
Anonymity and Rewards in Peer Rating Systems

Lydia Garms1, Siaw–Lynn Ng1, Elizabeth A. Quaglia1, and Giulia Traverso2

1 Royal Holloway, University of London, UK
{Lydia.Garms,S.Ng,Elizabeth.Quaglia}@rhul.ac.uk

2 Cysec, Lausanne, Switzerland
giulia.traverso@cysec.systems

Abstract. When peers rate each other, they may choose to rate inaccu-
rately in order to boost their own reputation or unfairly lower another’s.
This could be successfully mitigated by having a reputation server in-
centivise accurate ratings with a reward. However, assigning rewards
becomes a challenge when ratings are anonymous, since the reputation
server cannot tell which peers to reward for rating accurately. To address
this, we propose an anonymous peer rating system in which users can
be rewarded for accurate ratings, and we formally define its model and
security requirements. In our system ratings are rewarded in batches,
so that users claiming their rewards only reveal they authored one in
this batch of ratings. To ensure the anonymity set of rewarded users is
not reduced, we also split the reputation server into two entities, the
Rewarder, who knows which ratings are rewarded, and the Reputation
Holder, who knows which users were rewarded. We give a provably se-
cure construction satisfying all the security properties required. For our
construction we use a modification of a Direct Anonymous Attestation
scheme to ensure that peers can prove their own reputation when rating
others, and that multiple feedback on the same subject can be detected.
We then use Linkable Ring Signatures to enable peers to be rewarded for
their accurate ratings, while still ensuring that ratings are anonymous.
Our work results in a system which allows for accurate ratings to be
rewarded, whilst still providing anonymity of ratings with respect to the
central entities managing the system.

1 Introduction

Anonymity has long been a sought-after property in many cryptographic prim-
itives, such as public-key encryption [5] and identity-based encryption [2, 17],
and a defining one in many others, such as group signatures [20] and ring signa-
tures [52]. A plethora of more complex protocols, from broadcast encryption [41]
to cryptocurrencies [38], have been enhanced by the addition of user anonymity
and the privacy guarantees it provides.

An example of such protocols are rating systems, also referred to as reputation
systems, in which users can be rated by providing feedback on goods or services,
with the support of a reputation server. Each user has a reputation value based
on these ratings, which can be used to evaluate their trustworthiness. In this
context, the value of anonymity lies in the fact that users are able to give honest

feedback without fear of repercussions. This may occur when there is a lack of
trust for the reputation server, or when users are concerned about retaliation.

Anonymity has received a great amount of attention in this area and abun-
dant existing literature covers a range of anonymous rating systems in both
the centralised and distributed settings. Distributed systems, e.g., [44], have no
reputation server and use local reputation values, i.e., reputation values created
by users on other users. For example, a user may generate a reputation value
based on feedback from querying other users. This means a user does not have a
unique reputation value, but many other users hold their own reputation value
for them. In this setting, privacy preserving decentralised reputation systems [49]
are designed to maintain anonymity when answering queries from other users.

We focus on centralised systems, since the reputation systems used by most
service providers such as Airbnb, Uber and Amazon are of this type. In the
centralised setting, a central reputation server enrols users and forms reputation
values on these users. In [11, 27, 10, 22, 21] anonymity of a rating is provided to all
except the reputation server, and multiple ratings cannot be given on the same
subject. In [57], multiple reputation servers are used so that anonymity of ratings
holds, unless all reputation servers collude. Other works provide anonymity of
ratings in the presence of a corrupted reputation server [53, 50, 31, 32]. In [3,
8] anonymity is achieved with a different approach. The reputation server still
enrols users, but no longer forms reputations. Instead users collect tokens based
on anonymous ratings from other users and prove their own reputation.

Whilst the benefits of anonymity are clear, it is also understood that this same
property can provide an opportunity for malicious users to misbehave. They may
“bad mouth” other users, for instance competitors, giving dishonest negative
feedback to these users to decrease their reputation. Or they may collude and give
each other positive feedback in order to inflate their own reputation. To avoid
this, the system can provide either a mechanism to revoke the malicious user’s
anonymity (typically achieved through a traceability property), or incentivize
good behaviour by rewarding users. The rating systems proposed so far approach
this issue via user tracing. Indeed, in schemes where the reputation server can
de–anonymise ratings [11, 27, 22, 21], inaccurate ratings can be punished.

We take a different approach by rewarding honest ratings in anonymous peer
rating systems, where users are peers and anonymously rate each other. Examples
include peer-to-peer file sharing [1], collaborative knowledge production [46, 14,
33], and shared knowledge of internet and software vulnerabilities [36, 54]. In such
systems the rewarding approach works well since raters are also participating
within the system and so have an interest in rating accurately to increase their
reputation through rewards. The use of incentives to encourage accurate feedback
has already been discussed in [48, 56], but ratings are not anonymous.

Privacy-preserving incentive schemes [45, 39, 35, 9, 12], where users can be
incentivised anonymously without their transactions being linked, have also been
proposed. In [45] it is described how such incentives could contribute towards a
reputation value. However, these schemes do not capture the ability to reward
accurate ratings. Firstly, ratings must be incentivised as they are submitted, at

2

which point it is not known whether a rating is accurate. When accurate ratings
are determined it is then difficult to return the incentive to the relevant user.
Secondly, in [39, 35, 9, 12], a user’s balance is updated each time a user receives
an incentive. However, a user may have submitted k accurate rating on other
users, which are unlinkable. Then their balance of n should increase by k, but
instead they receive k updated tokens for a balance of n+ 1. Finally, in [45, 35,
9, 12] a user would have to participate in an interactive protocol to rate others.

Therefore the challenge remains to rewards users that rate accurately, whilst
preserving the anonymity of their ratings even with respect to the reputation
server. This is what we address in this paper.

1.1 Our work

We consider an anonymous peer rating system in which, at each round of inter-
action, users rate each other by providing feedback to the reputation server.

Our contribution is to allow accurate ratings to be incentivised and weighted
by reputation, whilst still ensuring anonymity of ratings. Achieving this is chal-
lenging for two reasons. First, the reputation used to weight feedback could be
used to de-anonymise a user. We can partially mitigate this by ensuring reputa-
tion is coarse-grained as in [8] (by rounding the reputation value, for instance),
which ensures that a user who has a unique reputation score does not reveal their
identity. The trade off between precision of reputation and size of anonymity sets
is further discussed in [51]. Second, and crucially, accurate ratings must be incen-
tivised without being de-anonymised. We achieve this by incentivising a large set
of ratings simultaneously, and rewarding the users responsible for such ratings.
With this approach, however, the anonymity set can be reduced substantially.
Indeed, a malicious reputation server could decide to only reward a small number
of ratings it seeks to de-anonymise, and then check which users are rewarded with
an increase in reputation. These users then must have authored these ratings.

A way to lessen the impact in both cases is to restrict access to reputation. A
specific trusted entity, the Reputation Holder, holds the reputations of users, and
the latter should only be revealed sparingly. We do not specify exactly when and
how reputations should be revealed in order to allow for a flexible scheme, and
because this has been discussed in the existing literature. For example, in [32,
53], users can prove their reputation and so can decide which users to reveal it
to. A simpler example is that a user would have to demonstrate a good reason
to learn another’s reputation from the Reputation Holder.

We go further and introduce a new entity, the Rewarder, who chooses which
ratings to reward, and who cannot see which users have their reputation increase.
As the Reputation Holder no longer knows which ratings were rewarded, they
cannot compare these ratings with the users that claim rewards and so reduce the
anonymity set. We formalise this in the Anonymity of Ratings under a Corrupt
Reputation Holder requirement. For completeness, we also consider the case that
the Reputation Holder and the Rewarder collude or are the same entity. Clearly
they learn that each user that was rewarded n times, authored n of the ratings

3

rewarded, however they should learn no more than this. We formalise this in our
Anonymity of Ratings under Full Corruption requirement.

Although we are aware that using reputation values and incentivising accu-
rate ratings both inescapably reduce the anonymity sets of ratings, in this work
we aim to provide the best anonymity achievable given the functionality. Fur-
thermore, we also must ensure that users do not attempt to subvert the system
by claiming rewards that they are not entitled to, by providing multiple ratings
on the same user per round, by lying about their reputation, or by framing other
users so that they seem to be cheating. We formalise this in our Fair Rewards,
Traceability3, Unforgeability of Reputation and Non–Frameability requirements.

In this work we first provide a model and security requirements for an anony-
mous peer rating system APR, which formalises the necessary privacy and se-
curity properties discussed above. We use property-based definitions, which are
intuitive and useful when proving security. We then give a construction that is
provably secure given these security requirements. Our construction makes use of
Direct Anonymous Attestation (DAA) [13], which we use to sign feedback. This
ensures that, whilst signed feedback are unlinkable, multiple feedback on the
same user can be detected, due to the user controlled linkability feature of DAA.
We modify the DAA scheme so that when giving feedback a user can prove they
have a particular reputation for that round, so that feedback can be weighted.
We then make use of Linkable Ring Signatures [42] to allow to incentivise users
who rate accurately. For every rating a freshly generated verification key is at-
tached, encrypted under the Rewarder’s public key. When the Rewarder rewards
a rating, they publish the corresponding decrypted verification keys. The user
can then sign a linkable ring signature with the corresponding secret key and
claim their incentive from the Reputation Holder. The linkability of the signa-
ture scheme can be used to detect if a user tries to claim for the same incentive
twice, whilst its anonymity ensures that ratings remain anonymous.

Although DAA and Linkable Ring Signature schemes are similar primitives,
we note that they have subtly different properties that make them exactly suited
to their particular role in building an APR scheme. As ring signature key pairs
can be generated without involving any central entity, this allows a new veri-
fication key to be generated for every rating. The fact that a central entity, in
our case the Reputation Holder, must authorise the creation of a new DAA key
pair, prevents sybil attacks. Otherwise, users could easily create multiple iden-
tities and rate other users as many times as they wish per round. Unlike group
signatures [20], DAA schemes do not allow a trusted opener to de–anonymise sig-
natures, ensuring that anonymity of ratings holds with respect to the Rewarder.

While the main aim of our anonymous peer rating system is to ensure anony-
mous and honest feedback, it is also important to consider how it is affected by
many other conventional attacks on rating systems. The unfair ratings attack [25]
is mitigated by the detection of multiple ratings per subject per round. The in-
centives also encourage users to give more accurate feedback. The self–rating

3 Traceability here refers to the requirement that multiple ratings cannot be given on
the same subject per round.

4

or self–promoting attack [37] is mitigated by encouraging all users to give feed-
back on their own performance. Sybil attacks [26], where a user creates multiple
identities to join the system to give unfair feedback, can be mitigated by making
joining the system expensive, and by a robust registration process. This also mit-
igates against whitewashing attacks [23], where a user leaves and rejoins to shed
a bad reputation. The on-off attack [55], where a user behaves honestly to in-
crease their reputation before behaving dishonestly, can be somewhat mitigated
by adjusting the weighting of the final reputation formation in our system, so
that bad behaviour will cause the reputation to deteriorate quickly. Reputation
lag exploitation [40], where a user exploits the interval before the latest round
of ratings takes effect, cannot be prevented but, as before, we can mitigate it by
making the reputation deteriorate faster on bad behaviour.

2 Anonymous Peer Rating Systems: Definitions and
Security Models

In this section, we introduce and formally define an anonymous peer rating (APR)
system, and the security and privacy properties it should satisfy. We consider
a set of users U = {uidi} interacting with each other in rounds. At the end
of each round they rate each other’s performance, by anonymously sending a
numerical feedback alongside their reputation to the Rewarder. The Rewarder
collects ratings, discards multiple ratings on the same subject, and rewards accu-
rate feedback by outputting a set of incentives. A user claims to the Reputation
Holder that they were responsible for a number of these incentives. The final
reputation held by the Reputation Holder on a user is based on three compo-
nents: weighted feedback from other users, the number of incentives they have
successfully claimed, and their previous reputation. We present an illustration
of our model in Figure 1 and formally capture this as follows.

Fig. 1. Diagram illustrating our model.

Setup & Key Generation The Reputation Holder and Rewarder generate
their own key pairs. The group public key gpk = (param, rwpk, rhpk) consists of
the public keys of both entities.

5

Setup(1τ , f1, f2)→ param: input a security parameter 1τ , and two generic func-
tions f1 and f2 which calculate the reputations of users. The function f1 is
input the number of ratings a user is being rewarded for, and outputs the
second component, r′′, of their reputation for this round. The function f2
is input the two components of a user’s reputation for this round, and their
reputation from the previous round, and outputs their final reputation for
this round4. Setup outputs the public parameters param which include f1, f2.

RHKeyGen(param)→ (rhsk, rhpk): performed by the Reputation Holder, out-
puts the Reputation Holder’s secret key rhsk and public key rhpk.

RWKeyGen(param)→ (rwsk, rwpk): performed by the Rewarder, outputs the
Rewarder’s secret key rwsk and public key rwpk.

Join When a user joins the system they engage in an interactive protocol with
the Reputation Holder after which they are issued with secret keys used to
provide anonymous ratings and to collect rewards for giving honest feedback.
We assume users must join the system before a round of ratings begins.

〈Join(gpk), Issue(rhsk, gpk)〉: a user uid joins the system by engaging in an
interactive protocol with the Reputation Holder. The user uid and Reputa-
tion Holder perform algorithms Join and Issue respectively. These are input a
state and an incoming message Min, and output an updated state, an outgo-
ing message Mout, and a decision, either cont, accept, or reject, which denote
whether the protocol is still ongoing, has ended in acceptance or has ended
in rejection respectively. (States are values necessary for the next stage of
the protocol.) The initial input to Join is the group public key, gpk, whereas
the initial input to Issue is the Reputation Holder’s secret key, rhsk, and
the group public key gpk. If the user uid accepts, Join privately outputs the
user’s secret key gsk[uid], and Issue outputs reg[uid], which stores the user’s
registration and will be used to later allocate that user a reputation.

Ratings at Round l Each user uid has a reputation r[uid, l] at round l, also
held by the Reputation Holder. We assume that reputation is coarse-grained,
which lessens the impact on anonymity with respect to the Reputation Holder.
At Round l, a user uid with reputation r forms a rating ρ with Rate on user uid′

based on a numerical feedback fb, which is sent to the Rewarder via a secure
anonymous channel5. For flexibility we do not specify the form of fb, in [56] this
a real number between 0 and 1. The user stores a trapdoor td for each rating for
later use when claiming incentives. The Rewarder can verify ratings with Verify.

After collecting the valid ratings weighted by reputation, the Rewarder calcu-
lates an intermediate value r′[uid, l] for each uid with FormRep1, through which

4 For example, in [56], f1 is simply the number of incentives received multiplied by
some weight, and f2 is the weighted sum of these components.

5 We require a secure channel to prevent the Reputation Holder from accessing the
ratings, and determining which ratings will be rewarded by following the strategy
of the Rewarder. This knowledge would allow the Reputation Holder to decrease
the anonymity set of the users claiming incentives, as in the case when both the
Rewarder and Reputation Holder are corrupted.

6

it also detect multiple ratings on the same subject. This value captures the av-
erage feedback given on uid weighted by the reputation of the rater, and is sent
to the Reputation Holder via a secure authenticated channel.

Rate(gsk[uid], gpk, fb, uid′, l, r, ω)→ (ρ, td) : performed by the user with iden-
tifier uid, with input the user’s secret key gsk[uid], the group public key
gpk, a feedback fb, the user who they are rating uid′, the current round l,
their reputation r, and a reputation token ω output in the previous round
by AllocateRep. Outputs a rating ρ and a trapdoor td.

Verify(fb, uid′, l, r, ρ, gpk) → {0, 1}: a public function that is performed by the
Rewarder when receiving a rating tuple (fb, uid′, r, ρ). Outputs 1 if ρ is valid
on the feedback fb for user uid′ at round l for reputation r under the group
public key gpk, and 0 otherwise.

FormRep1(uid, l, (fb1, r1, ρ1), · · · (fbk, rk, ρk), gpk)→ r′[uid, l]: performed by the
Rewarder with input k valid rating tuples {(fbi, uid, ri, ρi) : i ∈ [1, k]} on
user uid at round l, and the group public key gpk. Outputs r′[uid, l] =∑k

i=1 rifbi∑k
i=1 ri

if all ratings originate from different users’ secret keys. Otherwise

outputs ⊥ (in practice also outputs ratings that should be discarded).

Incentivising accurate feedback The Rewarder compares each feedback on
uid′. If this is close to r′[uid′, l] then this rating will be considered to be accurate
and will be given an incentive. We define accurate as close to r′. However, our
model could simply be adapted to incorporate different metrics of accuracy.

The Rewarder inputs the k accurate ratings in this round to Incent, which
outputs k incentives which are broadcast publicly to all users. Incent must be
deterministic, to allow users to identify which incentives match their ratings.

A user collects all its incentives and can then use CollectIncent, along with the
trapdoors stored earlier, to output an incentive claim σ for each of their incen-
tives. They send these incentive claims to the Reputation Holder over a secure
authenticated channel. Incentive claims are verified by the Reputation Holder
with VerifyIncent. After gathering all the valid incentive claims, the Reputation
Holder calculates the second component r′′[uid, l + 1] of a user’s reputation at
round l with FormRep2, which also checks that no user has claimed the same
incentive twice. This value reflects how in line the feedback of uid is with respect
to other users’ feedback, incentivising users to give honest feedback.

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l, rwsk, gpk) → t1, · · · , tk: a de-
terministic function performed by the Rewarder on input k rating tuples
{(fbi, uidi, ri, ρi) : i ∈ [1, k]} from round l and its secret key rwsk. Outputs
k incentives t1, · · · , tk.

CollectIncent(uid, (fb, uid′, l, r, ρ, td), t1, · · · , tk, gpk)→ σ: performed by the user
uid who gave the rating tuple (fb, uid′, r, ρ) for round l corresponding to
trapdoor td, with input the incentives output by the Rewarder t1, · · · , tk.
Outputs an incentive claim σ if the rating tuple (fb, uid′, r, ρ) corresponds
to an incentive in list t1, · · · , tk and ⊥ otherwise.

7

VerifyIncent(uid, σ, t1, · · · , tk, gpk)→ {0, 1}: performed by the Reputation Holder
when receiving an incentive claim σ from user uid on incentives t1, · · · , tk.
Outputs 1 if the incentive claim is valid on uid, t1, · · · tk and 0 otherwise.

