
CRAFT: Composable Randomness Beacons and
Output-Independent Abort MPC From Time

Carsten Baum1 ?, Bernardo David2 ??, Rafael Dowsley3 ? ? ?,
Jesper Buus Nielsen1 †, and Sabine Oechsner1 ‡

1 Aarhus University, Denmark
{cbaum,jbn,oechsner}@cs.au.dk

2 IT University of Copenhagen, Denmark
bernardo@bmdavid.com

3 Monash University, Australia
rafael@dowsley.net

Abstract. Recently, time-based primitives such as time-lock puzzles
(TLP) and verifiable delay functions (VDF) have received a lot of at-
tention due to their power as building blocks for cryptographic proto-
cols. However, even though exciting improvements on their efficiency and
security (e.g. achieving non-malleability) have been made, most of the
existing constructions do not offer general composability guarantees and
thus have limited applicability. Baum et al. (EUROCRYPT 2021) pre-
sented in TARDIS the first (im)possibility results on constructing TLPs
with Universally Composable (UC) security and an application to se-
cure two-party computation with output-independent abort (OIA-2PC),
where an adversary has to decide to abort before learning the output.
While these results establish the feasibility of UC-secure TLPs and ap-
plications, they are limited to the two-party scenario and suffer from
complexity overheads. In this paper, we introduce the first UC construc-
tions of VDFs and of the related notion of publicly verifiable TLPs.
We use these primitives to prove folklore results on randomness beacons
based on VDFs widely used in industry, as well as introducing a more
efficient construction based on publicly verifiable TLPs. We also present
the first UC-secure construction of multiparty computation with punish-
able output-independent aborts (POIA-MPC) (i.e. MPC with OIA and
financial punishment for cheating), which both establishes the feasibility
of OIA-MPC and improves on the efficiency of the state-of-the-art in
both (non-OIA) UC-secure MPC with punishable aborts and OIA-2PC.

? Funded by the European Research Council (ERC) under the European Unions’ Hori-
zon 2020 program under grant agreement No 669255 (MPCPRO).

?? Supported by the Concordium Foundation and by the Independent Research Fund
Denmark grants number 9040-00399B (TrA2C) and number 9131-00075B (PUMA).

? ? ? Partially done while Rafael Dowsley was with Bar-Ilan University and supported
by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
† Partially funded by The Concordium Foundation; The Danish Independent Research

Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg Foundation
under the Semper Ardens Research Project CF18-112 (BCM).
‡ Supported by the Danish Independent Research Council under Grant-ID DFF-8021-

00366B (BETHE) and Concordium Foundation.

1 Introduction

Time has always been an important, although sometimes overlooked, resource in
cryptography. Recently, there has been a renewed interest in time-based prim-
itives such as Time-Lock Puzzles (TLPs) [36] and Verifiable Delay Functions
(VDFs) [9]. TLPs allow a sender to commit to a message in such a way that it
can be obtained by a receiver only after a certain amount of time, during which
the receiver must perform a sequence of computation steps. On the other hand,
a VDF works as a pseudorandom function that is evaluated by performing a
certain number of computation steps (which take time) and then generates both
an output as well as a proof that this number of steps has been performed to
obtain the output. A VDF guarantees that evaluating a certain number of steps
takes at least a certain amount of time and that the proof obtained with the
output can be verified in time essentially independent of the number of steps.

Both TLPs and VDFs have been investigated extensively in recent work
which focusses on improving their efficiency [8,34,40], obtaining new proper-
ties [23] and achieving stronger security guarantees [20,28,24] for these primi-
tives. These works are motivated by the many applications of TLPs and VDFs as
building blocks for cryptographic protocols such as randomness beacons [9,10],
partially fair secure computation [18] and fair auctions [10]. In particular, all
these applications use TLPs and VDFs concurrently composed with other cryp-
tographic primitives and sub-protocols. However, most of current constructions
of TLPs [36,10,8,28,24] and all known constructions of VDFs [9,34,40,20,23] do
not offer general composability guarantees, meaning it is not possible to securely
plug those constructions in more complex protocols in a straightforward manner.

In order to prove security of cryptographic primitives and protocols under
general composability, the current default tool is the Universal Composability
(UC) framework [12]. Unfortunately, the UC framework is inherently sequential:
it models protocols as communicating Turing Machines, and only one such Tur-
ing Machine can be active at a time. This means that a notion of passing time
has to be added in order to analyze time-based primitives and protocols in UC.
Recently, Baum et al. introduced in TARDIS [5] the first UC secure construction
of TLPs, which is proven secure in the random oracle model under the iterated
squaring assumption of [36] modeled according to the TARDIS model. Baum
et al. show that a programmable random oracle is necessary for realizing such
time-based primitives in the UC framework.

Besides analyzing the (im)possibility of constructing UC TLPs, Baum et
al. [5] showed that these primitives can be used to construct UC-secure Two-
Party Computation with Output-Independent Abort (OIA-2PC), where the ad-
versary must decide whether to cause an abort before learning the output of
the computation. OIA-2PC itself implies fair coin tossing, an important task
used in randomness beacons. However, while these results showcase the power of
UC-secure TLPs, they are restricted to the two-party setting and incur a high
concrete complexity. Moreover, their results do not extend to VDFs. This leaves
an important gap, since many applications of TLPs (e.g. auctions [10]) are in-

2

trinsically multiparty and VDFs have been suggested to be used for practically
used randomness beacons [9,39].

1.1 Our Contributions

In this work, we introduce the first UC-secure constructions of VDFs and of
the related notion of Publicly Verifiable TLPs, which we introduce. Using these
primitives as building blocks, we construct a new efficient randomness beacon
and Multiparty Computation with Output-Independent Abort (OIA-MPC). All
of our constructions are both practical and proven to be secure under general
composition. We discuss our contributions in more detail below.

UC-secure Publicly Verifiable Time-Lock Puzzles. We introduce the no-
tion of UC-secure publicly verifiable TLPs and present an ideal functionality as
well as a construction for this primitive. Such TLPs allow the creator to reveal
the message in such a way that any third party can verify in constant time that
this was indeed the message in the TLP. We show that the TLP of [5] can be
proven to be publicly verifiable. Moreover, we generalize their construction to
obtain a UC-secure TLP from any trapdoor sequential computation assumption.

UC-secure Verifiable Delay Functions. We introduce the first composable
definition and matching construction of VDFs [9]. Our construction consists in
compiling a generic continuous VDF [23] into a UC-secure continuous VDF in
the random oracle model while only increasing the proof size by a small constant.

UC-secure Randomness Beacons. Using our composable VDFs, we give the
first security proof of a folklore construction [9] of randomness beacons based on
VDFs. Moreover, we introduce a randomness beacons based on publicly verifi-
able TLPs that achieves better best case scenario efficiency than this VDF-based
construction. Our TLP-based construction requires only O(n) communication to
generate a uniformly random output, where n is the number of parties. How-
ever, differently from the VDF-based construction [9], whose execution time is
at least the worst case communication channel delay, ours outputs a random
value as soon as all messages are delivered, achieving in the optimistic case an
execution as fast as 2 round trip times in the communication channel. These
constructions/proofs require not only UC-secure VDFs and publicly verifiable
TLPs but careful consideration of delays in broadcast channels/public ledgers
versus the TLP and VDF delays, which we analyze and present in details.

UC-secure Multiparty Computation (MPC) with Punishable Output
Independent Abort (POIA-MPC). We construct the first protocol for Mul-
tiparty Computation with Punishable Output Independent Abort (POIA-MPC),
which is a stronger notion of MPC where the output can be publicly verified and
cheaters in the output stage can be identified and financially punished. In par-
ticular, this notion implies a multiparty version of the limited OIA-2PC result
from [5]. This construction employs our new publicly verifiable TLPs to construct
a commitment scheme with delayed opening. In order to use this simple commit-
ment scheme, we improve the currently best [4] techniques for publicly verifiable
MPC with cheater identification in the output stage, eliminating the need for
homomorphic commitments and achieving a dramatic efficiency improvement.

3

1.2 Related Work

The recent work of Baum et al. [5] introduced the first construction of a com-
posable TLP. This is in comparison to previous constructions such as [36,10,8]
that were only proven to be stand-alone secure. As an intermediate step towards
composable TLPs, non-malleable TLPs were constructed in [28,24]. The related
notion of VDFss has been investigated in [9,34,40,20,23]. Also for these construc-
tions, composability guarantees have so far not been shown. Hence, issues arise
when using these primitives for protocol design, since they are used as building
blocks in more complex protocols but their security is not guaranteed when they
are composed with other primitives.

Randomness beacons that resist adversarial bias have been constructed based
on publicly verifiable secret sharing (PVSS) [30,14] and on VDFs [9], although
neither of these constructions is composable. The best UC-secure randomness
beacons based on PVSS [15] still require O(n2) communication where n is the
number of parties. Even though they can output O(n2) random values, they
require O(n2) communication even if only one single value is needed. UC-secure
randomness beacons based on verifiable random functions [19,2] can on the other
hand be biased by adversaries.

Fair secure computation, where honest parties always obtain the output if the
adversary learns it, is known to be impossible in the standard communication
model and with dishonest majority [16], which in particular includes the 2-party
setting. Couteau et al. [18] presented a secure two-party fair exchange protocol
for the “best possible” alternative, meaning where an adversary can decide to
withhold the output from an honest party but must make this decision indepen-
dently of the protocol output. Baum et al. [5] showed how to construct a secure
2-party computation protocol with output-independent abort and composition
guarantees. Neither of these works considers the important multiparty setting.

Another work which considers fairness is that of Garay et al. [25], which
introduced the notion of resource-fairness for protocols in UC. Their work is
able to construct fair MPC in a modified UC framework, while we obtain OIA-
MPC which can be used to obtain partially fair secure computation (as defined
in [26]). The key difference is that their resource-fairness framework needs to
modify the UC framework in such a way that environments, adversaries and
simulators must have an a priori bounded running time. Our work, by relying
on the TARDIS model of [5], does not have to make such stringent (and arguably
unrealistic) modifications/restrictions to the UC environment.

An alternative, recently popularized idea is to circumvent the impossibility
result of [16] by imposing financial fairness. There, cheating behavior is punished
using cryptocurrencies and smart contracts. In this model, rational adversaries
have a financial incentive to act fair. Works that achieve fair output delivery
with penalties such as [1,7,31,4] allow the adversary to make the abort decision
after he sees the output. Therefore financial incentives must be chosen according
to the worst-case gain of an adversary. Our construction of POIA-MPC forces
the adversary to make the decision before seeing the output and incentives can
be based on the expected gain of cheating in the computation instead.

4

1.3 Our Techniques

Publicly Verifiable TLPs. We define the notion of (composable) publicly verifi-
able TLPs, which allow for a prover who performs all the computational steps
needed to solve a TLP to convince any verifier that the TLP solution it obtained
is valid, requiring the verifier to perform a constant number of computational
steps. This public verifiability property turns out to have interesting applications
to constructing and improving the efficiency of randomness beacons and MPC
with output-independent abort. We show that this notion can be realized by the
TLP construction of [5], since it has tags that encode both the initial and final
computational states of the TLP as well as a trapdoor that can be used to solve
the TLP in constant time. While these values are normally not revealed by the
tags, a party who solves the TLP can retrieve these values in order to verify
its own solution. We show that this verification procedure can be consistently
repeated by any verifier who receives the information contained in the tags from
the party who solved the TLP. Additionally, we show that publicly verifiable
TLPs can be constructed from any sequential computation with trapdoors.

Verifiable Delay Functions. We depart from a generic stand alone continuous
VDF [23] (or rather, a weaker notion of a verifiable sequential computation) to
obtain a UC-secure continuous VDF in the global random oracle model (which
is necessary for realizing UC-secure time-based primitives as proven in [5]). We
capture the stand alone continuous VDF in UC following a similar approach to
the one of [5] for capturing the iterated squaring assumption. Interestingly, our
construction is simple and efficient: it basically consists of evaluating the input
for a number Γ of steps with the stand alone VDF and then computing the
UC VDF output and proof as out = H(sid|Γ |stΓ |π′) and π = (stΓ , π

′) where
stΓ and π′ are the output and proof obtained from the stand alone VDF and
where H is a global random oracle. Verification is done by checking that out is
computed according to the values in π and that π′ is valid for the input and stΓ .
Even though this construction is simple, analyzing its security requires a complex
simulator keeping track of both honest and adversarial VDF evaluations.

Composable Randomness Beacons. We realize a guaranteed output delivery
(G.O.D.) coin tossing functionality that works like a randomness beacon from
publicly verifiable TLPs and semi-synchronous delayed multiparty communica-
tion (through either a delayed broadcast or a public ledger), where there is a
finite but unknown communication delay. We consider an honest majority and
build on the standard commit-then-reveal coin tossing approach but substitute
the commitments with TLPs: 1. each party broadcasts (or posts on the public
ledger) a TLP containing a random value as input that can be solved in δ ticks
(i.e. computational steps), 2. after commitments from half of the parties have
been received (meaning at least one commitment is from an honest party), each
party reveals the publicly verifiable solution to its TLP (showing its random
input) and stops considering new TLPs received after this point, 3. if any party
fails to reveal the valid solution to its own TLP, the other parties can solve it
by themselves and retrieve that party’s random input, 4. the output is obtained
by XORing all random inputs from the valid TLPs. An adversary cannot make

5

this protocol execution abort because any party can solve all valid TLPs. Even
without knowing the maximum communication delay, our protocols dynamically
adjust δ to guarantee that the adversary cannot solve honest parties’ TLPs before
it has sent its own, meaning it cannot bias the output. If all parties cooperate in
sending and opening their TLPs as soon as possible, the output can be obtained
as fast as the communication channel delay allows.

MPC with (Punishable) Output-Independent Abort. In our work, we want to
achieve that parties agree on the set of cheaters in case cheating occurs. This
property allows honest parties to agree on which parties they may exclude from
future secure computations. Moreover, we want to achieve output-independent
abort, ensuring that an adversary does not learn the output of a secure com-
putation before deciding that it will cause an abort. While these properties are
simple to achieve in the two-party setting with timed commitments [5], achiev-
ing them with multiple parties is much more complex. We observe that the use
of synchronous communication seems crucial, and we use a broadcast channel
to generalize the work of [5]. We then achieve punishable output-independent
abort by using publicly verifiable primitives and a smart contract in a way sim-
ilar to [4]. While we depart from [4,5], care must be taken in the proof since no
ideal functionalities have previously been designed for such composable timed
primitives. Moreover, we improve the output share consistency check of [4] by
using weaker, non-homomorphic commitments, which dramatically reduces the
protocol complexity.

2 Preliminaries

We use λ for the statistical and τ for the computational security parameter.

2.1 Universal Composability

We use the (Global) Universal Composability or (G)UC model [12,13] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties.
A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
adversary A, which is also an iTM, can corrupt a subset I ⊂ P as defined by the
security model and gains control over these parties. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs)
and which are denoted by F .

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P. To
define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1,
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

6

Definition 1. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time.

Public Verifiability. We model the public verification of outputs, for simplic-
ity, by having a static set of verifiers V. These parties exist during the protocol
execution (observing the public protocol transcript) but only act when they re-
ceive an input to be publicly verified. Converting our approach to dynamic sets
of verifiers (as in e.g. [3]) is possible using standard techniques.

2.2 The TARDIS [5] Composable Time Model

Functionality Gticker

Initialize a set of registered parties P = ∅, a set of registered functionalities F = ∅,
a set of activated parties LP = ∅, and a set of functionalities LF = ∅ that have
been informed about the current tick.

Party registration: Upon receiving (register, pid) from honest party P with pid
pid, add pid to P and send (registered) to P.

Functionality registration: Upon receiving (register) from functionality F ,
add F to F and send (registered) to F .

Tick: Upon receiving (tick) from the environment, do the following:
1. If P = LP , reset LP = ∅ and LF = ∅, and send (ticked) to the adversary S.

2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from functionality F ∈ F , do the
following:

– If F /∈ LF , add F to LF and send (ticked) to F.

– If F ∈ LF , send (notticked) to F.

Record party activation: Upon receiving (activated) from party P with pid
pid ∈ P , add pid to LP and send (recorded) to P.

Fig. 1: Global ticker functionality Gticker(from [5]).

The TARDIS [5] model expresses time within the GUC framework in such a
way that protocols can be made oblivious to clock ticks. To achieve this, TARDIS
provides a global ticker functionality Gticker as depicted in Fig. 1. This global
ticker provides “ticks” to ideal functionalities in the name of the environment. A
tick represents a discrete unit of time which can only be advanced, and moreover
only by one unit at a time. Parties may observe events triggered by elapsed
time, but not the time as it elapses in Gticker. Ticked functionalities can freely
interpret ticks and perform arbitrary internal state changes. To ensure that all
honest parties have a chance of observing all relevant timing-related events,

7

Gticker only progresses if all honest parties have signaled to it that they have
been activated (in arbitrary order). An honest party may contact an arbitrary
number of functionalities before asking Gticker to proceed. We refer to [5] for more
details.

How we use the TARDIS [5] model. To control the observable side effects
of ticks, the protocols and ideal functionalities that we present in this work
are restricted to interact in the “pull model”, precluding functionalities from
implicitly providing communication channels between parties. Parties therefore
have to actively query functionalities in order to obtain new messages, and they
obtain the activation token back upon completion. Ticks to ideal functionalities
are modeled as follows: upon each activation, the functionality first checks with
Gticker if a tick has happened and if so, may act accordingly. For this, it will
execute code in a special Tick interface.

In comparison to [5], after every tick, each ticked functionality F that we
define (unless mentioned otherwise) allows the adversary to provide an optional
(Schedule, sid,D) message parameterized by a queue D. This queue contains com-
mands to F which specify if the adversary wants to abort F or how it will sched-
ule message delivery to individual parties in P. The reason for this approach is
that it simplifies the specification of a correct F . This is because it makes it eas-
ier to avoid edge cases where an adversary could influence the output message
buffer of F such that certain conditions supposedly guaranteed by F break. As
mentioned above, an adversary does not have to send (Schedule, sid,D) - each F
can take care of guaranteed delivery itself. On the other hand, D can depend on
information that the adversary learns when being activated after a tick event.

Modeling Start (De)synchronization. In the 2-party setting considered in
TARDIS [5] there is no need to capture the fact that parties receive inputs and
start executing protocols at different points in time, since parties can adopt the
default behavior of waiting for a message from the other before progressing.
However, in the multiparty setting (and specially in applications sensitive to
time), start synchronization is an important issue that has been observed before
in the literature (e.g. [32,29]) although it is often overlooked. In the spirit of the
original TARDIS model, we flesh out this issue by ensuring that time progresses
regardless of honest parties having received their inputs (meaning that protocols
may be insecure if a fraction of the parties receive inputs “too late”). Formally,
we require that every (honest) party sends (activated) to Gticker during every
activation regardless of having received it’s input. We explicitly address the start
synchronization conditions required for our protocols to be secure.

Ticked Functionalities. We explicitly mention when a functionality F is
“ticked”. Each such F internally has two lists M,Q which are initially empty.
The functionality will use these to store messages that the parties ought to
obtain. Q contains messages to parties that are currently buffered. Actions by
honest parties can add new messages to Q, while actions of the adversary can
change the content of Q in certain restricted ways or move messages from Q to
M.M contains all the “output-ready” messages that can be read by the parties

8

directly. The content ofM cannot be changed by A and he cannot prevent par-
ties from reading it. “Messages” from F may e.g. be messages that have been
sent between parties or delayed responses from F to a request from a party.

We assume that each ticked functionality F has two special interfaces. One,
as mentioned above, is called Tick and is activated internally, as outlined before,
upon activation of F if a tick event just happened on Gticker. The second is called
Fetch Messages. This latter interface allows parties to obtain entries ofM. The
code for Fetch Messages is actually identical across all ticked functionalities,
so we specify it here for conciseness:

Fetch Message: Upon receiving (Fetch, sid) by Pi ∈ P retrieve the set L of all
entries (Pi, sid, ·) in M, remove L from M and send (Fetch, sid, L) to Pi.

Macros. A recurring pattern in ticked functionalities in [5] is that the func-
tionality F , upon receiving a request (Request, sid,m) by party Pi must first
internally generate unique message IDs mid to balance message delivery with
the adversarial option to delay messages. F then internally stores the message
to be delivered together with the mid in Q and finally hands out i,mid to the
ideal adversary S as well as potentially also m. This allows S to influence deliv-
ery of m by F at will by referring to each unique mid. We now define macros that
simplify the aforementioned process. When using the macros we will sometimes
leave out certain options if their choice is clear from the context.

Macro “Notify the parties T ⊆ P about a message with prefix Request from Pi
via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i)) to Q for each Pij ∈ T .

Macro “Send message m with prefix Request received from party Pi to the parties
T ⊆ P via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i,m)) to Q for each Pij ∈ T .

Macro “Notify S about a message with prefix Request” expands to

– Send (Request, sid, i,midi1 , . . . ,midik) to S.

Macro “Send m with prefix Request and the IDs to S” expands to

– Send (Request, sid, i,m,midi1 , . . . ,midik) to S.

These macros are useful whenever honest parties send messages that can
arrive at different times at the recipients. If they send these via simultaneous
broadcast (ensuring simultaneous arrival), then we will instead only choose one
mid for all messages. As the adversary can influence delivery on mid-basis, this
ensures simultaneous delivery. We indicate this by using the prefix “simultane-
ously” in the first two macros.

9

3 Multi-Party Message Delivery

In this section we will model two common multi-party messaging primitives in
the TARDIS [5] framework, namely authenticated broadcast and public ledgers.

Ticked Authenticated Broadcast In Fig. 2 we describe a ticked functionality
FΓ,∆BC,delay for delayed authenticated simultaneous broadcast. FΓ,∆BC,delay allows each
party Pi ∈ P to broadcast one message mi in such a way that each mi is
delivered to all parties at the same tick (although different messages mi and mj

may be delivered at different ticks). This functionality guarantees messages to
be delivered at most ∆ ticks after they were input. Moreover, it requires that
all parties Pi ∈ P must provide inputs mi within a period of Γ ticks, modeling
a start synchronization requirement. In case this loose start synchronization
condition is not fulfilled, the functionality no longer provides any guarantees,
allowing the adversary to freely manipulate message delivery, as specified by the
Total Breakdown instructions.

In comparison to the two-party secure channel functionality F∆smt,delay of [5],

our broadcast functionality FΓ,∆BC,delay uses a scheduling-based approach and ex-
plicitly captures start synchronization requirements. Using scheduling makes for-
malizing the multiparty case much easier while requiring start synchronization
allows us to realize the functionality as discussed below. This also means that
FΓ,∆BC,delay is not a simple generalization of the ticked channels of [5].

