. We first propose direct attacks for an alternative Mod-2/Mod-3
weak PRF and a basic Mod-2/Mod-3 weak PRF when a circulant matrix
is used as a secret key.
For an alternative Mod-2/Mod-3 weak PRF, we prove that the adver-
sary’s advantage is at least 2−0.105n, where n is the size of the input
space of the weak PRF. Similarly, we show that the advantage of our
heuristic attack to the weak PRF with a circulant matrix key is larger
than 2−0.21n, which is contrary to the previous expectation that ‘struc-
tured secret key’ does not affect the security of a weak PRF. Thus, for an
optimistic parameter choice n = 2λ for the security parameter λ, param-
eters should be increased to preserve λ-bit security when an adversary
obtains exponentially many samples.
Next, we suggest a simple method for repairing two weak PRFs affected
by our attack while preserving the parameters.
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1 Introduction

A pseudorandom function (PRF) proposed by Goldreich, Goldwasser and Micali
[GGM86] is a keyed function which looks like a true random function. PRFs



have been widely used as building blocks to construct several cryptographic
primitives such as HMAC, digital signature and indistinguishability obfuscation
[Gol86,BCK96,App14,Bel15,ABSV15,BR17].

Weak PRFs, which satisfy weaker security and higher efficiency than PRFs,
are keyed functions whose input-output behaviors are indistinguishable from
those of random functions when adversaries are limited to observing outputs
mapped by randomly sampled inputs. Many cryptographic primitives and appli-
cations are built from weak PRFs because of its efficiency [DN02, MS07, Pie09,
DKPW12,LM13,ASA17,BHI+20].

To construct more efficient weak PRFs, simple constructions are emphasized
to minimize the circuit complexity and depth. Akavia et al. proposed a simple
construction of weak PRFs which satisfies depth-3 ACC0 circuit complexity with
quasi-polynomial security [ABG+14].

As a line of work, Boneh et al. (TCC’18) proposed simple weak PRF can-
didates by mixing linear computations on different moduli [BIP+18]. Inspired
by a paper [ABG+14], they provided a weak PRF which satisfies the following
properties: conceptually simple structure, low complexity (depth-2 ACC0 cir-
cuit complexity) and MPC-friendliness. In particular, the new candidates are
the unique depth-2 weak PRFs conjectured to satisfy the exponential hardness
beyond the polynomial hardness. Moreover, they provided two types of param-
eters: optimistic and conservative. A conservative parameter is set to be secure
against the attacks for LPN problem, but it does not seem to be applicable to
weak PRFs. Thus, an optimistic choice was additionally proposed.

We now briefly describe the construction of Mod-2/Mod-3 weak PRFs in
[BIP+18]. For each Mod-2/Mod-3 weak PRF, a function F : Zn2 × Zm×n2 → Z3

with an input x ∈ {0, 1}n is defined as follows. (For details, see the construction
3.1)

• Basic Mod-2/Mod-3:
For a “random” secret key A ∈ Zm×n2 , F(x,A) = map(A · x), where map
is a function from {0, 1}m to Z3 mapping a binary vector y = (yj) to an
integer

∑m
j=1 yj mod 3.1

• Circulant Mod-2/Mod-3:2

Take m = n. Then, it is exactly the same as a basic Mod-2/Mod-3 except
A is a circulant matrix.

• Alternative Mod-2/Mod-3:
Set m = 1. F(x,k) = (〈k,x〉 mod 2 + 〈k,x〉 mod 3) mod 2 for a random
secret key k ∈ {0, 1}n.

1 For well-definedness, A · x is interpreted as a binary vector.
2 In the original paper [BIP+18], they used a Toeplitz matrix or a block-circulant

matrix as a secret key of weak PRF for its efficiency. However, in this paper, we
only deal with the case that a secret key of weak PRF is a circulant matrix which
is the same as block-circulant matrix in the original paper. Indeed, they said that
block-circulant matrix can be represented by a single vector’.
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However, there is no direct or concrete attack for weak PRFs on their own
structures. Therefore, further cryptanalyses or security proofs are required to
break or support their conjectures and concrete security.

1.1 This work

In this paper, we investigate Mod-2/Mod-3 weak PRFs in two perspectives;
attacks and fixes.

Attacks. Our concrete attacks mainly concentrate on two weak PRFs; an alter-
native and a circulant Mod-2/Mod-3 weak PRFs. As a result, we show that the
advantage of an alternative Mod-2/Mod-3 weak PRF is 2−0.105n with the size
of input space n. It is computed as the conditional probability of input vectors
given that the outputs are ‘zero’. Similarly, we provide a heuristic attack with
an advantage 2−0.21n and experimental results of a circulant weak PRF. This
result is contrary to the previous prediction that the parameters will not be
much affected by the structure of a key. Our attacks are the first attacks using
the structure of Mod-2/Mod-3 weak PRFs. Indeed, we first observe interesting
features of certain secret keys of weak PRFs and statistically attack them using
these features. As an example, a circulant matrix always preserves the number of
nonzero entries h in each column, so (1, ..., 1) is a left-eigenvector of a circulant
matrix with an eigenvalue h.

As a result, we introduce new concrete parameters of weak PRFs in Table
1. As described in [BIP+18], we use two categories; optimistic and conservative
parameters. The optimistic parameter is chosen by the fact that the authors
of the paper speculate that the most efficient algorithm for solving LPN is not
applicable to attack weak PRF candidates. The conservative one is the same as a
parameter that is secure against LPN attacks, especially BKW attack [BKW03].
Moreover, we use two types of concrete parameter estimation; λ = log2(T/ε2)
and λ = log2(T/ε). The latter one is traditionally used to measure the concrete
security of symmetric cryptography primitives [DS09], and the former one is
proposed by Micciancio and Walter [MW18] for measuring the concrete security
of decision primitives.