FormRep2(uid, σ1, · · ·σk1 , t1, · · · , tk2 , gpk)→ r′′[uid, l]: performed by the Rep-
utation Holder with input a user uid, k1 valid incentive claims σ1, · · ·σk1
and k2 incentives t1, · · · , tk2 . Outputs r′′[uid, l] = f1(k1) if no incentive has
been claimed twice, and otherwise ⊥.

Allocate reputation for next round For the first round, all users’ reputations
are set to an initial value. The reputation of user uid for round l+1, r[uid, l+1],
is set by the Reputation Holder as f2(r′[uid, l], r′′[uid, l], r[uid, l]) combining the
user’s previous reputation and the two intermediate values r′[uid, l], r′′[uid, l].
This reputation value r[uid, l+1], which we refer to as r, and a reputation token
ω obtained from AllocateRep are given to the user via a secure authenticated
channel to allow them to prove they have this reputation in the next round.

AllocateRep(uid, r, l, rhsk, reg)→ ω: performed by the Reputation Holder with
input a user uid with reputation r during round l, the Reputation Holder’s
secret key rhsk and the registration table reg. Outputs reputation token ω.

2.1 Security Requirements

An APR system must satisfy Correctness, as well as the following security re-
quirements: Anonymity of Ratings under Full Corruption, which formalises the
strongest anonymity that can be achieved when the Rewarder and Reputation
Holder are corrupted; Anonymity of Ratings under a Corrupt Reputation Holder,
which ensures that ratings cannot be de-anonymised or linked by the Reputa-
tion Holder6; Traceability, which ensures that multiple ratings cannot be given on
the same user per round; Non–Frameability, which ensures that users cannot be
impersonated when giving ratings or claiming incentives; Unforgeability of Rep-
utation, which ensures that a user cannot lie about their reputation, and Fair
Rewards, which ensures that users can only successfully claim for the number
of incentives they were awarded. We focus here on the Anonymity of Ratings
and Fair Rewards requirements as these are the most novel, directly relating
to the problem of incentivising anonymous ratings. However, the Traceability,
Non–Frameability and Unforgeability of Reputation requirements are given in
full in Appendix A.

We provide definitions in the computational model of cryptography. These
are typically formulated as experiments in which an adversary, having access to
a certain number of oracles, is challenged to produce an output. Such output
captures an instance of the system in which the security requirement does not
hold. In Figure 2, we provide the oracles used in our security requirements:
AddU, SndToU, SndToRH, AllocateRep, USK, Rate, TD, Incent, Collect, based
on notation from [6]. We give a high level description below:

6 The case of a corrupt Rewarder is captured in the Anonymity of Ratings under Full
Corruption requirement.

8

– AddU (Add User): creates an honest user uid.
– SndToU (Send to User): creates honest users when the adversary has cor-

rupted the Reputation Holder. The adversary impersonates the RH, and
engages in a < Join, Issue > protocol with an honest user.

– SndToRH (Send to RH): creates corrupted users, when the adversary has not
corrupted the Reputation Holder. The adversary impersonates a user and
engages in a < Join, Issue > protocol with an honest RH.

– AllocateRep: allows an adversary to obtain outputs of AllocateRep.
– USK: allows an adversary to obtain the secret key of an honest user.
– Rate: allows an adversary to perform Rate on behalf of an honest user.
– TD: allows an adversary to obtain a trapdoor associated to a rating that has

been obtained through the Rate oracle.
– Incent: allows an adversary to obtain outputs of Incent.
– Collect: allows an adversary to obtain outputs of CollectIncent for a rating

that has been output by the Rate oracle and then input to the Incent oracle.

All oracles have access to the following records maintained as global state
which are initially set to ∅:

HL List of uids of honest users. New honest users can be added by queries to
the AddU oracle (for an honest RH) or SndToU oracle (for a corrupt RH).

CL List of corrupt users that have requested to join the group. New corrupt
users can be added through the SndToRH oracle if the RH is honest. If the
RH is corrupt, we do not keep track of corrupt users.

AL List of all queries to the AllocateRep oracle for corrupt users.
SL List of queries and outputs from the Rate oracle.
TDL List of queries to the TD oracle.
IL List of queries, and outputs of the Incent oracle.
CLL List of queries, and outputs of the Collect oracle.

Correctness An APR system is correct, if when Rate is input an honestly gen-
erated secret key and a reputation token, it will output a valid rating. Provided
all ratings input to FormRep1 originate from different users it will output the
correct function. Also, if Incent and CollectIncent are performed honestly on k
valid ratings, the resulting incentive claims will be valid. Provided each incentive
is only claimed once, FormRep2 will output f1(k). We give the full requirement
in Appendix B.

Anonymity of Ratings We now give the requirements for both corruption
settings that ensure ratings cannot be de-anonymised or linked by user, pro-
vided multiple ratings on the same user per round are not given. We also must
ensure that ratings cannot be linked to the corresponding incentive claim. This
is crucial to ensuring ratings are anonymous, as incentive claims are sent fully
authenticated and so, if linkable to the corresponding rating, they could be used
to de-anonymise such ratings.

9

AddU(uid):

if uid ∈ CL ∪ HL return ⊥
HL← HL ∪ {uid}, decuid ← cont,gsk[uid]←⊥
Stuidjn ← (gpk), Stuidiss ← (rhsk, gpk, uid),Mjn ←⊥
(Stuidjn ,Miss, dec

uid)←$ Join(Stuidjn ,Mjn)

While decuid = cont

(Stuidiss ,Mjn, dec
uid)←$ Issue(Stuidiss ,Miss)

If decuid = accept reg[uid]← Stuidiss

(Stuidjn ,Miss, dec
uid)←$ Join(Stuidjn ,Mjn)

gsk[uid]← Stuidjn , return reg[uid]

SndToU(uid,Min):

if uid /∈ HL

HL← HL ∪ {uid}
gsk[uid]←⊥,Min ←⊥, Stuidjn ← gpk

(Stuidjn ,Mout, dec)←$ Join(Stuidjn ,Min)

if dec = accept gsk[uid]← Stuidjn

return (Mout, dec)

SndToRH(uid,Min):

if uid ∈ HL return ⊥
if uid /∈ CL CL← CL ∪ {uid}, decuid ← cont

if decuid 6= cont return ⊥
if stuidIssue undefined stuidIssue ← (rhsk, gpk)

(Stuidiss ,Mout, dec
uid)←$ Issue(Stuidiss ,Min)

if decuid = accept

reg[uid]← Stuidiss return (Mout, reg[uid])

else return Mout

USK(uid):

if uid /∈ HL return ⊥ else return (gsk[uid])

AllocateRep(uid, r, l):

if uid ∈ CL AL← AL ∪ (uid, r, l)

return ω ← AllocateRep(uid, r, l, rhsk, reg)

Rate(uid, uid′, l, fb, r, ω):

if uid /∈ HL or gsk[uid] =⊥ return ⊥
(ρ, td)←$Rate(gsk[uid], gpk, fb, uid′, l, r, ω)

SL← SL ∪ {uid, uid′, fb, r, ρ, td, l}, return ρ

TD(fb, uid′, l, r, ρ):

if (·, uid′, fb, r, ρ, td, l) ∈ SL TDL← TDL ∪ {((fb, uid′, l, r, ρ)} return td

else return ⊥

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

if |{i ∈ [k] : (·, uidi, fbi, ri, ρi, ·, l) ∈ RL†}| > 1 return ⊥
if |{i ∈ [k] : (·, uidi, fbi, ri, ρi, ·, l) ∈ RL†}| = 1

// Check if challenge rating is input in anon-rh game, otherwise RL† = ∅

Parse RL† = {(uid∗b′ , uid′
∗
, fb∗, r∗, ρ∗b′ , td

∗
b′ , l
∗) : b′ ∈ {0, 1}}

k ← k + 1, (fbk, uidk, rk, ρk)← (fb∗, uid′
∗
, r∗, ρ∗1−b)

// Rating from other challenged user added to the inputs

t1, · · · , tk ←
Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l, rwsk, gpk)

∀i ∈ [k] if (ti, ·) /∈ IL IL← IL ∪ (ti, (fbi, uidi, ri, ρi))

choose random permutation Π, return tΠ(1), · · · , tΠ(k)

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL ∪ RL ∪ RL† return ⊥

if |{(uidi, uid′i, fbi, ri, ρi, tdi, l) : i ∈ [k]} ∩ RL| = 1

// Check if challenge rating is input in anon-fullcorr game, otherwise RL = ∅

Parse RL = {(uid∗b′ , uid′
∗
, fb∗, r∗, ρ∗b′ , td

∗
b′ , l
∗) : b′ ∈ {0, 1}}, k ← k + 1

(uidk, uid
′
k, fbk, rk, ρk, tdk)← (uid∗1−b, uid

′∗, fb∗, r∗, ρ∗1−b, td
∗
1−b)

// Rating from other challenged user added to the inputs

tk ← Incent((fbk, uid
′
k, rk, ρk), l, rwsk, gpk)

CLL← ∅, ∀i ∈ [k]

σi ←$CollectIncent(uidi, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

CLL← CLL ∪ {((fbi, uid′i, ri, ρi), uidi, σi, t1, · · · tk, l)}
choose random permutation Π for j = 1, · · · , k
return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

Fig. 2. Oracles used in our Security Requirements

Anonymity of Ratings under Full Corruption. We first formally define anonymity
of ratings in the case both the Rewarder and the Reputation Holder have been
corrupted. In this setting, the following attack can always be mounted: The
adversary, having corrupted the Rewarder and Reputation Holder, wishes to de-
anonymise a specific rating and so simply only rewards this rating. The author of
the rating then claims their reward from the Reputation Holder, revealing their
identity. Such an attack is unavoidable when incentivising accurate feedback.

However, we can still provide some guarantee of anonymity, namely that the
adversary should learn no more than the following: a user that has been rewarded
n times per round is responsible for n of the rewarded ratings for that round.
When n = 1 the above attack still holds, but this dishonest behaviour of the
Rewarder can be detected as only one incentive would be publicly broadcast. Our
security requirement achieves this by allowing the challenge rating to be input
to the Collect oracle, on the condition that an additional rating authored by
the other challenged user is added to the inputs. By including ratings originating
from both challenged users, the incentives claimed by both of these users will
increase by 1, and so the adversary cannot use this to trivially win. We note

10

that this notion implies the anonymity requirement when just the Rewarder is
corrupted, i.e., it is the strongest of the two requirements.

In the security game the Reputation Holder and Rewarder are corrupted,
and so the adversary can create corrupted users. The adversary chooses two
honest users, as well as a feedback, a user who is the subject of the feedback,
and a reputation. The adversary must give reputation tokens for each user for
this reputation. The adversary is returned with a challenge rating authored by
one of these users, with this reputation, on this feedback and user (subject),
and they must guess which user authored the rating. The challenge rating as
well as another rating authored by the other challenged user is saved in RL,
for later use in the Collect oracle. The adversary can create honest users with
the SndToU oracle and obtain their ratings with the Rate oracle. However they
cannot query to the Rate oracle either of the users that were challenged as well as
the challenge subject/round. Otherwise the FormRep1 algorithm could be used to
trivially win, due to the detection of multiple ratings on the same user/round. We
also must check that both ratings computed from the challenged users are valid,
to ensure that both ω0 or ω1 output by the adversary were correctly formed.
The adversary can also reveal the trapdoor from each Rate oracle query with
the TD oracle, but not for the challenge ratings as this would lead to a trivial win
by detecting double claims with FormRep2. They also have access to an Incent

oracle. The adversary can query incentives from the Incent oracle, that originate
from the Rate oracle, to the Collect oracle. If they include the challenge rating,
an additional rating from the other challenged user is added to the inputs. The
adversary is returned with the incentive claims for these ratings along with the
user who claims them. This captures the fact that claiming incentives should
not violate the anonymity of ratings. We give the full game below:

Experiment: Expanon-fullcorrA,APR (τ, f1, f2)

b←$ {0, 1},RL,RL† ← ∅, param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(st, uid∗0, uid
∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk, rwsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

∀b′ ∈ {0, 1} (td∗b′ , ρ
∗
b′)←$Rate(gsk[uid∗b′], gpk, fb

∗, uid′
∗
, l∗, r∗, ωb′)

// Compute both ratings for use in Collect oracle and to check ω0, ω1

RL← {(uid∗b′ , uid′
∗
, fb∗, r∗, ρ∗b′ , td

∗
b′ , l
∗) : b′ ∈ {0, 1}} // Save both ratings for use in Collect

d←$ASndToU,Rate,TD,Incent,Collect(guess, st, ρ∗b)

if ρ∗0 or ρ∗1 =⊥ or ∃b′ ∈ {0, 1} s.t (uid∗b′ , uid
′∗, ·, ·, ·, ·, l∗) ∈ SL

// Check ω0, ω1 are both valid and FormRep1 can’t be used to trivially win by detecting multiple ratings

return d←$ {0, 1}
if d = b return 1 else return 0

An APR system satisfies Anonymity of Ratings under Full Corruption if for all
functions f1, f2, for all polynomial time adversaries A, the following advantage
is negligible in τ :

|Pr[Expanon−fullcorrA,APR (τ, f1, f2) = 1]− 1/2|.

11

Anonymity of Ratings under a Corrupt Reputation Holder. We next define
anonymity in the setting where the Reputation Holder has been corrupted, but
not the Rewarder. This means that the adversary now does not know which
ratings have been rewarded. The challenge rating and a rating authored by the
other challenged user are now stored in list RL†. The adversary has full access
to the Collect oracle, modelling the role of the Reputation Holder. However,
if the challenge rating is input to the Incent oracle, the rating authored by
the other challenged user stored in RL† is also added to the inputs. The Incent

oracle shuffles the outputs. This represents that the Reputation Holder no longer
knows which rating is linked to each incentive.

Experiment: Expanon-rhA,APR (τ, f1, f2)

b←$ {0, 1},RL,RL† ← ∅, param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(st, uid∗0, uid
∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

∀b′ ∈ {0, 1} (td∗b′ , ρ
∗
b′)←$Rate(gsk[uid∗b′], gpk, fb

∗, uid′
∗
, l∗, r∗, ωb′)

// Compute both ratings for use in Incent oracle and to check ω0, ω1

RL† ← {(uid∗b′ , uid′
∗
, fb∗, r∗, ρ∗b′ , td

∗
b′ , l
∗) : b′ ∈ {0, 1}} // Save both ratings for use in Incent

d←$ASndToU,Rate,TD,Incent,Collect(guess, st, ρ∗b)

if ρ∗0 or ρ∗1 =⊥ or ∃b′ ∈ {0, 1} s.t (uid∗b′ , uid
′∗, ·, ·, ·, ·, l∗) ∈ SL

// Check ω0, ω1 are both valid and FormRep1 can’t be used to trivially win by detecting multiple ratings

return d←$ {0, 1}
if d = b return 1 else return 0

An APR system satisfies Anonymity of Ratings under a Corrupt Reputa-
tion Holder if for all f1, f2, for all polynomial time adversaries A, the following
advantage is negligible in τ :

|Pr[Expanon−rhA,APR (τ, f1, f2) = 1]− 1/2|.

Fair Rewards This requirement ensures that an adversary cannot increase
the number of incentives they were allocated, or steal incentives allocated to
other users. In the security game the Rewarder and the Reputation Holder are
corrupted, so the adversary can create corrupted users. The adversary is given
the SndToU and Rate oracles to create honest users, and obtain their ratings.
They have access to the Collect oracles to obtain incentive claims on incentives
obtained from the Rate oracle followed by the Incent oracle. They have access
to the trapdoor oracle, to obtain trapdoors associated to ratings output by Rate.
The adversary must choose k1 incentives obtained from the Incent oracle, and
k2 valid incentive claims, not output by the Collect oracle, corresponding to a
single user identifier. If FormRep2 doesn’t detect cheating, and more incentive
claims are output than incentives corresponding to ratings not obtained through
the Rate oracle or queried to the trapdoor oracle, then the adversary wins. We
give the full game below:

12

Experiment: Expfair−rewA,APR (τ, f1, f2)

RL,RL† ← ∅, param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid, (σ1, · · ·σk2), (t1, · · · tk1), l)←$ASndToU,Rate,TD,Incent,Collect(gpk, rwsk, rhsk)

if ∃i ∈ [k1] s.t (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return 0

return 1 if the following conditions hold

∀i ∈ [k2] σi not returned by Collect oracle and VerifyIncent(uid, σi, (t1, · · · , tk1)) = 1 and

FormRep2(uid, σ1, · · ·σk2 , t1, · · · tk1 , gpk) 6=⊥ and

k2 > |{i ∈ [k1] : (·, uid′i, fbi, ri, ρi, ·, l) /∈ SL or (fbi, uid
′
i, l, ri, ρi) ∈ TDL}|

An APR system satisfies Fair Rewards if for all functions f1, f2, for all poly-
nomial time adversaries A, the advantage Pr[Expfair−rewA,APR (τ, f1, f2) = 1] is neg-
ligible in τ .

3 Construction

We propose a construction for an APR system which makes use of three building
blocks: Linkable Ring Signatures (LRS), a modified Direct Anonymous Attesta-
tion (DAA*) scheme and a public–key encryption scheme.

Ring signatures [52] allow users to sign on behalf of a ring of users, with-
out revealing their identity within the ring. There is no central entity involved,
and users generate their own signing and verification keys. Linkable ring signa-
tures [42] allow for the public linking of signatures by signer. We exploit these
features to allow for incentivising accurate ratings as follows. Each rating in-
cludes a freshly generated verification key encrypted under the public key of the
Rewarder, and the user who has generated the rating stores the corresponding
signing key as a trapdoor. The Rewarder publishes these decrypted verification
keys as incentives. Then to claim an incentive the user uses the signing key to
sign a ring signature on their user identifier with respect to the ring of verifica-
tion keys given as incentives. The anonymity of Linkable Ring Signatures ensures
that claiming incentives will not de-anonymise ratings. The unforgeability prop-
erty ensures that only users that have been rewarded can claim an incentive, and
the linking function ensures that only one reward can be claimed per rating.