We briefly discuss how to implement FΓ,Γ,∆BC,delay. We could start from a syn-
chronous broadcast protocol like [22] or the one in [21] with early stopping. These
protocols require all parties to start in the same round and that they terminate
within some known upper bound. For t < n/3 corruptions we could use [17]
to first synchronize the parties before running such a broadcast. If t ≥ n/3
we can get rid of the requirement that they start in the same round using the
round stretching techniques of [33]. This will maintain that the parties termi-
nate within some known upper bound. Then use n instances of such a broadcast
channel to let each party broadcast a value. When starting the protocols at time
t a party Pi knows that all protocol instances terminate before time t+∆ so it
can wait until time t + ∆ and collect the set of outputs. Notice that by doing
so the original desynchronization Γ is maintained. When using protocols with
early stopping [21], the parties might terminate down to one round apart in
time. But this will be one of the stretched rounds, so it will increase the original
desynchronization by a constant factor.

Ticked Public Ledger In order to define a ledger functionality FLedger, we
adapt ideas from Badertscher et al. [3]. The ledger functionality FLedger is, due
to space limitations, presented in Fig. 20 in Supplementary Material B. There,
we also describe it in more detail. The original ledger functionality of Badertscher
et al. [3] keeps track of many relevant times and interacts with a global clock in
order to take actions at the appropriate time. Our ledger functionality FLedger,
on the other hand, only keeps track of a few counters. The counters are updated
during the ticks, and the appropriate actions are done if some of them reach zero.

10

Functionality FΓ,∆BC,delay

The ticked functionality FΓ,∆BC,delay is parameterized by maximal input desynchro-
nization Γ , maximal delay ∆ ≥ Γ , parties P = {P1, . . . ,Pn} and adversary S.
S may corrupt a strict subset I ⊂ P. The functionality uses the identifier ssid
to distinguish different instances per sid. FΓ,∆BC,delay for each ssid has internal states
stssid, donessid that are initially ⊥.
Send: Upon receiving an input (Send, sid, ssid,mi) from an honest party Pi: 1. If
stssid = ⊥ then set stssid = Γ . If either stssid = > or Pi sent (Send, sid, ssid, ·) before
then go to Total Breakdown; 2. For all Pj ∈ P, add (∆, sid,Pj , (Pi,mi, ssid))
to Q; 3. If all honest parties sent (Send, sid, ssid, ·) then set donessid = >; 4. Send
(Send, sid, ssid,Pi,mi) to S.

Total Breakdown: Doing a total breakdown means the ideal functionality from
now on relays all inputs to S, otherwise ignores the input and lets S determine all
outputs from then on. The ideal functionality becomes a proxy for S.

Tick:
1. If stssid = a for a ≥ 0: (a) If a > 0 then set stssid = a−1; (b) If a = 0 and if there

is Pi ∈ P \I that did not send (Send, sid, ssid, ·) then go to Total Breakdown,
otherwise set stssid = >; (c) If donessid = > then wait for mi from S for each
Pi ∈ I and, if S sends it, then add (a, sid,Pj , (Pi,mi, ssid)) to Q for all Pj ∈ P,
and set stssid = >.

2. Remove each (0, sid,Pi,M) from Q and add (sid,Pi,M) to M.

3. Replace each (cnt, sid,Pi,M) in Q with (cnt− 1, sid,Pi,M).
Upon receiving (Schedule, sid, ssid,D) from S:

– If (Deliver, sid, ssid) ∈ D and donessid = > then, for all Pi ∈ P, remove
(cnt, sid,Pj , (Pi,mi, ssid)) from Q and add (sid,Pj , (Pi,mi, ssid)) to M.

Fig. 2: Ticked ideal functionality FΓ,∆BC,delay for synchronized authenticated broad-
cast with maximal message delay ∆.

We also enforce liveness and chain quality properties, and our ledger functionality
can be realized by the same protocols as [3].

4 Publicly Verifiable Time-Lock Puzzles

In this section, we describe an ideal functionality Ftlp for publicly verifiable
TLPs. Intuitively, a publicly verifiable TLP allows a prover who performs all
computational steps needed for solving a TLP to later convince a verifier that the
solution is correct while requiring the verifier to perform only a constant amount
of computational steps. The ideal functionality Ftlp as presented in Figure 3
models exactly that behavior: Ftlp has an extra interface for any verifier to check
whether a certain solution to a given TLP is correct.

In Supplementary Material C, we provide Protocol πtlp that realizes Ftlp and
prove Theorem 1. Interestingly, our TLP protocol generalizes the construction
from [5], building on a generic primitive called trapdoor sequential computation
captured by functionality Ftsc, which is a generalization of functionality Frsw

(that captures the RSW assumption as defined in Supplementary Material A.1).

11

Functionality Ftlp

Ftlp is parameterized by a set of parties P, a set of verifiers V, an owner Po ∈ P, a
computational security parameter τ , a state space ST and a tag space T AG. The
functionality also interacts with an adversary S. Ftlp contains initially empty lists
steps (honest puzzle transitions), omsg (output messages).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid, Γ,m) from Po
where Γ ∈ N+ and m ∈ {0, 1}τ , proceed as follows:

1. If Po is honest sample tag
$← T AG and Γ + 1 random distinct states stj

$←
{0, 1}τ for j ∈ {0, . . . , Γ}. If Po is corrupted, let S provide values tag ∈ T AG
and Γ + 1 distinct values stj ∈ ST .

2. Append (st0, tag, stΓ ,m) to omsg, append (stj , stj+1) to steps for j ∈
{0, . . . , Γ − 1}, output (CreatedPuzzle, sid, puz = (st0, Γ, tag), stΓ) to Po and
(CreatedPuzzle, sid, puz) to S. Ftlp stops accepting messages of this form.

Solve: Upon receiving (Solve, sid, st) from party Pi ∈ P with st ∈ ST , if there
is a st′ such that (st, st′) ∈ steps, append (Pi, st, st

′) to Q and ignore the next
steps. Otherwise, proceed as follows:

– If Po is honest, sample st′
$← ST .

– If Po is corrupted, send (Solve, sid, st) to S and wait for the answer
(Solve, sid, st, st′).

Append (st, st′) to steps and append (Pi, st, st
′) to Q.

Get Message: Upon receiving (GetMsg, sid, puz, st) from party Pi ∈ P with st ∈
ST , parse puz = (st0, Γ, tag) and proceed as follows:

– If Po is honest and there is no m such that (st0, tag, st,m) ∈ omsg, append
(st0, tag, st,⊥) to omsg.

– If Po is corrupted and there is no m such that (st0, tag, st,m) ∈ omsg, send
(GetMsg, sid, puz, st) to S, wait for S to answer with (GetMsg, sid, puz, st,m)
and append (st0, tag, st,m) to omsg.

Get (st0, tag, st,m) from omsg and output (GetMsg, sid, st0, tag, st,m) to Pi.
Fetch State: Upon receiving (Fetch, sid) from Pi ∈ P retrieve the set Li of all
entries (Pi, sid, ·, ·) in M, remove Li from M and send (Fetch, sid, Li) to Pi.
Public Verification: Upon receiving (Verify, sid, puz, st,m) from a party Vi ∈ V,
parse puz = (st0, Γ, tag) and, if there exists (st0, tag, st,m) ∈ omsg, set b = 1,
else set b = 0. Output (Verified, sid, puz, st,m, b) to Vi.
Tick: Set M←Q and Q = ∅.

Fig. 3: Ticked Functionality Ftlp for publicly verifiable time-lock puzzles.

Theorem 1. Protocol πtlp UC-realizes Ftlp in the GrpoRO,Ftsc-hybrid model with
computational security against a static adversary. For every static adversary A
and environment Z, there exists a simulator S such that Z cannot distinguish
πtlp composed with GrpoRO,Ftsc and A from S composed with Ftlp.

5 Universally Composable Verifiable Delay Functions

We present a generic UC construction of VDFs as modeled in functionality FVDF

(described in Figure 6) from a generic verifiable sequential computation scheme

12

modeled in functionality Fpsc (described in Figure 5) and a global random oracle
GrpoRO. Our construction is presented in Protocol πVDF (described in Figure 4).

Verifiable Sequential Computation We model a stand alone VDF as a
generic verifiable sequential computation captured in functionality Fpsc. This
functionality is an extension of Ftsc (which is used for our UC-secure TLP)
with two crucial differences: 1. There is no trapdoor allowing for immediate
computation of many steps; 2. It is possible to obtain a proof that a given output
state is obtained after a certain number of steps from a given input state. While
computing the next step from a given input step takes one tick, generating
and verifying such a proof of computation takes non-constant amounts of steps
modeled as functions of the number of computational steps between the input
and output states. This model captures the fact that the existing techniques
(e.g. [34,40,23]) for generating/verifying such proofs are not constant time.

VDF Functionality We define an ideal functionality FVDF for VDFs in Fig-
ure 6. While this functionality bears similarities to Fpsc, it takes special care of
encoding inputs and outputs in order to avoid malleability and allow for equiv-
ocation and extraction. In order to evaluate a VDF on input in, the caller uses
the Solve interface to perform each evaluation step. Once the desired number
of steps have been evaluated through Solve, the caller can obtain the corre-
sponding output out along with proof π by calling interface Get Output. Since
generating and verifying the proof may take longer than one solution step, the
outputs from the Get Output and Verify interfaces are delayed accordingly.
Further discussion on FVDF is presented in Supplementary Material D.

Construction Our protocol πVDF realizing FVDF in the Fpsc,GrpoRO-hybrid
model is described in Figure 4. Departing from Fpsc,GrpoRO this protocol works
by letting the state el1 be the VDF input in. Once all the Γ solution steps
are computed and the final state elΓ is obtained, the output is defined as
out = H2(sid|Γ |elΓ |π′) where H2 is an instance of GrpoRO and the proof π′

is obtained by sending (Prove, sid, el1, . . . , elΓ) to Fpsc (i.e. proving elΓ was
obtained after Γ computation steps starting from el1), with the VDF proof de-
fined as π = (Γ, el1, elΓ , π

′). Verification of an output out obtained from input
in with proof π consists of again setting the initial state el′1 = in and the out-
put out′ = H2(sid|Γ |elΓ |π′), then checking that out = out′ and verifying with
Fpsc that π′ is valid with respect to Γ, el′1, elΓ . The security of Protocol πVDF

is formally stated in Theorem 2, which is proven in Supplementary Material D..

Theorem 2. Protocol πVDF UC-realizes FVDF in the GrpoRO,Fpsc-hybrid model
with computational security against a static adversary. Formally, there exists a
simulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish πVDF composed with GrpoRO,Fpsc and A from S
composed with FVDF.

13

Protocol πVDF

Protocol πVDF is parameterized by a computational security parameter τ , a state
space ST = {0, 1}τ and a proof space PROOF = {0, 1}5τ . πtlp is executed by a set
of parties P interacting among themselves and with functionalities Fpsc and GrpoRO2

(an instance of GrpoRO with domain {0, 1}2·τ and output size {0, 1}τ). Each party
Pi ∈ P maintains initially empty sets L1

i , L
2
i , L

3
i .

Solve: Upon receiving input (Solve, sid, st), a party Pi ∈ P sends (Step, sid, st) to
Fpsc, receiving (Step, sid, st) in response, then sends (activated) to Gticker.
Get Output: Upon receiving (GetOutput, sid, in, st1, . . . , stΓ) as input, a party
Pi ∈ P sends (Prove, sid, st1, . . . , stΓ) to Fpsc, receiving (Proof, sid, st1, . . . , stΓ) in
response, then sends (activated) to Gticker.
Verify: On input (Verify, sid, in, out, Γ, π), a party Pi ∈ P parses π as π = (stΓ , π

′)
and proceeds as follows:
1. Send (Hash-Query, (sid|Γ |stΓ |π′)) to GrpoRO2, obtaining (Hash-Confirm, h2).

Send (IsProgrammed, (sid|Γ |stΓ |π′)) to GrpoRO2, obtaining
(IsProgrammed, b2). If b2 = 1 or out 6= h2, output (sid, in, out, Γ, π, 0)
and ignore the next steps.

2. Send (Verify, sid, in, stΓ , Γ, π
′) to Fpsc, then send (activated) to Gticker.

Fetch State: Upon receiving (Fetch, sid), output (Fetch, sid, L1
i , L

2
i , L

3
i).

Tick: Every time Pi is activated, first send (Output, sid) to Fpsc, receiving

(Complete, sid, L1
i , L

2
i , L

3
i). If (L1

i , L
2
i , L

3
i) 6= (L1

i , L
2
i , L

3
i), set (L1

i , L
2
i , L

3
i) ←

(L1
i , L

2
i , L

3
i) and proceed as follows:

1. For all (Pi, (st, st)) ∈ L1
i , output (sid, st, st).

2. For all (Pi, (st1, stΓ , π′)) ∈ L2
i , proceed as follows:

(a) Send (Hash-Query, (sid|Γ |stΓ |π′)) to GrpoRO2, obtaining
(Hash-Confirm, h2). Send (IsProgrammed, (sid|Γ |stΓ |π′)) to GrpoRO2,
obtaining (IsProgrammed, b2). If b2 = 1, abort.

(b) Set out = h2, π = (stΓ , π
′) and output (sid, st1, out, Γ, π).

3. For all (Vi, (in, stΓ , π′, bπ)) ∈ L3
i , output (sid, in, out, Γ, π, bπ)).

4. If Pi has no inputs, send (activated) to Gticker. Otherwise process the inputs
as described above.

Otherwise, in case (L1
i , L

2
i , L

3
i) = (L1

i , L
2
i , L

3
i), if Pi has no inputs, send (activated)

to Gticker, else process the inputs as described above.

Fig. 4: Protocol πVDF realizing FVDF in the Fpsc,GrpoRO-hybrid model.

14

Functionality Fpsc

Fpsc interacts with a set of parties P and an adversary S. It is parameterized by
a computational security parameter τ , an initially empty set prf, two lists in and
out (computational steps), two lists Qp,Qv (proofs that currently get computed
and proofs that currently get verified), and two listsMp,Mv (outputs of the proof
computation and verification steps). Fpsc uses two public functions f, g : {0, 1}? 7→ N
which describe how many ticks it takes to either create a proof from k consecutive
elements (f) or to validate such a proof (g).

Step: Upon receiving (Step, sid, el) from Pi ∈ P or S where el ∈ {0, 1}τ :
1. If (el, nxt) ∈ seq for a nxt ∈ {0, 1}τ , then set nxt = nxt.

2. If (el, nxt) /∈ seq, proceed as follows:
– If Pi is honest, sample nxt ∈ {0, 1}τ and add (el, nxt) to seq.

– If Pi is corrupted or if the message is from S, set nxt =⊥.
Finaly, add (Pi, (el, nxt)) to in and return (Step, sid, el) to Pi.
Prove: Upon receiving (Prove, sid, el1, . . . , elk) from Pi ∈ P, add (Pi,
(f(el1, . . . , elk), el1, . . . , elk)) to Qp and output (Proof, sid, el1, . . . , elk) to Pi.
Verify: Upon receiving (Verify, sid, elI, elO, k, π) from Pi ∈ P where π ∈ {0, 1}τ ,
add (Pi, (g(elI, elO, k, π), elI, elO, k, π)) to Qp and output (Verify, sid, elI, elO, k, π)
to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set L1

i of all entries
(Pi, ·) in out, the set L2

i of all entries (Pi, ·) in Mp and the set L3
i of all entries

(Pi, ·) in Mv, remove Lji from their lists and send (Complete, sid, L1
i , L

2
i , L

3
i) to Pi.

Tick: Set Mp = ∅,Mv = ∅ and process queues in,Qv,Qp:
1. For each (Pi, (el,⊥)) ∈ in, send (Step, sid, el) to S and wait for answer

(Step, sid, el, nxt). If nxt /∈ {0, 1}τ or there exists (nxt, ·) ∈ seq or there ex-
ists (·, nxt) ∈ seq, output ⊥ and halt. Otherwise replace (Pi, (el,⊥)) with
(Pi, (el, nxt)) in in. Set out← in and in = ∅.

2. For each (Pi, (c, elI, elO, k, π)) ∈ Qv: if c = 0 then remove (Pi, (0, elI, elO, k, π))
from Qv and add (Pi, (elI, elO, k, π, 1)) toMv if (elI, elO, k, π) ∈ prf, otherwise
add (Pi, (elI, elO, k, π, 0)). If c > 0 then replace (Pi, (c, elI, elO, k, π)) with
(Pi, (c− 1, elI, elO, k, π)) in Qv.

3. For each (Pi, (c, elI, . . . , elO)) ∈ Qp, if c = 0, remove (Pi, (0, elI, . . . , elO)) from
Qp and proceed as follows:
(a) If (elI, elO, k, π) ∈ prf, add (Pi, (elI, elO, k, π)) toMp and skip next steps.

(b) If (elI, elO, k, π) /∈ prf, check that (elj , elj+1) ∈ seq for all j ∈ [k − 1]. If
this check fails, add (Pi, (Invalid, elI, . . . , elO)) to Mp and skip Step (c).

(c) Send (ProofStr, sid,Pi, elI, . . . , elO) to S and wait for response
(ProofStr, sid,Pi, elI, elO, π). If π 6∈ {0, 1}τ or (el′I, el

′
O, k
′, π) ∈ prf or if

(·, ·, ·, π) ∈ Qv then Fpsc halts. Otherwise add (elI, elO, k, π) to prf and add
(Pi, (elI, elO, k, π)) to Mp.

If c > 0 then replace (Pi, (c, elI, elO)) with (Pi, (c− 1, elI, elO)) in Qp.

Fig. 5: Ticked Functionality Fpsc for provable sequential computations.

15

Functionality FVDF

FVDF is parameterized by a set of parties P, a computational security parameter
τ , a state space ST and a proof space PROOF . In addition to P the function-
ality interacts with an ideal adversary S. FVDF contains initially empty lists steps
(honest VDF transitions), OUT (outputs), Qp (proof computation queue) and Qv

(verification computation queue), Mp (proof output queue) and Mv (verification
output queue). FVDF is parameterized by two functions f, g : {0, 1}? 7→ N.

Solve: Upon receiving (Solve, sid, st) from Pi ∈ P where st ∈ ST :

– If (st, ·) 6∈ steps, if Pi is honest, sample st′
$← ST , append (st, st′) to steps

and (Pi, st, st
′) to Q. If Pi is instead corrupted, append (Pi, st,⊥) to Q.

– If (st, st′) ∈ steps, append (Pi, st, st
′) to Q.

Get Output: Upon receiving (GetOutput, sid, st1, . . . , stΓ) from party Pi ∈ P
where st1, . . . , stΓ ∈ ST , add (Pi, (f(st1, . . . , stΓ), st1, . . . , stΓ)) to Qp and out-
put (Proof, sid, st1, . . . , stΓ) to Pi.
Verify: Upon receiving (Verify, sid, in, out, Γ, π) from a party Vi ∈ V where
π ∈ PROOF , add (Vi, (g(in, out, Γ, π), in, out, Γ, π)) to Qp and output
(Verify, sid, in, out, Γ, π) to Vi.
Fetch State: Upon receiving (Fetch, sid) from Pi ∈ P retrieve the set L1

i of all
entries (Pi, ·) inM, the set L2

i of all entries (Pi, ·) inMp and the set L3
i of all entries

(Pi, ·) inMv, remove Lji from their respective lists and output (Fetch, sid, L1
i , L

2
i , L

3
i)

to Pi. Upon receiving (Fetch, sid) from S, output (Fetch, sid, {L1
i , L

2
i , L

3
i }Pi∈P).

Tick: Set Mp = ∅,Mv = ∅ and process the message queues Q,Qp,Qv:

1. For each (Pi, st,⊥) ∈ Q, send (Solve, sid, st) to S and wait for answer
(Solve, sid, st, st′). If st′ /∈ ST or (st′, ·) ∈ steps or (·, st′) ∈ steps, FVDF

halts. Otherwise, replace (Pi, st,⊥) with (Pi, st, st′) in Q. Set M ← Q and
Q = ∅.

2. For each (Vi, (c, in, out, Γ, π)) ∈ Qv: if c = 0 then remove (Vi, (0, in, out, Γ, π))
from Qv and add (Vi, (in, out, Γ, π, 1)) to Mv if (in, out, Γ, π) ∈ OUT, other-
wise add (Vi, (in, out, Γ, π, 0)). If c > 0 then replace (Vi, (c, in, out, Γ, π)) with
(Vi, (c− 1, in, out, Γ, π)) in Qv.

3. For each (Pi, (c, st1, . . . , stΓ)) ∈ Qp, if c = 0, remove (Pi, (0, st1, . . . , stΓ))
from Qp and proceed as follows:
(a) If (st1, out, Γ, π) ∈ OUT, add (Pi, (st1, out, π)) toMp and skip next steps.

(b) If (st1, out, Γ, π) /∈ OUT, if (st1, st2), (st2, st3), . . . , (stΓ−1, stΓ) /∈ steps,
add (Pi, (Invalid, st1, . . . , stΓ)) to Mp and skip the next step.

(c) Send (ProofStr, sid,Pi, st1, . . . , stΓ) to S and wait for response
(ProofStr, sid,Pi, st1, stΓ , π). If π 6∈ PROOF or (st′1, out

′, Γ ′, π) ∈ OUT

or if (·, π) ∈ Qv, then FVDF halts. Otherwise sample out
$← {0, 1}τ , add

(st1, out, Γ, π) to OUT and add (Pi, (st1, out, Γ, π)) to Mp.
If c > 0 replace (Pi, (c, st1, . . . , stΓ)) with (Pi, (c− 1, st1, . . . , stΓ)) in Qp.

Fig. 6: Ticked Functionality FVDF for Verifiable Delay Functions.

16

6 UC-secure Semi-Synchronous Randomness Beacons

We model a randomness beacon as a publicly verifiable coin tossing functionality
FRB

∆TLP−RB presented in Figure 7. Even though this functionality does not peri-
odically produce new random values as in some notions of randomness beacons,
it can be periodically queried by the parties when they need new randomness.

Functionality FRB
∆TLP−RB

FRB
∆TLP−RB is parameterized by delay ∆TLP−RB and interacts with parties P =

{P1, . . . ,Pn}, verifiers V and an adversary S through the following interfaces:

Toss: Upon receiving (Toss, sid) from all honest parties in P, sample x
$← {0, 1}τ

and send (Tossed, sid, x) to all parties in P via Q with delay ∆TLP−RB.

Verify: Upon receiving (Verify, sid, x) from Vj ∈ V, if (Tossed, sid, x) has been
sent to all parties in P set f = 1, else set f = 0. Send (Verify, sid, x, f) to Vj .
Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

Fig. 7: Ticked Functionality FRB
∆TLP−RB for Randomness Beacons.

6.1 Randomness Beacons from VDFs

It has been suggested that VDFs can be used to obtain a randomness bea-
con [9] via a simple protocol where parties post plaintext values r1, . . . , rn on
a public ledger and then evaluate a VDF on input H(r1| . . . |rn), where H() is
a cryptographic hash function, in order to obtain a random output r. However,
despite being used in industry [39], the security of this protocol was never for-
mally proven due to the lack of composability guarantees for VDFs. Our work
settles this question by formalizing Protocol πVDF−RB and proving Theorem 3 in
Supplementary Material E.