Our attacks mainly exploit the conditional probabilities based on structures
of weak PRFs to distinguish weak PRF samples from uniform samples. More
specifically, an adversary model to attack an alternative Mod-2/Mod-3 weak
PRF computes Pr[xi = 0 | Fk(x) = 0 mod 2] for input x = (xj) ∈ {0, 1}n. If
the probability for some xi is far from 1/2 by 1

20.105n , we conclude that pairs
of inputs and outputs follow a distribution of an alternative weak PRF, not
a uniform distribution. As a result, this simple attack satisfies the following
interesting features:

– Support a full parallel computing: when δ processors are given, the total
time complexity decreases from Ttotal to Ttotal/δ +O(δ)

– Require only O(n) memory space because calculating an average does not
need to store samples.
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Mod-2/Mod-3 weak PRFs

Parameter Choices Alternative Circulant Key

[BIP+18]
Optimistic - 256

Conservative 384 384

Ours
log(T/ε2)-bit security 610 305

log(T/ε)-bit security 1220 610

Table 1: Changes of concrete parameters for 128-bit security to prevent our
attacks with m = n. ‡

‡ We take concrete parameters according to the guidance of a paper [MW18]. For
decision primitives, they recommended λ = log2(T/ε2) rather than λ = log2(T/ε),
with a cost T and an advantage ε. The latter is also widely used in crypto commu-
nity. We include both results in table 1. However, we mainly deal with the measure
λ = log2(T/ε2) in this paper.

– Simply extend to Mod-p/Mod-q weak PRFs for any primes p and q: For an
alternative Mod-p/Mod-q, we show that the bigger pq is, the more powerful
our attack is. For example, an alternative and a circulant Mod-3/Mod-5
weak PRFs should be set as n = 4000 and n = 2000, respectively, for 128-bit
security under the measure T/ε2.

For more details, we refer Sections 4.1 and 4.2.

Fixes. We suggest simple variants of weak PRFs to be secure against our attacks
while preserving a depth of original weak PRFs and circuit class complexity
ACC0.

For an alternative case, our attack heavily relies on the number of nonzero
entries in the secret key k, so we easily present a new alternative candidate to
force the hamming weights of k. For instance, if we use the secret key with 310
nonzero entries, then it is secure against the statistical attack. Moreover, an
adversary cannot search k by brute-force attack since

(
384
310

)
� 2256.

On the other hand, for repairing a circulant Mod-2/Mod-3 weak PRF, we
use two different vectors a and b to construct a secure circulant Mod-2/Mod-3
weak PRF. By the exploiting two secret vectors, we generate a new secret key
B such that for 1 ≤ i ≤ n/2, i-th row of B is rotation of the vector a, and
for n/2 < j ≤ n, j-th row vector is rotation of the vector b. Then, the fixed
Mod-2/Mod-3 weak PRF with the secret key B is secure against our attack since
a combination of two vectors can remove the structured weakness of circulant
matrix that the number of nonzero entries in column vector is always the same. In
other words, the vector of ones (1, · · · , 1) is not a left-eigenvector of B anymore.
Moreover, we heuristically confirm that combining the two vector strategy is an
appropriate approach for small n. Indeed, the experimental results show that
the advantage of a fixed candidate is larger than 2−0.5n, which means that it
achieves 128-bit security against all known attacks without a parameter blow-up.
The size of PRF key of the fixed candidate is still smaller than that of random
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key, and it preserves depth-2 ACC0 circuits and current parameter n. For more
details, we refer Section 5.

Discussion and Open Questions. Both attacks that we propose require expo-
nentially many samples. However, any of applications such as a secure multiparty
computation only requires a polynomial number of samples of weak PRFs. Thus,
they might be hard to affect any of the real world applications.

To overcome this situation, we discuss a few further works. Is there an
application for requiring an exponential number of samples? If it exists, the
application must consider parameters to be secure against our attacks. More-
over, it would be also interesting to extend our attack given a polynomial/sub-
exponential number of samples? Or is there an application to be possible to
amplify the number of samples?

One of the interesting approaches is to use the algebraic property of weak
PRFs since our attack only uses a statistical weakness of weak PRFs. Thus, it
still remains as an open problem that new algebraic or hybrid attacks against
these candidates.

Moreover, a direct attack as asymptotic and concrete perspectives for a basic
Mod-2/Mod-3 remains as an open question. Similarly, it would be interesting to
prove or disprove the exponential hardness of circular Mod-2/Mod-3 weak PRF
although the alternative one fails the exponential hardness due to the BKW
algorithm.

Organization. We describe preliminaries about definitions of PRF and weak
PRF, and some circuit complexities and results of k-xor problem in Section 2.
We explicitly describe the construction of weak PRF candidates in Section 3, and
provide cryptanalyses of an alternative Mod-2/Mod-3 weak PRF and a circulant
weak PRF in Section 4, respectively. In Section 5, we suggest a method to fix
the alternative and circulant Mod-2/Mod-3 weak PRFs.

2 Preliminaries

2.1 Notations

Matrices and vectors are written as bold capital letters, and bold lower-case
letters respectively. Moreover, we assume that the vectors are column form in
this paper, and i-th component of x will be denoted by xi. The transpose of a
matrix or vector is denoted by AT or xT . Moreover, we denote an inner product
between two vectors x and y by 〈x,y〉.

A square matrix A is called a circulant matrix which has a structure such
that (i, j) entry of A, Ai,j is given by Ai,j = aj−i mod n with a dimension n.
Thus, the circulant matrix is generated by a single vector (a1, a2, · · · an).

In is the n-dimensional identity matrix. Also, we denote the n-dimensional
vector that all entries are zero by 0n, and similarly, 1n is a vector that all entries
are one. For the convenience of notation, we sometimes omit the subscript if it
does not lead to any confusion.
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For any positive integer n, [n] is denoted by the set of integers {1, 2, · · · , n}.
All elements in Zq are represented by integers in range [0, q) for any positive
integer q. For a vector x, we use a notation [x]q to denote an “entrywise” modulo

q. i.e, [x]q = ([xi]q) for x = (xi). Let S be a finite set. Then, s
$←− S is denoted

that an element s is uniformly sampled from the set S.

