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Abstract

In this note, we observe that a proof of quantumness in the random
oracle model recently proposed by Brakerski et al. can be seen as a proof
of quantum access to a random oracle. Based on this observation, we
give the first examples of natural cryptographic schemes that separate
classical and quantum random oracle models. Specifically, we construct
digital signature and public key encryption schemes that are secure in the
classical random oracle model but insecure in the quantum random oracle
model assuming the quantum hardness of learning with error problem.

1 Introduction

The random oracle model (ROM) [BR93] is a widely used heuristic model in
cryptography where a hash function is modeled as a random function that is
only accessible as an oracle. The ROM was used for constructing practical
cryptographic schemes including digital signatures [FS87, PS96, BR96], chosen-
ciphertext attack (CCA) secure public key encryption (PKE) [BR95, FOPS01,
FO13], identity-based encryption (IBE) [GPV08], etc.

In 2011, Boneh et al. [BDF+11] observed that the ROM may not be sufficient
when considering post-quantum security, since a quantum adversary can quan-
tumly evaluate hash functions on superpositions, while the ROM only gives a
classically-accessible oracle to an adversary. Considering this observation, they
proposed the quantum random oracle model (QROM), which gives an adversary
quantum access to an oracle that computes a random function.

Boneh et al. observe that many proof techniques in the ROM cannot be
directly translated into one in the QROM, even if the other building blocks of
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the system are quantum-resistant. Therefore, new proof techniques are needed
in order to justify the post-quantum security of random oracle model systems.
Fortunately, recent advances of proof techniques have clarified that most im-
portant constructions that are originally proven secure in the ROM are also se-
cure in the QROM. These include OAEP [TU16], Fujisaki-Okamoto transform
[TU16, JZC+18, Zha19], Fiat-Shamir transform [DFMS19, LZ19], Full-Domain
Hash signatures [Zha12] Gentry-Peikert-Vaikuntanathan IBE [Zha12, KYY18]
etc.

Given this situation, it is natural to ask if there may be a general theorem
lifting any classical ROM proof into a proof in the QROM, provided that the
other building blocks of the system remain quantum resistant.

Such a general lifting theorem certainly seems like a challenging task. Never-
theless, demonstrating a separation — that is, a scheme using quantum-resistant
building blocks that is secure in the ROM but insecure in the QROM — has
also been elusive. Intuitively, the reason is that natural problems on random
oracles (such as pre-image search, collision finding, etc) only have polynomial
gaps between classical and quantum query complexity.

We are aware of two works that consider the task of finding a separation.
First, Boneh et al. [BDF+11] gave an example of an identification protocol that
is secure in the ROM but insecure in the QROM, but is specific to a certain non-
standard timing model. Concretely, the protocol leverages the polynomial gap
in collision finding to allow an attacker with quantum oracle access to break
the system somewhat faster than any classical-access algorithm. The verifier
then rejects if the prover cannot respond to its challenges fast enough, thereby
blocking classical attacks while allowing the quantum attack to go through.
This unfortunately requires a synchronous model where the verifier keeps track
of the time between messages; such a model is non-standard.

Second, a recent work of Zhang et al. [ZYF+19] showed that quantum ran-
dom oracle is differentiable from classical random oracle, which roughly means
that it is impossible to simulate quantum random oracle using only classical
queries to the same function. Their result rules out a natural approach one may
take to give a lifting theorem, but it fails to actually give a scheme separating
classical from quantum access to a random oracle

In summary, there is no known classical cryptographic scheme (e.g., digital
signatures and PKE) that can be proven secure in the ROM but insecure in the
QROM.

1.1 Our Result

We observe that a proof of quantumness recently proposed by Brakerski et
al. [BKVV20] implicitly gives an example of a cryptographic scheme that is
secure in the ROM but insecure in the QROM assuming quantum hardness
of the learning with errors (LWE) problem [Reg09]. We formalize this as a
proof of quantum access to random oracle (PoQRO), and show that the proof
of quantumness of Brakerski et al. [BKVV20] can be seen as a PoQRO. Based
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on this observation, we give the first examples of natural cryptographic schemes
that separate the ROM and QROM. Specifically, we construct

1. A digital signature scheme that is EUF-CMA secure in the ROM but not
EUF-CMA secure in the QROM, and

2. A PKE scheme that is CCA secure in the ROM but not CCA secure in
the QROM

Both these results rely on the assumed quantum hardness of LWE.