Theorem 3. If ∆ = maxTXDelay + emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (though unkown), Protocol πVDF−RB UC-realizes

FRB
∆TLP−RB in the Ftlp,FLedger-hybrid model with computational security against

static adversaries corrupting t < n/2 parties in P for ∆TLP−RB = 2(∆ + 1) +∑∆
i=1 i. There exists a simulator S such that for every static adversary A, and

any environment Z, the environment cannot distinguish an execution of πVDF−RB
by A composed with Ftlp,FLedger from an ideal execution with S and FRB

∆TLP−RB .

6.2 Randomness Beacons from TLPs

In order to construct a UC-secure randomness beacon from TLPs and a semi-
synchronous broadcast channel FΓ,∆BC,delay (with finite but unknown delay ∆), we
depart from a simple commit-then-open protocol for n parties with honest major-
ity where commitments are substituted by publicly verifiable TLPs as captured
in Ftlp. Such a protocol involves each party Pi posting a TLP containing a ran-
dom value ri, waiting for a set of at least 1 + n/2 TLPs to be received and then

17

opening their TLPs, which can be publicly verified. The output is defined as
r = rj1 ⊕ · · · ⊕ rj1+n/2 , where values rj are valid TLP openings. If an adversary
tries to bias the output by refusing to reveal the opening of its TLP, the honest
parties can recover by solving the TLP themselves.

To ensure the adversary cannot bias/abort this protocol, we must ensure two
conditions: 1. At least 1 + n/2 TLPs are broadcast and at least 1 is generated
by an honest party (i.e. it contains an uniformly random ri); 2. The adversary
must broadcast its TLPs before the honest TLPs open, so it does not learn any
of the honest parties’ ri and cannot choose its own ris in any way that biases the
output. While condition 1 is trivially guaranteed by honest majority, we ensure
condition 2 by dynamically adjusting the number of steps δ needed to solve
the TLPs without prior knowledge of the maximum broadcast delay ∆. Every
honest party checks that at least 1 +n/2 TLPs have been received from distinct
parties before a timeout of δ ticks counted from the moment they broadcast
their own TLPs. If this is not the case, the honest parties increase δ and repeat
the protocol from the beginning until they receive at least 1 + n/2 TLPs from
distinct parties before the timeout. In the optimistic scenario where all parties
follow the protocol (i.e. revealing TLP openings) and where the protocol is not
repeated, this protocol terminates as fast as all publicly verifiable openings to
the TLPs are revealed with computational and communication complexities of
O(n). Otherwise, the honest parties only have to solve the TLPs provided by
corrupted parties (who do not post a valid opening after the commitment phase).

This construction is particularly interesting in a setting with financial in-
centives as proposed by the popular Ethereum-based biased randomness beacon
RANDAO [35]. The core idea behind RANDAO is to leverage a smart contract
that collects a security deposit from all parties who participate in a protocol
execution before it starts. If corrupted parties misbehave, the smart contract re-
distributes their security deposits among the parties who successfully completed
the protocol. The rationale of this approach is that corrupted parties have no
financial incentive to introduce bias to the final output by selectively aborting
their execution. However, it is always possible for corrupted parties to bias RAN-
DAO’s output if they are willing to forfeit their security deposits. Applying a
similar approach to our optimized randomness beacon protocol yields a beacon
that cannot be biased even by an adversary willing to pay the price of forfeiting
security deposits. In our case, parties would be required to provide a security
deposit in order to participate in a protocol execution and would forfeit this
deposit if they fail to send a valid TLP or to provide a valid solution for their
TLP. An adversary could slow down the protocol execution by forcing honest
parties to solve the unopened TLPs, but it would not be able to bias the output.

We design and prove security of our protocol with an honest majority in
the semi-synchronous model where FΓ,∆BC,delay has a finite but unknown maximum
delay ∆. However, if we were in a synchronous setting with a known broadcast
delay ∆, we could achieve security with a dishonest majority by proceeding to
the Opening Phase after a delay of δ > ∆, since there would be a guarantee
that all honest party TLPs have been received.

18

Protocol πTLP−RB

Protocol πTLP−RB is parameterized by an initial delay δ and executed by a set of
parties P = {P1, . . . ,Pn} out of which t < n/2 are corrupted and a set of verifiers
V who interact with FΓ,∆BC,delay and instances F itlp of Ftlp for which Pi act as Po:
Toss: On input (Toss, sid), all parties in P proceed as follows:

1. Commitment Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:

(a) Sample ri
$← {0, 1}τ and send (CreatePuzzle, sid, δ, ri) to F itlp, receiving

(CreatedPuzzle, sid, puzi = (sti0, δ, tagi)) in response.
(b) Send (Send, sid, ssid, puzi) to FΓ,∆BC,delay and send (activated) to Gticker.
(c) Wait for all Pj ∈ P to broadcast their TLPs by setting csti = 0 and

performing the following steps every time it is activated: i. Send (Fetch, sid)
to FΓ,∆BC,delay, receiving (Fetch, sid, L); ii. Check that 1 + n/2 messages of the
form (Pi, sid, (Pj , puzj , ssid)) from different parties are in L (we call the
set of such parties C) and proceed to the Opening Phase if yes; iii. Send
(Fetch, sid) to F itlp and check that there is an entry (Pi, sticsti , st

i
csti+1) in

Li. If yes, increment csti; iv. If csti = δ, increment δ and go back to Step
1(a). v. Send (Solve, sid, sticsti) to F itlp; vi. Send (activated) to Gticker.

2. Opening Phase: All parties Pi ∈ C proceed as follows:
(a) Send (Send, sid, ssid′, stiδ, ri) to FΓ,∆BC,delay.
(b) Wait for all Pj ∈ C to broadcast a solution to their TLPs by setting csti = 0

and performing following steps every time it is activated: i. Send (Fetch, sid)
to F itlp and check that there is an entry (Pi, sticsti , st

i
csti+1) in Li. If yes,

increment csti; ii. If csti = δ, exit loop and go to next step. iii. Send
(Solve, sid, sticsti) to F itlp; iv. Send (activated) to Gticker;

(c) Send (Fetch, sid) to FΓ,∆BC,delay, receiving (Fetch, sid, L). Check that all mes-

sages of the form (Pi, sid, (Pj , stjδ, rj , ssid′)) from Pj ∈ C is a valid solution
to puzj by sending (Verify, sid, puzj , st

j
δ, rj) to Fjtlp and checking that the

answer is (Verified, sid, puzj , st
j
δ, rj , 1). Send (activated) to Gticker. If this

check passes for all puzj from Pj ∈ C, compute r =
⊕

ri∈V ri, output
(Tossed, sid, r) and skip Recovery Phase. Otherwise, proceed.

3. Recovery Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:
(a) For each j such that Pj ∈ C did not send a valid solution of puzj in the open-

ing phase, solve puzj = (stj0, δ, tagj) by setting cstj = 0 and performing
one iteration of the following loop in parallel for all puzj every time it is acti-

vated: i. Send (Fetch, sid) to Fjtlp and check that there is an entry (Pi, stjcstj ,
st
j
cstj+1) in Li. If yes, increment cstj ; ii. Send (Solve, sid, stjcstj) to Fjtlp;

iii. If cstj = δ, send (GetMsg, sid, puzj , st
j
cstj

) to Fjtlp, obtaining (GetMsg,

sid, puzj , st
j
cstj

, rj) in response and sending (Send, sid, ssid′′, (stjδ, rj)) to

FΓ,∆BC,delay. If all r1, . . . , r|C| have been obtained, Pi exits the loop and pro-
ceeds to the next step. Send (activated) to Gticker.

(b) Let G be the set of all rj such that Pj ∈ C, rj is a valid solution of puzj
and rj 6=⊥. (i.e. G is the set of values ri from valid TLPs posted in the
commitment phase). Compute r =

⊕
rj∈G rj , output (Tossed, sid, r). Send

(activated) to Gticker.
Fig. 8: Protocol πTLP−RB: Commitment, Opening and Recovery Phases

19

Protocol πTLP−RB

Verify: On input (Verify, sid, x), send (Fetch, sid) to FΓ,∆BC,delay, receiving
(Fetch, sid, L) and determining C for sid from L (by looking for the first 1 + n/2
messages of the form (Pi, sid, (Pj , puzj , ssid))). Check that each message of the

form (Pi, sid, (Ph, stjδ, rj , ssid′)) or (Pi, sid, (Ph, stjδ, rj , ssid′′)) in L for Pj ∈ C
and Ph ∈ P (i.e. messages containing solutions to a puzzle puzj from a party
Pj ∈ C, also including messages potentially sent in the recovery phase by any
party Ph ∈ P who solved an unopened puzj) contains a valid solution to

puzj by sending (Verify, sid, puzj , st
j
δ, rj) to Ftlp and checking that the answer is

(Verified, sid, puzj , st
j
δ, rj , 1). Let G be the set of all rj such that Pj ∈ C, rj is a

valid solution of puzj and rj 6=⊥. Check if x =
⊕

rj∈G rj . If all checks pass set

f = 1, else 0, output (Verify, sid, x, f).

Fig. 9: Protocol πTLP−RB: Verifiy.

We describe protocol πTLP−RB in Figures 8 and 9 and state its security in
Theorem 4, which is proven in Supplementary Material F.

Theorem 4. If ∆ is finite (though unknown) and all Pi ∈ P receive inputs
within a delay of Γ ticks of each other, Protocol πTLP−RB UC-realizes FRB

∆TLP−RB

in the Ftlp,FΓ,∆BC,delay-hybrid model with computational security against static ad-

versaries corrupting t < n
2 parties in P for ∆TLP−RB = 3(∆+1)+

∑∆
i=1 i. There

exists a simulator S such that for every static adversary A, and any environment
Z, the environment cannot distinguish an execution of πTLP−RB by A composed
with Ftlp,FΓ,∆BC,delay from an ideal execution with S and FRB

∆TLP−RB .

6.3 Using a Public Ledger FLedger with πTLP−RB

Instead of using a delayed broadcast FΓ,∆BC,delay, we can instantiate Protocol πTLP−RB
using a public ledger FLedger for communication. In this case, we must parame-
terize the TLPs with a delay δ that is large enough to guarantee that all honest
parties (including desynchronized ones) agree on the set of the first t+ 1 TLPs
that are posted on the ledger before proceeding to the Opening Phase. We
describe an alternative Protocol πTLP−RB−LEDGER that behaves exactly as Proto-
col πTLP−RB but leverages FLedger for communication.

Protocol πTLP−RB−LEDGER: This protocol is exactly the same as πTLP−RB except
for using FLedger for communication instead of FΓ,∆BC,delay in the following way:

– At every point of πTLP−RB where parties send (Send, sid, ssid,m) to FΓ,∆BC,delay,
instead they send (Submit, sid,m) to FLedger.

– At every point of πTLP−RB where parties send (Fetch, sid) to FΓ,∆BC,delay and
check for messages in (Fetch, sid, L), instead they send (Read, sid) to FLedger

and check for messages in (Read, sid, statei).

Theorem 5. If ∆ = maxTXDelay + emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (though unknown), Protocol πTLP−RB−LEDGER UC-

realizes FRB
∆TLP−RB in the Ftlp,FLedger-hybrid model with computational secu-

rity against a static adversary corrupting t < n
2 parties in P for ∆TLP−RB =

20

3(∆ + 1) +
∑∆
i=1 i. Formally, there exists a simulator S such that for every

static adversary A, and any environment Z, the environment cannot distinguish
an execution of πTLP−RB−LEDGER by A composed with Ftlp,FLedger from an ideal

execution with S and FRB
∆TLP−RB .

Proof. This theorem is proven in Supplementary Material F. ut
7 MPC with (Punishable) Output-Independent Abort

In this section we will describe how to construct a protocol that achieves MPC
with output-independent abort and subsequently outline how to financially pe-
nalize cheating behavior in the protocol. The starting point of this construction
will be MPC with secret-shared output, which is a strictly weaker primitive, as
well as the broadcast as modeled in FΓ,∆BC,delay and TLPs.

7.1 Functionalities for Output-Independent Abort

We begin by mentioning the functionalities that are used in our construction
and which have not appeared in previous work (when modeled with respect to
time). These functionalities are:

1. F∆mpc,sso (Fig. 11 and Fig. 12) for secure MPC with secret-shared output.

2. F∆,δmpc,oia (Fig. 13 and Fig. 14) for MPC with output-independent abort.

In Supplementary Material G, we also introduce the following functionalities:

1. F∆ct (Fig. 18) for coin-flipping with abort.
2. F∆,δcom (Fig. 28) for commitments with delayed non-interactive openings.
3. Fγ,δvcom (Fig. 29 and Fig. 30) for commitments with verifiable delayed non-

interactive openings.
4. Fγ,δSC (Fig. 32 and Fig. 33) which is an abstraction of a smart contract.

5. F∆,γ,δmpc,poia (Fig. 34 and Fig. 35) for MPC with punishable output-independent
abort.

Fig. 10: How MPC with (Punishable) Output-Independent Abort is constructed.

Before formally introducing all functionalities and explaining them in more
detail, we show how they are related in our construction in Figure 10. As can be

21

seen there our approach is twofold. First, we will realize F∆,δmpc,oia via the protocol

πmpc,oia relying on FΓ,∆BC,delay,F∆ct ,F∆mpc,sso and F∆,δcom . Then, we will show how to

implement F∆,γ,δmpc,poia via the protocol πmpc,poia (a generalization of πmpc,oia) which

uses Fγ,δSC ,F∆ct ,F∆mpc,sso as well as Fγ,δvcom. As mentioned in Fig. 10, Fγ,δvcom and Fγ,δSC

can be thought of as generalizations of F∆,δcom and FΓ,∆BC,delay. We now describe the
functionalities for πmpc,oia in more detail.

Functionality F∆mpc,sso (Computation, Message Handling)

The ticked functionality interacts with n parties P = {P1, . . . ,Pn} and an adversary
S which may corrupt a strict subset I ⊂ P.

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Init, sid, C) then store C. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆. Then accept xi as input for Pi.
2. Send m and the IDs to S if Pi ∈ I, otherwise notify S about a message with

prefix Input.

Computation: On first input (Compute, sid) by Pi ∈ P and if x1, . . . , xn were
accepted:
1. Notify parties P \ {Pi} via Q with delay ∆. If all parties sent (Compute, sid)

compute and store (y1, . . . , ym)← C(x1, . . . , xn).

2. Notify S about a message with prefix Compute.

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
Upon receiving (Schedule, sid,D) from S:

– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add
(Pi, sid,m) to M.

– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore all
further messages with this sid except to Fetch Message.

Fig. 11: Ticked Functionality F∆mpc,sso for MPC with Secret-Shared Output and
Linear Secret Share Operations.

MPC with Secret-Shared Output. The functionality F∆mpc,sso is formally
introduced in Fig. 11 and Fig. 12. It directly translates an MPC protocol with
secret-shared output into the TARDIS model, but does not make use of any tick-
related properties beyond scheduling of message transmission. The functionality
supports computations on secret input where the output of the computation is
additively secret-shared among the participants. Additionally, it allows parties
to sample random values, compute linear combinations of outputs and those
random values and allows to reliably but unfairly open secret-shared values.
F∆mpc,sso can be instantiated from many different MPC protocols, such as those
based on secret-sharing [6] or multiparty BMR [27].

22

Functionality F∆mpc,sso (Computation on Outputs)

Share Output: Upon first input (ShareOutput, sid, T) by Pi ∈ P for fresh identi-
fiers T = {cid1, . . . , cidm} and if Computation was finished:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent ShareOutput:
(a) Send (RequestShares, sid, T) to S, which replies with (OutputShares, sid,
{sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P \ I, h ∈ [m] sample sj,cidh ← F
uniformly random conditioned on yh =

⊕
k∈[n] sk,cidh .

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send sj,cid
with prefix OutputShares to party Pj via Q with delay ∆. Finally notify S
about the message with prefix OutputShares.

3. Notify S about a message with the prefix ShareOutput.

Share Random Value: Upon input (ShareRandom, sid, T) by all parties with fresh
identifiers T :

1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent ShareRandom:
(a) Send (RequestShares, sid, T) to S, which replies with (RandomShares,

sid, {sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P \ I, cid ∈ T sample sj,cid ← F
uniformly at random.

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send sj,cid
with prefix RandomShares to party Pj via Q with delay ∆. Finally notify
S about the message with prefix RandomShares.

3. Notify S about a message with the prefix ShareRandom.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈T , cid′) from all par-
ties: If all αcid ∈ F, all (cid, s1,cid, . . . , sn,cid) have been stored and cid′ is unused, set
s′i ←

∑
cid∈T αcid · si,cid and record (cid′, s′1, . . . , s

′
n).

Reveal: Upon input (Reveal, sid, T) by Pi ∈ P for identifiers T and if
(cid, s1, . . . , sn) is stored for each cid ∈ T :
1. Notify the parties P \{Pi} via Q with delay ∆. Then notify S about a message

with prefix Reveal.

2. If all parties sent (Reveal, sid, T) then send
(Reveal, sid, {(cid, s1,cid, . . . , sn,cid)}cid∈T) to S.

3. If S sends (DeliverReveal, sid, T) then send message {(cid, s1,cid, . . . , sn,cid)}cid∈T
with prefix DeliverReveal to parties P via Q with delay ∆ and notify S about
a message with prefix DeliverReveal.

Fig. 12: Ticked Functionality F∆mpc,sso for MPC with Secret-Shared Output and
Linear Secret Share Operations, Part 2.

Commitments with Delayed Openings. In Fig. 28 in Supplementary Ma-
terial G we describe the functionality F∆,δcom for commitments with delayed non-
interactive openings. The functionality distinguishes between a sender PSend,
which is allowed to make commitments, and a set of receivers, which will obtain
the openings. In comparison to regular commitments with a normal Open that

23

simply reveals the output to all parties, the sender is also allowed to perform a
Delayed Open. This means that there is a delay between the choice of a sender
to open a commitment (or not) and the actual opening towards the receivers and
also the adversary.

While both the Commit and Open directly resemble their counterparts in
a normal commitment functionality, the Delayed Open logic is not as straight-
forward. What happens during such a delayed open is that first all honest parties
will simultaneously learn that indeed an opening will happen in the future - for
which they obtain a message DOpen. Additionally, F∆,δcom stores the openings in
an internal queue O. These openings can not be rescheduled by the adversary,
and therefore it will take δ ticks before S actually learns the opening of the
commitment. For honest parties, this may even take up to ∆+δ ticks depending
when DOpen is obtained by the honest parties. If the openings, once triggered
by Tick, are written to the output queue M then they can directly be read by
the respective parties. F∆,δcom ensures that all honest parties will learn the delayed
opening simultaneously.

In Supplementary Material G we provide a secure instantiation of a publicly
verifiable4 version of F∆,δcom . Since we do not require homomorphic operations, this
means that it can be realized with a much simpler protocol than the respective
two-party functionality in [5].

MPC with Output-Independent Abort. In Fig. 13 and Fig. 14 we describe
the functionality F∆,δmpc,oia for MPC with output-independent abort.

In terms of the actual secure computation, our functionality is identical with
F∆mpc,sso, although it does not reveal the concrete shares to the parties and the
adversary during the sharing. The output-independent abort property of our
functionality is then achieved as follows: in order to reveal the output of the
computation, each party will have to send Reveal to F∆,δmpc,oia. Once all honest
parties and the verifiers thus learn that the parties indeed are synchronized by
seeing that the first synchronization message arrives at all parties (st = sync

and f = >), the internal state of the functionality changes. From this point on,
the adversary can, within an additional time-frame of δ ticks, decide whether
to reveal its shares or not. Then, once these δ ticks passed, S will obtain the
output y of the computation after having provided the set of aborting parties
J . If J = ∅ then F∆,δmpc,oia will, within δ additional ticks, simultaneously output y
to all honest parties, while it otherwise outputs the set J .

The additional up to δ ticks between the adversary learning y and the honest
parties learning y or J is due to our protocol and will be more clear later.

Coin Tossing. πmpc,oia additionally requires a functionality for coin tossing F∆ct
as depicted in Fig. 18 in Supplementary Material A. Note that F∆ct can easily be

realized in the FΓ,∆BC,delay,F∆,δcom -hybrid model.

4 See Theorem 7 for more details. To adapt the construction to F∆,δcom it is sufficient to
replace the bulletin board with a broadcast functionality such as FΓ,∆BC,delay.

24

7.2 Building MPC with Output-Independent Abort

We will now describe how to construct an MPC protocol that guarantees output-
independent abort. This generalizes [5] to the multiparty setting. Although this
might appear like a natural generalization, constructing the protocol is far from
trivial as we must take care that all honest parties agree on the same set of
cheaters. Our protocol, on a high level, works as follows:

1. The parties begin by sending a message beat (i.e. a heartbeat) to the func-

tionality FΓ,∆BC,delay. Throughout the protocol, they do the following in parallel
to running the MPC protocol, unless mentioned otherwise:

All parties wait for a broadcast message beat from all parties on FΓ,∆BC,delay. If

some parties did not send their message to FΓ,∆BC,delay in one iteration then all

parties abort. Otherwise, they send beat in another iteration to FΓ,∆BC,delay.

2. The parties provide their inputs xi to F∆mpc,sso, perform the computation us-

ing F∆mpc,sso and obtain secret shares y1, . . . ,yn of the output y. Additionally,

they sample a blinding value ri ∈ Fλ for each party Pi inside F∆mpc,sso. The
values yi, ri are sent to each Pi.

3. Next, the parties commit to both yi, ri using F∆,δcom towards all parties. Dis-
honest parties may commit to a different value than the one they obtained
from F∆mpc,sso and consistency must therefore be checked.

4. All parties use the coin-flipping functionality to sample a uniformly random
matrix A ∈ Fλ×m. This matrix is used to perform the consistency check.

5. For each i ∈ [n] the parties compute and open ti = ri + Ayi using F∆mpc,sso.
Due to the blinding value ri opening ti will not leak any information about
yi of Pi ∈ P \ I to the adversary.

6. Each party that obtained ti changes the next beat message to FΓ,∆BC,delay to
ready. Once parties receive ready from all other parties and are therefore
synchronized, they simultaneously perform a delayed open of both yi, ri
using their commitments (and ignore FΓ,∆BC,delay from now on). Parties which
don’t open commitments in time or whose opened values do not yield ti as
outlined before are considered as cheaters.

Intuitively, our construction has output-independent abort because of the
timing of the opening: Until Step 6, the adversary may abort at any time but no
such abort will provide it with information about the output. Once the opening
phase begins, parties can easily verify if an opening by an adversary is valid or
not - because he committed to its shares before A was chosen and the probability
of a collision with ti for different choices of y′i, r

′
i can be shown to be negligible

in λ as this is exactly the same as finding a collision to a universal hash function.
The decision to initiate its opening, on the other hand, must arrive at each honest
party before the honest party’s delayed opening finishes - which will be ensured
by the appropriate choice of δ with respect to ∆ for honest parties. In turn, an
adversary must thus send its opening message before learning the shares of an
honest party, which is exactly the property of output-independent abort.