Definition 2.1 (Pseudorandom function (PRF) in [BIP+18]) Let λ be the
security parameter. A (t(λ), ε(λ))-pseudorandom function family (PRF) is a col-
lection of functions Fλ : Xλ ×Kλ → Yλ with a domain Xλ, a key space Kλ and
an output space Yλ such that for any adversary running time in t(λ), it holds
that ∣∣∣Pr[AFλ(·,k)(1λ) = 1]− Pr[Afλ(·)(1λ) = 1]

∣∣∣ ≤ ε(λ),

where k
$←− Kλ,and fλ

$←− Funs[Xλ,Yλ].

In this paper, PRF is sometimes called strong PRF to be distinguished from
the weak PRF in the below. The main difference between strong PRF and weak
PRF is that an adversary is limited to obtaining randomly chosen input vectors.

Definition 2.2 (Weak PRF) Let λ be the security parameter. A function Fλ :
Xλ × Kλ → Yλ with a domain Xλ, a key space Kλ and an output space Yλ is
called (`, t, ε)-weak PRF for any adversary running time in t(λ), it holds that

{(xi,Fλ(xi, k))}i∈[`] ≈ε {(xi, yi)}i∈[`]

where a key k
$←− Kλ, xi

$←− Xλ, and yi
$←− Yλ. We denote ≈ε by the advantage

of any adversary is smaller than ε.

3 Construction of weak PRF Candidates

In this section, we briefly review how to construct weak PRF candidates proposed
by Boneh et al. [BIP+18]. All constructions consist of linear computations on
different moduli, which are deemed to be simple and efficient.

3.1 Mod-2/Mod-3 weak PRF Candidate

In this section, we provide a basic construction of Mod-2/Mod-3 weak PRF
candidate. Mod-2/Mod-3 weak PRFs are easily extended to Mod-p/Mod-q con-
structions for arbitrary primes p and q.

Construction 3.1 (A basic Mod-2/Mod-3 weak PRF) For the security pa-
rameter λ, a weak PRF candidate is a collection of functions Fλ : {0, 1}n ×
{0, 1}m×n → Z3 with a domain {0, 1}n, a key space {0, 1}m×n and an output
space Z3. For a fixed key A ∈ {0, 1}m×n, we use a notation FA : {0, 1}n → Z3

which defines as follows.
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1. Computes y = [A · x]2
2. Outputs map(y), where map is a function from {0, 1}m to Z3 which maps a

binary vector y = (yj) to an integer
∑m
j=1 yj mod 3.

Thus, we summarize FA(x) = map([A·x]2). This simple construction induced by
mixed linear computations on different moduli might be secure against previous
attacks. Moreover, the authors showed that a low-degree polynomial (rational
function) approximation of map is hard, and standard learning algorithms cannot
break these constructions. Furthermore, conjecture 3.2 is proposed.

Conjecture 3.2 (Exponential Hardness of Mod-2/Mod-3 weak PRF)
Let λ be the security parameter. Then, there exist constants c1, c2, c3, c4 > 0 such
that for n = c1λ,m = c2λ, ` = 2c3λ, and t = 2λ, a function family {Fλ} defined
as Mod-2/Mod-3 construction is an (`, t, ε)-weak PRF for ε = 2−c4λ.

Remark 3.3 For the improved efficiency of Mod-2/Mod-3 weak PRFs in real
applications, a structured key A is used, not a random key from {0, 1}m×n. Thus
we expect the key size can be reduced when A is a block-circulant matrix or
Toeplitz matrix. 3 Roughly speaking, a random key A requires mn key size, but
the key size of a structured key A is m + n, much smaller than mn. A basic
Mod-2/Mod-3 weak PRF with a circulant secret key A is called a circulant
Mod-2/Mod-3 weak PRF.

Concrete Parameters. They proposed two types of parameters; optimized and
conservative choices. The conservative choice, m = n = 384, is set to be robust
against the BKW attack for LPN problem. However, the BKW attack does not
seem to be applicable to this candidate, the optimized parameter, m = n = 2λ =
256, is also suggested to obtain 128-bit security.

3.2 Alternative Mod-2/Mod-3 Weak PRF Candidate

An alternative weak PRF is additionally proposed to obtain higher efficiency in
a two-party secure computation setting.

Construction 3.4 (Alternative Mod-2/Mod-3 weak PRF) For a secret key
k ∈ {0, 1}n, an alternative Mod-2/Mod-3 weak PRF is defined that for any input
x ∈ {0, 1}n,

F(k,x) = 〈k,x〉 mod 2 + 〈k,x〉 mod 3 mod 2.

For simplicity, we use a notation Fk(x) instead of F(k,x) on a key k ∈ {0, 1}n.

Concrete Parameters. Similar to a basic Mod-2/Mod-3 weak PRF, they con-
sider all known attacks to claim the security of the alternative candidate. More-
over, it resembles an LPN instance with a deterministic noise rate 1/3, so the
parameters are set as m = n = 384. For more details, see the original pa-
per [BIP+18] or later section.

3 In the original paper, the authors mentioned that a ‘block-circulant matrix’ can
be represented by a single vector. Thus, a block-circulant matrix is the same as a
circulant matrix in this paper.
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4 Cryptanalysis of weak PRF candidates

We now introduce our analysis on two weak PRF candidates; the alternative
Mod-2/Mod-3 and circulant Mod-2/Mod-3 weak PRFs. These attacks are also
applicable to an alternative and a circulant Mod-p/Mod-q weak PRF for arbi-
trary primes p and q.

4.1 Cryptanalysis of an alternative Mod-2/Mod-3 weak PRF

We briefly recall the construction of the alternative Mod-2/Mod-3 weak PRF
with the secret key k ∈ {0, 1}n

Fk(x) = (〈k,x〉 mod 2 + 〈k,x〉 mod 3) mod 2.