2 Classical/Quantum Random Oracle Model

In the (classical) random oracle model (ROM) [BR93], a random function H (of
a certain domain and range) is chosen at the beginning, and an adversary can
classically access to H. The quantum random oracle model (QROM) [BDF+11]
is defined similarly except that the access to H can be quantum. More precisely,
an adversary (which is quantum) is given an oracle access to a unitary UH s.t.
UH |x〉 |y〉 = |x〉 |y ⊕H(x)〉 for any x and y. We often denote |H〉 to mean
the oracle that applies UH for simplicity. We note that we can implement a
unitary U ′H s.t. U ′H |x〉 = (−1)H(x) |x〉 by a single call to UH by a standard
technique. We call an oracle that applies U ′H a phase oracle of H. We stress
that the classical ROM can be considered even when we consider security against
quantum adversaries. Namely, when a quantum adversary makes a query to a
classical random oracle, then the oracle measures the query register and then
apply the unitary UH as above.

3 Separation between ROM and QROM

In this section, we show examples of cryptographic schemes that are secure in
the ROM but insecure in the QROM.

3.1 Proof of Quantum Access to Random Oracle

First, we introduce a notion of proofs of quantum access to random oracle
(PoQRO).

Definition 3.1. A (non-interactive) proof of quantum access to random oracle
(PoQRO) consists of algorithms (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify).

PoQRO.Setup(1λ): This is a classical algorithm that takes the security parame-
ter 1λ as input and outputs a public key pk and a secret key sk.

PoQRO.Prove|H〉(pk): This is a quantum oracle-aided algorithm that takes a
public key pk as input and given a quantum access to a random oracle H,
and outputs a proof π.
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PoQRO.VerifyH(sk, π): This is a classical algorithm that takes a secret key sk
and a proof π as input and given a classical access to a random oracle H,
and outputs > indicating acceptance or ⊥ indicating rejection.

We require PoQRO to satisfy the following properties.

Correctness. We have

Pr

[
PoQRO.VerifyH(sk, π) = ⊥ :

(pk, sk)
$← PoQRO.Setup(1λ),

π
$← PoQRO.Prove|H〉(pk)

]
≤ negl(λ).

Soundness. For any quantum polynomial-time adversary A that is given a
classical oracle access to H, we have

Pr

[
PoQRO.VerifyH(sk, π) = > :

(pk, sk)
$← PoQRO.Setup(1λ),

π
$← AH(pk)

]
≤ negl(λ).

We observe that proofs of quantumness in the random oracle model recently
proposed by Brakerski et al. [BKVV20] can also be seen as a PoQRO. Then
we obtain the following lemma. Though the construction and security proof are
almost the same as that of [BKVV20], we give a proof sketch for the reader’s
convenience.

Lemma 3.2 (a variant of [BKVV20]). If the QLWE assumption holds, then
there exists a PoQRO.

Proof. (sketch) As shown in previous works [BCM+18, BKVV20] there ex-
ists a quantumly secure family of noisy trapdoor claw-free functions assuming
the QLWE assumption. In this proof sketch, we assume that there exists a
quantumly-secure family of (non-noisy) trapdoor claw-free functions for sim-
plicity. We note that the proof can be easily extended to the construction from
a noisy one as in [BKVV20].

A quantumly secure family of trapdoor claw-free functions enables one to
sample a function f : {0, 1}×{0, 1}n → {0, 1}n along with a trapdoor such that

1. f(0, ·) and f(1, ·) are injective,

2. f(0, ·) and f(1, ·) are efficiently invertible by using a trapdoor, and

3. it is hard for an efficient quantum adversary that is not given a trapdoor
to find x0 and x1 such that f(0, x0) = f(1, x1).

Let H : {0, 1}n → {0, 1} be a random oracle. First, we describe a PoQRO with
soundness error 1/2.

PoQRO.Setup(1λ): This algorithm generates a trapdoor claw-free function f :
{0, 1} × {0, 1}n → {0, 1}n along with a trapdoor td, and outputs pk := f
and sk := td.
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PoQRO.Prove|H〉(pk = f): This algorithm generates a superposition

1√
2

(|0〉+ |1〉)⊗ 1

2n/2

∑
x∈{0,1}n

|x〉 ,

computes f into another register to obtain

1

2(n+1)/2

|0〉 ∑
x∈{0,1}n

|x〉 |f(0, x)〉+ |1〉
∑

x∈{0,1}n
|x〉 |f(1, x)〉

 ,

measures the third register to obtain y ∈ {0, 1}n along with a collapsed
state

1√
2

(|0〉 |x0〉+ |1〉 |x1〉)

where f(0, x0) = f(1, x1) = y, applies the phase oracle of H on the second
register to obtain