Direct Anonymous Attestation (DAA) [13] allows users to sign on behalf
of a group, whilst remaining anonymous within the group. The user-controlled
linkability feature, where two signatures on the same basename by the same
user are linked, whilst all other signatures are unlinkable, can be used to detect
multiple feedback on the same subject. In our setting, the basename can be
set to be the user who is the subject of the feedback and the round. In our
system we also wish to ensure feedback is weighted by reputation. However, this
must also be balanced with anonymity of feedback. For this to be possible the
reputation of users must be coarse-grained enough that they cannot be identified
by their reputation. To ensure this, we bind reputation into a Direct Anonymous
Attestation scheme, which we will call a DAA* scheme. Now a user proves their
reputation when signing, allowing for the weighting of feedback.

13

3.1 Public-Key Encryption Schemes

Our scheme makes use of a public–key encryption scheme, which consists of the
following: EncSetup(1τ), which is input the security parameter 1τ and outputs
parameters paramEnc; EncKeyGen(paramEnc), which is input the parameters and
outputs secret key sk and the public key pk; Enc(pk,m), which is input the public
key pk and a message m from the message space, and outputs a ciphertext c;
and Dec(sk, c), which is input the secret key sk and a ciphertext c, and outputs
a message m or a decryption failure ⊥. We require the encryption scheme to be
correct and satisfy indistinguishability under adaptive chosen ciphertext attacks.

3.2 Linkable Ring Signatures

We use the model in [4] for one-time linkable ring signatures, which gives the
strongest security yet. The scheme from [4] has the shortest signatures to date.
We give the security requirements: Correctness Linkability, Linkable Anonymity,
Non–Frameability and Unforgeability in Appendix C.

Definition 1 (Linkable Ring Signatures.). A linkable ring signature scheme LRS
is given by polynomial time algorithms (LRKeyGen, LRSign, LRVerify, LRLink):

LRKeyGen(1τ): takes as input the security parameter 1τ and outputs a pair
(vk, sk) of verification and signing keys.

LRSign(sk,m,R): takes as input a signing key sk, a message m, and a list of
verification keys R = (vk1, ..., vkq), and outputs a signature Σ.

LRVerify(R,m,Σ): takes as input a ring R = (vk1, ..., vkq), a message m, and
a signature Σ, and outputs either 0 or 1.

LRLink(Σ1, Σ2,m1,m2) : is input two signatures/ messages, outputs 0 or 1.

3.3 DAA* Signatures

The security model of DAA* closely follows that of pre–DAA signatures [7]. We
give the security requirements for DAA* signatures in full in Appendix D.

Definition 2 (DAA*.). A DAA* scheme consists of the following algorithms:
DAA*Setup(1τ): input the security parameter τ , outputs parameters param.
DAA*KeyGen(param): input the parameters param, outputs the group public

key gpk, and the issuing secret key isk.
〈DAA*Join(gpk),DAA*Issue(isk, gpk)〉: a user i joins the group by engaging in

an interactive protocol with the Issuer. The user i and Issuer perform algorithms
DAA*Join and DAA*Issue respectively. These are input a state and an incoming
message respectively, and output an updated state, an outgoing message, and a
decision, either cont, accept, or reject. The initial input to DAA*Join is the group
public key, whereas the initial input to DAA*Issue is the issuer secret key, isk,
and the group public key. If the issuer accepts, DAA*Join has a private output
of gsk[i], DAA*Issue has a private output of reg[i].

DAA*Update(r, t, isk, i, reg, gpk): input a reputation r, a time t, the issuing
secret key isk, a user i, the registration list reg, gpk. Outputs a token ω.

14

DAA*Sign(bsn,m,gsk[i], ω, gpk, r, t): input a basename bsn, a message m, a
user secret key gsk[i], a token ω output by DAA*Update, a group public key
gpk, a reputation r and time t. It checks that ω is valid for user i, reputation r
and time t and outputs a signature Ω. Otherwise it outputs ⊥.

DAA*Verify(bsn,m, r, t, Ω, gpk): input a basename bsn, a message m, a rep-
utation r, time t, a signature Ω, and a group public key gpk. It outputs 1 if Ω
is valid for the item I, reputation r and time t, and 0 otherwise.

DAA*Link((bsn0,m0, r0, t0, Ω0), (bsn1,m1, r1, t1, Ω1), gpk): input two signa-
tures Ω0, Ω1 each on a basename, a message, a reputation, a time, and a group
public key gpk. It outputs 1 if both signatures are valid, bsn0 = bsn1 and the
two signatures have the same author, and 0 otherwise.

DAA*IdentifyT (T , gsk): outputs 1 if T corresponds to a valid transcript of
< DAA*Join,DAA*Issue >, with output gsk to DAA*Join, and otherwise 0.

DAA*IdentifyS(bsn,m, r, t, Ω, gsk): outputs 1 if the signature Ω could have
been produced with user secret key gsk, and 0 otherwise.

3.4 Our Construction

We now present our construction that securely realizes an APR system, using
a PKE scheme, an LRS scheme and a DAA* scheme. We give our construction
in Figure 3, except for the < Join, Issue > protocol which is identical to the
< DAA*Join,DAA*Issue > protocol for DAA* signatures such that DAA*Join is
input rhpk, and DAA*Issue is input (rhsk, rhpk).

3.5 Security of Our Construction

We show that our construction satisfies the security requirements for an APR
system defined in Section 2. We need one further property than the security
of the LRS and DAA* building blocks. In the < Join, Issue > protocol, the RH
must be sent an SPK of the user’s secret key. SPK denotes a signature proof
of knowledge, that is a non-interactive transformation of a proof PK. These
proofs can be extended to be online-extractable [29], by verifiably encrypting
the witness to a public key defined in the common reference string. We require
the proof system to be simulation-sound, online–extractable and zero-knowledge.
We give further details on the proof protocols used in Appendix F.

Theorem 1. The construction presented in Figure 3 is a secure APR, as defined
in Section 2, if the LRS scheme, DAA* scheme and PKE scheme used are secure,
and the SPK is online extractable, simulation sound, and zero-knowledge.

The detailed proofs of Lemmata 1-6 are given in Appendix E. We give high level
intuition here of proofs of Anonymity of Ratings and Fair Rewards.

Lemma 1. The construction satisfies Anonymity of Ratings under Full–Corruption
if the LRS and DAA* schemes satisfy Anonymity, and the SPK is zero-knowledge.

15

Setup(1τ , f1, f2)

return (DAA*Setup(1τ),EncSetup(1τ), f1, f2)

RHKeyGen(paramDAA*, paramEnc, f1, f2)

(rhsk, rhpk)←$DAA*KeyGen(paramDAA*) return (rhsk, rhpk)

RWKeyGen(paramDAA*, paramEnc, f1, f2)

(rwsk, rwpk)←$EncKeyGen(paramEnc) return (rwsk, rwpk)

Rate(gsk[uid], gpk, fb, uid′, l, r, ω)

(vk, td)←$ LRKeyGen(1τ), ṽk←$Enc(rwpk, vk)

Ω←$DAA*Sign((uid′, l), (fb, ṽk),gsk[uid], ω, gpk, r, l), ρ← (Ω, ṽk)

Verify(fb, uid′, l, r, ρ = (Ω, ṽk), gpk)

DAA*Verify((uid′, l), (fb, ṽk), r, l, Ω, gpk)

FormRep1(uid, l, (fb1, r1, (Ω1, ˜vk1)), · · · , (fbk, rk, (Ωk, ˜vkk)), gpk)

∀(i, j) ∈ [k] s.t i 6= j if DAA*Link(((uid, l), (fbi, ˜vki), ri, l, Ωi), ((uid, l), (fbj , ˜vkj), rj , l, Ωj), gpk) = 1 return ⊥

else return

∑k
i=1 rifbi∑k
i=1 ri

Incent({(fbi, uidi, ri, (Ωi, ˜vki)) : i ∈ [k]}, l, rwsk, gpk)

∀i ∈ [k] ti ← Dec(rwsk, ˜vki) return (t1, · · · , tk)

CollectIncent(uid, (fb, uid′, l, r, ρ, td), t1, · · · , tk, gpk)

return σ←$ LRSign(td, uid, (t1, · · · tk))

VerifyIncent(uid, σ, t1, · · · , tk, gpk)

return LRVerify((t1, · · · tk), uid, σ)

FormRep2(uid, σ1, · · ·σk1 , t1, · · · , tk2 , gpk)

∀i, j ∈ [k1] s.t i 6= j if LRLink(σi, σj , uid, uid) = 1 return ⊥ else return f1(k1)

AllocateRep(uid, r[uid, l], l, isk, reg)

return DAA*Update(r[uid, l], l, isk, uid, reg, gpk)

Fig. 3. Our APR construction

Proof intuition. A distinguisher between the original game and one where the
challenged user identifiers are swapped in the Collect oracle when the challenge
rating is input, can break the anonymity of linkable ring signatures. A reduction
can now be made to the anonymity of our DAA* scheme.

Lemma 2. The construction satisfies Anonymity of Ratings under a Corrupt
Reputation Holder if the DAA* scheme satisfies Anonymity and the PKE scheme
satisfies indistinguishability under adaptive chosen ciphertext attacks, and the
SPK is zero-knowledge.

Proof intuition. A distinguisher between the original game and a game where
the Collect oracle, on input an incentive from the ratings in RL†, swaps the
user identifiers, can break the IND–CCA2 security of the encryption scheme. A
reduction can now be made to the anonymity of our DAA* scheme.

Lemma 3. The construction satisfies Traceability if the DAA* scheme satisfies
both Traceability and Non–Frameability, and the SPK is online extractable and
simulation sound.

Lemma 4. The construction satisfies Non–Frameability if the LRS and DAA*
schemes both satisfy Non–Frameability, and the SPK is zero-knowledge.

16

Lemma 5. The construction satisfies Unforgeability of Reputation if the DAA*
scheme satisfies Unforgeability of Reputation, and the SPK is online extractable
and simulation sound.

Lemma 6. The construction satisfies Fair Rewards if the LRS scheme satisfies
Linkability and Non–Frameability.

Proof intuition. An adversary breaks fair rewards either by “stealing” an incen-
tive from an honest user, in which case we could break the non–frameability
of LRS, or by expanding the incentives that were fairly allocated to corrupted
users, in which case we could break the Linkability of LRS.

3.6 Concrete Instantiation and Efficiency

We give a DAA* construction, and prove that it securely realizes a DAA* scheme
in Appendix F and G, assuming the LRSW assumption [43], the DCR as-
sumption [47], the DDH assumption and the random oracle model. The <
DAA*Join,DAA*Issue > protocol already contains an SPK of the user secret
key that is online extractable, simulation-sound and zero-knowledge. A linkable
ring signature scheme that securely realises the model in Section 3.2 is given
in [4]. An incentive claim would have size log(l)poly(τ), where l is the number of
incentives. This is the current state of the art for linkable ring signatures, and
is reasonable, albeit large. Ratings are reasonably small, and consist of 7 τ -bit
elements, and an encryption of 3 commitments.

4 Conclusion and Future Work

We give a security model for an anonymous peer rating system APR that allows
accurate ratings to be incentivised, feedback to be weighted by reputation, and
multiple feedback on the same subject to be detected, whilst still ensuring ratings
remain anonymous. We use Linkable Ring Signatures and a modification of DAA
to build a construction that is secure under these requirements.

The DAA and Linkable Ring Signature primitives are not inherent in realising
our anonymous peer ratings system. Different primitives could be used to build
constructions that are more efficient or rely on different assumptions.

In a peer rating system, a high reputation score leads to a real payoff for
users, corresponding to an increase in utility. When increasing one’s utility is
the ultimate goal, game theory helps to gain new insights. A peer rating system
formalised through game theory, which also follows the strategies of weighting
feedback and incentivising accurate ratings, is proposed in [56] and experimen-
tally simulated when used in collaborative intrusion detection systems in [24].
It is shown in [56] to what extent it pays off for users to rate accurately given
the size of incentives and the size of the coalition(s) of dishonest users. However,
anonymity of ratings is not taken into account and a fully trusted central au-
thority receives the ratings and issues the incentives. As future work, we want to
determine game theoretically whether our scheme incentivises accurate ratings.

17

References

1. Gnutella. https://en.wikipedia.org/wiki/Gnutella. Accessed 30 August, 2019.
2. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-

Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency
properties, relation to anonymous ibe, and extensions. In CRYPTO 05, pages 205–
222. Springer-Verlag, 2005.

3. E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin. Reputation systems for
anonymous networks. In International Symposium on Privacy Enhancing Tech-
nologies Symposium, pages 202–218. Springer, 2008.

4. M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, and J. Schneider. Ring signa-
tures: Logarithmic-size, no setup - from standard assumptions. In Y. Ishai and
V. Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages
281–311. Springer, Heidelberg, May 2019.

5. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
566–582. Springer, 2001.

6. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,
pages 136–153. Springer, Heidelberg, Feb. 2005.

7. D. Bernhard, G. Fuchsbauer, E. M. Ghadafi, N. P. Smart, and B. Warin-
schi. Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur.,
12(3):219–249, June 2013.

8. J. Bethencourt, E. Shi, and D. Song. Signatures of reputation. In R. Sion, editor,
FC 2010, volume 6052 of LNCS, pages 400–407. Springer, Heidelberg, Jan. 2010.

9. J. Blömer, J. Bobolz, D. Diemert, and F. Eidens. Updatable anonymous credentials
and applications to incentive systems. In ACM CCS 2019, pages 1671–1685. ACM
Press, 2019.

10. J. Blömer, F. Eidens, and J. Juhnke. Practical, anonymous, and publicly linkable
universally-composable reputation systems. In N. P. Smart, editor, CT-RSA 2018,
volume 10808 of LNCS, pages 470–490. Springer, Heidelberg, Apr. 2018.

11. J. Blömer, J. Juhnke, and C. Kolb. Anonymous and publicly linkable reputation
systems. In R. Böhme and T. Okamoto, editors, FC 2015, volume 8975 of LNCS,
pages 478–488. Springer, Heidelberg, Jan. 2015.

12. J. Bobolz, F. Eidens, S. Krenn, D. Slamanig, and C. Striecks. Privacy-preserving in-
centive systems with highly efficient point-collection. In To apppear at Proceedings
of the 2020 ACM Asia Conference on Computer and Communications Security,
2020.

13. E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In
V. Atluri, B. Pfitzmann, and P. McDaniel, editors, ACM CCS 2004, pages 132–
145. ACM Press, Oct. 2004.

14. A. Brinckman, E. Deelman, S. Gupta, J. Nabrzyski, S. Park, R. Ferreira da Silva,
I. J. Taylor, and K. Vahi. Collaborative circuit designs using the CRAFT reposi-
tory. Future Generation Computer Systems, 94:841–853, 2019.

15. J. Camenisch, M. Drijvers, and A. Lehmann. Universally composable direct anony-
mous attestation. In C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang,
editors, PKC 2016, Part II, volume 9615 of LNCS, pages 234–264. Springer, Hei-
delberg, Mar. 2016.

16. J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized Schnorr
proofs. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
425–442. Springer, Heidelberg, Apr. 2009.

18

17. J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and anonymous
identity-based encryption and authorised private searches on public key encrypted
data. In S. Jarecki and G. Tsudik, editors, Public Key Cryptography – PKC 2009,
pages 196–214. Springer, 2009.

18. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 56–72. Springer, Heidelberg, Aug. 2004.

19. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 126–144. Springer, Heidelberg, Aug. 2003.

20. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, EU-
ROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg, Apr.
1991.

21. L. Chen, Q. Li, K. M. Martin, and S.-L. Ng. A privacy-aware reputation-based an-
nouncement scheme for vanets. In Wireless Vehicular Communications (WiVeC),
2013 IEEE 5th International Symposium on, pages 1–5. IEEE, 2013.

22. L. Chen, Q. Li, K. M. Martin, and S.-L. Ng. Private reputation retrieval in public
- a privacy-aware announcement scheme for vanets. IET Information Security,
11(4):204–210, 7 2017.

23. J. Chuang. Designing incentive mechanisms for peer-to-peer systems. In 1st IEEE
International Workshop on Grid Economics and Business Models, 2004. GECON
2004., pages 67–81. IEEE, 2004.

24. C. G. Cordero, G. Traverso, M. Nojoumian, S. M. Habib, M. Mühlhäuser, J. A.
Buchmann, and E. Vasilomanolakis. Sphinx: a colluder-resistant trust mechanism
for collaborative intrusion detection. IEEE Access, 6:72427–72438, 2018.

25. C. Dellarocas. Immunizing online reputation reporting systems against unfair rat-
ings and discriminatory behavior. Proceedings of the 2nd ACM conference on
Electronic commerce, 03 2001.

26. J. R. Douceur. The sybil attack. In P. Druschel, F. Kaashoek, and A. Rowstron,
editors, Peer-to-Peer Systems, pages 251–260, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

27. A. El Kaafarani, S. Katsumata, and R. Solomon. Anonymous reputation systems
achieving full dynamicity from lattices. In Proceedings of the 22nd International
Conference on Financial Cryptography and Data Security (FC), 2018.

28. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, Aug. 1987.

29. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 152–168. Springer, Heidelberg, Aug. 2005.

30. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

31. L. Garms, K. M. Martin, and S.-L. Ng. Reputation schemes for pervasive social
networks with anonymity. In Proceedings of the fifteenth International Conference
on Privacy, Security and Trust (PST 2017), pages 1–6. IEEE, 10 2017.

32. L. Garms and E. A. Quaglia. A new approach to modelling centralised rep-
utation systems. In J. Buchmann, A. Nitaj, and T. eddine Rachidi, editors,
AFRICACRYPT 19, volume 11627 of LNCS, pages 429–447. Springer, Heidelberg,
July 2019.

19

33. M. Giannoulis, H. Kondylakis, and E. Marakakis. Designing and implementing a
collaborative health knowledge system. Expert Systems with Applications, 126:277–
294, 2019.

34. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–
308, 1988.

35. G. Hartung, M. Hoffmann, M. Nagel, and A. Rupp. BBA+: Improving the security
and applicability of privacy-preserving point collection. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 1925–1942. ACM
Press, Oct. / Nov. 2017.

36. M. Hawley, P. Howard, R. Koelle, and P. Saxton. Collaborative security man-
agement: Developing ideas in security management for air traffic control. In 2013
International Conference on Availability, Reliability and Security, pages 802–806,
Sep. 2013.