We simply observe that Fk(x) = 0 mod 2 if and only if 〈k,x〉 = 0, 1, 2 mod 6. In
other words, one can understand that Fk(x) is an operation on the Z6 space.

On the other hand, since the secret key k and input vector x are made up
of only 0 and 1, we conjecture that Fk(x) would not cover the whole uniformly.
Thus, we can present the statistical attack for the alternative alternative Mod-
2/Mod-3 weak PRF.

Based on the intuition, we obtain the following theorem.

Theorem 1. Let k ∈ {0, 1}n be the secret key of the alternative Mod-2/Mod-3
weak PRF and Fk a function as defined above. If h is the hamming weight of k,
then we can show that there exists j ∈ [n] such that∣∣∣∣Pr[xj = 0 | kj = 1 and Fk(x) = 0 mod 2]− 1

2

∣∣∣∣ ≈ 1

20.21h

Therefore, if the number of samples, `, is O(20.21h), one can distinguish
{(xi,Fλ(xi,k))}i∈[`] from the uniform samples {(xi, yi)}i∈[`].

Then, our attack for alternative Mod-2/Mod-3 weak PRF is very simple.
After an adversary collects ` = c1 · 20.21n samples whose output is 0 for some
constant c1, the distinguishing attack computes a conditional probability Pr[xj =
0 | Fk(x) = 0 mod 2] for each index j ∈ [n]. If there exists an index j such that
it is apart from 1/2 by 1

20.105n , we conclude that an adversary has alternative
Mod-2/Mod-3 weak PRF samples.

To compute the conditional probability, we exploit a simple lemma.

Lemma 4.1 Let n be a positive integer. For all 0 ≤ a ≤ 5, the following equation
holds. ∑

a+6k≤n

(
n

a+ 6k

)
=

1

6

 5∑
j=0

(wj)6−a · (1 + wj)n

 .

where w is 6-th root of unity, 1+
√
3i

2 .
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Proof. Since w is 6-th root of unity, the following equations hold.

(1 + wj)n =

n∑
a=0

(
n

a

)
(wj)a, 1 + w + w2 + w3 + w4 + w5 = 0.

Then, the equations imply that
∑5
j=0(wj)6−a · (1 + wj)n can be rewritten as

follows.

5∑
j=0

(wj)6−a · (1 + wj)n =

5∑
j=0

n∑
k=0

(
n

k

)
(wj)k(wj)6−a

=

n∑
k=0

(
n

k

)
{

5∑
j=0

(wj)6−a+k}

=
∑

k≡a (mod 6)

(
n

k

)
· 6

=
∑

a+6k≤n

(
n

a+ 6k

)
· 6

ut

For the sake of explanation, suppose that the first h elements of k are all 1,
and the others are zero. Then, we observe that

〈k,x〉 = x1 + · · ·+ xh.

Note that a value xi with i > h has no effect on the result 〈k,x〉 since ki is
zero. Therefore, we only consider xi for i ∈ [h]. For all j ∈ [h], the conditional
probability of xj given by Fk(x) = 0 mod 2 is that

Pr[xj = 0 | Fk(x) = 0 mod 2] =

∑bh−1
6 c

k=0

(
h−1
6k

)
+
(
h−1
6k+1

)
+
(
h−1
6k+2

)
∑bh6 c
k=0

(
h
6k

)
+
(

h
6k+1

)
+
(

h
6k+2

) . (1)

For events A : [Fk(x) = 0 mod 2], and B : [xj = 0], the left-hand side of the

equation (1) equals to Pr[A
⋂
B]

Pr[A] . As we mentioned, it holds that Fk(x) = 0 mod 2

if and only if 〈k,x〉 = 0, 1, 2 mod 6. Moreover, for every k ∈ {0, · · · , bh−16 c}
and a ∈ {0, · · · , 5},

(
h

6k+a

)
if and only if 〈k,x〉 = a mod 6 because of 〈k,x〉 =∑h

i=1 xi. Thus, Pr[A] equals to the denominator of the right-hand side of the
equation (1).

On the other hand, for some j, A
⋂
B : [xj = 0 & Fk(x) = 0 mod 2]. Hence,

it holds that 〈k,x〉 =
∑h
i=1,i6=j xi to satisfy the event A

⋂
B. Similarly, we also

show that Pr[A
⋂
B] is the same as the numerator of the right-hand side of the

equation (1) since the number of possible variables is h − 1 because of xj = 0.
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As a result, with the Lemma 4.1 and the properties of 6-th root of unity w, we
can calculate the conditional probability that we desired.

Pr[xj = 0 | Fk(x) = 0 mod 2] =

∑bh−1
6 c

k=0

(
h−1
6k

)
+
(
h−1
6k+1

)
+
(
h−1
6k+2

)
∑bh6 c
k=0

(
h
6k

)
+
(

h
6k+1

)
+
(

h
6k+2

)
=

∑5
j=0(1 + (wj)5 + (wj)4) · (1 + wj)h−1∑5
j=0(1 + (wj)5 + (wj)4) · (1 + wj)h

=
3 · 2h−1 + 2w5 · (1 + w)h−1 + 2w · (1 + w5)h−1

3 · 2h + 2w5 · (1 + w)h + 2w · (1 + w5)h

=
3 · 2h−1 + 2w5 · (w5i

√
3)h−1 + 2w · (−wi

√
3)h−1

3 · 2h + 2w5 · (w5i
√

3)h + 2w · (−wi
√

3)h

=
1

2
+

(w5i
√

3)h−1 · w4 + (−wi
√

3)h−1 · w2

3 · 2h + 2w5 · (w5i
√

3)h + 2w · (−wi
√

3)h

where w is 6-th root of unity, 1+
√
3i

2 . Thus, we can obtain the following lemma.