25

Functionality F∆,δmpc,oia(Computation, Sharing)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S who may corrupt a strict subset I ⊂ P. F∆,δmpc,oia is parameterized by ∆, δ ∈ N+.
The functionality internally has an initially empty list O, a state st initially ⊥ as
well as an initially empty set J .

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Init, sid, C) then store C locally. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆. Then accept xi as input for Pi.
2. Send xi and the IDs to S if Pi ∈ I, otherwise notify S about a message with

prefix Input.

Computation: On first input (Compute, sid) by Pi ∈ P and if all x1, . . . , xn were
accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Compute, sid) compute y = C(x1, . . . , xn) and store y.

3. Notify S about a message with prefix Compute.

Share: On first input (Share, sid) by party Pi, if y has been stored and if st = ⊥:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent Share then:
(a) Send (Shares?, sid) to S.

(b) Upon (DeliverShares, sid) from S send a message with prefix DeliverShares
to each Pj ∈ P \ I via Q with delay ∆. Then notify S about messages with
prefix DeliverShares and the IDs.

(c) Otherwise, if S sends (Abort, sid) then send Abort to all parties

3. Notify S about a message with prefix Share.

Reveal: Upon first message (Reveal, sid, i) by each party Pi ∈ P, if Share has
finished, if no DeliverShare message is in Q and if st = ⊥ or st = sync:
1. Simultaneously send a message i with prefix Reveal to parties P \ {Pi} via Q

with delay ∆.

2. Set st = sync and notify S about a message with prefix Reveal.

Fig. 13: The F∆,δmpc,oia Functionality for MPC with Output-Independent Abort.

Concerning agreement on the output of the honest parties, we see that if
all honest parties initially start almost synchronized (i.e. at most Γ ticks apart)
then if they do not abort during the protocol they will simultaneously open their
commitments. Therefore, using FΓ,∆BC,delay guarantees that they all have the same
view of all adversarial messages during the Reveal phase.

Interestingly, our construction does not need homomorphic commitments as
was necessary in [5,4] to achieve their verifiable or output-independent abort
in UC. Clearly, our solution can also be used to improve these protocols and

26

Functionality F∆,δmpc,oia (Timing)

Tick:
1. Set f← ⊥, remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m)

to M. If m = (Reveal, i) then set f← >.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

3. If st = wait(x) & x ≥ 0:
If x ≥ 0: Set st = wait(x− 1).

If x = 0:
(a) Send (Abort?, sid) to S and wait for response (Abort, sid, J) with J ⊆ I.

(b) If J = ∅ then send message y with prefix Output to each party P \ I
via Q with delay δ. If J 6= ∅ then send message J with prefix Abort to
each party P \ I via Q with delay δ.

(c) Send (Output, sid, y) and the IDs to S.

4. If st = sync and f = > then set st = wait(δ) and send (RevealStart, sid) to S.
Upon receiving (Schedule, sid,D) from S:

– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add
(Pi, sid,m) to M.

– If (Abort, sid) ∈ D and st = ⊥ then add (Pi, sid,Abort) to M for each Pi ∈ P
and ignore all further messages with this sid except to Fetch Message.

Fig. 14: The Ticked F∆,δmpc,oia Functionality for MPC with Output-Independent
Abort.

to simplify their constructions. The full protocol can be found in Fig. 15 and
Fig. 16. In Supplementary Material G we prove the following Theorem:

Theorem 6. Let λ be the statistical security parameter and δ > ∆. Further-
more, assume that all honest parties obtain their inputs at most Γ ticks apart.
Then the protocol πmpc,oia GUC-securely implements the ticked functionality F∆,δmpc,oia

in the F∆mpc,sso,F∆,δcom ,F∆ct ,F
Γ,∆
BC,delay-hybrid model against any static adversary cor-

rupting up to n−1 parties in P. The transcripts are statistically indistinguishable.

7.3 Penalizing Cheaters

We will now outline how the idea behind the protocol πmpc,oia can be modified
in order to construct MPC with punishable output-independent abort.

In order to manage monetary contributions of parties, we will use a smart
contract functionality Fγ,δSC that accepts deposits of parties and distributes these
to parties that do not cheat. As this smart contract will have to act upon mes-
sages sent by all parties, we will let Fγ,δSC replace the broadcast functionality

FΓ,∆BC,delay for synchronization. This has the additional advantage that it easily

synchronizes honest parties and Fγ,δSC concerning the abort condition that no
DOpen message can be accepted anymore. This is important, as we require that
both the honest parties and Fγ,δSC identify the same set of cheaters J1 during the

opening phase, which Fγ,δSC can then punish.

27

Protocol πmpc,oia (Computation, Share)

All parties P have access to one instance of the functionalities F∆mpc,sso, F∆ct and

FΓ,∆BC,delay. Furthermore, each Pi ∈ P has it’s own F∆,δ,icom where it acts as the dedicated
sender and all other parties of P are receivers.
Throughout the protocol, we say “Pi ticks” when we mean that it sends (activated)
to Gticker. We say that “Pi waits” when we mean that it, upon each activation, first
checks if the event happened and if not, sends (activated) to Gticker.

Upon every activation: Let c be a counter that is initially 0. Pi sends
(Send, sid, c, beat) to the functionality FΓ,∆BC,delay (with c as ssid). Throughout πmpc,oia,

each Pi waits for FΓ,∆BC,delay to return (Pj , beat, c) for all other Pj ∈ P. If it does,

then each Pi increases c by 1 and sends (Send, sid, c, beat) to FΓ,∆BC,delay. Otherwise
the parties abort.

Init: Each Pi ∈ P sends (Init, sid, C) to F∆mpc,sso and ticks. It waits until it obtains
messages C with prefix Init from F∆mpc,sso for every other party P \ {Pi}.
Input: Each Pi ∈ P sends (Input, sid, i, xi) to F∆mpc,sso and ticks. It waits until it
obtains messages j with prefix Input from F∆mpc,sso for every Pj ∈ P \ {Pi}.
Computation: Each Pi ∈ P sends (Computation, sid) to F∆mpc,sso and ticks. It
waits until it obtains messages with prefix Computation from F∆mpc,sso for every other
P \ {Pi}.
Share:
1. Set Ty = {cidy,j}j∈[m], Tr = {cidr,k}k∈[λ] and Tt = {cidt,k}k∈[λ].
2. Each Pi ∈ P sends (ShareOutput, sid, Ty) to F∆mpc,sso and ticks. Then it waits

until it obtains a message {yi,cid}cid∈Ty with prefix OutputShares from F∆mpc,sso.

3. Each Pi ∈ P sends (ShareRandom, sid, Tr) to F∆mpc,sso and ticks. It then waits
until it obtains a message {ri,cid}cid∈Tr with prefix RandomShares from F∆mpc,sso.
Set yi = (yi,cidy,1 , . . . , yi,cidy,m) and equivalently define ri.

4. Each Pi ∈ P sends (Commit, sid, cidi, (yi, ri)) to F∆,δ,icom and ticks. It then waits
for messages (Commit, sid, cidj) from the F∆,δ,jcom -instances of all other Pj ∈
P \ {Pi}.

5. Each Pi ∈ P sends (Toss, sid,m · λ) to F∆ct and ticks. It then waits for the
message (Coins, sid,A) where A ∈ Fλ×m.

6. Each Pi ∈ P for k ∈ [λ] sends (Linear, sid, {(cidv,j ,A[k, j])}j∈[m] ∪
{(cidr,k, 1)}, cidt,k) to F∆mpc,sso.

7. Each Pi ∈ P sends (Reveal, sid, Tt) to F∆mpc,sso and ticks. It then waits for the
message {(cid, t1,cid, . . . , tn,cid)}cid∈Tt with prefix DeliverReveal from F∆mpc,sso. Set
tj = (tj,cidt,1 , . . . , tj,cidt,λ) for each j ∈ [n].

Fig. 15: Protocol πmpc,oia for MPC with Output-Independent Abort.

In order to identify the set J2 of parties that open in time but with incorrect
output shares, Fγ,δSC must be able to check openings of F∆,δcom . For this reason we
will enhance this functionality to Fγ,δvcom which has verifiability for opened values.
Moreover, we ask that the opened values of Fγ,δvcom have to be transferable: if any

party Pi has found the opening, then by sending it to Fγ,δSC the smart contract

28

Protocol πmpc,oia (Reveal)

Reveal: If Share completed successfully:
1. Each party changes the messages to FΓ,∆BC,delay to (Send, sid, c, ready). Upon re-

ceiving the first (Pj , ready, c) for all Pj ∈ P from FΓ,∆BC,delay, each Pi sends

(DOpen, sid, cidi) to F∆,δ,icom and ticks. It also stops sending beat messages to
FΓ,∆BC,delay.

2. Each Pi ∈ P waits until F∆,δ,icom returns (DOpened, sid, (cidi, (yi, ri)). If it opens
then Pi checks if it obtained a message with prefix DOpen from all other F∆,δ,jcom .
Let J1 ⊂ P be the set of parties such that Pi did not obtain DOpen before it
received (DOpened, sid, (cidi, (yi, ri)).

3. Each Pi ∈ P waits until it obtains (DOpened, sid, (cidj , (yj , rj)) for each Pj ∈
P \ (J1 ∪{Pi}) from the respective instance of F∆,δ,jcom . It then defines J2 as the
set of all parties Pj such that tj 6= rj + Ayj .

4. If J1 ∪ J2 = ∅ then each Pi ∈ P outputs (Output, sid,y =
⊕

j∈[n] yj) and

terminates. Otherwise it outputs (Abort, sid, J1 ∪ J2).

Fig. 16: Protocol πmpc,oia for MPC with Output-Independent Abort.

should can verify the opening without running the delayed opening step which
involves solving a TLP.

In the full protocol, parties will then first compute on their inputs and gen-
erate shares of the outputs as in πmpc,oia, although using the aforementioned
different functionalities. Then, before starting the opening phase, each party
will send a deposit to Fγ,δSC . Here all these deposits have to arrive within a δ
tick time span. Then, parties start the delayed openings as before, although the
timeout to Fγ,δSC is now longer (2δ + γ instead of 2δ). This is because we now
require that honest parties, once they find an opening to (possibly adversarial)

commitments, post these to Fγ,δSC , which may take additional γ time to complete.
Due to the length of the time span, all commitments from parties in P \ J1 will
have been posted at that time, so that the set J2 is identical for honest parties
and Fγ,δSC . At the same time, as Fγ,δvcom is a commitment functionality the ad-
versary cannot send “incorrect” openings for commitments of honest parties to
Fγ,δSC . We refer to Supplementary Material G for the concrete construction.

Achieving Partial Fairness. Gordon and Katz [26] introduced the concept of
partially fair two-party computation, where correctness and privacy of the secure
protocol always holds but fairness may not hold with probability 1/|poly(λ)|.
This notion, generalized to the multiparty-setting, can also be achieved by ex-
tending πmpc,oia. There, the parties would sample a secret bit b fairly in MPC. If
b = 1 then the reconstructed output would be the actual output of the compu-
tation together with the bit b, while if b = 0 then the output phase would only
reveal a “dummy output” and b. Over multiple output rounds, this process will
be repeated until b = 1. Partial fairness of the approach follows as the adversary
has to decide if or not it will reveal the output before learning the value of b for
the respective round. This idea can also be combined with financial incentives to
strengthen the guarantees of πmpc,poia.

29

References

1. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Fair two-
party computations via bitcoin deposits. In FC 2014 Workshops, LNCS. Springer,
Heidelberg, Mar. 2014.

2. C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In ACM CCS
2018. ACM Press, Oct. 2018.

3. C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction
ledger: A composable treatment. In CRYPTO 2017, Part I, LNCS. Springer,
Heidelberg, Aug. 2017.

4. C. Baum, B. David, and R. Dowsley. Insured MPC: Efficient secure computation
with financial penalties. In FC 2020, LNCS. Springer, Heidelberg, Feb. 2020.

5. C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. Tardis: A
foundation of time-lock puzzles in uc. to appear at EUROCRYPT 2021, 2020.
https://eprint.iacr.org/2020/537.

6. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In EUROCRYPT 2011, LNCS. Springer,
Heidelberg, May 2011.

7. I. Bentov and R. Kumaresan. How to use bitcoin to design fair protocols. In
CRYPTO 2014, Part II, LNCS. Springer, Heidelberg, Aug. 2014.

8. N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters.
Time-lock puzzles from randomized encodings. In ITCS 2016. ACM, Jan. 2016.

9. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
CRYPTO 2018, Part I, LNCS. Springer, Heidelberg, Aug. 2018.

10. D. Boneh and M. Naor. Timed commitments. In CRYPTO 2000, LNCS. Springer,
Heidelberg, Aug. 2000.

11. J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The
wonderful world of global random oracles. In EUROCRYPT 2018, Part I, LNCS.
Springer, Heidelberg, Apr. / May 2018.

12. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS. IEEE Computer Society Press, Oct. 2001.

13. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security
with global setup. In TCC 2007, LNCS. Springer, Heidelberg, Feb. 2007.

14. I. Cascudo and B. David. SCRAPE: Scalable randomness attested by public enti-
ties. In ACNS 17, LNCS. Springer, Heidelberg, July 2017.

15. I. Cascudo and B. David. ALBATROSS: Publicly AttestabLe BATched Random-
ness based On Secret Sharing. In ASIACRYPT 2020, Part III, LNCS. Springer,
Heidelberg, Dec. 2020.

16. R. Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In 18th ACM STOC. ACM Press, May 1986.

17. B. A. Coan, D. Dolev, C. Dwork, and L. J. Stockmeyer. The distributed firing
squad problem. SIAM J. Comput., 18(5):990–1012, 1989.

18. G. Couteau, B. Roscoe, and P. Ryan. Partially-fair computation from timed-release
encryption and oblivious transfer. Cryptology ePrint Archive, Report 2019/1281,
2019. https://eprint.iacr.org/2019/1281.

19. B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT 2018,
Part II, LNCS. Springer, Heidelberg, Apr. / May 2018.

30

https://eprint.iacr.org/2020/537
https://eprint.iacr.org/2019/1281

20. L. De Feo, S. Masson, C. Petit, and A. Sanso. Verifiable delay functions from su-
persingular isogenies and pairings. In ASIACRYPT 2019, Part I, LNCS. Springer,
Heidelberg, Dec. 2019.

21. D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine agreement.
J. ACM, 37(4):720–741, 1990.

22. D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor agree-
ment. In H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. H. Landweber, editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May
5-7, 1982, San Francisco, California, USA, pages 401–407. ACM, 1982.

23. N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Continuous verifiable delay
functions. In EUROCRYPT 2020, Part III, LNCS. Springer, Heidelberg, May
2020.

24. N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Non-malleable time-lock
puzzles and applications. Cryptology ePrint Archive, Report 2020/779, 2020.
https://eprint.iacr.org/2020/779.

25. J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness
and composability of cryptographic protocols. In TCC 2006, LNCS. Springer,
Heidelberg, Mar. 2006.

26. S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. Jour-
nal of Cryptology, (1), Jan. 2012.

27. C. Hazay, P. Scholl, and E. Soria-Vazquez. Low cost constant round MPC combin-
ing BMR and oblivious transfer. In ASIACRYPT 2017, Part I, LNCS. Springer,
Heidelberg, Dec. 2017.

28. J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and timed
commitments. In TCC 2020, Part III, LNCS. Springer, Heidelberg, Nov. 2020.

29. J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable syn-
chronous computation. In TCC 2013, LNCS. Springer, Heidelberg, Mar. 2013.

30. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In CRYPTO 2017, Part I, LNCS. Springer,
Heidelberg, Aug. 2017.

31. R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct computa-
tions. In ACM CCS 2014. ACM Press, Nov. 2014.

32. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols
and security under composition. In 38th ACM STOC. ACM Press, May 2006.

33. Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols
without simultaneous termination. In A. Ricciardi, editor, PODC 2002, 2002.

34. K. Pietrzak. Simple verifiable delay functions. In ITCS 2019. LIPIcs, Jan. 2019.
35. randao.org. RANDAO: Verifiable random number generation, 2017. https://www.

randao.org/whitepaper/Randao_v0.85_en.pdf accessed on 20/02/2020.
36. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release

crypto, 1996.
37. L. Rotem, G. Segev, and I. Shahaf. Generic-group delay functions require hidden-

order groups. In EUROCRYPT 2020, Part III, LNCS. Springer, Heidelberg, May
2020.

38. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT’97, LNCS. Springer, Heidelberg, May 1997.

39. VDF Alliance Team. Vdf alliance, 2020. https://www.vdfalliance.org/

what-we-do.
40. B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT 2019,

Part III, LNCS. Springer, Heidelberg, May 2019.

31

https://eprint.iacr.org/2020/779
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://www.vdfalliance.org/what-we-do
https://www.vdfalliance.org/what-we-do

Supplementary Material

A Additional Functionalities

We use two additional functionalities which we deferred to this Supplementary
Material, namely one for coin tossing and for a restricted observable and pro-
grammable random oracle. Those are given in Fig. 18 and Fig. 17.

Functionality GrpoRO

GrpoRO is parameterized by an output size function ` and a security parameter τ ,
and keeps initially empty lists ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}`(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s 6= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.
3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.

Program: On input (Program-RO,m, h) with h ∈ {0, 1}`(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}`(τ) where (m,h′) ∈ ListH and h 6= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.

IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s 6= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 17: Restricted observable and programmable global random oracle function-
ality GrpoRO from [11].

A.1 Modeling Rivest et al.’s Time-Lock Assumption [36]

We describe in Fig. 19 the ideal functionality Frsw from [5] that captures the
hardness assumption used by Rivest et al. [36] to build a time-lock puzzle pro-
tocol. Later on, we will use this functionality as setup for realizing UC-secure
publicly verifiable TLPs. Essentially, this functionality treats group (Z/NZ)

×
as

in the generic group model [38], giving unique handles to the group elements (but
not their descriptions) to all parties. In order to perform group operations, the
parties interact with the functionality but only receive the result of the operation
(i.e. the handle of the resulting group element) after the next computational tick
occurs. As pointed out in [5], this definition of Frsw is corroborated by a recent
result [37] showing that delay functions (such as a TLP) based on cyclic groups
that do not exploit any particular property of the underlying group cannot be

32

Functionality F∆ct

The ticked functionality F∆ct interacts with the n parties P = {P1, . . . ,Pn} and an
adversary S. It is parameterized by the output domain F.

Toss: Upon receiving (Toss, sid,m) from Pi ∈ P where m ∈ N:

1. Send m with prefix Toss to the parties P \ {Pi} via Q with delay ∆.
2. Send m and the IDs to S.
3. If all parties sent (Toss, sid,m):

(a) Uniformly sample m random elements x1, . . . , xm
$← F and send

(Tossed, sid,m,F, x1, . . . , xm) to S.
(b) If S sends (DeliverCoins, sid) then send the message x1, . . . , xm with

prefix Coins to the parties P via Q with delay ∆. Otherwise send the
message ⊥ with prefix Coins to the parties P via Q with delay ∆.

(c) Notify S about the message with prefix Coins.

Tick:
1. For each query (0,mid, sid,Pi,m) ∈ Q:

(a) Remove (0,mid, sid,Pi,m) from Q.
(b) Add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,P,m) in Q with (cnt− 1,mid, sid,Pi,m).
Upon receiving (Schedule, sid,D) from S:

– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and
add (Pi, sid,m) to M.

– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore
all further messages with this sid except to Fetch Message.

Fig. 18: Functionality F∆ct for Multiparty Coin Tossing.

constructed if the order is known. Moreover, we cannot reveal the group struc-
ture to the environment, since it could use it across multiple sessions to solve
TLPs quicker than the regular parties.

33

Functionality Frsw

Frsw is parameterized by a set of parties P, an owner Po ∈ P, an adversary S and a
computational security parameter τ and a parameter N ∈ N+. Frsw contains a map
group which maps strings el ∈ {0, 1}τ to N as well as maps in and out associating
parties in P to a list of entries from ({0, 1}τ)2 or ({0, 1}τ)3. The functionality
maintains the group of primitive residues modulo N with order φ(N) denoted as
(Z/NZ)×.

Create Group: Upon receiving the first message (Create, sid) from Po:
1. If Pi is corrupted then wait for message (Group, sid, N, φ(N)) from S with

N ∈ N+, N < 2τ and store N,φ(N).
2. If Po is honest then sample two random distinct prime numbers p, q of

length approximately τ/2 bits according to the RSA key generation proce-
dure. Set N = pq and φ(N) = (p− 1)(q − 1).

3. Set td = φ(N) and output (Created, sid, td) to Po.
Random: Upon receiving (Rand, sid, td′) from Pi ∈ P, if td′ 6= td, send

(Rand, sid, Invalid) to Pi. Otherwise, sample el
$← {0, 1}τ and g

$← (Z/NZ)×,
add (el, g) to group and output (Rand, sid, el) to Pi.

GetElement: Upon receiving (GetElement, sid, td′, g) from Pi ∈ P, if g /∈
(Z/NZ)× or td′ 6= td, send (GetElement, sid, td′, g, Invalid) to Pi. Otherwise,
if there is a el such that (el, g) ∈ group then retrieve el, else sample a random
string el and add (el, g) to group. Output (GetElement, sid, td′, g, el) to Pi.

Power: Upon receiving (Pow, sid, td′, el, x) from Pi ∈ P with x ∈ Z, if td′ 6= td

or there is no a such that (el, a) ∈ group, output (Pow, sid, td′, el, x, Invalid) to
Pi. Otherwise, proceed:
1. Convert x ∈ Z into a representation x ∈ Zϕ(N). If no such x exists in Zϕ(N)

then output (Pow, sid, td, el′, x, Invalid) to Pi.
2. Compute y ← ax mod N . If there is no el′ such that (el′, y) ∈ group, pick

el′
$← {0, 1}τ different from all group entries and add (el′, y) to group.

3. Output (Pow, sid, td, el, x, el′) to Pi.
Multiply: Upon receiving (Mult, sid, el1, el2) from Pi ∈ P:

1. If there is no a, b such that (el1, a), (el2, b) ∈ group, then output
(Invalid, sid) to Pi.

2. Compute c← ab mod N . If there is no el3 such that (el3, c) ∈ group, pick

el3
$← {0, 1}τ different from all group entries and add (el3, c) to group.

3. Add (Pi, (el1, el2, el3)) to in and return (Mult, sid, el1, el2) to Pi.
Invert: Upon receiving (Inv, sid, el) from some party Pi ∈ P:

1. If there is no a such that (el, a) ∈ group, output (Invalid, sid) to Pi.
2. Compute y ← a−1 mod N . If there is no el′ such that (el′, y) ∈ group,

sample el′
$← {0, 1}τ different from all group entries and add (el′, y) to

group.
3. Add (Pi, (el, el′)) to in and return (Inv, sid, el) to Pi.

Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries
(Pi, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.

Tick: Set out← in and in = ∅.

Fig. 19: Functionality Frsw from [5] capturing the time lock assumption of [36].