37. K. Hoffman, D. Zage, and C. Nita-Rotaru. A survey of attack and defense tech-
niques for reputation systems. ACM Computing Surveys, 42(1):1:1–1:31, Dec. 2009.

38. D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol specification.
Technical report, Zerocoin Electric Coin Company, 2016.

39. T. Jager and A. Rupp. Black-box accumulation: Collecting incentives in a privacy-
preserving way. PoPETs, 2016(3):62–82, July 2016.

40. A. Jøsang and J. Golbeck. Challenges for robust trust and reputation systems.
In 5th International Workshop on Security and Trust Management (STM 2009),
Saint Malo, 2009.

41. B. Libert, K. G. Paterson, and E. A. Quaglia. Anonymous broadcast encryption:
Adaptive security and efficient constructions in the standard model. In M. Fischlin,
J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
206–224. Springer, Heidelberg, May 2012.

42. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In H. Wang, J. Pieprzyk,
and V. Varadharajan, editors, ACISP 04, volume 3108 of LNCS, pages 325–335.
Springer, Heidelberg, July 2004.

43. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. M.
Heys and C. M. Adams, editors, SAC 1999, volume 1758 of LNCS, pages 184–199.
Springer, Heidelberg, Aug. 1999.

44. F. G. Mármol and G. M. Pérez. Security threats scenarios in trust and reputation
models for distributed systems. Computers & Security, 28(7):545–556, 2009.

45. M. Milutinovic, I. Dacosta, A. Put, and B. D. Decker. uCentive: An ef-
ficient, anonymous and unlinkable incentives scheme. In 2015 IEEE Trust-
com/BigDataSE/ISPA, volume 1, pages 588–595, 2015.

46. O. Nabuco, R. Bonacin, M. Fugini, and R. Martoglia. Web2touch 2016: Evolution
and security of collaborative web knowledge. In 2016 IEEE 25th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pages 214–216, June 2016.

47. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.
Springer, Heidelberg, May 1999.

48. T. G. Papaioannou and G. D. Stamoulis. An incentives’ mechanism promoting
truthful feedback in peer-to-peer systems. In CCGrid 2005. IEEE International
Symposium on Cluster Computing and the Grid, 2005., volume 1, pages 275–283,
May 2005.

20

49. E. Pavlov, J. S. Rosenschein, and Z. Topol. Supporting privacy in decentralized
additive reputation systems. In International Conference on Trust Management,
pages 108–119. Springer, 2004.

50. R. Petrlic, S. Lutters, and C. Sorge. Privacy-preserving reputation management.
In Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC
’14, pages 1712–1718, New York, NY, USA, 2014. ACM.

51. F. Pingel and S. Steinbrecher. Multilateral secure cross-community reputation
systems for internet communities. In International Conference on Trust, Privacy
and Security in Digital Business, pages 69–78. Springer, 2008.

52. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg,
Dec. 2001.

53. S. Schiffner, S. Clauß, and S. Steinbrecher. Privacy and liveliness for reputation
systems. In F. Martinelli and B. Preneel, editors, Public Key Infrastructures,
Services and Applications, pages 209–224, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

54. C. Sillaber, C. Sauerwein, A. Mussmann, and R. Breu. Data quality challenges and
future research directions in threat intelligence sharing practice. In Proceedings of
the 2016 ACM on Workshop on Information Sharing and Collaborative Security,
WISCS ’16, pages 65–70, New York, NY, USA, 2016. ACM.

55. Y. L. Sun, Z. Han, W. Yu, and K. J. Ray Liu. Attacks on trust evaluation in
distributed networks. In 2006 40th Annual Conference on Information Sciences
and Systems, pages 1461–1466, 2006.

56. G. Traverso, D. Butin, J. A. Buchmann, and A. Palesandro. Coalition-resistant
peer rating for long-term confidentiality. In 2018 16th Annual Conference on Pri-
vacy, Security and Trust (PST), pages 1–10, Aug 2018.

57. E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford. AnonRep:
towards tracking-resistant anonymous reputation. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), pages 583–596.
USENIX Association, 2016.

A Additional Security Requirements for APR

Traceability This requirement ensures that only registered users can give rat-
ings, and multiple ratings on the same user and round can be detected.

In the security game the adversary has corrupted the RW, but not corrupted
the RH as otherwise they would be able to arbitrarily create new user secret
keys. The adversary has access to the AddU oracle to create honest users, the
Rate oracle to obtain their ratings and the TD oracle to obtain the associated
trapdoors. They also can create corrupted users with the SndToRH oracle. They
can obtain reputation tokens with the AllocateRep oracle. The adversary must
output more valid ratings on the same user, for the same round, than the number
of corrupt users, without using the Rate oracle, such that FormRep1 will not
detect multiple feedback. We give the full game in Figure 4.

An APR system satisfies Traceability if for all functions f1, f2, for all polyno-
mial time adversaries A, the advantage Pr[ExptraceA,APR(τ, f1, f2) = 1] is negligible
in τ .

21

Experiment: ExptraceA,APR(τ, f1, f2)

param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid′, l, (fb1, r1, ρ1), · · · (fbk, rk, ρk)←$A,AddU,SndToRH,AllocateRep,Rate,TD1 (gpk, rwsk)

return 1 if the following conditions hold

∀i ∈ [1, k] (·, uid′, fbi, ri, ρi, ·, l) /∈ SL and k > |CL| and

∀i ∈ [1, k] Verify(fbi, uid
′, l, ri, ρi, gpk) = 1 and

FormRep1((uid′, l, (fb1, r1, ρ1), · · · (fbk, rk, ρk), gpk) 6=⊥

Experiment: Expnon-frame
A,APR (τ, f1, f2)

param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid, fb, uid′, l, r, ρ)←$ASndToU,Rate,TD(gpk, rwsk, rhsk)

return 1 if the following conditions hold

Verify(fb, uid′, l, r, ρ, gpk) = 1 and uid ∈ HL and (uid, uid′, fb, r, ·, ·, l) /∈ SL and

∃(uid, uid′, f̂ b, r̂, ρ̂, ·, l) ∈ SL s.t FormRep1(uid′, l, (fb, r, ρ), (f̂ b, r̂, ρ̂), gpk) =⊥
(uid, σ, t1, · · · , tk, l)←$ASndToU,USK,Rate,Incent,Collect(gpk, rwsk, rhsk)

if ((·, ·, ·, ·), uid, σ, t1, · · · tk, l) ∈ CLL or VerifyIncent(uid, σ, t1, · · · , tk, gpk) = 0 return 0

if ∃((fb, uid′, r, ρ), uid, σ̂, t′1, · · · t′k′ , l̂) ∈ CLL s.t (fb, uid′, r, ρ) /∈ TDL

and FormRep2(uid, σ, σ̂, t1, · · · tk, gpk) =⊥
return 1

else return 0

Experiment: Expuf−repA,APR (τ, f1, f2)

param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(r, uid′, l, (fb1, ρ1), · · · , (fbk, ρk))←$AAddU,SndToRH,AllocateRep,Rate,TD(gpk, rwsk)

AL∗ ← ∅, if (uid, r, l) ∈ AL AL∗ ← AL∗ ∪ {uid}
return 1 if the following conditions hold

∀i ∈ [1, k] Verify(fbi, uid
′, l, r, ρi, gpk) = 1 and k > |AL∗| and

FormRep1(uid′, l, (fb1, r, ρ1), · · · , (fbk, r, ρk), gpk) 6=⊥ and

∀i ∈ [1, k] (·, uid′, fbi, r, ρi, ·, l) /∈ SL

Fig. 4. Experiments capturing our Non–Frameability, Unforgeability of Reputation and
Traceability security requirements for our APR system.

Non–Frameability This requirement ensures that an adversary cannot im-
personate an honest user. This requires firstly that an adversary should not be
able to output a valid rating that links to the rating of an honest user under
FormRep1, causing this rating to be discarded. Secondly an adversary should not

22

be able to produce a valid incentive claim, that links to the incentive claim of
an honest user under FormRep2, and so causes this claim to be discarded.

In the first security game both the RW and RH are corrupted. The adver-
sary is given the SndToU, Rate, TD oracles to create honest users, and obtain
their ratings and trapdoors. They then must output a valid rating, not obtained
through the Rate oracle, that links to the rating of an honest user uid under
FormRep1.

In the second security game the RW and RH are again corrupted. The adver-
sary is given the SndToU, USK, Rate, Incent, Collect oracles to create honest
users, reveal their private keys, and obtain their ratings and trapdoors, as well
as to obtain incentive claims from ratings from the Rate oracle. They must out-
put a valid incentive claim, not returned by the Collect oracle, for an honest
user uid, such that it links to another honestly generated incentive claim, for
the same user under FormRep2. We give the full game in Figure 4.

An APR system satisfies Non–Frameability if for all functions f1, f2, for all
polynomial time adversaries A, the advantage Pr[Expnon−frameA,APR (τ, f1, f2) = 1] is
negligible in τ .

Unforgeability of Reputation This requirement ensures that users cannot
lie about their reputation. They can only claim to have a particular reputation
for a round if they were allocated this by the Reputation Holder in AllocateRep.

In the security game the RW is corrupted but not the RH, because otherwise
the adversary could perform AllocateRep. The adversary is given the SndToRH

oracle to create corrupted users, and the AddU, Rate and TD oracles to create
honest users and obtain their ratings and trapdoors. The AllocateRep oracle
provides them with reputation tokens for honest and corrupted users. The adver-
sary then must output more valid ratings for a particular reputation, round and
user (subject), than the number of queries for different corrupted users to the
AllocateRep oracle for this reputation and round. These ratings must be unlink-
able under FormRep1. Therefore, essentially this requirement ensures that the
adversary cannot use a reputation r more times than the number of corrupted
users whose allocated reputation is r. We give the full game in Figure 4.

An APR system satisfies Unforgeability of Reputation if for all functions
f1, f2, for all polynomial time adversaries A, the advantage
Pr[Expuf−repA,APR (τ, f1, f2) = 1] is neglible in τ .

B Correctness of APR

We now give the full definition of correctness of an APR system. We give the full
games in Figure 5. The first game ensures that given a user is honestly joined
to the system, and AllocateRep and Rate are performed correctly, with the user
private key resulting from the user’s join protocol, then the rating output will
be valid. It also ensures that provided FormRep1 is input valid ratings all on the
same subject but originating from different users, it will correctly output the
average of these feedbacks weighted by reputation.

23

The second game ensures that if Incent is performed correctly on a set of
honestly generated ratings, and CollectIncent is performed on one of these ratings,
along with the trapdoor, and the incentives output by Incent, it will output
a valid incentive claim. If FormRep2 is input k valid incentive claims that all
originate from different incentives it will output f1(k).

An APR system satisfies Correctness if for all functions f1, f2, for all poly-
nomial time adversaries A, the advantages Pr[Expcorr−1A,APR (τ, f1, f2) = 1] and

Pr[Expcorr−2A,APR (τ, f1, f2) = 1] are negligible in τ .

Experiment: Expcorr-1A,APR(τ, f1, f2)

param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

((uid1, fb1, r1), · · · (uidk, fbk, rk), uid′, l)←$AAddU(gpk)

if ∃i ∈ [1, k] such that uidi /∈ HL or gsk[uidi] =⊥ or ∃(i, j) ∈ [1, k]2 such that i 6= j and uidi = uidj return 0

∀i ∈ [1, k] ωi ← AllocateRep(uidi, ri, l, rhsk, reg), (ρi, ·)←$Rate(gsk[uidi], gpk, fbi, uid
′, l, ri, ωi)

if ∃i ∈ [1, k] such that Verify(fbi, uid
′, l, ri, ρi, gpk) = 0 return 1

if FormRep1(uid′, l, (fb1, r1, ρ1), · · · , (fbk, rk, ρk), gpk) 6=
∑k
i=1 rifbi∑k
i=1 ri

return 1 else return 0

Experiment: Expcorr-2A,APR(τ, f1, f2)

param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid, (uid′1, fb1, r1, ρ1, td1), · · · (uid′k, fbk, rk, ρk, tdk), l)←$AAddU,Rate,TD(gpk)

if ∃i ∈ [1, k] s.t (·, uid′i, fbi, ri, ρi, tdi, l) /∈ SL return 0

if (uid, uid′i, fbi, ri, ρi, tdi, l) ∈ SL L← L ∪ {i}
t1, · · · , tk ← Incent((fb1, uid

′
1, r1, ρ1), · · · , (fbk, uid′k, rk, ρk), l, rwsk, gpk)

∀i ∈ L σi ←$CollectIncent(uid, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · , tk, gpk)

if ∃i ∈ L such that VerifyIncent(uid, σi, t1, · · · tk, gpk) = 0 return 1

if FormRep2(uid, {σi : i ∈ L}, t1, · · · , tk, gpk) 6= f1(|L|) return 1 else return 0

Fig. 5. Experiments capturing our Correctness requirement for our APR system

C Security Requirements of Linkable Ring Signatures

We now give the security requirements for Linkable Ring Signatures given in [4]
which are Correctness, Linkability, Linkable Anonymity, Non–Frameability and
Unforgeability. We give the first three explicitly as we make use of these to prove
our APR constuction is secure.

Correctness We say that a linkable ring signature scheme LRS = (LRKeyGen,
LRSign, LRVerify, LRLink) is correct if it holds for all τ ∈ Z∗p, all q = poly(τ), all
i∗ ∈ [q], all messages m,m′ ∈ {0, 1}∗ that, if for all i ∈ [q],
(vki, ski)←$ LRKeyGen(1τ), for allR,R′ ⊆ {vk1, ..., vkq},Σ←$ LRSign(ski∗ ,m,R),
Σ′←$ LRSign(ski∗ ,m

′, R′), then Pr[LRVerify(R,m,Σ) = 1] = 1 − negl(τ) and
Pr[LRLink(Σ,Σ′,m,m′) = 1] = 1− negl(τ), where the probability is taken over
the random coins used by LRKeyGen and LRSign.

24

Experiment: ExplinkA,LRS(τ)

(VK = {vki : i ∈ [k]}, (Σ1,m1, R1), · · · (Σk+1,mk+1, Rk+1))←$A(τ)

return 1 if the following conditions hold else return 0

∀i ∈ [k + 1] Ri ⊆ VK and ∀i ∈ [k] LRVerify(Ri,mi, Σi) = 1 and ∀i, j ∈ [k] s.t i 6= j LRLink(Σi, Σj ,mi,mj) = 0

Fig. 6. Experiment capturing the Linkability security requirement for Linkable Ring
Signatures

AddU(uid)

(vkuid, skuid)←$ LRKeyGen(1τ),HL← HL ∪ {uid}
return vkuid

Chal(uid,m,R)

if uid /∈ {uid∗0, uid∗1} or {vkuid∗0 , vkuid∗1} 6⊆ R return ⊥
if uid = uid∗0 Σ∗ ←$ LRSign(skuid∗

b
,m,R)

if uid = uid∗1 Σ∗ ←$ LRSign(skuid∗
1−b

,m,R)

return Σ∗

Experiment: ExpanonA,LRS(τ)

b←$ {0, 1}, (st, uid∗0, uid∗1)←$AAddU(τ), if uid∗0 or uid∗1 /∈ HL return d←$ {0, 1}
b∗ ←$AChal(st) if b = b∗ return 1 else return 0

Fig. 7. Experiment capturing Linkable Anonymity security requirement for Linkable
Ring Signatures

Linkability This requirement ensures that signatures from the same secret
key can be linked. In the game, the adversary must output k verification keys,
and k + 1 valid signatures, each on a message and a ring. They win if all rings
are subsets of the set of verification keys, and none of the signatures are linked.
We give the full game in Figure 6.

Definition 3 (Linkability). We say that a linkable ring signature scheme LRS
satisfies linkability, if for every polynomial time adversaryA, Pr[ExplinkA,LRS(τ) = 1]
is negligible in τ .

Linkable Anonymity Linkable Ring Signatures are publicly linkable, how-
ever a signature still should not be able to be traced to the signer’s verification
key. The security requirement given below is a simplication of the one given
in [4]. The requirement given here is clearly weaker than in [4], therefore the
construction from [4] will satisfy this requirement. In the game, the adversary
is given access to an AddU oracle to create honest users and receive their veri-
fication keys. They return two honest users. They are then given access to an
oracle, where they can submit a challenged user, a message and a ring that must
contain the verification keys of both challenged users. If b = 0, they are returned
with a signature signed with the secret key of the user they input. If b = 1 they
are returned with a signature signed by the other challenged user. They must
guess b correctly to win. We give the full game in Figure 7.

Definition 4 (Linkable Anonymity). We say that a linkable ring signature
scheme LRS satisfies linkable anonymity, if for every polynomial time adversary
A, |Pr[ExpanonA,LRS(τ) = 1]− 1/2| is negligible in τ .

25

AddU(uid)

ruid ←$R, (vkuid, skuid)←$ LRKeyGen(1τ ; ruid),HL← HL ∪ {uid}

Sign(uid,m,R)

if uid /∈ HL or vkuid /∈ R return ⊥
else SL← SL ∪ {uid,m,R,Σ∗}return LRSign(skuid,m,R)

Corrupt(uid)

if uid /∈ HL return ⊥
else C ← C ∪ {vkuid} return ruid

Experiment: Expnon−frameA,LRS (τ)

HL,SL← ∅, (st, Σ∗,m∗, R∗)←$AAddU,Sign,Corrupt(τ)

if LRVerify(R∗,m∗, Σ∗) = 0 or (·,m∗, R∗, Σ∗) ∈ SL or C ∩R∗ 6= ∅ return 0

(Σ′,m′, R′)←$AAddU,Sign,Corrupt(st)

if LRVerify(R′,m′, Σ′) = 1 and LRLink(Σ′, Σ∗,m′,m∗) and R′ ⊆ {vkuid : uid ∈ HL} return 1 else return 0

Fig. 8. Experiment capturing Non–Frameability security requirement for Linkable Ring
Signatures

Non–Frameability This requirement ensures that an adversary cannot
frame an honest user by forging a signature which links to this user’s signa-
ture. In the game we give the adversary the AddU, Sign and Corrupt oracles,
to create honest users, obtain their signatures and corrupt them. The adversary
must output a valid signature that was not output by the Sign oracle, on a ring
that does not include any corrupted users. They then must output another valid
signature that links to the first, on a ring that is a subset of users created by
the AddU oracle. We give the full game in Figure 8.