Lemma 4.2 Let h be the hamming weight of the secret key k. For all i ∈ [h],

Pr[xi = 0 | Fk(x) = 0 mod 2] =



1
2 −

(i
√
3)h

3·2h+2·(i
√
3)h

h = 6k

1
2 −

(i
√
3)h−1

3·2h+6·(i
√
3)h−1

h = 6k + 1
1
2 h = 6k + 2
1
2 + 3(i

√
3)h−3

3·2h+18·(i
√
3)h−3

h = 6k + 3

1
2 + 9(i

√
3)h−4

3·2h+18·(i
√
3)h−4

h = 6k + 4

1
2 + 18(i

√
3)h−5

3·2h h = 6k + 5

Proof (of Lemma 4.2). The proof only requires straightforward (but tedious)
computations, so we only deal with a case of h = 6k. Computations of the
others are almost the same as the case h = 6k.

Pr[xi = 0 | Fk(x) = 0 mod 2] =
1

2
+

(w5i
√

3)6k−1 · w4 + (−wi
√

3)6k−1 · w2

3 · 26k + 2w5 · (w5i
√

3)6k + 2w · (−wi
√

3)6k

=
1

2
+

(w5 − w) · (i
√

3)6k−1

3 · 26k + 2(w5 + w) · (i
√

3)6k

=
1

2
+

−(i
√

3)6k

3 · 26k + 2(i
√

3)6k

=
1

2
− (i

√
3)h

3 · 2h + 2 · (i
√

3)h

ut
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Since the simple attack does not work if h ≡ 2 mod 6, another adversary is
required. A new adversary computes a conditional probability of xi = xj =
0 with i 6= j given by Fk(x) = 0. Then, through similar computations from
Lemma 4.2, we obtain the below lemma.

Lemma 4.3 Let h be the hamming weight of the secret key k. If i 6= j ∈ [h] and
h ≡ 2 mod 6,

Pr[xi = 0, xj = 0 | Fk(x) = 0 mod 2] =

∑bh−2
6 c

k=0

(
h−2
6k

)
+
(
h−2
6k+1

)
+
(
h−2
6k+2

)
∑bh6 c
k=0

(
h
6k

)
+
(

h
6k+1

)
+
(

h
6k+2

)
=

1

4
− (i

√
3)h−2

3 · 2h + 12(i
√

3)h−2

According to lemmas 4.2, 4.3, the advantage of an alternative Mod-2/Mod-3

weak PRF is larger than ch ·
(√

3
2

)h
≈ 1

20.21h
. Moreover, since k is chosen uni-

formly from the set {0, 1}n, we assume that h is n
2 without loss of generality.

Thus, the advantage is larger than 1
20.105n . As a result, to preserve 128-bit secu-

rity, a parameter n should increase from 384 to 610 or 1220 under the measure
log T

ε2 or log T
ε with a cost T and an advantage ε.

The theorem 1 is proved by Lemma 4.2 and Lemma 4.3.

Compare to BKW algorithm. The construction of the alternative Mod-
2/Mod-3 weak PRF is quite similar to LPN problem with a noise rate 1/3.
Thus, one expects that the algorithm proposed by Blum, Kalai, and Wasser-
man [BKW03], one of the current best attacks for LPN with a constant noise
rate, can be applicable to alternative Mod-2/Mod-3 weak PRF.

The difference between conventional LPN instances and pseudo-LPN in-
stances from alternative Mod-2/Mod-3 weak PRF is that the error terms of
pseudo-LPN instances are of the form

∑
i kixi mod 3 mod 2, which means that

the error terms are always correlated to the input x, and the secret key k. How-
ever, the error terms of conventional LPN instances are independent to the input,
and the independence has implicitly used to analyze the BKW algorithm.

On the other hand, Bogos, Tramèr and Vaudenay [BTV16] mentioned that
BKW algorithm heuristically works in spite of dependence of the error term.
Therefore, BKW attack can be heuristically applied to analyze the alternative
Mod-2/Mod-3 weak PRF. Therefore, it cannot achieve the exponential hardness
conjecture like the basic Mod-2/Mod-3 weak PRF since the time complexity of
BKW is sub-exponential in a dimension n. However, the BKW attack cannot
impact on the concrete parameter since the alternative candidate already sets
parameters to be secure against the BKW attack. The original paper already
mentioned that a parameter n = 384 captures 128-bits security.

Unlike the BKW attack, our attack which exploits statistical properties takes
exponential time in a dimension n, but when exponentially many samples are
allowed, our attack can affect the concrete parameters. To be secure against our
attack, the parameter n should be set at least 610 as in table 1.
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Remark 4.4 Our attack is easily extended to an alternative Mod-p/Mod-q
weak PRF for arbitrary primes p and q. Following our proof, the adversary’s ad-

vantage of an alternative Mod-p/Mod-q is larger than ch·
∣∣∣wpq+1

2

∣∣∣h ≈ (cos
(
π
pq

))h
where wpq is pq-th root of unity. Therefore, our attach is getting more powerful
as pq gets bigger. For example, the advantage of an alternative Mod-3/Mod-5

weak PRF is larger than
(
cos
(
π
15

))h ≈ 1
20.032h

, so n should be increased to 4000
for the 128-bit security under a measure T/ε2 if h = n/2.

Remark 4.5 Since our attack just computes conditional probabilities, there
exist interesting features.

• Full parallel computations are allowed. Hence, if there are δ processors, total
time complexity is reduced from O(20.21n) to O(20.21n/δ) +O(δ).

• An adversary does not need to store many weak PRF samples. Thus, Our
attack is a space efficient algorithm. It requires only O(n) space even though
our attack needs a lot of samples.

Remark 4.6 An alternative construction can be reinterpreted by operations on
mod 6 space. However, an input space of this construction is only {0, 1}n, not a
full space Zn6 . This might be a statistical weakness of the alternative weak PRF.