34

B The Ticked Public Ledger

In order to define a ledger functionality FLedger, we adapt ideas from Badertscher
et al. [3]. The ledger functionality FLedger is presented in Fig. 20. It is parameter-
ized by the algorithms Validate,ExtendPolicy and the parameters slackWindow,
qualityWindow, delaySync,maxTXDelay,maxEmpty ∈ N. These parameters can
depend on the protocol used to realize the ledger. At any point the ledger has a
stable state, which is eventually received by all honest parties (but there is no
guarantee that they will receive it immediately, or even at the same time). The
parameter slackWindow is an upper bound on the number of the most recent
blocks in the current stable state that are still not received by all honest parties.

Any party can submit a transaction, which will be added to the buffer if it is
valid. Validate is used to validate the transactions, and should at least guaran-
tee that no transaction waiting in the buffer contradicts the stable state of the
ledger (the validity of the transactions waiting in the buffer needs to be tested
again once a new block is added to the stable state). The adversary is responsi-
ble for proposing the potential next blocks. It can choose such blocks using the
procedures of an honest miner or not, but the functionality keeps track of that.
It can also propose to have no new block in the next tick. Whenever the func-
tionality is ticked, it runs the algorithm ExtendPolicy to decide if a block will be
added, and what its content would be. ExtendPolicy normally accepts the block
proposed by the adversary, but it also enforces liveness and chain quality proper-
ties. maxTXDelay defines the maximum number of ticks that a valid transaction
will stay in the buffer. After maxTXDelay ticks without inclusion, ExtendPolicy
will force the inclusion of the valid transaction in the next block. maxEmpty de-
fines the maximum number of consecutive suggestions of not adding a new block
by the adversary that can be accepted by ExtendPolicy. After that many ticks
without adding a new block, a new block insertion is forced. ExtendPolicy also
analyzes how many of the last qualityWindow blocks were honestly generated,
and force an honest behavior if the number of honest blocks do not meet the
chain quality properties.

Note that a good simulator acts in such way that it never forces an action
from ExtendPolicy, as a forced action may lead to a distinguishing advantage
for the environment. As the set of parties registered in the ledger is dynamic,
the ledger functionality FLedger includes registration interfaces similar to those
for public verifiers described in Section 2, and these are omitted for conciseness.
delaySync defines how long it takes for honest parties that just joined to become
synchronized (until that point, the adversary can arbitrarily set the state that
the de-synchronized parties view).

The ledger functionality of Badertscher et al. [3] keeps track of many relevant
times and interacts with a global clock in order to take actions at the appropriate
time. Our ledger functionality, on the other hand, only keeps track of a few
counters. The counters are updated during the ticks, and the appropriate actions
are done if some of them reach zero. However, our algorithm ExtendPolicy also
enforces liveness and chain quality properties, and our ledger functionality can
also be realized by the same protocols as in [3].

35

Functionality FLedger

FLedger is parameterized by the algorithms Validate,ExtendPolicy and the param-
eters slackWindow, qualityWindow, delaySync,maxTXDelay,maxEmpty ∈ N. It man-
ages variables state, nextBlock, buffer, emptyBlocks, which are initially set to ⊥,⊥,
∅, and maxEmpty respectively. The functionality maintains a list recentQuality that
keeps track of the quality (i.e., generated using the honest procedures or not) of
the last qualityWindow blocks proposed by S that were used to extend the state
state. The functionality maintains the set of registered parties P, and the subsets of
synchronized honest parties H and of de-synchronized honest parties D. Each party
Pi has a current-state view statei that is initially set to ⊥. Whenever an honest
party Pi is registered during the execution, it is added to the subset D, an entry
(Pi, delaySync) is added to the delayed entry table DE and the de-synchronized state
state′i is set to ⊥.

Tick: 1. For each entry (Pi, cnt) ∈ DE, if cnt = 1, set H ← H∪ Pi,D ← D \ Pi
and remove (Pi, cnt) from DE; otherwise decrease the counter value cnt by 1.

2. For each entry transaction BTX = (tx, txid,Pi, cnt) ∈ buffer, decrease the
counter value cnt by 1. Remove from buffer all transaction with counter value
equal 0, and create a list mandatoryInclusion with them.

3. Set state ← ExtendPolicy(state, nextBlock, buffer,mandatoryInclusion,
recentQuality, emptyBlocks). If nextBlock = (hFlag, listTX) was used to
extend state, then update the list recentQuality using hFlag. If a block was
added to state, set emptyBlocks← maxEmpty; else decrease emptyBlocks by 1.

4. Remove from buffer all transactions that were added into state. Set nextBlock←
⊥. For each entry transaction BTX ∈ buffer, if Validate(BTX, state, buffer) = 0,
then remove BTX from buffer.

Read: Upon receiving (Read, sid) from Pi ∈ P: if Pi ∈ D, return (Read, sid, state′i);
otherwise return (Read, sid, statei).

Read Buffer: Upon receiving (ReadBuffer, sid) from S, return (ReadBuffer, sid,
buffer).

Submit a Transaction: Upon receiving (Submit, sid, tx) from Pi, choose a
unique transaction ID txid and set BTX ← (tx, txid,Pi,maxTXDelay). If
Validate(BTX, state, buffer) = 1, then set buffer ← buffer ∪ {BTX}. Send
(Submit, sid,BTX) to S.

Propose a Block: Upon receiving (Propose, sid, hFlag, (txid1, . . . , txid`)) from S,
create the list of transactions listTX by concatenating the eventual transactions
contained in buffer that have transaction IDs txid1, . . . , txid`. Then set nextBlock←
(hFlag, listTX) and return (Propose, sid, ok) to S.

Set State-Slackness: Upon receiving (SetSlack, sid,Pi, t) from S, proceed as fol-
lows: if t ≥ |state| − slackWindow and t > |statei|, then set statei to contain the
first t blocks of state and return (SetSlack, sid, ok); otherwise, set statei ← state and
return (SetSlack, sid, fail).

Set State of De-synchronized Parties: Upon receiving (DeSyncState, sid,Pi, s)
from S for Pi ∈ D, set state′i ← s and return (DeSyncState, sid, ok).

Fig. 20: Ledger Functionality FLedger.

36

C Publicly Verifiable Time-Lock Puzzles, continued

In this appendix we will first present the generalized hardness assumption Ftsc

for generic TLPs. Then we will present a protocol that implements Ftlp using
Ftsc.

C.1 Modeling Generic TLPs

We provide an abstract generic sequential computation functionality with a trap-
door in Fig. 21.

In comparison to Frsw from [5] (presented in Supplementary Material A)
Ftsc comes without an explicit RSA group embedded into it. Instead, it only
operates on a sequence of random values which it extends as is necessary. Any
party having a trapdoor will be able to use RandomAccess which permits to
perform arbitrarily long sequences without any delay, while Step can be used
by “normal” parties to compute the sequence one step at a tick. Observe that
by construction, the results to different parties are consistent.

In comparison to Frsw there are some crucial differences: first, we only allow
“one” type of step while Frsw allows to combine arbitrary RSA-group elements.
We think that this is a reasonable restriction, as such an extra functionality does
not improve attacks on Frsw in generic models [28]. Moreover, as πtlp does not
require the use of GetElement or Invert we can omit these.

Furthermore, the implied structure between different elements as well as the
elements themselves can be decided upon by the simulator if the owner is dis-
honest. This means that the structure is not fixed by the RSA group, but can be
arbitrary to the extent that it is consistent between different requests and for dif-
ferent parties. The elements are, on the other hand, random if the functionality
was set up by an honest party.

C.2 Constructing the Publicly Verifiable TLP

We now show how to construct a TLP functionality with a public verification
interface that is constructed in the Ftsc,GrpoRO-hybrid model. We describe Pro-
tocol πtlp in Figure 22 and note that it is a generalization of the construction
from [5]. In the original protocol, a global random oracle GrpoRO and an ideal
functionality Frsw that captures the hardness assumption used by Rivest et al.
[36] are used as setup (we refer the reader to Supplementary Material A for
their full descriptions). Our main insights are i) that the specific properties of
the RSW puzzle are not necessary in our construction and can be abstracted
away into a generic trapdoored sequential computation assumption; and ii) that
a puzzle solution el,m for a puzzle puz can be publicly verified to be valid by
repeating the steps of the Get Message interface with puz, el as input and
checking that the output obtained is equal to m.

The reason this procedure works is that each puzzle puz = (el0, Γ, tag)
encodes in its tag both the final state elΓ obtained after Γ computational steps
as well as the trapdoor information td for the functionality Ftsc that can be used

37

Functionality Ftsc

Ftsc is parameterized by a set of parties P, an owner Po ∈ P, an adversary S and a
computational security parameter τ . Ftsc contains a trapdoor string td, a map seq
mapping from {0, 1}τ to {0, 1}τ and maps in and out associating parties in P to a
list of entries from ({0, 1}τ)2.

Create: Upon receiving the first message (Create, sid) from Po:
1. If Po is corrupted then wait for message (Trapdoor, sid, trp) from S with trp ∈
{0, 1}τ . If Po is honest then sample trp← {0, 1}τ .

2. Set td = trp and output (Created, sid, td) to Po.
RandomElement: Upon receiving (Rand, sid, trp) from Pi ∈ P, if trp 6= td, send
(Rand, sid, Invalid) to Pi. Otherwise do as follows:
1. If Pi is corrupted then wait for message (Rand, sid, el) from S with el ∈ {0, 1}τ .

If Pi is honest then sample el← {0, 1}τ .

2. If (el, ·) 6∈ seq then add (el,⊥) to seq. Output (Rand, sid, el) to Pi.
RandomAccess: Upon receiving (RandAcc, sid, trp, elI, x) from Pi ∈ P with
x ∈ N, if trp 6= td or (elI, nxt) 6∈ seq (where nxt may be ⊥), output
(RandAcc, sid, trp, elI, x, Invalid) to Pi. Otherwise, proceed:
1. Define elO = elI and y = x.

2. If y = 0 then output (RandAcc, sid, trp, elI, x, elO) to Pi.
3. If (elO, nxt

′) ∈ seq with nxt′ 6= ⊥ then set elO = nxt′, y = y− 1 and go to Step
2. Otherwise do as follows:
(a) If Po is corrupted then send (Next?, sid, elO) and wait for message

(Next, sid, elO, nxt) from S with nxt ∈ {0, 1}τ .

(b) If Po is honest then pick a random nxt ∈ {0, 1}τ .

(c) Replace (elO,⊥) in seq with (elO, nxt) and add (nxt,⊥) to seq.

(d) Set elO = nxt, y = y − 1 and go to Step 2.

Step: Upon receiving (Step, sid, el) from Pi ∈ P:
1. If (el, nxt) 6∈ seq, then output (Invalid, sid) to Pi.
2. If (el, nxt) ∈ seq with nxt 6= ⊥ then set nxt = nxt. Otherwise do as follows:

(a) If Po is corrupted then send (Next?, sid, el) and wait for message
(Next, sid, el, nxt) from S with nxt ∈ {0, 1}τ .

(b) If Po is honest then pick a random nxt ∈ {0, 1}τ .

(c) Replace (el,⊥) in seq with (el, nxt) and add (nxt,⊥) to seq.

3. Add (Pi, (el, nxt)) to in and return (Step, sid, el) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries
(Pi, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Set out← in and in = ∅.

Fig. 21: Functionality Ftsc capturing trapdoor sequential computations.

to compute elΓ from el0 in constant time via the RandomAccess interface.
Given a candidate solution el,m for puz, the verifier can confirm that tag does

38

encode el as elΓ and recompute m in constant time, since it also uses el to
recover td. The use of a global Ftsc for the computation and of a global random
oracle GrpoRO for generating tag guarantee that any verifier Vi ∈ V obtains the
same result as any party Pi ∈ P. Hence, if the verifier obtains a message m′ = m
when executing the Get Message procedure on input puz, st claimed to have
an associated message m, we have a guarantee that all other parties executing
the protocol will obtain the same message and that a verifier can check this
message is valid with respect to puz in constant time. We formally state the
security of Protocol πtlp in Theorem 1, which we recall below for the sake of
clarity.

Theorem 1 Protocol πtlp UC-realizes Ftlp in the GrpoRO,Ftsc-hybrid model with
computational security against a static adversary. Formally, there exists a sim-
ulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish πtlp composed with GrpoRO,Ftsc and A from S
composed with Ftlp.

Proof. In order to prove this theorem, we construct a simulator S that in-
teracts with an internal copy A of the adversary forwarding messages between
A and GrpoRO1,GrpoRO2,Ftsc unless otherwise stated. S is presented in Figure 23
(Corrupted Po) and in Figure 24 (Honest Po). It forwards messages from A and
simulated hybrid functionalities to Gticker. For any environment Z, we argue that
an execution with S and Ftlp is indistinguishable from an execution with A in
the GrpoRO,Ftsc-hybrid model.

First, we observe that, apart from the Public Verification interface, S is
constructed exactly as the simulator in Theorem 2 of [5]. We therefore only have
to consider the changes due to Public Verification.

In order to simulate the Public Verification procedure, S executes ex-
actly the same steps of an honest verifier in πtlp and, in case A performs public
verification, forwards all messages between A and GrpoRO1,GrpoRO2,Ftsc. Notice
that the Public Verification procedure is executed locally by a verifier who
has received puz, el,m and that it corresponds exactly to executing the steps
of the Get Message procedure with input puz, el and verifying the output
is equal to m. Hence, since an execution of Get Message with S and Ftlp

is indistinguishable from an execution with A in the GrpoRO,Ftsc-hybrid model
as proven in [5], the output of the simulated Public Verification procedure
with input puz = (el0, Γ, tag = (tag1, tag2)), el′,m′ where puz was gener-
ated with message m and trapdoor td will only differ from that of Ftlp if A
finds el′,m′ 6= m such that querying GrpoRO1 with (Hash-Query, (el0|el′))
yields h1 = tag1 where (m′|td) = tag1 ⊕ h1 and that querying GrpoRO2 with
(Hash-Query, (h1|m′|td)) yields h2 = tag2, which only happens with negligi-
ble probability in τ since A can only make a polynomial number of queries to
GrpoRO1,GrpoRO2. ut

39

Protocol πtlp

Protocol πtlp is parameterized by a security parameter τ , a state space ST = {0, 1}τ
and a tag space T AG = {0, 1}2·τ × {0, 1}τ . πtlp is executed by a set of parties P,
an owner Po ∈ P and a set of verifiers V interacting among themselves and with
functionalities Ftsc, GrpoRO1 (an instance of GrpoRO with domain {0, 1}2·τ and output
size {0, 1}2·τ) and GrpoRO2 (an instance of GrpoRO with domain {0, 1}4·τ and output
size {0, 1}τ).

Create Puzzle: Upon receiving input (CreatePuzzle, sid, Γ,m) for m ∈ {0, 1}τ , Po
proceeds as follows:
1. Send (Create, sid) to Ftsc obtaining (Created, sid, td).

2. Send (Rand, sid, td) to Ftsc, obtaining (Rand, sid, el0).

3. Send (RandAcc, sid, td, el0, Γ) to Ftsc, obtaining (RandAcc, sid, td, el0, Γ, elΓ).

4. Send (Hash-Query, (el0|elΓ)) to GrpoRO1, obtaining (Hash-Confirm, h1).

5. Send (Hash-Query, (h1|m|td)) to GrpoRO2, obtaining (Hash-Confirm, h2).

6. Set tag1 = h1 ⊕ (m|td), tag2 = h2 and tag = (tag1, tag2), and output
(CreatedPuzzle, sid, puz = (el0, Γ, tag), elΓ).

Solve: Upon receiving input (Solve, sid, el), a party Pi ∈ P, send (Step, sid, el) to
Ftsc. If Pi obtains (Invalid, sid), it aborts.

Get Message: Upon receiving (GetMsg, sid, puz, el) as input, a party Pi ∈ P
parses puz = (el0, Γ, tag), parses tag = (tag1, tag2) and proceeds as follows:
1. Send (Hash-Query, (el0|el)) to GrpoRO1, obtaining (Hash-Confirm, h1).

2. Compute (m|td) = tag1 ⊕ h1 and send (Hash-Query, (h1|m|td)) to GrpoRO2,
obtaining (Hash-Confirm, h2).

3. Send (RandAcc, sid, td, el0, Γ) to Ftsc, obtaining (RandAcc, sid, td, el0, Γ, elΓ).

4. Send (IsProgrammed, (el0|el)) and (IsProgrammed, (h1|m|td)) to GrpoRO1

and GrpoRO2, obtaining (IsProgrammed, b1) and (IsProgrammed, b2), respec-
tively. Abort if b1 = 1 or b2 = 1.

5. If tag2 = h2 and el = elΓ , output (GetMsg, sid, el0, tag, el,m). Otherwise,
output (GetMsg, sid, el0, tag, el,⊥).

Public Verification: On input (Verify, sid, puz, st,m), a verifier Vi executes
the steps of Get Message with input (GetMsg, puz, el) in order to obtain
(GetMsg, sid, el0, tag, el,m

′). If m = m′, Vi sets b = 1, else it sets b = 0. Finally,
Vi outputs (Verified, sid, puz, st,m, b).

Output: Upon receiving (Fetch, sid) as input, a party Pi ∈ P sends (Output, sid)
to Ftsc, receives (Complete, sid, Li) in response and outputs it.

Fig. 22: Protocol πtlp realizing publicly verifiable time-lock puzzle functionality
Ftlp in the Ftsc,GrpoRO-hybrid model.

40

Simulator S for a corrupted Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Ftsc

and an internal copy of an A corrupting Po. S forwards all messages between A
and Z. Moreover, S forwards all queries to GrpoRO1, GrpoRO2 and Ftsc unless explicitly
stated, keeping lists of all such requests, which are updated every time S checks
these lists by appending the Qs set of requests obtained by sending (Observe, sid)
to GrpoRO1 and GrpoRO2. All queries to GrpoRO1 or GrpoRO2 made by S go through dummy
honest parties so that the queries are not marked as illegitimate. S keeps initially
empty lists tag-tag, el-st which contain translations between the tags and element
labels of Ftsc and Ftlp respectively.

Create Puzzle: Upon receiving a puzzle puz from A, S proceeds as follows to
check if the tag is valid with respect to the puzzle and extract the message m:
1. Parse puz = (el0, Γ, tag), parse tag = (tag1, tag2) and check that there

exists a request (Hash-Query, (h1|m|td)) fromA to GrpoRO2 for which there
was a response (Hash-Confirm, tag2).

2. Send (RandAcc, sid, td, el0, Γ) to Ftsc, obtaining
(RandAcc, sid, td, el0, Γ, elΓ). Check that there exists a request
(Hash-Query, (el0|elΓ)) from A to GrpoRO1 for which there was a
response (Hash-Confirm, h1).

3. Check that (m|td) = tag1 ⊕ h1.
If any of the above checks fails, it means that verifying the opening of this
puzzle will always fail, so S sets m = ⊥. S proceeds as follows to simulate the
creation of a puzzle with message m:

1. For j ∈ {0, . . . , Γ}: sample stj
$← {0, 1}τ , add (elj , stj) to el-st and send

(RandAcc, sid, td, elj , 1) to Ftsc, obtaining (RandAcc, sid, td, elj , 1, elj+1).

2. Sample tag
$← T AG, append (tag, tag) to tag-tag.

3. Send (CreatePuzzle, sid, Γ,m) to Ftlp and provide st0, . . . , stΓ , tag.

Solve: Upon receiving (Solve, sid, st) from Ftlp, S proceeds as follows:

– If there is el such that (el, st) ∈ el-st, send (RandAcc, sid, td, el, 1) to Ftsc,
obtaining (RandAcc, sid, td, el, 1, el′). Otherwise, send (Rand, sid) to Ftsc,
obtaining (Rand, sid, el′).

– If there is no st′ such that (el′, st′) ∈ el-st, then sample st′
$← {0, 1}τ and

add (el′, st′) to el-st. Finally, send (Solve, sid, st, st′) to Ftlp.

Get Message: Upon receiving (GetMsg, sid, puz, st) from Ftlp, S parses puz =
(st0, Γ, tag) and proceeds as follows:
1. Check that there exist entries (el0, st0) and (el, st) in el-st and (tag, tag)

in tag-tag, using el0, el, tag for the remaining checks.
2. Check that the tag tag = (tag1, tag2) is valid with respect to the

puzzle puz and the solution el by proceeding as in the protocol: Send
(Hash-Query, (el0|el)) to GrpoRO1, obtain(Hash-Confirm, h1), compute
(m|td) = tag1 ⊕ h1, send (Hash-Query, (h1|m|td)) to GrpoRO2, ob-
tain (Hash-Confirm, h2), send (RandAcc, sid, td, el0, Γ) to Ftsc, obtaining
(RandAcc, sid, td, st0, Γ, elΓ). Check that tag2 = h2 and el = elΓ .

If the above checks are successful, S sends (GetMsg, sid, st0, tag, st,m) to Ftlp.
Otherwise, S sends (GetMsg, sid, st0, tag, st,⊥) to Ftlp.

Fig. 23: Simulator S for the case of a corrupted Po in πtlp.

41

Simulator S for an honest Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Ftsc

and an internal copy of an A corrupting one or more parties Pi ∈ P \ Po. S for-
wards all messages between A and Z. Moreover, S forwards all queries to GrpoRO1,
GrpoRO2 and Ftsc unless explicitly stated, keeping lists of all such requests. How-
ever, for every query (IsProgrammed,m) to GrpoRO1 or GrpoRO2, S answers with
(IsProgrammed, 0) if m has been programmed by S itself. S keeps initially empty
lists el-st, next.

Create Puzzle: Upon receiving (CreatedPuzzle, sid, puz = (st0, Γ, tag)) from Ftlp,
S proceeds as follows to create a puzzle (el0, Γ, tag) that can be later pro-
grammed to yield an arbitrary message obtained from Ftlp:

1. Sample a random m
$← {0, 1}τ and tag1

$← {0, 1}2τ and tag2
$← {0, 1}τ .

2. Send (Create, sid) to Ftsc obtaining (Created, sid, td). Send (Rand, sid) to
Ftsc, obtaining (Rand, sid, el0). Send (RandAcc, sid, td, el0, Γ) to Ftsc, ob-
taining (RandAcc, sid, td, el, Γ, elΓ).

3. Append (el0, st0) to el-st, set tag = (tag1, tag2), append (tag, tag) to
tag-tag and output (CreatedPuzzle, sid, puz = (el0, Γ, tag)).

Solve: If A makes a query (Step, sid, el) to Ftsc on behalf of Pi ∈ P \Po such that
there is an el such that (el, st) ∈ el-st, S proceeds as follows:
1. Send (RandAcc, sid, td, el, 1) to Ftsc, obtaining (RandAcc, sid, td, el, 1, el′).
2. If there is no entry (el′, st′) ∈ el-st for any st′, append (el′, st) to next

and send (Solve, sid, st) to Ftlp on behalf of Pi.
Get Message: Forward queries to GrpoRO1, GrpoRO2 and Ftsc from A on behalf of

corrupted parties Pi ∈ P \ Po, allowing A to perform the necessary steps for
Get Message. However, for every query (IsProgrammed,m) to GrpoRO1 or
GrpoRO2, S always answers with (IsProgrammed, 0).