Our game differs from that in [4] due to what we believe to be a typo. In
their game the ring of the first instead of the second signature output should
be a subset of all users created by the AddU oracle. The non–frameability proof
in [4] is based on the corrected security requirement given here, therefore the
construction given satisfies this requirement. The uncorrected version does not
capture an attack where an adversary forges a signature linking to another honest
user, but includes their own verification key in the ring.

Definition 5 (Non–Frameability). We say that a linkable ring signature scheme
LRS satisfies Non–Frameability, if for every polynomial time adversary A,
Pr[Expnon−frameA,LRS (τ) = 1]. is negligible in τ .

D Security Requirements of DAA*

In Figure 9, we provide the oracles used in our security requirements: AddU,
SndToU, SndToI, USK, GSig, Update. We give a high level decription below:

– AddU: creates an honest user i
– SndToU: creates honest users when the adversary has corrupted the issuer.

The adversary impersonates an issuer, and engages in a
< DAA*Join,DAA*Issue > protocol with an honest user.

26

AddU(i):

if i ∈ CU or i ∈ HU return ⊥
HU ← HU ∪ {i}, deci ← cont,gsk[i]←⊥, Stuidjn ← (gpk)

Stuidiss ← (isk, gpk, i),Mjn ←⊥
(Stuidjn ,Miss, dec

uid)←$DAA*Join(Stuidjn ,Mjn)

While decuid = cont

(Stuidiss ,Mjn, dec
uid)←$DAA*Issue(Stuidiss ,Miss, dec

uid)

If decuid = accept reg[i]← Stuidiss

(Stuidjn ,Miss, dec
uid)←$DAA*Join(Stuidjn ,Mjn)

gsk[i]← Stuidjn , return reg[i]

SndToU(i,Min):

if i /∈ HU
HU ← HU ∪ {i},gsk[i]←⊥,Min ←⊥ Stuidjn ← gpk

(Stuidjn ,Mout, dec)←$DAA*Join(Stuidjn ,Min)

if dec = accept gsk[i]← Stuidjn

return (Mout, dec)

SndToI(i,Min):

if i ∈ HU return ⊥
if i /∈ CU CU ← CU∪ = ∪{i}, decuid ← cont

if decuid 6= cont return ⊥
if undefined Stuidiss ← (isk, gpk, i)

(Stuidiss ,Mout, dec
uid)←$DAA*Issue(Stuidiss ,Min, dec

uid)

if decuid = accept reg[i]← Stuidiss return (Mout, reg[i])

else return Mout

USK(i):

if i /∈ HU return ⊥ else BU ← BU ∪ {i} return (gsk[i])

GSig(bsn,m, i, r, t, ω):

if i /∈ HU or gsk[i] =⊥ return ⊥
SL← SL ∪ {i,m, r, t, bsn}, return DAA*Sign(bsn,m,gsk[i], ω, gpk, r, t)

Update(i, t, r):

UL← UL ∪ (i, t, r) return ω ← DAA*Update(r, t, isk, i, reg, gpk)

Fig. 9. Oracles used in our Security Requirements

– SndToI: creates corrupted users when the adversary has not corrupted the
issuer. The adversary impersonates a user and engages in a
< DAA*Join,DAA*Issue > protocol with the honest issuer.

– USK: allows an adversary to obtain the secret key of an honest user.
– GSig: allows an adversary to perform DAA*Sign on behalf of an honest user.
– Update: allows an adversary to obtain outputs of DAA*Update.

The security requirements for the DAA* signature scheme are Correctness,
Anonymity, Traceability, Non–Frameability, similarly to in [7], and the additional
Unforgeability of Reputation requirement similarly to in [32], which ensures that
a user cannot lie about their reputation.

– Correctness
In the game given in Figure 10 we give the Correctness requirement. This
ensures that given a user is honestly joined to the scheme, and DAA*Update
and DAA*Sign are performed correctly, with the user private key resulting
from the user’s join protocol, then the signature output will verify correctly.
It also ensures that signatures generated honestly using the same user private
key and basename will be linked under DAA*Link, and that DAA*IdentifyS
and DAA*IdentifyT correctly identify signatures to the user private key and
the transcript respectively. This requirement only differs from [7], because
the correctness of DAA*Update needs to be included.
A DAA* scheme satisfies correctness if for all polynomial time adversaries
A, the advantage Pr[ExpcorrA,DAA*(τ) = 1] is negligible in τ .

– Anonymity
In the security game given in Figure 10 we give the anonymity security re-
quirement. This ensures that a user’s signatures cannot be de-anonymised,
and signatures with different basenames but the same signer cannot be

27

Experiment: ExpcorrA,DAA*(τ)

param←$DAA*Setup(1τ), (gpk, isk)←$DAA*KeyGen(param), HU,CU ← ∅
(i,m0, r0, t0,m1, r1, t1, bsn)←$AAddU(param, gpk)

if i /∈ HU or gsk[i] =⊥ return 0

∀b ∈ {0, 1} ωb ← DAA*Update(rb, tb, isk, i, reg, gpk), Ωb ←$DAA*Sign(bsn,mb,gsk[i], ωb, gpk, rb, tb)

∀b ∈ {0, 1} if DAA*Verify(bsn,mb, rb, tb, Ωb, gpk) = 0 return 1

if bsn 6=⊥ if DAA*Link((bsn,m0, r0, t0, Ω0), (bsn,m1, r1, t1, Ω1), gpk) = 0 return 1

if DAA*IdentifyS(bsn,m0, r0, t0, Ω0,gsk[i]) = 0 return 1

Let T denote the < DAA*Join,DAA*Issue > transcript for user i

if DAA*IdentifyT (T , i,gsk[i]) = 0 return 1 else return 0

Experiment: ExpanonA,DAA*(τ)

b, d′ ←$ {0, 1}, param←$DAA*Setup(1τ), (gpk, isk)←$DAA*KeyGen(param), HU,BU, SL← ∅
(st, i0, i1, bsn,m, r, t, ω0, ω1)←$ASndToU,USK,GSig(choose, param, gpk, isk)

if i0, i1 /∈ HU or gsk[i0],gsk[i1] =⊥ return ⊥
∀b ∈ {0, 1} Ωb ←$DAA*Sign(I,gsk[ib], ωb, gpk, r, t)

d←$ASndToU,USK,GSig(guess, st, Ωb)

if ∃b such that Ωb =⊥ or either i0, i1 ∈ BU or (i0, ·, ·, ·, bsn), (i1, ·, ·, ·, bsn) ∈ SL
d← d′

if d = b return 1 else return 0

Experiment: ExptraceA,DAA*(τ)

param←$DAA*Setup(1τ), (gpk, isk)←$DAA*KeyGen(param), HU,CU,UL← ∅
(Ω,m, bsn, r, t, gsk1, · · · , gskl)←$ASndToI,Update

1 (param, gpk)

Let T denote the set of all transcripts accepted from SndToI queries

If the following conditions hold return 1

1. DAA*Verify(bsn,m, r, t, Ω, gpk) = 1

2. ∀T ∈ T ∃i ∈ [1, l] such that DAA*IdentifyT (T , gski) = 1

3. ∀i ∈ [1, l] DAA*IdentifyS(bsn,m, r, t, Ω, gski) = 0

(bsn,m0,m1, r0, r1, t0, t1, Ω0, Ω1, gsk)←$A2(param, gpk, isk)

if bsn =⊥ return 0

If the following conditions hold return 1 else return 0

1. ∀b ∈ {0, 1} DAA*Verify(bsn,mb, rb, tb, Ωb, gpk) = 1

2. ∀b ∈ {0, 1} DAA*IdentifyS(bsn,mb, rb, tb, Ωb, gsk) = 1

3. DAA*Link((bsn,m0, r0, t0, Ω0), (bsn,m1, r1, t1, Ω1), gpk) = 0

Fig. 10. Experiments capturing our Correctness, Anonymity and Traceability security
requirements for DAA* signature schemes

linked. In the security game the adversary has corrupted the issuer. They
choose two honest users and a message, basename, reputation and time, as
well as providing valid update tokens for both users for the reputation and
time given. They are returned with a challenge signature and they must
guess which of the two users was the author. They can create honest users
using the SndToU oracle and corrupt these with the USK. They can also ob-

28

Experiment: Expnon-frame
A,DAA* (τ)

param←$DAA*Setup(1τ), (gpk, isk)←$DAA*KeyGen(param), HU,BU, SL← ∅
(bsn,m, i, r, t, Ω)←$ASndToU,USK,GSig

1 (param, gpk, isk)

If the following conditions hold return 1

1. DAA*Verify(bsn,m, r, t, Ω, gpk) = 1

2. i ∈ HU\BU
3. (i,m, r, t, bsn) /∈ SL
4. DAA*IdentifyS(bsn,m, r, t, Ω,gsk[i]) = 1.

(bsn0,m0, r0, t0, Ω0, bsn1,m1, r1, t1, Ω1, gsk)←$A2(param, gpk, isk)

If one of the following conditions hold return 0

1. ∃b ∈ {0, 1} such that DAA*Verify(bsnb,mb, rb, tb, Ωb, gpk) = 0

2. DAA*Link((bsn,m0, r0, t0, Ω0), (bsn,m1, r1, t1, Ω1), gpk) = 0

If one of the following conditions hold return 1 else return 0

1. DAA*IdentifyS(bsn0,m0, r0, t0, Ω0, gsk) = 1 and DAA*IdentifyS(bsn1,m1, r1, t1, Ω1, gsk) = 0

2. bsn0 6= bsn1 or bsn0 =⊥ or bsn1 =⊥

Experiment: Expunforge−repA,DAA* (τ)

(param←$DAA*Setup(1τ), (gpk, isk)←$DAA*KeyGen(param), HU,CU,UL← ∅
(bsn,m, r, t, Ω, i∗, gsk1, · · · , gskl)←$ASndToI,Update(param, gpk)

Let T denote the transcript corresponding to the SndToI query for user i∗

KL← ∅, ∀i ∈ [1, l] if DAA*IdentifyS(bsn,m, r, t, Ω, gski) = 1 KL← KL ∪ {gski}
If the following conditions hold return 1 else return 0

1. DAA*Verify(bsn,m, r, t, Ω, gpk) = 1

2. ∀T ′ ∈ T ∃i ∈ [1, l] such that DAA*IdentifyT (T ′, gski) = 1

3. |KL| = 1, and letting KL = {gsk∗},DAA*IdentifyT (T , gsk∗) = 1

4. (i∗, t, r) /∈ UL

Fig. 11. Experiments capturing our Non–Frameability and Unforgeability of Reputa-
tion security requirements for DAA* signature schemes

tain signatures from honest users with the GSig oracle. However they cannot
corrupt either of the challenged honest users, or query one of these users,
and the challenge basename to GSig as otherwise the DAA*Link algorithm
could be used to trivially win.
This requirement differs from [7] because of the tokens provided by the adver-
sary for both users. As the adversary has corrupted the issuer we allow them
to provide the update tokens for both users that are input to DAA*Sign.
However, they fail if either would output ⊥ under DAA*Sign and so are
invalid.
A DAA* scheme satisfies anonymity if for all polynomial time adversaries A,
the advantage |Pr[ExpanonA,DAA*(τ) = 1]− 1/2| is negiglible in τ .

– Traceability
In the security game given in Figure 10 we give the traceability security
requirement.

29

This requirement ensures firstly that all signatures identify under DAA*IdentifyS
to a secret key obtained through a < DAA*Join,DAA*Issue > protocol,
and secondly that signatures that identify to the same secret key under
DAA*IdentifyS , and have the same basename are always linked under DAA*Link.
In the first security game the adversary has not corrupted the issuer as
otherwise they could simply create their own unregistered users. They are
given the SndToI oracle to create corrupt users, and the Update oracle, so
they can obtain tokens. They then must output a secret key corresponding
to every accepted SndToI query under DAA*IdentifyT , and a valid signature
that does not identify to any of these secret keys under DAA*IdentifyS .
In the second security game the adversary has corrupted the issuer. They
must output a basename, user secret key, and two valid signatures on this
basename. They win if the two signatures are not linked under DAA*Link
but do identify to the same secret key.
This requirement only differs from [7] in that the adversary must be given
the Update oracle as they do not hold the issuer secret key.
A DAA* scheme satisfies traceability if for all polynomial time adversaries
A, the advantage Pr[ExptraceA,DAA*(τ) = 1] is negligible in τ .

– Non–Frameability
In the security game given in Figure 11 we give the non–frameability security
requirement.
This requirement ensures that an adversary cannot impersonate an honest
user, by forging signatures linking to theirs. This requires firstly that an
adversary should not be able to output a valid signature that identifies to
the secret key of an honest user under DAA*IdentifyS , and secondly that they
should not be able to output two valid linked signatures, that either have
different basenames or identify under DAA*IdentifyS to different secret keys.
In the first security game the adversary has corrupted the issuer. They are
given the SndToU, USK, GSig oracles to create honest users, reveal their pri-
vate keys, and obtain signatures from these honest users. They then must
output a valid signature, not obtained through GSig, that identifies under
DAA*IdentifyS to the secret key of an honest user, that wasn’t revealed under
the USK oracle.
In the second security game the adversary has again corrupted the issuer.
They must output two valid linked signatures and a user secret key. They
win if either the basenames of the two signatures are different or only one of
the signatures identifies under DAA*IdentifyS to the secret key.
A DAA* scheme satisfies non–frameability if for all polynomial time adver-
saries A, the advantage Pr[Expnon−frameA,DAA* (τ) = 1] is negligible in τ .

– Unforgeability of Reputation
In the security game given in Figure 11 we give the unforgeability of repu-
tation security requirement.
This requirement is only necessary as a DAA* signature includes reputation,
and so not included in [7]. It ensures that users cannot lie about their rep-
utation, and can only claim to have a particular reputation at a particular
time if they were allocated this by the issuer in DAA*Update.

30

In the security game the adversary has not corrupted the issuer, because
otherwise they could perform DAA*Update. They are given access to the
SndToI oracle to create corrupted users, and the Update oracle. They then
must output a secret key corresponding to every accepted SndToI query
under DAA*IdentifyT , a valid signature for reputation r, time t, that only
identifies to one of these secret keys gsk∗ under DAA*IdentifyS , and honest
user i∗ that identifies to gsk∗ under DAA*IdentifyT . The adversary wins if
they have not queried (i∗, r, t) to the Update oracle.
A DAA* scheme satisfies unforgeability of reputation if for all polynomial
time adversaries A, the advantage Pr[Expunforge−repA,DAA* (τ) = 1] is negligible in
τ .

E Proof of Security of our APR Construction

E.1 Correctness

The Correctness of DAA* ensures that Correctness defined in the first game is
satisfied. The correctness of the encryption scheme and LRS scheme ensures that
the Correctness defined in the second game is satisfied.

E.2 Anonymity of Ratings under Full Corruption

Assuming the Ring Signature used satisfies Linkable Anonymity, the DAA*
scheme used also satisfies Anonymity and the SPK is zero knowledge, then the
APR construction satisfies the Anonymity of Ratings under Full Corruption
requirement.

We define Game 0 to be the Anonymity of Ratings under Full Corruption
experiment, with b chosen randomly at the beginning, using the APR construc-
tion. Let S0 be the event that an adversary A correctly guesses b after Game
0.

We define Game 1 to be identical to Game 0 except for in the Collect oracle,
with probability 1/2 the user identifiers of the challenge rating and the additional
rating will be swapped. We give Game 1 in Figure 12. Let S1 be the event that
the adversary A correctly guesses b after Game 1.

We show that Game 0 and Game 1 are indistinguishable assuming the linkable
anonymity of the LRS scheme used in our construction. We give a distinguishing
algorithm D for functions f1, f2 in Figure 13, and below explain why D simulates
inputs toA that are distributed identically in Game 0 if in the linkable anonymity
experiment the bit b = 0 was chosen, and D simulates inputs to A that are
distributed identically in Game 1 if in the Linkable anonymity experiment the
bit b was chosen randomly.

Clearly all inputs to A other than the Collect oracle and ρ∗0, ρ
∗
1 are identical

in both Game 0 and 1. ρ∗0 and ρ∗1 are distributed identically in both Game 0 and
Game 1 because ˜vk∗0 ,

˜vk∗1 are encrypted honestly generated verification keys for
ring signatures, and Ω∗0 , Ω

∗
1 are computed identically. RL is defined identically to

31

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL ∪ RL ∪ RL† return ⊥

if |{(uidi, uid′i, fbi, ri, ρi, tdi, l) : i ∈ [k]} ∩ RL| = 1

k ← k + 1

(uidk, uid
′
k, fbk, rk, ρk, tdk)← (uid∗1−b+b′′ , uid

′∗, fb∗, r∗, ρ∗1−b, td
∗
1−b)

tk ← Incent((fbk, uid
′
k, rk, ρk), l, rwsk, gpk)

CLL← ∅,∀i ∈ [k]

σi ←$CollectIncent(uidi, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

CLL← CLL ∪ {((fbi, uid′i, ri, ρi), uidi, σi, t1, · · · tk, l)}
choose random permutation Π for j = 1, · · · , k
return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

Game 1

b, b′′, d′ ←$ {0, 1}, param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(st, uid∗0, uid
∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk, rwsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

∀b′ ∈ {0, 1} (td∗b′ , ρ
∗
b′)←$Rate(gsk[uid∗b′], gpk, fb

∗, uid′
∗
, l∗, r∗, ωb′)

RL← {(uid∗b′′+b′ , uid′
∗
, fb∗, r∗, ρ∗b′ , td

∗
b′ , l
∗) : b′ ∈ {0, 1}}

d←$ASndToU,Rate,TD,Incent,Collect(guess, st, ρ∗b)

if ρ∗0 or ρ∗1 =⊥ or ∃b′ ∈ {0, 1} s.t (uid∗b′ , uid
′∗, ·, ·, ·, ·, l∗) ∈ SL

d← d′

if d = b return 1 else return 0

Fig. 12. Game 1

in Game 0, except that as the trapdoor is unknown, instead this is set to (⊥, b′).
If the challenge signature is queried to the Collect oracle, then these trapdoors
cannot be used in CollectIncent. Therefore instead the challenge oracle is used
from the linkable anonymity game for ring signatures. If b = 0 was chosen in the
linkable anonymity game, then this will return a correctly distributed incentive
as in Game 0. If b is chosen randomly in the linkable anonymity game, then the
incentive will be generated from the correct user’s key, with the same probability
as in Game 1.