4.2 Cryptanalysis of A Circulant Mod-2/Mod-3 Weak PRF

As stated in Remark 3.3, structured keys are widely used to provide higher
efficiency. In this section, we provide a heuristic analysis of a circulant Mod-
2/Mod-3 weak PRF candidate.4 We briefly recall a circulant Mod-2/Mod-3 weak
PRF. For a circulant matrix A ∈ Zn×n2 with generated by a vector a ∈ Zn2 ,

FA(x) = map(A · x),

where map is a function from {0, 1}n to Z3 mapping a binary vector y = (yj) to
an integer

∑m
j=1 yj mod 3.

We first present several observations of a circulant Mod-2/Mod-3 weak PRF
under the secret key A.

• 1T ·A = h(1, · · · , 1)
• 1T ·A · x = h · hx where hx is the number of 1’s in an input x
• 1T · [A · x]2 ≡ h · hx mod 2
• If hx is even, then the number of 1’s in [A · x]2 is also even.

The key ingredient of the attack for a circulant weak PRF is that [A · x]2 pre-
serves the parity of x if hx is even. If FA(x) truly behaves a random element, it
never keeps the parity even if hx is even. Similar to Section 4.1, by limiting the
parity of [A ·x]2, we could distinguish a circulant Mod-2/Mod-3 weak PRF from

4 As stated in Section 1, a circulant matrix is exactly the same a block-circulant
in [BIP+18]
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uniform. Indeed, it might be conjectured that Pr[FA(x) ≡ 0 mod 3 | hx is even]
or Pr[FA(x) ≡ 2 mod 3 | hx is even] is apart from 1/2.

With the intuition, if [A · x]2 is component-wise independent, then we can
directly compute values Pr[FA(x) ≡ 0 mod 3 | hx is even] and Pr[FA(x) ≡
2 mod 3 | hx is even]. Then, we obtain that an adversary’s advantage is larger

than cn ·
(√

3
2

)n
≈ 1

20.21n for some very small constant cn.

Unfortunately, no one could be sure whether the components of [A·x]2 behave
independently since A is a circulant matrix. Therefore, we will give experimental
results to support that the above conditional probabilities are almost the same
as the results of Lemmas 4.7 and 4.8, where the lemmas are assumed to be
independent of each component. (See experimental results 4.9.) As a result, we
obtain the following theorem.

Theorem 2. Let A ∈ {0, 1}n×n be a circulant matrix used in a Mod-2/Mod-3
weak PRF as a secret key and hx be the hamming weights of a vector x. Then,
we can heuristically show that∣∣∣∣Pr[FA(x) ≡ 0 mod 3 | hx is even]− 1

3

∣∣∣∣ ≈ 1

20.21n
if n 6= 3 mod 6∣∣∣∣Pr[FA(x) ≡ 2 mod 3 | hx is even]− 1

3

∣∣∣∣ ≈ 1

20.21n
if n = 3 mod 6

Therefore, if the number of samples, ` = O(20.42n), one can distinguish
{(xi,FA(xi))}i∈[`] from the uniform samples {(xi, yi)}i∈[`].

Now, we give an analysis under the assumption that a vector is component-
wise independent. For the avoidance of confusion, we newly define a random
variable Y as follows. Let Y be a multivariate random variable that follows a
distribution on {0, 1}n that each entry is independently and uniformly sampled
from {0, 1}. Then, the conditional probability of 1T · y = 0 mod 3 given that y
is uniformly sampled from Y and hy is even is

Pr[1T · y = 0 mod 3| y $←− Y, hy is even] =

∑bn6 c
k=0

(
n
6k

)∑bn6 c
k=0

(
n
6k

)
+
(

n
2+6k

)
+
(

n
4+6k

) (2)

We first note that hy = 1T ·y = 〈1,y〉 since y ∈ {0, 1}n, and will gain use the
fact that

(
n

6k+a

)
if and only if 〈1,y〉 = a mod 6 for every k ∈ {0, · · · , bn−16 c} and

a ∈ {0, · · · , 5}. For events A : [y
$←− Y & hy is even], and B : [1T ·y = 0 mod 3],

we easily observe that Pr[A] equals to the denominator of the right-hand side
of the equation (2). Moreover, we easily verify that the probability Pr[A

⋂
B]

equals to the numerator of the right-hand side of the equation (2). Therefore,
with the Lemma 4.1 and the properties of 6-th root of unity w, we obtain the
following.

Pr[1T · y = 0 mod 3| y $←− Y, hy is even] =

∑bn6 c
k=0

(
n
6k

)∑bn6 c
k=0

(
n
6k

)
+
(

n
2+6k

)
+
(

n
4+6k

)
13



=

∑5
k=0(1 + wk)n

6 · 2n−1
=

1

3
+
w2n((−i

√
3)n + (−1)n) + w4n((i

√
3)n + (−1)n)

6 · 2n−1

where w is 6-th root of unity, 1+i
√
3

2 . Similar to the above section, a straightfor-
ward computation leads us the following lemmas.

Lemma 4.7 Let Y be a multivariate random variable that follows a distribution
on {0, 1}n that each entry is independently and uniformly sampled from {0, 1}.
Then, the conditional probability of 1T · y = 0 mod 3 given that y is uniformly
sampled from Y and hy is even is that

Pr[1T · y = 0 mod 3| y $←− Y, hy is even] =



1
3 + 2(i

√
3)n+2

6·2n−1 n = 6k
1
3 + 3(i

√
3)n−1+1

6·2n−1 n = 6k + 1
1
3 −

(i
√
3)n+1

6·2n−1 n = 6k + 2
1
3 + −2

6·2n−1 n = 6k + 3
1
3 −

(i
√
3)n+1

6·2n−1 n = 6k + 4
1
3 −

3(i
√
3)n−1−1

6·2n−1 n = 6k + 5

Proof (of Lemma 4.7). Repetitive computations are required to prove this lemma.
Similar to the proof of Lemma 4.2, we only leave a proof of a case n = 6k for
readability.