1√
2

((−1)H(x0) |0〉 |x0〉+ (−1)H(x1) |1〉 |x1〉),

applies the Hadamard transform on both registers to obtain

1

2(n+1)/2

∑
((m,d)∈{0,1}×{0,1}n)

((−1)H(x0)⊕dT x0 + (−1)H(x1)⊕m⊕dT x1) |m〉 |d〉

=
1

2(n−1)/2

∑
(m,d):m=dT ·(x0⊕x1)⊕H(x0)⊕H(x1)

(−1)H(x0)⊕dT x0 |m〉 |d〉 ,

and measures the both registers in standard basis to obtain (m, d). Then
it outputs π := (y,m, d).

PoQRO.VerifyH(sk = td, π = (y,m, d)): This algorithm computes x0 and x1 such
that f(0, x0) = f(1, x1) = y by using a trapdoor td and outputs > if

m = dT · (x0 ⊕ x1)⊕H(x0)⊕H(x1)

holds and ⊥ otherwise.

The correctness clearly follows from the above description. For proving sound-
ness, we consider an efficient quantum adversaryAH that is given classical access
to H. First, it is easy to see that A can win with probability 1/2 if it does not
query both x0 and x1 to H. Moreover, if A queries both x0 and x1 to H, then we
can break the security of the trapdoor claw-free function f by finding a solution
from A’s queries. Therefore, such an event happens with negligible probability,
and thus A’s winning probability is at most 1/2 +negl(λ). Finally, by a parallel
repetition, we can exponentially reduce the soundness error to obtain a PoQRO
with negligible soundness error.
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3.2 Digital Signatures

In this section, we construct a digital signature scheme that is EUF-CMA secure
in the ROM but not EUF-CMA secure in the QROM based on PoQRO.

Definition 3.3. A digital signature scheme consists of classical algorithms
(Sig.KeyGen,Sig.Sign,Sig.Verify):

Sig.KeyGen(1λ): This algorithm takes the security parameter 1λ as input and
outputs a verification key vk and a signing key sigk.

Sig.Sign(sigk,m): This algorithm takes a signing key sigk and a message m as
input and outputs a signature σ.

Sig.Verify(vk,m, σ): This algorithm takes a verification key vk, a message m,
and a signature σ as input, and outputs > indicating acceptance or ⊥
indicating rejection.

As correctness, we require that for any m, we have

Pr[Sig.Verify(vk, x, σ) = > : (vk, sigk)
$← Sig.KeyGen(1λ), σ

$← Sig.Sign(sigk,m)] = 1.

We say that a digital signature scheme is EUF-CMA secure against quantum
adversaries if for any efficient quantum adversary A with a classical signing
oracle, we have

Pr

[
Sig.Verify(vk,m∗, σ∗) = >
∧ A never queried m∗

:
(vk, sigk)

$← Sig.KeyGen(1λ),

(m∗, σ∗)
$← ASig.Sign(sk,·)(vk)

]
≤ negl(λ)

where Sig.Sign(sk, ·) denotes a classical oracle that computes Sig.Sign(sk, ·).

Lemma 3.4. If the QLWE assumption holds, then there exists a digital sig-
nature scheme that is secure against quantum adversaries in the ROM but not
secure against quantum adversaries in the QROM.

Proof. Let (Sig.KeyGen,Sig.Sign,Sig.Verify) be a digital signature scheme that
is EUF-CMA secure against quantum adversaries in the standard model. Such a
scheme exists under the QLWE assumption [ABB10, CHKP10]. Let (PoQRO.Setup,
PoQRO.Prove,PoQRO.Verify) be a PoQRO, which exists under the QLWE as-
sumption as shown in Lemma 3.2. Then we consider a digital signature scheme
(Sig.KeyGen′,Sig.Sign′,Sig.Verify′) that uses a random oracle H described below:

Sig.KeyGen′H(1λ): This algorithm generates (vk, sigk)
$← Sig.KeyGen(1λ) and

(pk, sk)
$← PoQRO.Setup(1λ), and outputs vk′ := (vk, pk) and sigk′ :=

(sigk, sk).

Sig.Sign′H(sigk′ = (sigk, sk),m): If PoQRO.VerifyH(sk,m) = >, then it outputs

sigk. Otherwise, it outputs σ
$← Sig.Sign(sigk,m).
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Sig.Verify′H(vk′ = (vk, pk),m, σ): This algorithm works in the exactly same way
as Sig.Verify(vk,m, σ).