Therefore the probability that D outputs 1 given b = 0 in the Linkable
Anonymity game is Pr[S0]. The probability that D outputs 1 given the bit
was chosen randomly in the Linkable Anonymity game is Pr[S1]. Let s∗ be the
probability D outputs 1 given b = 1 in the Linkable Anonymity game. Then
Pr[S1] = 1/2s∗ + 1/2 Pr[S0], and so s∗ = 2 Pr[S1] − Pr[S0]. Therefore, the ad-
vantage of D is then |2 Pr[S1]−Pr[S0]−Pr[S0]| = 2|Pr[S0]−Pr[S1]|. Therefore

32

SndToU(uid,Min)

As in original security game

Rate(uid, uid′, l, fb, r, ω):

As in original security game

TD(fb, uid′, l, r, ρ):

As in original security game

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

As in original security game

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL ∪ RL ∪ RL† return ⊥

if |{(uidi, uid′i, fbi, ri, ρi, tdi, l) : i ∈ [k]} ∩ RL| = 1

k ← k + 1

(uidk, uid
′
k, fbk, rk, ρk, tdk)← (uid∗1−b, uid

′∗, fb∗, r∗, ρ∗1−b, td
∗
1−b)

tk ← Incent((fbk, uid
′
k, rk, ρk), l, rwsk, gpk)

CLL← ∅, ∀i ∈ [k]

if tdi = (⊥, b′) σi ←$ Chal(b′, uidi, t1, · · · , tk)

else σi ←$CollectIncent(uidi, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

CLL← CLL ∪ {((fbi, uid′i, ri, ρi), uidi, σi, t1, · · · tk, l)}
choose random permutation Π for j = 1, · · · , k
return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

DAddURS(τ, f1, f2)

b, d′ ←$ {0, 1}, param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(st, uid∗0, uid
∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk, rwsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

∀b′ ∈ {0, 1} vk∗b′ ←$ AddURS(b′), ˜vk∗b′ ←$Enc(rwpk, vk∗b′), td
∗
b′ ← (⊥, b′)

Ω∗b′ ←$DAA*Sign((uid′
∗
, l∗), (fb∗, ˜vk∗b′),gsk[uid∗b′], ωb′ , gpk, r

∗, l∗)

RL← {(uid∗b′ , uid′
∗
, fb∗, r∗, (Ω∗b′ , ˜vk∗b′), td

∗
b′ , l
∗) : b′ ∈ {0, 1}}

return (st, 0, 1)

DChal(st)

d←$ASndToU,Rate,TD,Incent,Collect(guess, st, (˜vk∗b , Ω
∗
b))

if ρ∗0 or ρ∗1 =⊥ or ∃b′ ∈ {0, 1} s.t (uid∗b′ , uid
′∗, ·, ·, ·, ·, l∗) ∈ SL d← d′

if d = b return 1 else return 0

Fig. 13. D a distinguishing algorithm that breaks the Anonymity of Linkable Ring
Signatures

33

|Pr[S0]−Pr[S1]| = ε/2, where ε is the advantage of an adversary in the Linkable
Anonymity security game. Therefore provided the linkable ring signature scheme
satisfies Linkable Anonymity, Games 0 and Games 1 will be indistinguishable.

Next, we show that |Pr[S1]−1/2| ≤ εDAA*,anon, where εDAA*,anon is the advan-
tage in breaking anonymity for the DAA* scheme used. We build an adversary
A′, that breaks Anonymity for the DAA* scheme used, given A for functions
f1, f2 that successfully guesses b in Game 1 with Pr[S1]. We give A′ in Figure
14, and below explain why the simulation input to A given in Figure 14 is iden-
tically distributed to Game 1, and why A′ successfully breaks Anonymity for
the DAA* scheme.

(gpk, rwsk, rhsk) is identical to in Game 1, because (rhpk, rhsk) and (gpkDAA*, isk)
are identically distributed.

The SndToU oracles in both the Anonymity of DAA* security requirement
and the Anonymity of Ratings requirement are identical, and the < Join, Issue >
protocol are identical for the DAA* scheme and the APR construction, except
for the SPK that can be simulated due to the zero knowledge property. Therefore
the SndToU oracle is distributed identically in Game 1. The Rate oracle is also
distributed identically in Game 1, because (vk, td) are computed identically, and
GSig will output DAA* signatures as in Rate.

The TD and Incent oracles are identical to in Game 1. We note that RL is
input to Collect. For ρ∗, the entry in RL is identical to in Game 1. For the other
signature, ˜vk′ and td′ are generated identically to Rate, the only difference is the
DAA* signature is set to be ⊥. However this is not used in Incent or CollectIncent,
and therefore in the Collect oracle.

ρ∗ is distributed identically in Game 1, because (vk∗, td∗) are chosen identi-
cally, and A′ is returned with a DAA* signature as in Rate for either uid0 or uid1.

As A successfully guesses b, they output ω1, ω1 so that Ω∗0 , Ω∗1 6=⊥. There-
fore as A′ also outputs ω1, ω1 then they will not fail because of this. A′ never
queries the USK. As A is successful they never query (uid∗0, uid

′∗, l∗, ·, ·, ·) or
(uid∗1, uid

′∗, l∗, ·, ·, ·) to the Rate oracle, and thereforeA′ never queries ((uid′
∗
, l∗),

·, uid∗1, ·, ·, ·) or ((uid′
∗
, l∗), ·, uid∗0, ·, ·, ·) to the GSig oracle. Therefore A′ success-

fully guesses b, because A has successfully guessed b. Therefore Pr[S1]− 1/2| ≤
εDAA*,anon, and so our construction satisfies Anonymity of Ratings under Full
Corruption.

E.3 Anonymity of Ratings under a Corrupt Reputation Holder

Assuming the encryption scheme used is indistinguishable under adaptive chosen
ciphertext attacks, the DAA* scheme used also satisfies Anonymity, and the SPK
is zero knowledge then the APR construction satisfies the Anonymity of Ratings
under a Corrupt Reputation Holder requirement.

We define Game 0 to be the Anonymity of Ratings under a Corrupt Repu-
tation Holder experiment, with b chosen randomly at the beginning, using the

34

SndToU(uid,Min)

SndToUDAA*(uid,Min)

TD(fb, uid′, l, r, ρ):

As in original security game

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

As in original security game

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL ∪ RL ∪ RL† return ⊥

if |{(uidi, uid′i, fbi, ri, ρi, tdi, l) : i ∈ [k]} ∩ RL| = 1

k ← k + 1

(uidk, uid
′
k, fbk, rk, ρk, tdk)← (uid∗b′′−1, uid

′∗, fb∗, r∗, (⊥, ˜vk′), td′)

tk ← Incent((fbk, uid
′
k, rk, ρk), l, rwsk, gpk)

CLL← ∅, ∀i ∈ [k]

σi ←$CollectIncent(uidi, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

CLL← CLL ∪ {((fbi, uid′i, ri, ρi), uidi, σi, t1, · · · tk, l)}
choose random permutation Π for j = 1, · · · , k
return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

Rate(uid, uid′, l, fb, r, ω):

if uid /∈ HL or gsk[uid] =⊥ return ⊥
(vk, td)←$ LRKeyGen(1τ), ṽk←$Enc(rwpk, vk), Ω←$ GSig((uid′, l), (fb, ṽk), uid, r, l, ω), ρ← (Ω, ṽk)

SL← SL ∪ {uid, uid′, fb, r, ρ, td, l}, return ρ

A′SndToUDAA*,USK,GSig(choose, paramDAA*, gpkDAA*, isk, f1, f2)

paramEnc ←$EncSetup(1τ), param← (paramDAA*, paramEnc, f1, f2), (rhsk, rhpk)← (isk, gpkDAA*),

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(stA, uid
∗
0, uid

∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk, rwsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

(vk∗, td∗)←$ LRKeyGen(1τ), ṽk
∗ ←$Enc(rwpk, vk∗)

return (stA′ , uid
∗
0, uid

∗
1, (uid

′∗, l∗), (fb∗, ˜vk∗), r∗, l∗, ω0, ω1)

A′SndToUDAA*,USK,GSig(guess, stA′ , Ω∗)

ρ∗ ← (Ω∗, ˜vk∗), (vk′, td′)←$ LRKeyGen(1τ), ˜vk′ ←$Enc(rwpk, vk′), b′′ ←$ {0, 1}
RL← {(uid∗b′′ , uid′

∗
, fb∗, r∗, ρ∗, td∗, l∗), (uid∗b′′−1, uid

′∗, fb∗, r∗, (⊥, ˜vk′), td′, l∗)}
return ASndToU,Rate,TD,Incent,Collect(guess, stA, ρ

∗)

Fig. 14. A′ breaks Anonymity of the DAA* scheme using A

APR construction. Let S0 be the event that an adversary A correctly guesses b
after Game 0.

We define Game 1 to be identical to Game 0 except for in the Collect oracle,
with probability 1/2 the user identifiers of the challenge rating and the additional
rating will be swapped. We give Game 1 in Figure 15. Let S1 be the event that
the adversary A correctly guesses b after Game 1.

We show that Game 0 and Game 1 are indistinguishable for all functions
f1, f2, assuming the ind–cca2 security of the encryption scheme used in our

35

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL ∪ RL ∪ RL† return ⊥

CLL← ∅,∀i ∈ [k]

if ti = t∗b′ s.t b′ ∈ {0, 1} σi ←$CollectIncent(uid∗b′+b′′ , (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

else σi ←$CollectIncent(uidi, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

choose random permutation Π for j = 1, · · · , k
return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

Game 1

b, b′′ ←$ {0, 1}, param←$Setup(1τ , f1, f2), (rhsk, rhpk)←$RHKeyGen(param)

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(st, uid∗0, uid
∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

∀b′ ∈ {0, 1} (td∗b′ , ρ
∗
b′)←$Rate(gsk[uid∗b′], gpk, fb

∗, uid′
∗
, l∗, r∗, ωb′)

RL† ← {(uid∗b′ , uid′
∗
, fb∗, r∗, ρ∗b′ , td

∗
b′ , l
∗) : b′ ∈ {0, 1}}

(t∗0, t
∗
1)← Incent((fb∗, uid′

∗
, r∗, ρ∗0), (fb∗, uid′

∗
, r∗, ρ∗1), l, rwsk, gpk)

d←$ASndToU,Rate,TD,Incent,Collect(guess, st, ρ∗b)

if ρ∗0 or ρ∗1 =⊥ or ∃b′ ∈ {0, 1} s.t (uid∗b′ , uid
′∗, ·, ·, ·, ·, l∗) ∈ SL

return d←$ {0, 1}
if d = b return 1 else return 0

Fig. 15. Game 1

construction. We give a distinguishing algorithm D in Figure 16, and below
explain why D simulates inputs to A that are distributed identically in Game 0
if in the ind-cca2 experiment the bit b = 0 was chosen, and D simulates inputs
to A that are distributed identically in Game 1 if in the ind–cca2 experiment
the bit b was chosen randomly.

Clearly all inputs to A other than the Incent, Collect oracles and ρ∗b are
identical in both Game 0 and 1, because rwpk is a public key of the encryption
scheme. ρ∗b is distributed identically in both Game 0 and Game 1 because ˜vk∗b
is an encrypted honestly generated verification key for ring signatures, and Ω∗b
is computed identically. Only the challenge rating is included in RL† and as the
trapdoor is unknown, instead this is set to ⊥. However, these missing entries will
not be used later. If the challenge signature is queried to the Incent oracle, then
the decryption oracle cannot be used in the ind–cca2 game. Therefore, instead
incentives corresponding to both of the ring signature verification keys vk∗0 , vk∗1
will be output corresponding to the challenge signature and the added extra sig-
nature of the other challenged user. All other incentives are generated using the
decryption oracle. If either of the incentives vk∗0 , vk∗1 are queried to the Collect

oracle, then the corresponding trapdoors can be used in CollectIncent. The user

36

SndToU(uid,Min)

As in original security game

Rate(uid, uid′, l, fb, r, ω):

As in original security game

TD(fb, uid′, l, r, ρ):

As in original security game

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

if |{i ∈ [k] : (·, uidi, fbi, ri, ρi, ·, l) ∈ RL†}| > 1 return ⊥

if ∃i ∈ [k]| s.t (·, uidi, fbi, ri, ρi, ·, l) ∈ RL†

i∗ ← i, ti ← vk∗0 , tk+1 ← vk∗1

∀i ∈ [k]\{i∗} parse ρi = (Ωi, ṽki) ti ← Decr(ṽki)

∀i ∈ [k] if (ti, ·) /∈ IL IL← IL ∪ (ti, (fbi, uidi, ri, ρi))

choose random permutation Π, return tΠ(1), · · · , tΠ(k)

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL ∪ RL ∪ RL† and ti 6= vk∗0 , vk

∗
1 return ⊥

CLL← ∅,∀i ∈ [k]

if ti = vk∗b′ s.t b′ ∈ {0, 1} σi ←$CollectIncent(uid∗b+b′ , (⊥,⊥,⊥,⊥ td∗b′), t1, · · · tk, gpk)

else σi ←$CollectIncent(uidi, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

choose random permutation Π for j = 1, · · · , k
return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

DDecr(paramEnc, pk, f1, f2)

b, d′ ←$ {0, 1}, paramDAA* ←$DAA*Setup(1τ), param← (paramDAA*, paramEnc, f1, f2)

(rhsk, rhpk)←$RHKeyGen(param), rwpk ← pk, gpk ← (param, rwpk, rhpk)

(st, uid∗0, uid
∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

∀b′ ∈ {0, 1} (td∗b′ , vk
∗
b′)←$ LRKeyGen(1τ)

return (st, vk∗0 , vk
∗
1)

DDecr(st, c)

˜vk∗b ← c,Ω∗b ←$DAA*Sign((uid′
∗
, l∗), (fb∗, ˜vk∗b),gsk[uid∗b], ωb, gpk, r

∗, l∗)

RL† ← {(uid∗b , uid′
∗
, fb∗, r∗, (Ω∗b , ˜vk∗b),⊥, l∗)}

d←$ASndToU,Rate,TD,Incent,Collect(guess, st, (˜vk∗b , Ω
∗
b))

if ω0 or ω1 do not return valid ratings or ∃b′ ∈ {0, 1} s.t (uid∗b′ , uid
′∗, ·, ·, ·, ·, l∗) ∈ SL d← d′

if d = b return 1 else return 0

Fig. 16. D a distinguishing algorithm that breaks the ind–cca2 security of the Encryp-
tion scheme

37

uid∗b claims the incentive vk∗0 and the user uid∗1−b claims the incentive vk∗1 . If
the bit chosen in the ind–cca2 game was 0, then this is identically distributed to
in Game 0, because the challenge signature contains an encryption of vk∗0 . If b
is chosen randomly in the ind–cca2 game, then the user claiming the incentive
will be correct with the same probability as in Game 1.

Therefore, the probability that D outputs 1 given the bit is 0 in the ind-
cca2 game is Pr[S0]. The probability that D outputs 1 given the bit was chosen
randomly in the ind–cca2 game is Pr[S1]. Let s∗ be the probability D outputs
1 given the bit was 1 in the ind–cca2 game. Then Pr[S1] = 1/2s∗ + 1/2 Pr[S0],
and so s∗ = 2 Pr[S1]− Pr[S0]. Therefore, the advantage of D is then |2 Pr[S1]−
Pr[S0]− Pr[S0]| = 2|Pr[S0]− Pr[S1]|. Therefore |Pr[S0]− Pr[S1]| = ε/2, where
ε is the advantage of an adversary in the ind–cca2 security game. Therefore pro-
vided the encryption scheme is ind–cca2 secure, Games 0 and Games 1 will be
indistinguishable.

Next, we show that |Pr[S1]−1/2| ≤ εDAA*,anon, where εDAA*,anon is the advan-
tage in breaking anonymity for the DAA* scheme used. We build an adversary
A′, that breaks Anonymity for the DAA* scheme used, given A for functions
f1, f2, that successfully guesses b in Game 1 with Pr[S1]. We give A′ in Figure
17, and below explain why the simulation input to A given in Figure 17 is iden-
tically distributed to Game 1, and why A′ successfully breaks Anonymity for
the DAA* scheme.

(gpk, rwsk, rhsk) are distributed identically to in Game 1, because (rhpk, rhsk)
and
(gpkDAA*, isk) are identically distributed.

The SndToU oracles in both the Anonymity of DAA* security requirement
and the Anonymity of Ratings requirement are identical, and the < Join, Issue >
protocol are identical for the DAA* scheme and the APR construction, except
for the SPK that can be simulated due to the zero knowledge property. Therefore
the SndToU oracle is distributed identically in Game 1. The Rate oracle is also
distributed identically in Game 1, because (vk, td) are computed identically, and
GSig will output DAA* signatures as in Rate.

The TD is oracles are identical to in Game 1. The Collect oracle is distributed
identically to Game 1, because the only difference is that with probability 1/2,
the challenge users will be swapped in RL†. This is identical to in Game 1. The
Incent oracle is distributed identically as only ˜vk′ will be necessary for Incent,
the first part of the rating is not used.

ρ∗ is distributed identically in Game 1, because (vk∗, td∗, ṽk
∗
) are chosen

identically, and A′ is returned with a DAA* signature as in Rate for either uid0
or uid1.