Pr[1T · y = 0 mod 3 | y $←− Y, hy is even] =

∑bn6 c
k=0

(
n
6k

)∑bn6 c
k=0

(
n
6k

)
+
(

n
6k+2

)
+
(

n
6k+4

)
=

2n + (1 + w)n + (1 + w2)n + (1 + w4)n + (1 + w5)n

3 · 2h

=
2n + (w5i

√
3)n + (−w4)n + (−w2)n + (−wi

√
3)n

3 · 2n

=
2n + 2(i

√
3)n + 2

3 · 2n
=

1

3
+

2(i
√

3)n + 2

6 · 2n−1

ut

If n ≡ 3 mod 6, we require an extra analysis to point out a weakness of circulant
Mod-2/Mod-3 weak PRF. However, we easily overcome this situation by com-
puting a new conditional probability. Indeed, through similar computations of
Lemma 4.7, we obtain the below lemma.

Lemma 4.8 Let Y be a random variable defined on Lemma 4.7. If n is 6k + 3,
then we have that

Pr[1T ·y = 2 mod 3| y $←− Y, hy is even] =

∑bn6 c
k=0

(
n

6k+2

)
∑bn6 c
k=0

(
n
6k

)
+
(

n
2+6k

)
+
(

n
4+6k

)
=

1

3
+
w2n+4((−i

√
3)n + (−1)n) + w4n+2((i

√
3)n + (−1)n)

6 · 2n−1

14



=
1

3
− 3(−i

√
3)n−1 + (−1)n

6 · 2n−1

Experiments 4.9 To support our expectation, we implement experiments in
accordance with

1. Sample a random vector a from {0, 1}n.
2. Construct a circulant matrix A using the sampled vector a.5

3. Compute FA(x) for sufficiently many x’s.
4. Compute a conditional probability as done in the above two lemmas.
5. Go to 1 again.

Then, we can provide experimental results to support that Pr[FA(x) ≡ 0 mod
3 | hx is even] and Pr[FA(x) ≡ 2 mod 3 | hx is even] are almost the same as
results of Lemmas 4.7 and 4.8.

In figure 1, we first regard (logarithms of) the averages of the above condi-
tional probabilities for several n, as blue points. Then, we draw a trend line from
them. The (logarithm) trend line is 0.2038n+ 0.4537 similar to 2−0.21n induced
by our computations.

We also conducted several experiments for a fixed n. For case n ≤ 18, we ran
experiments for all possible base vectors to demonstrate that our experiments
are not lucky cases. For the same reason, 128 random base vectors were used to
support our heuristic assumptions for n = 32, 40 and 50.

Fig. 1: Averages of (logarithm) biases according to n and its trend line.

During experiments, we observed some irregularities outside of our expecta-
tions. For example, under the case n = 218, there are 3.2% = (8422/218) base
vectors that our assumption is invalid even though the analysis does not depend
on the form of A. Indeed, the value of red points drawn along the irregular
cases in figure 2a is much smaller than that of the green points that follow our
prediction. However, for these cases, we gathered x’s with odd hx. Then, we
observe that the maximum value M of {Mα,β}α∈{0,2},β∈{odd, even}, where Mα,β

5 We call a a base vector.
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is defined as (3), is far from 1/3 by at least 1
20.21n in figure 2b, which supports

that our attacks succeed regardless of the base vector a.

Mα,β :=

∣∣∣∣Pr[FA(x) ≡ α mod 3 | hx is β]− 1

3

∣∣∣∣ (3)

(a) Log-size of max{M∗,even} ac-
cording to all a.

(b) Log-size of M according to all
a.

Fig. 2: Experimental results of all base vectors in {0, 1}n with n = 218.

The x-axis is the decimal representation of the all base vectors. Note
that every binary vector with the length n can be represented by an
integer ≤ 2n.

The theorem 2 is proved by Lemma 4.7, Lemma 4.8 and experimental re-
sults 4.9.

Remark 4.10 The above mentioned remarks 4.4 and 4.5 are also satisfied with
a circulant Mod-p/Mod-q weak PRF. As an example, we observe that the advan-
tage of a circulant Mod-3/Mod-5 weak PRF is larger than

(
cos
(
π
15

))n ≈ 1
20.032n

from the same computation, so n should be increased to 2000 for the 128-bit
security under a measure T/ε2 = 2λ.

5 How to Fix a Weakness of Mod-2/Mod-3 Weak PRFs

In this section, we suggest modified weak PRF candidates to prevent statistical
attacks while preserving low depth and its circuit complexity. Thus, we think
that fixed weak PRFs are still MPC friendly. Since our attacks use the biases
of conditional probabilities, if the bias of the probability becomes smaller, our
attacks become weaker.

An alternative Mod-2/Mod-3 weak PRF. We are easily able to fix an
alternative Mod-2/Mod-3 weak PRF since our attack heavily depends on the
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hamming weights of the secret key k. More specifically, under the current pa-
rameter n = 384, when we set the hamming weights h = 310 that is larger than
n/2, it is secure against our statistical attacks. Moreover, this simple variant is
secure against all known attacks presented by the original paper since they do
not consider the hamming weights of the secret vector. Also, it is robust against
brute-force attacks for finding the secret key because of log2

(
384
310

)
� 200. Thus,

the fixed scheme preserves the depth-2 ACC0 circuit complexity and current
parameters.

A circulant Mod-2/Mod-3 weak PRF. Our strategy is to break a weak
structure of a circulant Mod-2/Mod-3 weak PRF that preserves a parity of [Ax]2
if hx is even for any circulant matrix A. To avoid a weakness, we inject an extra
secret vector and generate a new secret key B with two secret vectors. We name
B a semi-circulant key. Previously, a circulant secret key is generated by a single
vector. For explanation, let a and b be secret vectors. Then, we construct a
secret matrix B as follows. For simplicity’s sake, assume that n is even.