By the security of PoQRO, any quantum polynomial-time adversary with
classical access to H cannot find m such that PoQRO.VerifyH(sk,m) = > with
non-negligible probability. Therefore, we can reduce the EUF-CMA security
of the above scheme against quantum adversaries in the ROM to that of the
underlying scheme (in the standard model) in a straightforward manner.

On the other hand, a quantum polynomial-time adversary with quantum
access to H can find m such that PoQRO.VerifyH(sk,m) = > with overwhelming
probability by correctness of PoQRO. Therfore, the adversary can obtain sigk
by querying such an m to the signing oracle to obtain sigk. This enables the
adversary to forge a signature on any message, and thus the above scheme
is not EUF-CMA secure against quantum polynomial-time adversaries in the
QROM.

3.3 Public Key Encryption

In this section, we construct a PKE scheme scheme that is CCA secure in the
ROM but not CCA secure in the QROM based on PoQRO.

Definition 3.5. A public key encryption (PKE) scheme consists of classical
polynomial time algorithms (PKE.KeyGen,PKE.Enc,PKE.Dec):

PKE.KeyGen(1λ): This algorithm takes the security parameter 1λ as input and
outputs an encryption key ek and a decryption key dk.

PKE.Enc(ek,m): This algorithm takes an encryption key ek and a message m
as input and outputs a ciphertext ct.

PKE.Dec(dk, ct): This algorithm takes a decryption key dk and a ciphertext ct
as input and outputs a message m or ⊥.

As correctness, we require that for any m, we have

Pr[PKE.Dec(dk, ct) = m : (ek, dk)
$← PKE.KeyGen(1λ), ct

$← PKE.Enc(ek,m)] = 1.

We say that a PKE scheme is CCA secure against quantum adversaries if
for any quantum polynomial-time adversary A = (A1,A2) we have∣∣∣∣∣∣∣∣∣Pr

 APKE.Dec(dk,·)
2 (|st〉 , ct∗) = b
∧ A2 never queried ct∗

:

(ek, dk)
$← PKE.KeyGen(1λ),

(m0,m1, |st〉)
$← APKE.Dec(dk,·)

1 ,

b
$← {0, 1},

ct∗
$← PKE.Enc(ek,mb)

− 1

2

∣∣∣∣∣∣∣∣∣ ≤ negl(λ)

where PKE.Dec(dk, ·) denotes a classical oracle that computes PKE.Dec(dk, ·).

Lemma 3.6. If the QLWE assumption holds, then there exists a PKE scheme
that is CCA secure against quantum adversaries in the ROM but not CCA secure
against quantum adversaries in the QROM.
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Proof. Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme that is CCA se-
cure against quantum adversaries in the standard model. Such a scheme exists
under the QLWE assumption [PW08]. Let (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify)
be a PoQRO, which exists under the QLWE assumption as shown in Lemma
3.2. Then we consider a PKE scheme (PKE.KeyGen′,PKE.Enc′,PKE.Dec′) that
uses a random oracle H described below:

PKE.Enc′H(1λ): This algorithm generates (ek, dk)
$← PKE.KeyGen(1λ) and (pk, sk)

$←
PoQRO.Setup(1λ), and outputs ek′ := (ek, pk) and dk′ := (dk, sk).

PKE.Enc′H(ek′ = (ek, pk),m): This algorithm works in the exactly same way as
PKE.Enc(ek,m).

PKE.Dec′H(dk′ = (dk, sk), ct): If PoQRO.VerifyH(sk, ct) = >, then it outputs dk.

Otherwise, it outputs m
$← PKE.Dec(dk, ct).

By the security of PoQRO, any quantum polynomial-time adversary with
classical access to H cannot find ct such that PoQRO.VerifyH(sk, ct) = > with
non-negligible probability. Therefore, we can reduce the CCA security of the
above scheme against quantum adversaries in the ROM to that of the underlying
scheme (in the standard model) in a straightforward manner.

On the other hand, a quantum polynomial-time adversary with quantum
access to H can find ct such that PoQRO.VerifyH(sk, ct) = > with overwhelming
probability by correctness of PoQRO. Therfore, the adversary can obtain dk by
querying such an ct to the decryption oracle to obtain dk. This enables the
adversary to decrypt any ciphertext, and thus the above scheme is not CCA
secure against quantum polynomial-time adversary in the QROM.
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