Tick: Immediately after each tick, if S sent a query (Solve, sid, st) to Ftlp before
this tick, it sends (Output, sid) to Ftlp on behalf of each corrupted Pi ∈ P \ Po,
obtaining (Output, sid, Li). For each Li and each entry (Pi, st, st′) ∈ Li, S
proceeds as follows:

1. If there exists an entry (el′, st) in next, remove (el′, st) from next and
append (el′, st′) to el-st.

2. If there is an entry (elΓ , st
′) in el-st, it means A should be able to execute

Get Message and obtain message m in puzzle puz when activated after
this tick. S proceeds as follows to program the global random oracles so
that executing Get Message with (el0, Γ, tag), elΓ will return m:

(a) Send (GetMsg, sid, puz, st′) to Ftlp, obtaining (GetMsg, sid, puz, st′,m).
(b) Compute h1 = tag1 ⊕ (m|td) and send (Program-RO, (el0|elΓ), h1)

to GrpoRO1. Since elΓ is randomly chosen by Ftsc and still unknown
to A, Z or any other party at this point, the probability that this
programming fails in negligible.

(c) Send (Program-RO, (h1|m|td)), h2) to GrpoRO2. Since h1 is randomly
chosen by S and still unknown to A, Z or any other party at this point,
the probability that this programming fails in negligible.

Fig. 24: Simulator S for the case of an honest Po in πtlp.

42

D Security Analysis of Protocol πVDF

Before proceeding to the security analysis of our UC VDF construction πVDF, we
will discuss the main details and particularities of our formulations of a stand
alone verifiable sequential computation scheme Fpsc and of a UC continuous
VDF FVDF. We then recall Theorem 2 and present a simulator for πVDF along
with the security proof.

D.1 Functionalities Fpsc and FVDF

Functionality Fpsc (described in Figure 5) captures the notion of a generic stand
alone verifiable sequential computation scheme (weaker than a continuous VDF
as defined in [23]) in a similar way as the iterated squaring assumption from [36]
is captured in [5]. Basically, this functionality allows the evaluation of computa-
tional steps taking as input a initial state el and outputting a state nxt after
a computational delay, which is modeled as a tick. After a number k of such
evaluation steps are computed departing from an initial step elI to a final step
elO, Fpsc allows for the generation of a proof π′ that elO was obtained from
elI through k computational steps upon being queried with all intermediate
steps elI, el2, . . . , elk−1, elO. Later on, this proof π′ can be verified with re-
spect to elI, elO, k in time essentially independent from the number of steps k.
Since current techniques [23] for generating and verifying such a proof do re-
quire non-constant computational time, we model the number of ticks necessary
for generating/verifying the proof by functions f(elI, el2, . . . , elk−1, elO) and
g(elI, elO, k, π

′).
Notice that we need this functionality to capture a stand alone verifiable

sequential computation because, as observed in [5], exposing the actual states
from a concrete computational problem would allow the environment to perform
several computational steps without activating other parties. For example, if
this scheme is instantiated from the iterated squaring assumption of [36] where
the evaluation consists in computing a sequence of squarings starting from an
element of the group of residues modulo an RSA modulus N, revealing the group
structure (i.e. N) and the representation of the group elements would allow the
environment to compute any number of squarings before activating the other
parties. Hence, we must embed the computational problem in a functionality.
However, notice that this functionality does not guarantee that the states it
outputs are uniformly random or non-malleable, as it allows the adversary to
choose the representation of each state, which will be crucial in our proof. What
Fpsc does guarantee is that proofs are only generated and successfully verified if
the claimed number of computational steps is indeed correct, also guaranteeing
that the transitions between states el and nxt is injective.

We model a UC VDF in Functionality FVDF (described in Figure 6), This
functionality guarantees the properties expected from a continuous VDF. It en-
sures that each computational step taken in evaluating the VDF takes at least
a fixed amount of time (one tick) and guarantees that the output obtained after
a number of steps is (close to) uniformly random and unpredictable even to the

43

adversary. Since it models a continuous VDF, FVDF allows for callers to obtain
the output of evaluating an input for after each step that is executed, without
requiring the number of steps that will be evaluated to be known a priori. Natu-
rally, FVDF also provides a proof that each output has been correctly obtained by
computing a certain number of steps on a given input. As it is the case with Fpsc,
the time required to generate and verify such proofs is variable and modeled as
functions f(st1, . . . , stΓ) and g(in, out, Γ, π), respectively. Moreover, similarly
to Fpsc, FVDF allows the ideal adversary to choose the representation of inter-
mediate computational steps involved in evaluating the VDF, even though the
output is guaranteed to be random. Again this is necessary in order to construct
a simulator. Another particularity of FVDF used in the proof is a leakage of each
evaluation performed by an honest party at the tick when the result is returned
to the original caller. This leakage does not affect the soundness of the VDF
nor the randomness of its output, but is necessary for consistently simulating an
execution.

Instantiating Fpsc and implications to πVDF. Functionality Fpsc can be
instantiated from the UC formulation of the iterated squarings problem from [5]
and the soundness of Fiat-Shamir using the techniques from [23] in the global
random oracle model, which is anyway necessary for obtaining such UC-secure
time-based primitives as shown in [5]. In this case, the times for evaluating
computational steps and generating/verifying proofs is equivalent to those of [23],
which allows for efficient generation of proofs of computation for any newly
computed states departing from the initial state, without the need to know
the number of steps to be computed beforehand. However, if Fpsc was to be
instantiated with a standard VDF (e.g. [40,34]), the effect it would have on
πVDF is that the proof generation/verification times would grow if the caller
tried to generate a proof for arbitrary states. Hence, we would be implementing
a FVDF with proof generation/verification times that crucially depend on the
number of steps evaluated. However, if we restrict the caller to only generating
proofs for a number computational steps known a priori, our constructions can
be instantiated from schemes like [40,34].

D.2 Proof

We recall Theorem 2 and present a proof.

Theorem 2 Protocol πVDF UC-realizes FVDF in the GrpoRO,Fpsc-hybrid model
with computational security against a static adversary. Formally, there exists a
simulator S such that for every static adversary A, and any environment Z, the
environment cannot distinguish πVDF composed with GrpoRO,Fpsc and A from S
composed with FVDF.

Proof. In order to prove this theorem, we construct a simulator S that in-
teracts with an internal copy A of the adversary forwarding messages between
A and GrpoRO2,Fpsc unless otherwise stated. It forwards messages from A and

44

simulated hybrid functionalities to Gticker. For any environment Z, we show that
an execution with S and FVDF is indistinguishable from an execution of πVDF

with A in the GrpoRO,Fpsc-hybrid model.
We describe simulator S in Figures 25 and 26. The main idea of this simulator

is that S observes the adversary A’s queries to Fpsc in order simulate matching
queries to FVDF. S answers the queries from both Fpsc and FVDF when asked for
the state values for each of the new intermediate states by selecting random state
values and providing the same value to both functionalities in such a way that
Fpsc outputs to A the same states outputted by FVDF when queried on the same
input state. When A queries Fpsc on (Prove, sid, el1, . . . , elΓ), S simulates the
Get Output procedure by querying FVDF with (GetOutput, sid, st1, . . . , stΓ).
Later on, when FVDF answers with the output out, S programs GrpoRO2 on
(sid|Γ |stΓ |π′) so that it answers with out when A computes the VDF out-
put. The verification procedure is simulated by simply allowing A to make the
necessary queries to Fpsc and GrpoRO2, since by that point the answers to verifi-
cation queries are already set up in such a way that verification succeeds if and
only if it would have succeeded with FVDF.

The crux of this strategy is that S essentially only deviates from the pro-
tocol in the equivocation step using GrpoRO2 and only risks making FVDF and
Fpsc inconsistent when choosing values for states. Other than that, queries to
Fpsc are simulated towards the adversary exactly as they should, keeping the
correspondence between states of Fpsc and states of FVDF. The simulation fails
if a query on the last Fpsc state stΓ is issued to GrpoRO2 before S obtains the
final output from FVDF. However, this only happens if A manages to compute
Γ computational steps from st1 to stΓ in less ticks than it takes to evaluate
the input in corresponding to st1 with FVDF. A can only do so by guessing stΓ
(or an intermediate step), which only happens with probability negligible in the
computational security parameter τ . Other than that, the simulation can only
fail if S provides a value that is already in use for a new state when queried by
Fpsc and FVDF. However, S samples these values uniformly at random, meaning
such a collision only happens with negligible probability. Hence, we conclude
that the execution with S and FVDF is indistinguishable from the execution of
πVDF with A in the GrpoRO,Fpsc-hybrid model. ut

45

Part 1 of Simulator S for πVDF

Simulator S interacts with environment Z, functionalities FVDF,GrpoRO2,Fpsc and
an internal copy of an A corrupting one or more parties Pi ∈ P. S forwards all
messages between A and Z. Moreover, S forwards all queries to GrpoRO2 and Fpsc

unless explicitly stated, keeping lists of all such requests. However, for every query
(IsProgrammed,m) to GrpoRO2, S answers with (IsProgrammed, 0) if m has been
programmed by S itself. S keeps initially empty lists pnext, steps. For every cor-
rupted party Pi ∈ P, S maintains initially empty lists V L1

i , V L
2
i , V L

3
i (for messages

from FVDF) and PL1
i , PL

2
i , PL

3
i (for messages from Fpsc).

Solve: Upon receiving a query (Step, sid, el) from A on behalf of Pi ∈ P to Fpsc, S
sends (Step, sid, el) to Fpsc and (Solve, sid, el) to FVDF on behalf of Pi. S simulates
a VDF evaluation step with FVDF and later ensures that the state obtained by A
from Fpsc is consistent with that provided by FVDF (following the steps in the Tick
interface).

Get Output: If A sends (Prove, sid, el1, . . . , elΓ) to Fpsc on behalf of Pi ∈ P, S
proceeds as follows:

1. Send (Prove, sid, el1, . . . , elΓ) to Fpsc on behalf of Pi.
2. Send (GetOutput, sid, st1, . . . , stΓ) to FVDF on behalf of Pi.

3. Sample π′
$← {0, 1}τ and add (Γ, el1, elΓ , π

′) to pnext.

As described in the Tick interface, in the appropriate tick, S sends the value π′

when queried with (ProofStr, sid,Pi, el1, elΓ) by Fpsc and π = (elΓ , π
′) when

queried with (ProofStr, sid,Pi, st1, . . . , stΓ) by FVDF. S also programs GrpoRO2 on
(sid|Γ |elΓ |π′) so that it answers with the output out provided by FVDF. After that,
S forwards queries to GrpoRO2 and Fpsc from A on behalf of corrupted parties Pi ∈ P,
allowing A to perform the necessary steps for Get Output. However, for every
query (IsProgrammed,m) to GrpoRO2, S always answers with (IsProgrammed, 0)
if S has programmed GrpoRO2 on message m.

Verify: S simulates this step exactly as in πVDF, forwarding all messages be-
tween A and GrpoRO2 and Fpsc from A on behalf of corrupted parties Pi ∈ P,
with the exception of answering every query (IsProgrammed,m) to GrpoRO2 with
(IsProgrammed, 0) if S has programmed GrpoRO2 on message m. Notice that the
queries to GrpoRO2 and Fpsc are already adjusted such that verification succeeds if
and only if (in, out, Γ, π) has been computed correctly.

Fetch State: Upon receiving message (Output, sid) from A to Fpsc on behalf of
Pi ∈ P, S sends (Complete, sid, PL1

i , PL
2
i , PL

3
i) to A.

Fig. 25: Part 1 of Simulator S for πVDF.

46

Part 2 of Simulator S for πVDF

Tick: Immediately after each tick, S keeps track of new messages, answers
Fpsc,FVDF and programs GrpoRO as needed.

– S sends (Output, sid) (resp. (Fetch, sid)) to Fpsc (resp. FVDF), receiv-

ing (Complete, sid, PL1
i , PL

2
i , PL

3
i) (resp. (Fetch, sid, V L1

i , V L
2
i , V L

3
i)

). If (PL1
i , PL

2
i , PL

3
i) = (PL1

i , PL
2
i , PL

3
i) and (V L1

i , V L
2
i , V L

3
i) =

(V L1
i , V L

2
i , V L

3
i), S does nothing. Otherwise, S sets (PL1

i , PL
2
i , PL

3
i) ←

(PL1
i , PL

2
i , PL

3
i), sets (V L1

i , V L
2
i , V L

3
i) ← (V L1

i , V L
2
i , V L

3
i). For every

corrupted Pi with updated lists (PL1
i , PL

2
i , PL

3
i) and (V L1

i , V L
2
i , V L

3
i):

1. For all messages (Pi, (el, nxt)) from PL1
i or (Pi, el, nxt) from V L1

i , if there
is no (el, nxt) ∈ steps, add (el, nxt) to steps.

2. For all messages (Pi, (el1, elΓ , Γ, π′)) from PL2
i and (Pi, (el1, out, Γ, π))

from V L2
i where π = (elΓ , π

′) such that (Γ, el1, elΓ , π
′) ∈ pnext,

S sends (Program-RO, (sid|Γ |elΓ |π′), out) to GrpoRO2 and removes
(Γ, el1, elΓ , π

′) from pnext. Since π′ is randomly chosen by S and still
unknown to A, Z or any other party at this point, the probability that
this programming fails is negligible. This step ensures that A obtains the
output generated by FVDF.

For every honest Pi with an updated list (V L1
i , V L

2
i , V L

3
i):

1. For all messages (Pi, st, st′) from V L1
i , S sends (Step, sid, st) to Fpsc and

adds (st, st′) to steps. This step simulates honest parties evaluating the
VDF with FVDF, performing the same steps with Fpsc and ensuring the
same intermediate states are registered by Fpsc.

2. For all messages (Pi, (st1, out, Γ, π)) from V L2
i where π = (elΓ , π

′), S
sends (Program-RO, (Γ |elΓ |π′), out) to GrpoRO2. Since π′ is randomly
sampled by FVDF and still unknown to A, Z or any other party at this
point, the probability that this programming fails is negligible. This step
simulates honest parties obtaining an output and proof after evaluating the
VDF with FVDF, performing the necessary steps with Fpsc to obtain π′ and
programming GrpoRO2 so that the same output is computed.

– The following answers to queries from Fpsc and FVDF ensure that the states and
proofs obtained by A when querying Fpsc are consistent with those provided
by FVDF:
• Upon receiving (Step, sid, el) from Fpsc, if there is no (el, nxt) ∈ steps,

sample nxt
$← {0, 1}τ and add (el, nxt) to steps. Send (Step, sid, el, nxt)

to Fpsc.

• Upon receiving (Solve, sid, st) from FVDF, if there is no (st, st′) ∈ steps,

sample st′
$← {0, 1}τ and add (st, st′) to steps. Send (Solve, sid, st, st′) to

FVDF.

• Upon receiving (ProofStr, sid,Pi, el1, . . . , elΓ) from Fpsc such that
(Γ, el1, elΓ , π

′) ∈ pnext, send (ProofStr, sid,Pi, el1, elΓ , π′) to Fpsc.

• Upon receiving (ProofStr, sid,Pi, el1, . . . , elΓ) from FVDF to S such that
(Γ, el1, elΓ , π

′) ∈ pnext, send response (ProofStr, sid,Pi, el1, elΓ , π) where
π = (elΓ , π

′) to FVDF.

Fig. 26: Part 2 of Simulator S for πVDF.

47

Protocol πVDF−RB is parameterized by an initial delay δ and is executed between a
set of parties P = {P1, . . . ,Pn} out of which t < n/2 are corrupted and a set of
verifiers V who interact with FLedger and FVDF:

Toss: On input (Toss, sid), all parties in P proceed as follows:

1. Input Phase: Pi proceeds as follows:

(a) Sample ri
$← {0, 1}τ , send (Submit, sid, ri) to FLedger and send (activated)

to Gticker.
(b) Wait for all Pj ∈ P to broadcast their rj by setting cst = 0,st0 = 1 and

performing the following steps every time it is activated (st1 is set to a con-
stant because this VDF evaluation is only used to count the number of ticks
until 1 +n/2 rj values are received): i. Send (Read, sid) to FLedger, receiving
(Read, sid, statei); ii. Check that 1 + n/2 messages of the form (Pj , sid, rj)
from different parties are in statei (we call the set of such parties C) and,
if yes, proceed to Output Phase; iii. Send (Fetch, sid) to FVDF, receiving
(Fetch, sid, L1

i , L
2
i , L

3
i) in response. If (Pi, stcst, st′) ∈ L1

i , increment cst;
iv. Send (Solve, sid, stcst) to FVDF; v. If cst = δ, increment δ and go back
to Step 1(a). vi. Send (activated) to Gticker;

2. Output Phase: Pi proceeds as follows:
(a) Retrieve set {rj}Pj∈C from(Read, sid, statei) obtained in the last step

from FLedger and send (Hash− Query, {rj}Pj∈C) to GrpoRO, obtaining
(Hash-Confirm, in). Send (IsProgrammed, {rj}Pj∈C) to GrpoRO, obtain-
ing (IsProgrammed, b). If b = 1, output ⊥ and ignore the next steps.

(b) Evaluate the FVDF on in by setting cst = 0,st0 = in and performing the
following steps:

i. Send (Fetch, sid) to FVDF, receiving (Fetch, sid, L1
i , L

2
i , L

3
i) in response.

If (Pi, stcst, st′) ∈ L1
i , increment cst.

ii. If cst = δ, exit the loop and proceed to the next step.
iii. Send (Solve, sid, stcst) to FVDF.
iv. Send (activated) to Gticker.

(c) Obtain the output of FVDF on st1, . . . , stδ computed in the previous step by
sending (GetOutput, sid, st1, . . . , stδ) to FVDF and doing the following loop:
i. Send (Fetch, sid) to FVDF, receiving (Fetch, sid, L1

i , L
2
i , L

3
i) in response. If

(Pi, (st1, out, δ, π)) ∈ L2
i then exit the loop; ii. Send (activated) to Gticker.

(d) Save (st1, out, δ, π) for future public verification, output (Tossed, sid, out)
and send (Submit, sid, (st1, out, δ, π)) to FLedger in order to allow verifiers to
publicly verify the output at any point. Send (activated) to Gticker.

Verification: On input (Verify, sid, x), Vi proceeds as follows:

1. Send (Read, sid) to FLedger, receiving (Read, sid, statei) and determining C for sid.
2. Send (Hash− Query, {rj}Pj∈C) to GrpoRO, obtaining (Hash-Confirm, in). Send

(IsProgrammed, {rj}Pj∈C) to GrpoRO, obtaining (IsProgrammed, b). If b = 1,
output (Verify, sid, x, 0) and ignore the next steps.

3. Obtain (st1, out, δ, π) for sid from L and check that st1 = in. If not, output
(Verify, sid, x, 0) and ignore the next steps.

4. Send (Verify, sid, st1, out, δ, π) to FVDF and do the following loop to obtain the
verification result: (a) Send (Fetch, sid) to FVDF, receiving (Fetch, sid, L1

i , L
2
i , L

3
i)

in response. If (Vi, (st1, out, δ, π, b)) ∈ L3
i then exit the loop. (b) Send

(activated) to Gticker.
5. If b = 1 then output (Verify, sid, x, 1). Otherwise output (Verify, sid, x, 0).

Fig. 27: Protocol πVDF−RB

48

E Randomness Beacon from VDFs

In Figure 27, we present πVDF−RB which realizes FRB
∆TLP−RB from FVDF, FLedger

and GrpoRO. Protocol πVDF−RB formalizes the folklore randomness beacon based
on VDFs proposed in [9]. Even though the original protocol is not fully described
(nor proven), we formalize the following informal construction using a semi-
synchronous broadcast channel (where there is a finite but unknown delay):

1. All parties Pi ∈P sample a random ri
$← {0, 1}λ and broadcast it.

2. Once 1 + n/2 values rj1 , ..., rj1+n/2 are received, every Pi computes in =
H(rj1 , ..., rj1+n/2) and computes a VDF with δ steps on input in.

3. Output whatever the VDF outputs.

As in the TLP based beacon, the main idea to prevent an adversary from
biasing/aborting this protocol is to guarantee two conditions: 1. At least 1+n/2
values rj are received and at least 1 rj is sampled uniformly at random by an
honest party; 2. The adversary cannot compute an output of the VDF with δ
steps before 1 + n/2 values rj are received, so it cannot choose its own value in
a way that biases the output. While the first condition follows from honest ma-
jority, the second condition is guaranteed by dynamically adjusting the number
of steps δ needed to compute the VDF without prior knowledge of the maximum
broadcast delay ∆ (as in our TLP based beacon). In order to do so, every party
Pi checks that at least 1 +n/2 values rj are received before δ ticks. If this is not
the case, they increment δ and repeat the protocol from the beginning.

We design and analyse this protocol in the semi-synchronous model with
an honest majority. However, as in the case of our TLP based beacon, in a
synchronous scenario where the broadcast delay ∆ is known, we could achieve
security with a dishonest majority by proceeding to the Opening Phase after
a delay of δ > ∆, since there would be a guarantee that all honest party values
ri have been received.

The security of Protocol πVDF−RB is formally stated in Theorem 3, which we
recall below for the sake of clarity.

Theorem 3 If ∆ = maxTXDelay + emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite, Protocol πVDF−RB UC-realizes FRB

∆TLP−RB in the
Ftlp,FLedger,GrpoRO-hybrid model with computational security against static ad-

versaries corrupting t < n/2 parties in P for ∆TLP−RB = 2(∆+1)+
∑∆
i=1 i. There

exists a simulator S such that for every static adversary A, and any environment
Z, the environment cannot distinguish an execution of πVDF−RB by A composed
with Ftlp,FLedger,GrpoRO from an ideal execution with S and FRB

∆TLP−RB .

Proof. We construct a simulator S that operates with an internal copy of the
adversary A, towards which it simulates an execution of πVDF−RB as well as
FVDF, GrpoRO and FLedger. Essentially S executes the protocol πVDF−RB exactly
as an honest party would, forwarding all messages between A and Z up to the
point where the protocol proceeds to the output phase. At this point S sends
(Toss, sid) to FRB

∆TLP−RB on behalf of the corrupted parties in C who sent inputs

49

rj within the current delay δ, obtaining (Tossed, sid, x) from FRB
∆TLP−RB . Next,

S simulates the output of FVDF towards its internal copy of A as (st1, x, δ, π).
There is no need to observe or program GrpoRO, which serves only as an ideal hash
function. Since neither the environment nor any other parties obtain the output
x from FRB

∆TLP−RB before delay δ, S can obtain this output and program the
simulated FVDF accordingly. Moreover, by following the instructions of an hon-
est party in the input phase, S guarantees that the adversary cannot compute
the VDF before 1 + n/2 inputs are given (containing at least one honestly gen-
erated uniformly random ri). Additionally, it is guaranteed that at a maximum

delay δ = ∆TLP−RB = 2(∆ + 1) +
∑∆
i=1 i for ∆ = maxTXDelay + emptyBlocks ·

slackWindow the simulator will proceed to the Output phase, since this accounts
for iterating from initial delay δ = 1 until δ = maxTXDelay + emptyBlocks ·
slackWindow + 1, at which point all honest parties are guaranteed to agree on
their (at least) 1 + n/2 inputs. Since the protocol terminates and A cannot pre-
dict (nor bias) x, the simulation with S and FRB

∆TLP−RB as parameterized in the
Theorem is indistinguishable from a real world execution of πVDF−RB with A. ut

F Proofs for Theorems 4 and 5 for Composable
Randomness Beacons

We present the proofs for Theorems 4 and 5 from Section 6 below. For the sake
of clarity we repeat both theorems.