As A successfully guesses b, they output ω1, ω1 so that Ω∗0 , Ω∗1 6=⊥. There-
fore as A′ also outputs ω1, ω1 then they will not fail because of this. A′ never
queries the USK. As A is successful they never query (uid∗0, uid

′∗, l∗, ·, ·, ·) or
(uid∗1, uid

′∗, l∗, ·, ·, ·) to the Rate oracle, and thereforeA′ never queries ((uid′
∗
, l∗),

38

SndToU(uid,Min)

SndToUDAA*(uid,Min)

TD(fb, uid′, l, r, ρ):

As in original security game

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

if |{i ∈ [k] : (·, uidi, fbi, ri, ρi, ·, l) ∈ RL†}| > 1 return ⊥

if |{i ∈ [k] : (·, uidi, fbi, ri, ρi, ·, l) ∈ RL†}| = 1

k ← k + 1, (fbk, uidk, rk, ρk)← (fb∗, uid′
∗
, r∗, (⊥, ˜vk′))

t1, · · · , tk ← Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l, rwsk, gpk)

∀i ∈ [k] if (ti, ·) /∈ IL IL← IL ∪ (ti, (fbi, uidi, ri, ρi))

choose random permutation Π, return tΠ(1), · · · , tΠ(k)

Collect((t1, · · · , tk), l):

As in original security game

Rate(uid, uid′, l, fb, r, ω):

if uid /∈ HL or gsk[uid] =⊥ return ⊥
(vk, td)←$ LRKeyGen(1τ), ṽk←$Enc(rwpk, vk), Ω←$ GSig((uid′, l), (fb, vk), uid, r, l, ω), ρ← (Ω, ṽk)

SL← SL ∪ {uid, uid′, fb, r, ρ, td, l}, return ρ

A′SndToUDAA*,USK,GSig(choose, paramDAA*, gpkDAA*, isk, f1, f2)

paramEnc ←$EncSetup(1τ), param← (paramDAA*, paramEnc, f1, f2), (rhsk, rhpk)← (isk, gpkDAA*),

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(stA, uid
∗
0, uid

∗
1, l
∗, fb∗, uid′

∗
, r∗, ω0, ω1)←$ASndToU,Rate,TD,Incent,Collect(choose, gpk, rhsk)

if uid∗0, uid
∗
1 /∈ HL or gsk[uid∗0],gsk[uid∗1] =⊥ return ⊥

(vk∗, td∗)←$ LRKeyGen(1τ), ṽk
∗ ←$Enc(rwpk, vk∗)

return (stA′ , uid
∗
0, uid

∗
1, (uid

′∗, l∗), (fb∗, ˜vk∗), r∗, l∗, ω0, ω1)

A′SndToUDAA*,USK,GSig(guess, stA′ , Ω∗)

ρ∗ ← (Ω∗, ˜vk∗), (vk′, td′)←$ LRKeyGen(1τ), ˜vk′ ←$Enc(rwpk, vk′), b′′ ←$ {0, 1}
(td′, vk′)←$ LRKeyGen(1τ), ˜vk′ ←$Enc(rwpk, vk′)

RL† ← {(uid∗b′′ , uid′
∗
, fb∗, r∗, ρ∗, td∗, l∗), (uid∗1−b′′ , uid

′∗, fb∗, r∗, (⊥, ˜vk′), td′, l∗)}
return ASndToU,Rate,TD,Incent,Collect(guess, stA, ρ

∗)

Fig. 17. A′ breaks Anonymity of the DAA* scheme using A

·, uid∗1, ·, ·, ·) or ((uid′
∗
, l∗), ·, uid∗0, ·, ·, ·) to the GSig oracle. Therefore A′ success-

fully guesses b, because A has successfully guessed b. Therefore Pr[S1]− 1/2| ≤
εDAA*,anon, and so our construction satisfies Anonymity of Ratings under a Cor-
rupt Reputation Holder.

E.4 Traceability

Assuming that the DAA* scheme used satisfies the Traceability and Non Frame-
ability requirements, and there is an SPK of the user’s secret key sent in < Join,

39

Issue > that is online extractable and simulation sound, then the APR construc-
tion satisfies traceability.

First we show that if there exists an adversary A such that
Pr[ExptraceA,APR(τ, f1, f2) = 1] = ε, where ε is non-negligible, then we can can build
either an adversary A′1, that breaks the Non–Frameability of DAA* signatures
or an adversary A′2 that breaks the Traceability of DAA* signatures, with non-
negligible probability. We give the detailed description of A′1,A′2 in Figures 18
and 19, and explain here how they work.

We first describe two potential strategies that A could take, firstly they could
output at least one rating whose DAA signature component identifies under
DAA*IdentifyS to the secret key of an honest user resulting from a query to
AddU. Or all ratings output could not identify to the secret key of an honest user
under DAA*IdentifyS . In the first case we will build an adversary A′1, which we
will give in Figure 18, that breaks the Non–Frameability requirement of DAA*
signatures. In the second case we will build an adversary A′2, which we will give
in Figure 19, that breaks the Traceability requirement of DAA* signatures

We now explain why the simulation A′1 gives to A is identically distributed to
in the Traceability experiment with the APR construction, and explain how A′1
breaks Non-Frameability for DAA* signatures, provided A successfully breaks
Traceability following the first strategy.

AddU(uid)

Use SndToUDAA* oracle to simulate role of user

SndToRH(uid,Min))

As in original security game

AllocateRep(uid, r, l)

As in original security game

TD(fb, uid′, l, r, ρ)

As in original security game

Rate(uid, uid′, l, fb, r, ω)

if uid /∈ HL or gsk[uid] =⊥ return ⊥
(vk, td)←$ LRKeyGen(1τ), ṽk←$Enc(rwpk, vk), Ω←$ GSig((uid′, l), (fb, ṽk), uid, r, l, ω), ρ← (Ω, ṽk)

SL← SL ∪ {uid, uid′, fb, r, ρ, td, l}, return ρ

A′SndToUDAA*,USK,GSig1 (paramDAA*, gpkDAA*, isk, f1, f2)

paramEnc ←$EncSetup(1τ), param← (paramDAA*, paramEnc, f1, f2), (rhsk, rhpk)← (isk, gpkDAA*),

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid′, l, (fb1, r1, (Ω1, ˜vk1)), · · · (fbk, rk, (Ωk, ˜vkk)←$AAddU,SndToRH,AllocateRep,Rate,TD(gpk, rwsk)

uid∗ ←$HU, i∗ ←$ [k], return ((uid′, l), (fbi∗ , ˜vki∗), uid
∗, ri∗ , l, Ωi∗)

Fig. 18. A′1 which breaks the non–frameability of DAA* signatures, using A which
breaks the traceability requirement of the APR construction following the first strategy
with probability ε

40

All inputs that A′1 provides to A are distributed identically in the Trace-
ability experiment. This is because (paramDAA*, gpkDAA*, isk) are the outputs of
DAA*Setup, DAA*KeyGen and so (param, gpk, rwsk, rhsk) are distributed iden-
tically. The SndToUDAA* oracle can be used to simulate the role of the honest user
for AddU. The SndToRH and AllocateRep oracles are identical to in the original
security game. The Rate oracle is also distributed identically to in the security
game, because (vk, ṽk, td) are computed identically, and GSig will output DAA*
signatures as in Rate. The TD oracle is also identical.

Therefore if A successful breaks Traceability, and outputs a signature that
identifies with an honest user generated through AddU then A′1 will be successful
with probability 1/k|HU |. This is because A′1 outputs a valid signature, an hon-
est user that has not been queried to the USK oracle, or obtained through GSig

(because otherwise A would have submitted it to the Rate oracle). There is a
1/k chance that A′1 has chosen the signature that identifies to the honest user,
and a 1/|HU | probability that A′1 has chosen the correct honest user.

We now look at the case of an adversary that breaks the Traceability of an
APR construction by submitting signatures that do not identify to an honest
user obtained by AddU. We explain why the simulationA′2 gives toA is identically
distributed to in the Traceability experiment with the APR construction, and
explain how A′2 breaks Traceability for DAA* signatures provided A successfully
breaks Traceability following the second strategy above.

All inputs thatA′2 provides toA are distributed identically in the Traceability
experiment. This is because (paramDAA*, gpkDAA*) are the outputs of DAA*Setup,
DAA*KeyGen and so (param, gpk, rwsk) are distributed identically.

Simulating the AddU Oracle: The AddU oracle is identical except instead of per-
forming Issue, instead SndToRH is used. Therefore the AddU oracle is distributed
identically.

Simulating the SndToRH Oracle: In the case of SndToRH, gsk[uid] can be ex-
tracted from the online-extractable SPK. As the SndToIDAA* oracle is identical
to SndToRH and the join/ issue protocols of DAA*/ APR are identical, SndToRH
is distributed identically in the Traceability requirement.

Simulating the AllocateRep Oracle: As DAA*Update and AllocateRep are the
same, and so the AllocateRep and Update oracles are the same, AllocateRep
is distributed identically in the Traceability requirement.

Simulating the Rate and TD Oracles: The Rate and TD oracles are identical to
in the Traceability game, because A′2 can use the secret keys of honest users.

Reduction to breaking Traceability of DAA* signatures. Assume A is successful,
and follows the second strategy. Then it outputs k > |CL| valid signatures that
are not output by the Rate oracle, do not identify to any of the secret keys of
honest users, and are unlinkable under FormRep1. Then if all signature identify

41

AddU(uid)

Use SndToRH oracle to simulate Issue otherwise as in original security game

SndToRH(uid,Min))

if online extractable SPK sent, extract gsk

out←$ SndToIDAA*(uid,Min)

if decuid = accept gsk[uid]← gsk, return out

AllocateRep(uid, r, l)

return Update(uid, l, r)

Rate(uid, uid′, l, fb, r, ω)

As in original security requirement

TD(fb, uid′, l, r, ρ)

As in original security game

A′SndToIDAA*,Update(paramDAA*, gpkDAA*, f1, f2)

paramEnc ←$EncSetup(1τ), param← (paramDAA*, paramEnc, f1, f2), rhpk ← gpkDAA*

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid′, l, (fb1, r1, (Ω1, ˜vk1)), · · · (fbk, rk, (Ωk, ˜vkk)←$AAddU,SndToRH,AllocateRep,Rate,TD(gpk, rwsk)

if ∃i∗ ∈ [k] s.t ∀uid ∈ CL DAA*IdentifyS((uid′, l), (fbi∗ , ṽki∗), ri∗ , l, Ωi∗ ,gsk[uid∗]) = 0

return (Ωi∗ , (fbi∗ , ṽki∗), (uid
′, l), ri∗ , l, {gsk[uid] : uid ∈ HU ∪ CU})

else return ⊥

Fig. 19. A′2 which breaks the Traceability of DAA* signatures, using A which breaks
the traceability requirement of the APR construction following the second strategy
with probability ε

to a corrupted user in CL, then two signatures must identify to the same user
as k > |CL|. This would allow A′2 to break the second game in the Traceability
requirement for DAA* signatures. Therefore a signature must be found that does
not identify to any corrupted users under DAA*IdentifyS . Therefore A′2 will be
successful because it outputs secret keys corresponding to all SndToI transcripts,
and a valid signature that does not identify to any of these secret keys (because
it also will not identify to any honest users as we assume A follows the second
strategy).

Therefore, ifA is successful with probability ε and follows the second strategy,
A′ breaks traceability of DAA* signatures.

E.5 Non–Frameability

Assuming the DAA* scheme satisfies the Non–Frameability requirement, the
Ring Signature scheme also satisfies Non–Frameability, and the SPK is zero
knowledge, then the APR construction satisfies Non–Frameability.

First we show that if there exists an adversary A for the first game of the
Non-Frameability requirement such that Pr[Expnon−frameA,APR (τ, f1, f2) = 1] = ε,
where ε is non-negligible, then we can can build an adversary A′, that breaks

42

the Non–Frameability of DAA* signatures with non-negligible probability. We
give the detailed description of A′ in Figure 20, and explain here how A′ works.

We explain why the simulation A′ gives to A is identically distributed to in
the first game of the Non–Frameability experiment with the APR construction,
and explain how A′ breaks Non–Frameability for DAA* signatures provided A
succesfully breaks Non-Frameability.

SndToU(uid,Min):

SndToUDAA*(uid,Min)

Rate(uid, uid′, l, fb, r, ω)

if uid /∈ HL or gsk[uid] =⊥ return ⊥
(vk, td)←$ LRKeyGen(1τ), ṽk←$Enc(rwpk, vk), Ω←$ GSig((uid′, l), (fb, ṽk), uid, r, l, ω).ρ← (Ω, ṽk)

SL← SL ∪ {uid, uid′, fb, r, ρ, td, l} return ρ

TD(fb, uid′, l, r, ρ):

As in original security game

A′SndToUDAA*,USK,GSig(paramDAA*, gpkDAA*, isk, f1, f2)

paramEnc ←$EncSetup(1τ), param← (paramDAA*, paramEnc, f1, f2), (rhsk, rhpk)← (isk, gpkDAA*),

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid, fb, uid′, l, r, (Ω, ṽk))←$ASndToU,Rate,TD(gpk, rwsk, rhsk)

return ((uid′, l), (ṽk, fb), uid, r, l, Ω)

Fig. 20. A′ which breaks the Non-Frameability of DAA* signatures, using A which
breaks the Non–Frameability requirement of the APR construction with probability ε

Simulating the input to A All inputs that A′ provides to A are distributed identi-
cally in the Non–Frameability experiment. This is because (paramDAA*, gpkDAA*,
isk) are the outputs of DAA*Setup, DAA*KeyGen and so (param, gpk, rwsk, rhsk)
are distributed identically. The SndToU oracles in both the Non–Frameability
of DAA* security requirement and the APR Non–Frameability requirement are
identical, and the < Join, Issue > protocol are identical for the DAA* scheme
and the APR construction, except for the SPK that can be simulated due to the
zero knowledge property. Therefore the SndToU oracle is distributed identically.
The Rate oracle is also distributed identically, because (vk, ṽk, td) are computed
identically, and GSig will output DAA* signatures as in Rate. The TD oracle
is identical to in the Non–Frameability requirement because the trapdoor td is
computed identically in the Rate oracle.

Reduction to breaking Non–Frameability of DAA* signatures. Assume A is suc-
cessful, for A′ to be successful it must satisfy four requirements: the DAA* signa-

43

ture output must be valid, the user output must be in HL but not corrupted with
USK, the signature must not be output by the signing oracle, and the signature
must identify to the secret key of the honest user output. As A is successful and
does not have access to a USK oracle, the first three are clearly satisfied. As A
is successful, the signature links to another signature returned by the signing
oracle authored by uid and with the same basename (uid′, l). This signature is
honestly generated and so will identify to the user uid under DAA*IdentifyS . If
the signature output by A′ does not identify to uid under DAA*IdentifyS , then
this would break the second game of the DAA* Non–Frameability requirement.
Otherwise A′ will be successful.

Next, we show that if there exists an adversary A for the second game of the
Non-Frameability requirement such that Pr[Expnon−frameA,APR (τ, f1, f2) = 1] = ε
with n queries to the Rate, where ε is non-negligible, then we can can build
an adversary A′, that breaks the Non–Frameability of Linkable Ring signatures
with non-negligible probability. We give the detailed description of A′ in Figure
21, and explain here how A′ works.

We explain why the simulation A′ gives to A is identically distributed to in
the second game of the Non–Frameability experiment with the APR construc-
tion, and explain how A′ breaks Non–Frameability for Linkable Ring signatures
provided A succesfully breaks Non-Frameability.

All inputs that A′ provides to A are distributed identically in the Non–
Frameability experiment. This is because the only difference to the Non–Frameabiliity
game is during the Rate oracle, ring signature verification keys are generated
using the AddURS oracle, which outputs verification keys identical to those gen-
erated in LRKeyGen. However the Collect oracle no longer has access to the
trapdoor for these ratings, therefore the SignRS oracle is used to generate the
incentive claim.

Reduction to breaking Non–Frameability of Linkable Ring Signatures. If A is
successful with probability ε, A′ breaks Non–Frameability of Linkable Ring Sig-
natures with probability at least ε, provided A′ does not abort. In the second
stage, as A is successful then a signature will be found in CLL, and so A′ will
output a second signature. Clearly both signatures A′ outputs are clearly valid
and link, as A is successful. As A is successful, they will not return an incen-
tive claim that has been obtained from the Collect oracle, therefore the first
signature output was not returned from the SignRS oracle. As the Corrupt ora-
cle is not used the ring output will not contain any corrupted verification keys.
The second ring output only contains verification keys generated from AddURS,
because the Collect oracle only accepts incentives originating from ratings gen-
erated with the Rate oracle. Therefore all the conditions are satisfied and so A′
is successful.

44

SndToU(uid,Min))

As in original security game

USK(uid))

As in original security game

Rate(uid, uid′, l, fb, r, ω)

if uid /∈ HL or gsk[uid] =⊥ return ⊥
uidRS ←$ {0, 1}∗, vk←$ AddURS(uidRS), ṽk←$Enc(rwpk, vk)

Ω←$DAA*Sign((uid′, l), (fb, ṽk),gsk[uid], ω, gpk, r, l), ρ∗ ← (Ω, ṽk)

SL← SL ∪ {uid, uid′, fb, r, ρ∗, uidRS, l}, return ρ

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

As in original security game

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL return ⊥

CLL← ∅,∀i ∈ [k]

parse tdi = uidRS σi ←$ SignRS(uidRS, uidi, t1, · · · tk)

CLL← CLL ∪ {((fbi, uid′i, ri, ρi), uidi, σi, t1, · · · tk, l)}
choose random permutation Π for j = 1, · · · , k return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

A′AddURS,SignRS,Corrupt(τ, f1, f2)

(param, f1, f2)←$Setup(1τ , f1, f2), (rwsk, rwpk)←$RWKeyGen(param)

(rhsk, rhpk)←$RHKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid, σ, t1, · · · , tk, l)←$ASndToU,USK,Rate,TD,Incent,Collect(gpk, rwsk, rhsk)

return (st, (t1, · · · , tk), uid, σ)

A′AddURS,SignRS,Corrupt(st)

if ∃((fb, uid′, r, ρ), uid, σ̂, t1, · · · tk, l) ∈ CLL s.t FormRep2(uid, σ, σ̂, t1, · · · tk, gpk) =⊥
return (σ̂, uid, t1, · · · , tk)else return ⊥

Fig. 21. A′ which breaks the Non-Frameability of Linkable Ring signatures, using A
which breaks the Non–Frameability requirement of the APR construction with proba-
bility ε

E.6 Unforgeability of Reputation

Assuming that the DAA* scheme used satisfies the Unforgeability of Reputation
requirement, and the SPK is online extractable and simulation sound, then the
APR construction satisfies Unforgeability of Reputation.

45

First we show that if there exists an adversary A such that
Pr[Expuf−repA,APR (τ, f1, f2) = 1] = ε, where ε is non-negligible, then we can can build
an adversary A′, that breaks the Unforgeability of Repuation of DAA* signatures
with non-negligible probability. We give the detailed description of A′ in Figure
22, and explain here how A′ works.

We explain why the simulation A′ gives to A is identically distributed to the
Unforgeability of Reputation experiment with the APR construction, and ex-
plain how A′ breaks Unforgeability of Reputation for DAA* signatures provided
A succesfully breaks Unforgeability of Reputation.