– Set initial vectors such that the first row of B is a and n/2-th row of B is b.
– For each 2 ≤ i ≤ n/2, i-th row of B is ρi(a), where ρi(a) shifts one element

to the right relative to the ρi−1(a) with ρ1(a) = a and ρn+1(a) = a.
– Similarly, for each n/2 < j ≤ n, j-th row of B is ρj(b).

Then, we observe that each column of a matrix B does not preserve hamming
weights, so vectors of ones (1, · · · , 1) is not a left-eigenvector of B. Thus, we
can easily fix a circulant Mod-2/Mod-3 weak PRF against all known attacks
including our statistical attack. Moreover, the size of PRF key is still smaller
than that of random key, and it preserves the current parameter n and depth-2
ACC0 circuits.

To support that the simple modification to a semi-circulant key B is reason-
able, we conducted experiments for several n and types of secret key; random A
and semi-circulant B. To construct a semi-circulant key B, we randomly choose
two vectors from {0, 1}n. For n = 16, 18, we experimented with 128 different
secret keys to compute (average of) logarithm biases of the statistical attack.
Similarly, for n = 24, 28, we provided experimental results for 20 different se-
cret keys. Moreover, for each case, 2n samples were used to compute accurate
M = maxα,β{Mα,β}α∈{0,2},β∈{odd, even}.

According to the above graph, we observe that a semi-circulant weak PRF
with B, behaves Mod-2/Mod-3 weak PRF with random secret key A. More-
over, the fixed candidate is secure against all known attacks under the current
parameters n = m = 256 since its advantage is already larger than 2−0.5n.

The fixed candidate would be also interesting since it almost preserves the
advantage of a circulant Mod-2/Mod-3 weak PRF: a quasi-linear multiplication
time. Since the semi-circulant matrix consists of two secret vectors with their
rotations, by computing two circulant matrix-vector multiplications, we easily
obtain outputs of the semi-circulant Mod-2/Mod-3 weak PRFs. Thus, the fixed
candidate still allows a quasi-linear multiplication time although its real time is
twice slower than the circulant Mod-2/Mod-3 weak PRF.
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Fig. 3: Averages of (logarithm) biases according to n and types of secret keys
and their trend lines.

Remark 5.1 We observe that the weakness of a circulant Mod-2/Mod-3 weak
PRF might come from a structured property of A. Indeed, we observe that if we
break down the property using two secret vectors, then a Mod-2/Mod-3 weak
PRF with secret key B is secure against our attack although a circulant with key
A is vulnerable to our attack. Thus, we can make a hypothesis that a structured
chaos of the secret key implies the security of weak PRF candidates.

Remark 5.2 The main idea of our revision of weak PRF candidates is to change
the way secret keys are sampled (a single vector with high hamming weights, or
a semi-circulant key) while preserving the parameters. Thus, it is more efficient
than the basic revision that increases the key size.
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A Definitions about Circuit Class

In this section, we deal with definitions about the circuit class in [BIP+18].

Definition A.1 (in [BIP+18]) For any integer m, the MODm gate outputs 1
if m divides the sum of its inputs, and 0 otherwise.

Definition A.2 (Circuit Class ACC0 in [BIP+18]) For integers m1, · · · ,mk >
1, ACC0[m1, · · · ,mk] is the set of languages L decided by some circuit family
{Cn}n∈N with constant depth, polynomial size, and consisting of unbounded fan-
in AND, OR, NOT and MODm1

, · · · ,MODmk gates. Moreover, ACC0 is denoted
by the class of all languages that is in ACC0[m1, · · · ,mk] for some k ≥ 0 and
integers m1, · · · ,mk > 1.

B Simple Non-Adaptive Attack

In this section, we provide a simple non-adaptive attack of a basic Mod-2/Mod-3
weak PRF, which runs in polynomial time n. The attack is motivated by rank
attack [CVW18,CHVW19].

Assume that adversary has exponentially many samples (zi, vi). The goal
is to determine whether vi is uniformly sampled from Z3 or sampled from a
Mod-2/Mod-3weak PRF.

Let s be an integer > max{m,n}. Then, our attack is:

1. Find s2 pairs of vectors {(xi,yj)}i,j∈[s] such that zi,j = xi+yj for some zi,j
in a list of samples.
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2. Construct a matrix M = (vi,j), where vi,j is a sample corresponding to a
vector zi,j .

3. Compute a rank of M.

For an analysis, we borrow a polynomial representation of FA(x) in [BIP+18].

FA(x) =

m∑
i=1

 n∏
j=1

(1 + xj)
ai,j − 1

 ,

where a matrix A = (ai,j) ∈ {0.1}m×n and a vector x = (xi) ∈ {0, 1}n. Note
that since ai,j is 0 or 1, the following lemma is trivial.

Lemma B.1 Mod-2/Mod-3 weak PRF is interpreted as a product of matrices.
More precisely, for a key A = (ai,j) ∈ {0, 1}m×n and a vector x = (xi) ∈ {0, 1}n,

FA(x) + n =

n∑
i=1

fi(x) = 1T ·
n∏
i=1

(I + diag(xiAi)) · 1

where Ai is the i-th column of A, and fi(x) =
∏n
j=1(1 +ai,jxj), and diag(xiAi)

is a diagonal matrix whose j-th diagonal entry is the same as j-th component of
a vector xiAi.

Based on the above lemma, we complete the non-adaptive attack. When vi,j ’s
are truly random, a rank of M is s with high probability. However, if it is of the
form map(A · ([xi + yj)]2), then a matrix M is divided into a product of two
matrices using Lemma B.1.

M =



1T ·H(x1)

1T ·H(x2)

1T ·H(x3)
...

1T ·H(xρ)

 ·
(
H(y1) · 1, H(y2) · 1, H(y3) · 1, · · · , H(yρ) · 1

)

Hence, a rank of M is bounded by min(m,n) with high probability. The attack
runs in O(n) time and space.

The rank attack only succeeds when an adversary is possible to use an oracle
access to input queries. However, in the setting of weak PRF, inputs are selected
randomly from {0, 1}n, our attack does not work anymore.
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