F.1 Proof for Theorem 4

Theorem 4 If ∆ is finite (though unknown) and all Pi ∈ P receive inputs within
a delay of Γ ticks of each other, Protocol πTLP−RB UC-realizes FRB

∆TLP−RB in the
Ftlp,FΓ,∆BC,delay-hybrid model with computational security against static adversaries

corrupting t < n
2 parties in P for ∆TLP−RB = 3(∆ + 1) +

∑∆
i=1 i. There exists

a simulator S such that for every static adversary A, and any environment Z,
the environment cannot distinguish an execution of πTLP−RB by A composed with
Ftlp,FΓ,∆BC,delay from an ideal execution with S and FRB

∆TLP−RB .

In order to prove this theorem, we construct a simulator S that interacts
with an internal copy A of the adversary simulating Ftlp and FΓ,∆BC,delay towards

A. For any environment Z, we show that an execution with S and FRB
∆TLP−RB is

indistinguishable from an execution with A in the Ftlp,FΓ,∆BC,delay-hybrid model.
First of all, we observe that, since all honest parties receive inputs within a

delay of Γ ticks and consequently start executing πTLP−RB, we are guaranteed
that FΓ,∆BC,delay never goes into a TotalBreakdown. Notice that, as soon as hon-
est parties receive their inputs, they generate a TLP and broadcast it through
FΓ,∆BC,delay, which means that they all give an input to FΓ,∆BC,delay within Γ ticks
(one of the conditions for avoiding a TotalBreakdown). Moreover, by follow-
ing the instructions of πTLP−RB, honest parties never provide inputs to the same

50

instance of FΓ,∆BC,delay (or rather an input with the same ssid) twice, which is the

second condition for avoiding a FΓ,∆BC,delay. Hence, by following the instructions

of an honest party in the simulated execution with A, we ensure that FΓ,∆BC,delay

provides all of its guarantees (as is the case in a real world execution of πTLP−RB
with A where honest parties receive inputs within a delay of Γ ticks).

Next, we observe that, since ∆ is finite and we have an honest majority,
there exists a delay δ > ∆ such that the Commitment Phase will succeed and
the parties will advance to the Opening Phase. Moreover, in the case of the
smallest initial delay δ = 1 we are guaranteed that the Commitment Phase
will succeed after ∆TLP−RB = 3(∆ + 1) +

∑∆
i=1 i ticks, which accounts for the

time of iterating through all possible delays δ until arriving at δ = ∆ + 1, at
which point it is guaranteed that at all honest parties’ TLPs will be received by
all other honest parties (i.e. it is guaranteed that all honest parties proceed to
the Opening Phase).

Without loss of generality, in the remainder of this proof we assume that
the parties in P receive their (Toss, sid) inputs and start the Commitment
Phase at the same time (i.e. at the same tick). However, notice that, if this
is not the case and there’s a delay of δact ticks between the first party in P
receiving (Toss, sid) and the last party in P receiving this input, we can adjust
for that by increasing the delay parameter δ by δact ticks, which makes sure that
the last party’s message (Pj , sid, puzj) is received by all the other parties in P
before the first party’s TLP is solved.

We focus on constructing S for the worst case where t < n/2 of the parties
are corrupted by A. In this case, S proceeds in the Commitment Phase by
executing the exact instructions of an honest party in πTLP−RB. Notice that this
will ensure that a simulated party is in the set C and that the protocol proceeds to
the Opening Phase, since only 1+n/2 TLPs must be received before proceeding
and we are guaranteed that this happens because at least 1 + n/2 parties are
not corrupted and because we will eventually reach a δ that guarantees that all
honest party messages are received (as argued above). We denote one simulated
honest party in C by Ph and S will use it to force the output of the protocol to
be equal to that of FRB

∆TLP−RB . After the Commitment Phase is complete, S
waits for (Pi, sid, x) from FRB

∆TLP−RB . S executes the rest of the steps of an honest
party in πTLP−RB for the simulated parties in C with the following exceptions:

– For each Pj ∈ C, S checks that the TLP puzj in (Pj , sid, puzj) broadcast by
Pj is valid according to Ftlp and extracts all rj values from the valid puzj ,
obtaining a set G of parties Pj that broadcast a valid rj , which will be either
opened in the Opening Phase or recovered in the Recovery Phase.

– S sends (Toss, sid) to FRB
∆TLP−RB on behalf of each corrupted party Pj ∈ G

that broadcast a valid TLP.
– S equivocates the opening of puzh from Ph in the Opening Phase so that

it opens to a value r′ such that r′ ⊕ r{j|Pj∈G\Ph} = x.

After the simulated execution of πTLP−RB is complete and an r = x is obtained,
S outputs whatever A outputs and halts.

51

Notice that the simulated opening of puzh to r′ is distributed exactly as in
a real world execution of πTLP−RB and that A obtains the same output x given
by FRB

∆TLP−RB . This holds since only the valid TLPs puzj sent before the first
honest TLPs open are considered in computing the final output, the adversary
does not learn the honest parties’ values ri before S does, and r′ is computed by
S based on the extracted rj from the valid TLPs. Moreover, S sends (Toss, sid)

to FRB
∆TLP−RB for each of the corrupted parties that participated in the simulated

execution correctly.
Hence, an execution with S and FRB

∆TLP−RB is indistinguishable from an ex-
ecution with A in the Ftlp,FΓ,∆BC,delay-hybrid model.

F.2 Proof for Theorem 5

Theorem 5 If ∆ = maxTXDelay + emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (though unknown), Protocol πTLP−RB−LEDGER UC-

realizes FRB
∆TLP−RB in the Ftlp,FLedger-hybrid model with computational secu-

rity against a static adversary corrupting t < n
2 parties in P for ∆TLP−RB =

3(∆ + 1) +
∑∆
i=1 i. Formally, there exists a simulator S such that for every

static adversary A, and any environment Z, the environment cannot distinguish
an execution of πTLP−RB−LEDGER by A composed with Ftlp,FLedger from an ideal

execution with S and FRB
∆TLP−RB .

The proof of this theorem follows from the proof of Theorem 4 by observing
the our choice of δ ensures that similar conditions to those of πTLP−RB are also
maintained in the end of the Commitment Phase in πTLP−RB−LEDGER, allow-
ing us to use the same simulation strategy. We observe that there exists such
δ > maxTXDelay + emptyBlocks · slackWindow since maxTXDelay, emptyBlocks,
slackWindow are finite. As in the case of our TLP based beacon, in the case of the
smallest initial delay δ = 1 we are guaranteed that the Commitment Phase
will succeed after ∆TLP−RB = 3(∆ + 1) +

∑∆
i=1 i ticks for ∆ = maxTXDelay +

emptyBlocks · slackWindow, which accounts for the time of iterating through all
possible delays δ until arriving at δ = ∆ + 1, at which point it is guaranteed
that at all honest parties’ TLPs will be agreed upon by all other honest parties
(i.e. it is guaranteed that all honest parties proceed to the Opening Phase).
Without loss of generality, in the remainder of this proof we assume that the
parties in P are already registered to FLedger and synchronized with respect to
FLedger when they receive their (Toss, sid) inputs and that they start the Com-
mitment Phase at the same time (i.e. at the same tick). However, notice that,
if this is not the case and there’s a delay of δact ticks between the first party in P
receiving (Toss, sid) and the last party in P receiving this input, we can adjust
for that by increasing the delay parameter δ by δact ticks, which makes sure that
the last party’s message (Pj , sid, puzj) is received by all the other parties in P
before the first party’s TLP is solved. Since we guarantee this condition, we can
use the same simulator S as before with the difference that it simulates FLedger

towards an internal copy A of the adversary by following the exact instructions

52

of FLedger and executing all the queries to FLedger by A. Hence, we argue that

an execution with S and FRB
∆TLP−RB is indistinguishable from an execution of

πTLP−RB−LEDGER by A composed with Ftlp,FLedger.

G MPC with (Punishable) Output-Independent Abort,
continued

In this Supplementary Material Section, we will first provide the full description
of the functionality F∆,δcom as well as a full proof of Theorem 6. This completes the
description of πmpc,oia. Then, we show how to extend πmpc,oia from Section 7 to
financially punish cheaters. This will be done using a smart contract functionality
Fγ,δSC as well as a multi-party publicly verifiable delayed commitment Fγ,δvcom, both
of which we will introduce here. The protocol then implements a modification
of the previous functionality, which we call F∆,γ,δmpc,poia.

G.1 The Functionality F∆,δ
com for Commitments with Delayed

Openings

In Figure Fig. 28 the functionality F∆,δcom for commitments with verifiable delayed
non-interactive openings is fully presented as it is used in πmpc,oia.

G.2 Proof of Theorem 6

We recall Theorem 6 below. To prove security, we will construct a PPT simula-
tor S and then argue indistinguishability of the transcripts of πmpc,oia ◦ A and

F∆,δmpc,oia ◦ S.

Theorem 6 Let λ be the statistical security parameter and δ > ∆. Furthermore,
assume that all honest parties obtain their inputs at most Γ ticks apart. Then the
protocol πmpc,oia GUC-securely implements the ticked functionality F∆,δmpc,oia in the

F∆mpc,sso,F∆,δcom ,F∆ct ,F
Γ,∆
BC,delay-hybrid model against any static adversary corrupting

up to n− 1 parties in P. The transcripts are statistically indistinguishable.

Proof. The simulator will, towards the dishonest parties I that are corrupted
by A, simulate honest parties while additionally interacting with F∆,δmpc,oia. S will

furthermore simulate the hybrid functionalities F∆mpc,sso,F∆,δ,icom ,F∆ct and FΓ,∆BC,delay

towards A. S forwards the messages from the hybrid functionalities and A to
Gticker honestly. It ticks Gticker whenever honest parties would tick Gticker and
performs interactions of the simulated functionalities with Gticker honestly.

Heartbeat: S will simulate the behavior of honest parties as in πmpc,oia towards

FΓ,∆BC,delay, but FΓ,∆BC,delay will never make a Total Breakdown due to behavior
of the simulated honest parties (only when induced by A). In case honest

53

Functionality F∆,δcom

The ticked functionality is parameterized by ∆, δ ∈ N and interacts with a set of n
parties P = {P1, . . . ,Pn} where PSend ∈ P is a special party called “the sender” and
PRec = P \ {PSend} are the receivers. An adversary S may corrupt a strict subset
I ⊂ P of parties. The functionality internally has an initially empty list O and a
map commits.

Commit: Upon receiving (Commit, sid, cid, x) from PSend where cid is an unused
identifier and x is a bit-string proceed as follows:
1. Set commits[cid] = x.

2. Send a message cid with prefix Commit to PRec via Q with delay ∆.

3. Send cid and the IDs to S.

Open: Upon receiving (Open, sid, cid) from PSend, if commits[cid] = x 6=⊥ then
proceed as follows:
1. Send message (cid, x) with prefix Open to PRec via Q with delay ∆.

2. Send (cid, x) and the IDs to S.

Delayed Open: Upon receiving (DOpen, sid, cid) from PSend, if commits[cid] =
x 6=⊥ then proceed as follows:
1. Simultaneously send message cid with prefix DOpen to all parties in PRec via Q

with delay ∆.

2. Add (δ, sid,Pj , (cid, x)) for each Pj ∈ PRec and (δ, sid,S, (cid, x)) to O.

3. Send cid and the ID to S.

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

3. For each entry (cnt, sid,Pj , (cid, x) ∈ O with Pj ∈ PRec, if there is no entry
(cnt, sid,mid, sid,Pj , (DOpen, cid)) ∈ Q, proceed as follows:

– If cnt = 0, append (Pj , sid, (DOpened, (cid, x))) to M.

– If cnt > 0, replace (cnt, sid,Pj , (cid, x)) with (cnt − 1, sid,Pj , (cid, x)) in
O.

4. For each entry (cnt, sid,S, (cid, x)) ∈ O, proceed as follows:
– If cnt = 0, append (PSend, sid, (DOpened, cid)) to M and output

(DOpen, sid,S, (cid, x)) to S.

– If cnt > 0, replace (cnt, sid,S, (cid, x)) with (cnt− 1, sid,S, (cid, x)) in O.
Upon receiving (Schedule, sid,D) from S:

– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add
(Pi, sid,m) to M.

– If (Abort, sid) ∈ D and open = 0 then add (Pi, sid,Abort) to M for each i ∈ [n]
and ignore all further messages with this sid except to Fetch Message.

Fig. 28: Ticked Functionality F∆,δcom For Commitments with Delayed Opening.

54

parties would abort because dishonest parties did not send beat to FΓ,∆BC,delay,

then S makes F∆,δmpc,oia abort as in the protocol. As in πmpc,oia, S will change

to sending ready using FΓ,∆BC,delay during Reveal and stop with this once it

opened F∆,δcom

Init: If an honest party sends (Init, sid, C) to F∆,δmpc,oia then S gets informed by

the functionality. It will then simulate sending the same message to F∆mpc,sso.

Similarly, if a dishonest party inputs such a message into F∆mpc,sso then S
will forward this to F∆,δmpc,oia. If A decides to reschedule the arrival of such a

message to any of the honest parties in F∆mpc,sso, then S will forward this to

F∆,δmpc,oia.
Input: The simulator behaves as during Init. For any honest party that pro-

vides an input into F∆,δmpc,oia it inputs a dummy value into F∆mpc,sso. For every

dishonest party Pi that provides an input to F∆mpc,sso it observes that value
xi as S simulates the functionality and then sends xi in the name of Pi to
F∆,δmpc,oia.

Computation: S will follow the same strategy as during Init.
Share: S simulates the protocol πmpc,oia as follows:

1. For each correct message ShareOutput by a dishonest party, send (Share, sid)

to F∆,δmpc,oia in the name of that party. For each message (Share, sid) by an

honest party through F∆,δmpc,oia let that party follow the protocol πmpc,oia.

2. In Step 4 the simulated honest parties commit to yi, ri using F∆,δ,icom

that were obtained from F∆mpc,sso. For each dishonest party Pj , observe

which values yj , rj it commits to using F∆,δ,jcom . Set J2 as the set of parties
where yj , rj are inconsistent with the outputs that the respective parties
receive from F∆mpc,sso.

3. If the revealing of shares in Step 7 of the protocol succeeds, then S
sends DeliverShares to F∆,δmpc,oia, otherwise it sends Abort. Observe that

if S sends DeliverShares to F∆,δmpc,oia then message delivery to the honest

parties in F∆,δmpc,oia will be synchronized with how the adversary delays

the DeliverShares message in F∆mpc,sso. Abort will also be sent if A aborts

F∆mpc,sso or F∆ct .
Reveal: S simulates the protocol πmpc,oia as follows:

1. If an honest party Pi in F∆,δmpc,oia sends Reveal then start broadcasting the
ready message instead of the beat message for the simulated honest party
on FΓ,∆BC,delay. Conversely, if a dishonest party Pj starts broadcasting ready

on FΓ,∆BC,delay then send a Reveal-message in the name of Pj to F∆,δmpc,oia once
this broadcast round is finished.

2. Once FΓ,∆BC,delay makes the first broadcast of only ready messages, then

each simulated honest party Pi sends DOpen to its instance of F∆,δ,icom .
3. S now waits for δ ticks. It checks from which parties of P the honest

parties did not yet obtain DOpen or for which commitments they already
received an opened value. Let J1 be that set. Then it sets J = J1 ∪ J2
and responds with the appropriate (Abort, sid, J) to F∆,δmpc,oia.

55

4. Upon obtaining the output y from F∆,δmpc,oia S picks one simulated honest

party Pi uniformly at random. It then reprograms F∆,δ,icom to output y′i, r
′
i

such that y′i = y −
∑
j∈[n]\{i} yj (where the yj where committed by all

other parties in F∆,δ,jcom) and r′i = ti −Ay′i.

5. When the last F∆,δ,jcom of a party Pj ∈ I opens, S lets F∆,δmpc,oia deliver the
output to the honest parties.

First let us consider the Heartbeat mechanism. Here the difference between
the real and the ideal world lies in the total breakdown of FΓ,∆BC,delay due to be-
havior of honest parties. This will only occur in πmpc,oia but not in S, and it will
happen if any honest party needs more than Γ ticks longer than the first honest
party to submit a message for a respective c. If FΓ,∆BC,delay does not break down,
then all honest parties obtain the message beat in the same round and a total
breakdown due to honest parties cannot happen for any future call to FΓ,∆BC,delay,
as all honest parties from now on act synchronized when sending messages to
FΓ,∆BC,delay. Therefore, this difference in behavior can only occur when c = 0. But
by assumption, all honest parties obtain input within ≤ Γ ticks and they then
immediately send beat to FΓ,∆BC,delay. Therefore, honest parties never trigger a total
breakdown in πmpc,oia either and this is indistinguishable between protocol and
simulation.

The honest parties react upon their inputs from Z or send outputs to it at
the same points of time both during the real protocol and the simulation. For
the Init, Input, Computation phase that is clear, and aborts are also carried
to F∆,δmpc,oia during Share at the same time. Similarly, actions that honest parties

take towards F∆,δmpc,oia lead to equivalent actions in the simulation that can be
observed by A in Init, Input, Computation, Share. In Reveal they do not
have any input from Z, so we have to consider the output that they obtain in
both cases.

Both in S and in the real protocol, A will always get the correct output of
the computation. It will also always get messages from the (simulated) honest
parties with the same distribution: we only reprogram one commitment F∆,δ,icom

in S but this is indistinguishable due to the random choice of ri that hides the
committed share perfectly.

The simulated honest parties in the simulation will always abort if they
would get the wrong output of the computation, due to the choice of J : J1 is
determined identically in both the simulation and the real protocol, but J2 is
computed differently and it is computed in the simulation according to incorrect
output shares yj of dishonest parties.

Due to the choice of A ∈ Fλ×m we know that fA(y, r) := r + Ay is a
universal hash function, which implies that J2 differs between S and πmpc,oia only
when A in the real protocol commits to values y′j , r

′
j such that fA(yj , rj) = tj =

fA(y′j , r
′
j), which it has to do before A is known. By the properties of a universal

hash function, we then have that tj 6= fA(y′j , r
′
j) except with probability that is

negligible in λ.

56

Now if the honest parties do not output y then they output the set J . Honest
parties in the protocol will simply output J while those in the ideal setting only
output J to Z that does not contain any honest parties. We need to argue
that parties in the protocol agree on J and identify the same cheaters as in
the simulation: First, all honest parties in the protocol start in the same “tick”
round when opening their commitments. This is because, as argued before, they
are synchronized in sending beat and are therefore also synchronized in sending
ready. Therefore and because F∆,δcom opens in a broadcast, they will always agree
on the parties they identify as cheaters. Because δ > ∆ all honest messages
DOpen will always arrive before DOpened occurs at an honest party, so J1
never contains an honest party in either the simulation or real protocol. J2 can
by definition never contain an honest party. ut

G.3 Commitments with Publicly Verifiable Delayed Openings

Functionality Fγ,δvcom (Commit, Opening)

The ticked functionality is parameterized by γ, δ ∈ N and interacts with a set of
verifiers V and a set of n parties P = {P1, . . . ,Pn} where PSend ∈ P is a special
party called “the sender” and PRec = P \ {PSend} are the receivers. An adversary
S may corrupt a strict subset I ⊂ P of parties. The functionality internally has an
initially empty list O and a map commits.

Commit: Upon receiving (Commit, sid, cid, x) from PSend where cid is an unused
identifier and x is a bit-string proceed as follows:

1. Set commits[cid] = (x, vt) where vt
$← {0, 1}τ .

2. Send a message cid with prefix Commit to PRec ∪ V via Q with delay γ.
3. Send cid and the IDs to S.

Open: Upon receiving (Open, sid, cid) from PSend, if commits[cid] = (x, vt) 6=⊥ then
proceed as follows:
1. Send message (cid, x, vt) with prefix Open to PRec via Q with delay γ.
2. Send (cid, x, vt) and the IDs to S.

Delayed Open: Upon receiving (DOpen, sid, cid) from PSend, if commits[cid] =
(x, vt) 6=⊥ then proceed as follows:
1. Simultaneously send message cid with prefix DOpen to all parties in PRec

via Q with delay γ.
2. Add (δ, sid,Pj , (cid, x, vt)) for each Pj ∈ PRec and (δ, sid,S, (cid, x, vt)) to
O.

3. Send cid and the ID to S.
Public Verification: Upon receiving (Verify, sid, (cid, x, vt)) from Vi ∈ V,

if commits[cid] = (x, vt), set b = 1, else set b = 0. Output
(Verified, sid, (cid, x, vt), b) to Vi.

Fig. 29: Ticked Functionality Fγ,δvcom For Multiparty Commitments with Verifiable
Delayed Opening.

57

Functionality Fγ,δvcom (Message Handling)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. For each entry (cnt, sid,Pj , (cid, x, vt) ∈ O with Pj ∈ PRec, if there is no

entry (cnt, sid,mid, sid,Pj , (DOpen, cid)) ∈ Q, proceed as follows:
– If cnt = 0, append (Pj , sid, (DOpened, (cid, x, vt))) to M.
– If cnt > 0, replace (cnt, sid,Pj , (cid, x, vt)) with (cnt −

1, sid,Pj , (cid, x, vt)) in O.
4. For each entry (cnt, sid,S, (cid, x, vt)) ∈ O, proceed as follows:

– If cnt = 0, append (PSend, sid, (DOpened, cid)) to M and output
(DOpen, sid,S, (cid, x, vt)) to S.

– If cnt > 0, replace (cnt, sid,S, (cid, x, vt)) with (cnt −
1, sid,S, (cid, x, vt)) in O.

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D and open = 0 then add (Pi, sid,Abort) toM for each i ∈

[n] and ignore all further messages with this sid except to Fetch Message.

Fig. 30: Ticked Functionality Fγ,δvcom For Multiparty Commitments with Verifiable
Delayed Opening.

In Fig. 29 and Fig. 30 we describe the functionality Fγ,δvcom for commitments
with publicly verifiable delayed non-interactive openings. The functionality dis-
tinguishes between a sender, which is allowed to make commitments, a set of
receivers, which will obtain the openings, and a set of verifiers, which will be
able to verify that a claimed opening is indeed correct. For Public Verifica-
tion any verifier Vi ∈ V (which does not have to be part of PRec) can check
whether a certain opening for a commitment cid is indeed valid. This allows
parties from PRec to “verifiably transfer” openings to other parties. The string
vt which is part of the verification token makes it computationally infeasible for
any Vi ∈ V to simply brute-force the committed value in advance.

We construct a protocol πvcom realizing Fγ,δvcom by combining a standard ran-
dom oracle-based commitment with a TLP. The core of the protocol is having
the sender commit to a message m by sampling some randomness r and broad-
casting the commitment c obtained from the random oracle being queried on
(m|r), which is revealed later in the opening phase so that the receivers can
repeat the query to verify that the output matches the previously received c.
This basic scheme can be augmented with a delayed opening procedure by sim-
ply generating a TLP containing (m|r) that can be solved in δ steps, so that
receivers only learn the message (and verification information) for the commit-
ment after the desired delay δ. In order to make this scheme publicly verifiable,
we use a bulletin board incorporated into the smart contract functionality Fγ,δSC

and a global random oracle GrpoRO, so that any verifier who joins the protocol
execution at any point can retrieve commitments, openings and delayed open-

58

ings from the bulletin board and verify them while obtaining the same results
as the parties who participated in the execution so far.

Theorem 7. Protocol πvcom GUC-realizes Fγ,δvcom in the GrpoRO,Fγ,δSC ,Ftlp hybrid
model.

Proof. [Sketch] The fact that the Commit and Open steps of πvcom realize the
corresponding interfaces of the standard commitment functionality in the GrpoRO
and FAuth-hybrid model (FAuth is the functionality for authenticated channels)
is proven in [11]. In our case FAuth is substituted by the authenticated bulletin

board embedded in Fγ,δSC through which messages are sent among parties. We
can further extend the simulator S from [11] to capture the delayed opening and
public verification. The delayed opening can be simulated by equivocating the
message contained in the simulated TLP with the one received from Fγ,δvcom in
case A corrupts parties in P but not PSend. In case A corrupts PSend, the delayed
opening can be simulated by extracting (x, r) from its TLP and checking that
these values represent a valid opening, in which case S instructs Fγ,δvcom to start
a delayed opening. S can do this since it simulates Ftlp towards A, similarly to
the strategy of the delayed homomorphic commitment of [5]. Public verification
follows in a straightforward manner since verifiers V receive the same messages
as parties P and perform the exact same procedures of an honest receiver to
verify the validity of such messages. S simulates public verification towards A
by also following the exact steps of honest parties. Notice that this would only
fail if it was possible to find alternative openings x′, r′ for a commitment (cid, c),
which only happens with negligible probability. Hence, since GrpoRO is global the
output obtained by V in the public verification procedure is 1 if and only if the
output x was really obtained from a valid opening of the commitment identified
by cid. ut

G.4 The Smart Contract Functionality

The smart contract functionality Fγ,δSC is depicted in Fig. 32 and Fig. 33. It
realizes the coin-handling parts of our protocol. At the same time, it serves in
the protocol as a bulletin board (and therefore also broadcast) functionality and
is a verifier to Fγ,δvcom. Therefore, our construction requires Fγ,δvcom to be a global
functionality. This hides details of the commitment verification from the smart
contract.

At any point the parties will be able to use the bulletin board property of
Fγ,δSC , where Fγ,δSC also keeps track about all messages that have been broadcast
in an internal list B. All such sent messages can at any point be retrieved using
Fetch Bulletin Board.

Before being able to use Fγ,δSC with respect to coins, the parties will have to
register the instances of Fγ,δvcom that they want to use. Once this is finished, they
can then deposit coins to the functionality if the protocol has actually shared
the output to all parties which is indicated by Fγ,δSC having obtained A. This

way we avoid that the adversary can activate Deposit of Fγ,δSC prematurely.

59

Protocol πvcom

Protocol πvcom is parameterized by an opening delay δ and operates with parties
P = {P1, . . . ,Pn} and verifiers V that interact with each other and with GrpoRO
(with output in {0, 1}τ), Fγ,δSC , Ftlp and Gticker as follows:

Commit: On input (Commit, sid, cid, x), PSend uniformly samples r
$← {0, 1}τ and

queries GrpoRO on (cid, x|r) to obtain c. PSend sends (Broadcast, sid, (cid, c)) to Fγ,δSC .
All parties Pj ∈ P for j 6= i output (Committed, sid,PSend, cid) upon receiving this
message from Fγ,δSC .

Open: On input (Open, sid, cid), PSend sends (Broadcast, sid, (cid, x, r)) to Fγ,δSC .

Upon receiving (cid, x, r) from Fγ,δSC , each party Pj queries GrpoRO on (cid, x|r)
and checks that the answer is equal to c and that this output is not pro-
grammed by sending (IsProgrammed, cid, x|r) to GrpoRO, aborting if the answer
is (IsProgrammed, 1). Output (Open, sid,PSend, cid,m).

Delayed Open: On input (DOpen, sid, cid), PSend sends (CreatePuzzle, sid, δ, (x, r)),
receiving (CreatedPuzzle, sid, puz = (st0, δ, tag)). PSend sends (Broadcast, sid,
(cid, puz)) to Fγ,δSC . Upon receiving (cid, puz) from Fγ,δSC all parties Pi ∈ P parse
puz = (st0, δ, tag) and solve it by performing one iteration of the following loop at
every activation, where cst = 0 in the beginning:
1. Send (Solve, sid, stcst) to Ftlp.

2. Send (Fetch, sid) to Ftlp and check that there is an entry (Pi, stcst, st) in Li. If
yes, increment cst and set stcst = st.

3. If cst = δ, Pi sends (GetMsg, sid, puz, stcst) to Ftlp, receiving (GetMsg, sid,
st0, tag, stcst, (x, r)). Pi queries GrpoRO on (cid, x|r) and checks that the
answer is equal to c and that the output is not programmed by send-
ing (IsProgrammed, cid, x|r) to GrpoRO. If any of these checks fail, Pi
aborts. Otherwise, it sends (Broadcast, sid, (cid, st, x, r)) to Fγ,δSC , outputs
(DOpened, sid, (cid, x, r)) and exits the loop.

4. Send (activated) to Gticker.
PSend executes a similar loop after sending (Broadcast, sid, (cid, puz)) to Fγ,δSC but

when cst = δ in Step 3, it sends (Broadcast, sid, (cid, st, x, r)) to Fγ,δSC and outputs
(DOpened, sid, cid).

Verify: On input (Verify, sid, (cid, x, r)), Vj ∈ V sends (Fetch− BB, sid) to Fγ,δSC ,
receives (Return− BB, sid,B) and checks that there exists (cid, c) in B. Vj queries
GrpoRO on (cid, x|r) and checks that the answer is equal to c and that this output is
not programmed by sending (IsProgrammed, cid, x|r) to GrpoRO, checking that the
answer is (IsProgrammed, 0). Moreover, if there is (cid, puz) ∈ B, Vj checks that
there exists a valid (cid, st, x′, r′) ∈ B with respect to Ftlp such that (x′, r′) = (x, r).
If any of these checks fail set b = 0, else set b = 1. Output (Verified, sid, (cid, x, r), b).

Fetching Messages: At every activation, all parties P and in V send (Fetch, sid)
to Fγ,δSC , receiving (Fetch, sid, L) and parsing L according to the steps above.

Fig. 31: Protocol πvcom for Multiparty Commitments with Verifiable Delayed
Opening.

60

Functionality Fγ,δSC (Contract Code, Bulletin Board)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S. Fγ,δSC is parameterized by the compensation amount q, the security deposit d =
(n− 1)q and has a state st initially set to ⊥ as well as a list B.

Register: On first input (Register, sid, {Fγ,δ,jvcom }j∈[n]) by Pi ∈ P:
1. Notify the parties P \ {Pi} via Q with delay 0.
2. If each party sent (Register, sid, {Fγ,δ,jvcom }j∈[n]) with the same functionalities

then set st = ready, register to all functionalities as verifier and store
references to all these functionalities.

3. Send (Register, sid,Pi, {Fγ,δ,jvcom }j∈[n]) to S.
Broadcast: Upon receiving an input (Broadcast, sid,m) from a party Pi ∈ P:

1. Simultaneously send message (m, i) to the parties P via Q with delay γ.
2. Send (m, i) and the ID to S.

Fetch Bulletin Board: Upon receiving an input (Fetch− BB, sid) from a party
in P or V, output (Return− BB, sid,B) to that party.

Deposit: On input (Deposit, sid, coins(d)) by Pi ∈ P, if for each Pj ∈ P there is
the same (sid, (Broadcast, (A, t1, . . . , tn, j))) ∈ B and if st ∈ {ready, dep(x)}:
1. Simultaneously send a message (“coins(d)′′, i) with prefix Deposit to the

parties P \ {Pi} via Q with delay 0.
2. If st = ready then set st = dep(γ).
3. Send (Deposit, sid, “coins(d)′′, i) to S.

Fig. 32: Ticked Functionality Fγ,δSC for Smart Contracts.

All parties then, once Deposit is activated, have time γ to deposit their coins
as well, otherwise these will automatically be returned by Fγ,δSC . If all parties

indeed deposited their coins then Fγ,δSC will notify both the parties and S about
this state change, which will allow them to react to this event by opening their
instances of Fγ,δvcom. After this, no more coins can be deposited by any party.

Once the coins are locked, Fγ,δSC will similarly to πmpc,oia wait for the parties
to initialize the opening of their commitments for δ ticks. Afterwards it will
wait δ + γ ticks where parties in the protocol first obtain the committed values
for each commitment (which takes δ ticks) which they then broadcast via Fγ,δSC

(which takes another γ ticks to succeed). Fγ,δSC can then verify these openings
using the respective instances of Fγ,δvcom. Honest parties will always succeed in
doing this in the respective amount of time.

None of the actions done by Fγ,δSC rely on any secret information or secret

state and all messages that are provided by Fγ,δSC are provided immediately. In
an implementation, this can be implemented with a non-private smart contract.

G.5 MPC with Punishable Output-Independent Abort

Finally, we now describe the functionality F∆,γ,δmpc,poia which provides MPC with
punishable output-independent abort as described in Fig. 34 and Fig. 35.
F∆,γ,δmpc,poia contains, as previous MPC functionalities, the MPC capabilities for

input sharing, computation and output sharing. Any party can, after the output

61

Functionality Fγ,δSC (Ticks)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M

and, if there is no other (cnt,mid, sid,Pj ,m) ∈ Q, add (sid,m) to B.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. If st = wait(x) and x ≥ 0:

(a) Set st = wait(x− 1).
(b) If x = 0:

i. Let L ⊂ P \J1 be the set of parties such that for i ∈ L there exists
(cidi,yi, ri, vti) in B such that public verification on Fγ,δ,ivcom outputs
1. Set J2 as the set of all parties Pi ∈ L such that ti 6= ri + Ayi.
Set J ← J1 ∪ J2. If J = ∅ then set e1, . . . , en ← d.

ii. If instead J 6= ∅ then set ei ← d+ |J | · q for each party Pi ∈ P \ J
and ei ← d− q · (n− |J |) for each Pi ∈ J .

iii. Send message coins(ei) to each party Pi ∈ P via M.
iv. Set st = ⊥ and send (Coins, sid, {ei}Pi∈P) to S.

(c) If x = δ + γ: Set J1 as the set of parties Pj such that Fγ,δ,jvcom did not
send DOpen to Fγ,δSC .

4. If st = dep(x):
If x > 0: Set st = dep(x− 1).
If x = 0: If all parties in P sent (Deposit, sid, coins(d)) then set st =

wait(2δ + γ) and send a message AllDeposited to P and S via M.
Otherwise send a message coins(d) with prefix Coins to each party that
sent the deposit viaM, set st = ready and send a message Reimbursed
to P and S via M.

Fig. 33: Ticked Functionality Fγ,δSC for Smart Contracts.

sharing is finished, deposit coins to F∆,γ,δmpc,poia which will then also immediately
notify all other parties and S about this event, which if it happens the first time
will lead to an internal state-change. Unless all parties then deposit coins within
γ, they will be reimbursed by F∆,γ,δmpc,poia, otherwise it switches to a waiting state
wait.

Similar to F∆,δmpc,oia, the functionality F∆,γ,δmpc,poia will first remain in the waiting
state for δ ticks. Then it asks S to provide the set J of cheating parties to it. After
obtaining J , the functionality will then return the output of the computation
y to S. Ultimately, the functionality will wait for another δ + γ ticks during
which it either reveals the output y to all honest parties (if J = ∅) or the set J -

exactly as F∆,δmpc,oia. In addition, after these δ+γ ticks the functionality will either
reimburse all parties with coins(d) if J = ∅ or share all coins among the non-
cheating parties P\J otherwise. The strategy for calculating this reimbursement

is identical to Fγ,δSC .

The Protocol. The full protocol πmpc,poia is depicted in Fig. 36 and Fig. 37. It
uses a similar approach as πmpc,oia, although the broadcast of A, t1, . . . , tn as well

as the inherent broadcasts in Fγ,δvcom must now be done via Fγ,δSC . In comparison
to πmpc,oia we do not have to externally synchronize the honest parties using a

62

Functionality F∆,γ,δmpc,poia (MPC)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary S
who may corrupt a strict subset I ⊂ P. F∆,γ,δmpc,poia is parameterized by ∆, γ, δ ∈ N+,
the compensation amount q and the security deposit d = (n − 1)q. The computed
circuit is defined over F. The functionality has a state st that is initially ⊥ as well
as an initially empty set J .

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Init, sid, C) then store C locally.
3. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. Accept xi as input for Pi.
3. Send m and the IDs to S if Pi ∈ I, otherwise notify S about a message

with prefix Input.
Computation: On first input (Compute, sid) by Pi ∈ P and if all x1, . . . , xn were

accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Compute, sid) compute y = C(x1, . . . , xn) and store y.
3. Notify S about a message with prefix Compute.

Share: On first input (Share, sid) by party Pi, if y has been stored and if st = ⊥:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If all parties sent Share then:

(a) Send (Shares?, sid) to S.
(b) Upon (DeliverShares, sid) from S simultaneously send a message with

prefix DeliverShares to each Pj ∈ (P ∪V) \ I via Q with delay ∆. Then
notify S about messages with prefix DeliverShares and the ID.

(c) Otherwise, if S sends (Abort, sid) then send Abort to all parties
3. Notify S about a message with prefix Share.

Deposit: On first input (Deposit, sid, coins(d)) by Pi ∈ P, if Share finished, if no
DeliverShare message is in Q and if st ∈ {dep,⊥}:
1. Simultaneously send a message (i, “coins(d)′′) to the parties P \ {Pi} via
Q with delay 0.

2. If st = ⊥ then set st = dep(γ).
3. Notify S about the message.

Fig. 34: Ticked Functionality F∆,γ,δmpc,poia for Secure Multiparty Computation with
Punishable Output-Independent Abort.

heartbeat, as the AllDeposited message from Fγ,δSC now serves as synchronization
point within the protocol.

Afterwards, honest parties will now open their commitments Fγ,δvcom as before
and wait for DOpen messages from other parties’ commitment functionalities
Fγ,δ,jvcom . Once they obtain a solution by Fγ,δ,jvcom , however, they post it on Fγ,δSC to

allow Fγ,δSC to verify it. Then, those parties who started the opening at the right

time, got their openings on Fγ,δSC and whose openings are correct will then be
reimbursed. Here, observe that honest parties will be able to solve the TLPs and

63

Functionality F∆,γ,δmpc,poia (Message Scheduling)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. If st = wait(x) & x ≥ 0:

If x ≥ 0: Set st = wait(x− 1).
If x = δ + γ:

(a) Send (Abort?, sid) to S and wait for (Abort, sid, J) with J ⊆ I.
(b) If J = ∅ then send message y with prefix Output to each party
P \ I via Q with delay δ.

(c) If J 6= ∅ then send message J with prefix Abort to each party P \ I
via Q with delay δ.

(d) Send (Output, sid, y) and the IDs to S.
If x = 0:

(a) If J = ∅ then set e1, . . . , en ← d.
(b) If J 6= ∅ set ei ← d + |J | · q for each party Pi ∈ P \ J and

ei ← d− q · (n− |J |) for each Pi ∈ J .
(c) Send message coins(ei) with prefix Coins to each party P \ I via
M with delay 0.

(d) Send (Coins, sid, {coins(ei)}Pi∈I) to S.
4. If st = dep(x):

(a) Set st = dep(x− 1).
(b) If x = 0: If all parties in P sent (Deposit, sid, coins(d)) then set st =

wait(2δ + γ) and send a message AllDeposited to P and S via M.
Otherwise send a message coins(d) with prefix Coins to each party that
sent the deposit via M, set st ← ⊥ and send a message Reimbursed
to P and S via M.

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D and st = ⊥ then add (Pi, sid,Abort) toM for each i ∈ [n]

and ignore all further messages with this sid except to Fetch Message.

Fig. 35: Ticked Functionality F∆,γ,δmpc,poia for Secure Multiparty Computation with
Punishable Output-Independent Abort.

solve the solutions within the time-frame given by Fγ,δSC , so the set J2 identified

by Fγ,δSC will be identical with the set determined by each honest party.
For the correctness of the protocol, we see that honest parties can never be

framed as cheaters as long as δ > γ i.e. as long as the TLPs do not time out
before they succeeded at sending their TLPs to the bulletin board.

Overall, this leads to the following

Theorem 8. Let λ be the statistical security parameter and δ > γ. Then the pro-
tocol πmpc,poia GUC-securely implements the ticked functionality F∆,γ,δmpc,poia in the

F∆mpc,sso,Fγ,δvcom,F∆ct ,F
γ,δ
SC -hybrid model against any static adversary corrupting up

to n− 1 of the n parties in P. The transcripts are statistically indistinguishable.

64

Protocol πmpc,poia (Computation, Sharing)

All parties P have access to one instance of the functionalities F∆mpc,sso,F∆ct and

Fγ,δSC . Furthermore, each Pi ∈ P has it’s own Fγ,δ,ivcom where it acts as the dedicated
sender and all other parties of P are receivers.
Throughout the protocol, we say “Pi ticks” when we mean that it sends (activated)
to Gticker. We say that “Pi waits” when we mean that Pi, upon each activation, first
checks if the event happened and if not, sends (activated) to Gticker.

Init:
1. Each Pi sends (Register, sid, {Fγ,δ,jvcom }j∈[n]) to Fγ,δSC and ticks. Then it waits

until it receives Register from Fγ,δSC for each P \ {Pi}.
2. Each Pi ∈ P sends (Init, sid, C) to F∆mpc,sso and ticks. Then it waits until

it obtains messages C with prefix Init from F∆mpc,sso for every other party
P \ {Pi}.

Input: Each Pi ∈ P sends (Input, sid, i, xi) to F∆mpc,sso and ticks. Then it waits
until it obtains messages j with prefix Input from F∆mpc,sso for every other party
Pj ∈ P \ {Pi}.

Computation: Each Pi ∈ P sends (Computation, sid) to F∆mpc,sso and ticks. Then it
waits until it obtains messages with prefix Computation from F∆mpc,sso for every
other party P \ {Pi}.

Share:
1. Set Ty = {cidy,j}j∈[m], Tr = {cidr,k}k∈[λ] and Tt = {cidt,k}k∈[λ].
2. Each Pi ∈ P sends (ShareOutput, sid, Ty) to F∆mpc,sso and ticks. Then it

waits until it obtains a message {yi,cid}cid∈Ty with prefix OutputShares from
F∆mpc,sso.

3. Each Pi ∈ P sends (ShareRandom, sid, Tr) to F∆mpc,sso and ticks. Then it
waits until it obtains a message {ri,cid}cid∈Tr with prefix RandomShares
from F∆mpc,sso. Set yi = (yi,cidy,1 , . . . , yi,cidy,m) and equivalently define ri.

4. Each Pi ∈ P sends (Commit, sid, cidi, (yi, ri)) to Fγ,δ,ivcom and ticks. Then it
waits for messages (Commit, sid, cidj) from the Fγ,δ,jvcom -instances of all other
parties Pj ∈ P \ {Pi}.

5. Each Pi ∈ P sends (Toss, sid,m · λ) to F∆ct and ticks. It then waits for the
message (Coins, sid,A) where A ∈ Fλ×m.

6. Each Pi ∈ P for k ∈ [λ] sends (Linear, sid, {(cidv,j ,A[k, j])}j∈[m] ∪
{(cidr,k, 1)}, cidt,k) to F∆mpc,sso.

7. Each Pi ∈ P sends (Reveal, sid, Tt) to F∆mpc,sso and ticks. It then waits for the
message {(cid, t1,cid, . . . , tn,cid)}cid∈Tt with prefix DeliverReveal from F∆mpc,sso.
Set tj = (tj,cidt,1 , . . . , tj,cidt,λ) for each j ∈ [n].

8. Each Pi ∈ P sends (Broadcast, sid, (A, t1, . . . , tn)) to Fγ,δSC and ticks.
9. Each Pi ∈ P waits until it received n identical broadcasts

(Broadcast, sid, (A, t1, . . . , tn)), one from each Pj ∈ P.

Fig. 36: Protocol πmpc,poia for MPC with Punishable Output-Independent Abort.

65

Protocol πmpc,poia (Deposit)

Deposit:
1. If Pi finished Share, then it sends (Deposit, sid, coins(d)) to Fγ,δSC and ticks.

2. Upon having received (AllDeposited, sid) from Fγ,δSC Pi sends
(DOpen, sid, cidi) to Fγ,δ,ivcom and ticks. If the party instead
obtains (Coins, sid, coins(d)) then it aborts and outputs
(Reimbursed, sid, coins(d)).

3. Each Pi ∈ P waits until Fγ,δ,ivcom returns (DOpened, sid, (cidi, (yi, ri)). It then
checks if it obtained a message with prefix DOpen from all other Fγ,δ,jvcom .
Let J1 ⊂ P be the set of parties such that Pi did not obtain DOpen before
it received (DOpened, sid, (cidi, (yi, ri)).

4. Each Pi ∈ P waits until it obtains (DOpened, sid, (cidj , (yj , rj)) for each
Pj ∈ P \ (J1 ∪ {Pi}) from the respective instance of Fγ,δ,jvcom . Pi then sends
(Broadcast, sid, (cidj ,yj , rj , vtj)) to Fγ,δSC , ticks and defines J2 as the set of
all parties Pj such that tj 6= rj + Ayj .

5. If J1 ∪ J2 = ∅ then each Pi ∈ P defines y =
⊕

j∈[n] yj and outputs

(Output, sid,y). Otherwise it outputs (Abort, sid, J1 ∪ J2).
6. Each Pi waits for a message (Coins, sid, coins(ei)) from Fγ,δSC . It then out-

puts (Coins, sid, coins(ei)).

Fig. 37: Protocol πmpc,poia for MPC with Punishable Output-Independent Abort.

66

	 CRAFT: Composable Randomness Beacons and Output-Independent Abort MPC From Time