AddU(uid)

Use SndToIDAA* oracle to simulate Issue, otherwise as in original security game

SndToRH(uid,Min))

if online extractable SPK sent, extract gsk

out←$ SndToIDAA*(uid,Min)

if decuid = accept gsk[uid]← gsk, return out

AllocateRep(uid, r, l)

return Update(uid, l, r)

Rate(uid, uid′, l, fb, r, ω)

As in original security requirement

TD(fb, uid′, l, r, ρ):

As in original security game

A′SndToIDAA*,Update(paramDAA*, gpkDAA*, f1, f2)

paramEnc ←$EncSetup(1τ), param← (paramDAA*, paramEnc, f1, f2), rhpk ← gpkDAA*

(rwsk, rwpk)←$RWKeyGen(param), gpk ← (param, rwpk, rhpk)

(r, uid′, l, (fb1, (Ω1, ṽk1)), · · · , (fbk, Ωk, ṽkk))←$AAddU,SndToRH,Rate,TD,AllocateRep(gpk, rwsk)

∀i ∈ [k] if ∃uid ∈ HU ∪ CU s.t DAA*IdentifyS((uid′, l), (fbi, ṽki), r, l, Ωi,gsk[uid]) = 1

uidi ← uid

if ∃i ∈ [k] s.t (uidi, l, r) /∈ UL
return ((uid′, l), (fbi, ṽki), r, l, Ωi, uidi, {gsk[uid] : uid ∈ HU ∪ CU})

else return ⊥

Fig. 22. A′ which breaks the Unforgeability of Reputation of DAA* signatures, using
A which breaks the Unforgeability of Reputation requirement of the APR construction
with probability ε

All inputs that A′ provides to A are distributed identically in the Unforge-
ability of Reputation experiment. This is because (paramDAA*, gpkDAA*) are the
outputs of DAA*Setup, DAA*KeyGen and so (param, gpk, rwsk) are distributed
identically.

46

Simulating the AddU Oracle: The AddU oracle is identical except instead of per-
forming Issue, SndToIDAA* is used. Therefore the AddU oracle is distributed iden-
tically.

Simulating the SndToRH Oracle: In the case of SndToRH, gsk[uid] can be ex-
tracted due to the online-extractable SPK. We now show that answers to SndToRH

queries are correctly distributed. As the SndToIDAA* oracle is identical to SndToRH
and the join/ issue protocols of DAA*/ APR are identical, SndToRH is distributed
identically in the Unforgeability of Reputation requirement.

Simulating the AllocateRep Oracle: As DAA*Update and AllocateRep are the
same, AllocateRep is distributed identically in the Unforgeability of Reputation
requirement.

Simulating the Rate and TD Oracles: The Rate and TD oracles are identical to
in the Unforgeability of Reputation game, because A′ can use the secret keys of
honest users.

Reduction to breaking Unforgeability of Reputation of DAA* signatures. Assume
A is successful, we show that A′ is also successful. If a signature is output
by A that does not identify to any honest or corrupt user, then A′ can break
Traceability defined in the first game. Therefore, if the number of different users
that the signatures output by A identify to under DAA*IdentifyS is strictly less
than k, then there must be at least two signatures which identify to the same
user. This would break Traceability of DAA* signatures, defined in the second
game. Therefore there must be at least k users that signatures identify to. As
A is successful, there has been less than k queries to the Update oracle for (l, r)
for different users. Therefore at least one user musn’t have been queried to the
Update oracle for (uid′, l). So A′ will definitely find a user and signature to
output.

In order for A′ to be succesful the signature, user and list of secret keys
must satisfy the following four conditions. The signature must be valid, which is
clearly true as A was successful. For every SndToI transcript, a secret key must
be output that identifies to this transcript under DAA*IdentifyT , which is clearly
true as all honest and corrupted user secret keys have been output by A′. The
signature output must identify to the secret key that identifies with the user’s
transcript, which is clearly true, as the signature identifies to the user’s secret
key. Finally the Update oracle should also have not been queried for (uid, l, r),
which was the condition for the user to have been returned.

Therefore, if A is successful with probability ε, A′ breaks Unforgeability of
Reputation of DAA* signatures with probability at least ε.

E.7 Fair Rewards

Assuming that the Linkable Ring Signature scheme used satisfies the Linkability
and Non–Frameability requirements, then the APR construction satisfies Fair
Rewards.

47

First we show that if there exists an adversary A such that
Pr[Expfair−rewA,APR (τ, f1, f2) = 1] = ε making n1 queries to the Rate, where ε is non-
negligible, then we can can build either an adversary A′1, that breaks the Non–
Frameability of Linkable Ring Signatures signatures or an adversary A′2 that
breaks the Linkability of Linkable Ring signatures, with non-negligible probabil-
ity. We give the detailed description of A′1,A′2 in Figures 23 and 24, and explain
here how A′1,A′2 work.

We first describe two potential strategies that A could take.

Let VK be the incentives output by A which correspond to ratings obtained
from the Rate that have not been trapdoored, if for some rating (uid∗, uid′

∗
, fb∗,

r∗, ρ∗, td∗, l) ∈ SL corresponding to incentive t ∈ VK, we have that
σ = CollectIncent(0, (fb∗, uid′

∗
, l, r∗, ρ∗, td∗), t, gpk) links to σ∗ also output by

the adversary, we say that A adopts the first strategy. Otherwise we say A adopts
the second strategy. In the first case we will build an adversary A′1, which we
will give in Figure 23, that breaks the Non–Frameability requirement of Linkable
Ring signatures. In the second case we will build an adversary A′2, which we
will give in Figure 24, that breaks the Linkability requirement of Linkable Ring
Signatures.

We now explain why the simulation A′1 gives to A is identically distributed
to in the Fair Rewards experiment with the APR construction, and explain how
A′1 breaks Non-Frameability for Linkable Ring Signatures signatures provided
A succesfully breaks Fair Rewards following the first strategy.

All inputs that A′1 provides to A are distributed identically in the Fair Re-
wards experiment. This is because the only difference to in the Fair Rewards
game is during the Rate oracle when one ring signature verification key is gen-
erated using the AddURS oracle. This is identical distributed to generating them
with LRKeyGen. However, the Collect oracle no longer has access to the trap-
door, therefore the SignRS oracle is used to generate the incentive claims. If this
rating is queried to the trapdoor oracle, A′1 aborts.

Therefore if A successfully breaks Fair Rewards and follows the first strategy,
then A′1 will be successful, provided they do not abort early. This is because
both signatures A′1 outputs are clearly valid and link, as A is successful. As A
is successful, they will not return an incentive claim that originated from the
Collect oracle, therefore the first signature output was not returned from the
SignRS oracle. As the Corrupt oracle is not used, the first ring output will not
contain any corrupted verification keys. The second ring output only contains a
verification key generated from AddURS.

A′i aborts early in three cases. Firstly, the rating ρ∗ is input to the trapdoor
oracle. Say the number of ratings submitted to the trapdoor oracle is n2, then the
probability of this not occurring and so A′1 not aborting here is (n1 − n2)/n1.
Secondly, the incentive associated to ρ∗ is not output by A, say A outputs
n3 incentives associated to ratings from the Rate oracle that have not been
trapdoored. Then the probability of this not occurring and so A′1 not aborting
here is n3/(n1 − n2). Finally, no incentive claim is found that links to σ∗. We
know that for all the incentives output by A that are associated to ratings from

48

SndToU(uid,Min))

As in original security game

Rate(uid, uid′, l, fb, r, ω)

if uid /∈ HL or gsk[uid] =⊥ return ⊥
R← R+ 1 if R 6= R∗ as in original security game

else uidRS ←$ {0, 1}∗, vk←$ AddURS(uidRS), ṽk←$Enc(rwpk, vk)

Ω←$DAA*Sign((uid′, l), (fb, ṽk),gsk[uid], ω, gpk, r, l), ρ∗ ← (Ω, ṽk)

SL← SL ∪ {uid, uid′, fb, r, ρ∗, ∗, l}, return ρ∗

TD(fb, uid′, l, r, ρ):

if (·, uid′, fb, r, ρ, td, l) ∈ SL

if td = ∗ A′1 aborts

TDL← TDL ∪ {((fb, uid′, l, r, ρ)} return td

else return ⊥

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

As in original security game

Collect((t1, · · · , tk), l):

∀i ∈ [k] if (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return ⊥

∀i ∈ [k] if (uidi, uid
′
i, fbi, ri, ρi, tdi, l) /∈ SL return ⊥

CLL← ∅,∀i ∈ [k]

if tdi = ∗ σi ←$ SignRS(uidRS, uidi, t1, · · · tk)

else σi ←$CollectIncent(uidi, (fbi, uid
′
i, l, ri, ρi, tdi), t1, · · · tk, gpk)

CLL← CLL ∪ {((fbi, uid′i, ri, ρi), uidi, σi, t1, · · · tk, l)}
choose random permutation Π for j = 1, · · · , k return {uidΠ(j), σΠ(j) : j ∈ [1, k]}

A′AddURS,SignRS,Corrupt1 (τ, f1, f2)

R← 0, R∗ ←$ [n1], (param, f1, f2)←$Setup(1τ , f1, f2), (rwsk, rwpk)←$RWKeyGen(param)

(rhsk, rhpk)←$RHKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid, (σ1, · · ·σk2), (t1, · · · tk1), l)←$ASndToU,Rate,TD,Incent,Collect(gpk, rwsk, rhsk)

if ∃i ∈ [k1] s.t (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return 0

if ∃i ∈ [1, k1] such that Verify(fbi, uid
′
i, l, ri, ρi, gpk) = 0 return 0

if ∃i ∈ [k1] s.t ρi = ρ∗ i∗ ← i else return 0

σ∗ ←$ SignRS(uidRS, 0, {ti∗})
if ∃j ∈ [k2] s.t LRLink(σ∗, σj , 0, uid) return (st, σj , uid, t1, · · · , tk1)

A′AddURS,SignRS,Corrupt1 (st)

return (σ∗, 0, {ti∗})

Fig. 23. A′1 which breaks the Non-Frameability of Linkable Ring signatures, using A
which breaks the Fair Rewards requirement of the APR construction following the first
strategy with probability ε

the Rate that were not trapdoored, at least one will produce a signature that

49

will link to some σj . Therefore, the probability that A′1 does not abort here is
at least 1/n3.

Putting this all together the probability A′1 does not abort is 1/n1. There-
fore, if A is successful with probability ε and follows the first strategy, A′1 breaks
the Non–Frameability of Linkable Ring signatures with probability at least ε/n1.

We now look at the case of an adversary that breaks the Fair Rewards of an
APR construction by following the second strategy given above. We explain why
the simulation A′2 gives to A is identically distributed to in the Fair Rewards
experiment with the APR construction, and explain how A′2 breaks Linkability
for Ring Signatures provided A succesfully breaks Fair Rewards following the
second strategy above.

SndToU(uid,Min))

As in original security game

Rate(uid, uid′, l, fb, r, ω)

As in original security game

TD(fb, uid′, l, r, ρ):

As in original security game

Incent((fb1, uid1, r1, ρ1), · · · , (fbk, uidk, rk, ρk), l):

As in original security game

Collect((t1, · · · , tk), l):

As in original security game

A′2(τ, f1, f2)

(param, f1, f2)←$Setup(1τ , f1, f2), (rwsk, rwpk)←$RWKeyGen(param)

(rhsk, rhpk)←$RHKeyGen(param), gpk ← (param, rwpk, rhpk)

(uid, (σ1, · · ·σk2), (t1, · · · tk1), l)←$ASndToU,Rate,TD,Incent,Collect(gpk, rwsk, rhsk)

if ∃i ∈ [k1] s.t (ti, (fbi, uid
′
i, ri, ρi)) /∈ IL return 0

if ∃i ∈ [1, k1] such that Verify(fbi, uid
′
i, l, ri, ρi, gpk) = 0 return 0

L← ∅ ∀i ∈ [k1] if (uidi, uid
′
i, fbi, ri, ρi, tdi, li) ∈ SL and (fbi, uid

′
i, li, ri, ρi) /∈ TDL L← L ∪ {i}

∀i ∈ L σ′i ←$ LRSign(tdi, 0, {ti}})
return ({ti : i ∈ k1}), {((t1, · · · tk1), uid, σi) : i ∈ k2} ∪ {({ti}, 0, σ′i) : i ∈ L}

Fig. 24. A′2 which breaks the Linkability of Linkable Ring Signatures, using A which
breaks the Fair Rewards requirement of the APR construction following the second
strategy with probability ε

All inputs that A′2 provides to A are distributed identically in the Fair Re-
wards experiment, because they are computed identically.

Reduction to breaking Linkability of Linkable Ring Signatures. Assume A is
successful, and follows the second strategy. Then A′2 will be successful. This
is because clearly all ring signatures output are valid, as A is successful. All
rings output are also clearly a subset of the verification keys output. As A is
successful, the ring signatures in set {((t1, · · · tk1), uid, σi) : i ∈ k2} are clearly
unlinkable to each other. In the second set all linkable ring signatures are signed
using different secret keys, as they are all from different Rate queries, therefore
they are unlinkable to each other. As A follows the second strategy clearly no

50

signature from the first set links to the second set. Therefore all the signatures
output are unlinkable. As A is successful, more incentive claims are output by
A than the ratings they output that are not obtained from the Rate oracle or
were trapdoored. Therefore k2 > k1− |L| , and so k2 + |L| > k1. Therefore more
signatures are output by A′2 than verification keys, and so A′ is succesful.

Therefore, ifA is successful with probability ε and follows the second strategy,
A′2 breaks the Linkability of Linkable Ring signatures with probability at least
ε.

F DAA* Construction

The scheme CDL*, which satisfies the security requirements for a DAA* scheme
given in App. D, consists of the algorithms given in Figure 25, and the protocol
given in Figure 26.

The DAA scheme we have modified is given in [15], we will refer to it as the
CDL scheme. This scheme is indistinguishable from the ideal functionality given
in [15], and therefore satisfies the state of the art security definition for Direct
Anonymous Attestation. We have modified this scheme so that the user is not
split between a Trusted Platform Module and a host, as this is not necessary
in this context. We have further modified the scheme, in CDL*, in a analogous
way to [32]. This modification binds the reputation value to the signatures visi-
bly, using an updated secret key received during CDL*Update. Therefore, when
signing, users are forced to reveal their reputation.

The algorithm CDL*Update provides the user with the tokens they need to
prove they have a particular reputation. CDL*Sign must now check the update
tokens input are correct, and otherwise output ⊥. In CDL, β is a secret key of the
issuer, Y = Gβ2 is a public key of the issuer. This modification in CDL* involves
switching to β+γH2(r, t) instead of β in both CDL*Sign and CDL*Verify, where

CDL*Verify can be performed by switching to Y ZH2(r,t) = G
β+γH2(r,t)
2 instead

of Y = Gβ2 . The user is given a token in CDL*Update that allows them to obtain
a user private key for (X,Y ZH2(r,t)) instead of (X,Y).

F.1 Preliminaries

Bilinear Maps and the LRSW assumption Let G1, G2, GT be cyclic groups
of prime order p. A map e : G1×G2 → GT must satisfy the following conditions:
bilinearity, i.e., e(gx1 , g

y
2) = e(g1, g2)xy; non-degeneracy, i.e., for all generators

g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there exists an
efficient algorithm G(1τ) that outputs a bilinear group (p,G1, G2, GT , e, g1, g2),
and an efficient algorithm to compute e(a, b) for all a ∈ G1, b ∈ G2.

We use type-3 pairings [30] in this work, i.e., we do not assume G1 = G2

or the existence of an isomorphism between both groups in our scheme and
security proofs. The advantage of type-3 pairings is that they enjoy the most
efficient curves.

51

Definition 6 (LRSW Assumption). In (G1,G2) given generators G1, G2 of G1,
G2 respectively, X = Gx2 , Y = Gy2 for some x, y ∈ Z∗p and access to an oracle

that when f is input, outputs (A,Aβ , Aα, AαAfαβ) where A = Gr2 for uniform
r ∈ Z∗p. It is hard for the adversary to output (f,A,B,C) such that A ∈ G1,

B = Aβ , C = AαAfαβ , and f has not been queried to the oracle.

Proof Protocols We follow the notation defined in [16] when referring
to zero-knowledge proofs of knowledge of discrete logarithms. For example,
PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a zero knowledge proof of knowledge
of integers a, b and c such that y = gahb and ỹ = g̃ah̃c hold. SPK denotes a
signature proof of knowledge, that is a non-interactive transformation of a proof
PK, e.g., using the Fiat-Shamir heuristic [28] in the random oracle. Using the
Fiat-Shamir heuristic, the witness can be extracted from these proofs by rewind-
ing the prover and programming the random oracle. Alternatively, these proofs
can be extended to be online-extractable, by verifiably encrypting the witness
to a public key defined in the common reference string. Clearly this requires a
trusted common reference string. We underline the values that we need to be
online-extractable in our proofs.

We require the proof system to be simulation-sound and zero-knowledge.
The latter roughly says that there must exist a simulator that can generate
simulated proofs which are indistinguishable from real proofs from the view of
the adversary. The simulation-soundness is a strengthened version of normal
soundness and guarantees that an adversary, even after having seen simulated
proofs of false statements of his choice, cannot produce a valid proof of a false
statement himself.

F.2 CDL* Construction

We give the CDL*Setup, CDL*KeyGen, CDL*Update, CDL*Sign, CDL*Verify,
CDL*Link, CDL*IdentifyT , CDL*IdentifyS algorithms in Figure 25, and the
< CDL*Join,CDL*Issue > protocol in Figure 26.

F.3 Concrete Instantiation of CDL*

The non-interactive zero-knowledge proofs of knowledge in CDL* are as follows:
πF and πcre used in the join protocol, π used in CDL*Sign, and πU used in
CDL*Update. For πF , πU and πcre we need the witnesse to be online extractable.
For this, we additionally encrypt the witness under a public key that needs to
be added to param (and to which in security proof we will know the secret key
for), and extend the proof to prove that the additional encryption contains the
same witness that is used in the rest of the proof. For the verifiable encryption
of the witness we use Paillier encryption [19], that is secure under the DCR
assumption [47].

For transforming interactive into non-interactive zero-knowledge proofs we
rely on the Fiat-Shamir heuristic that ensures security in the random oracle
model.

52

CDL*Setup(1k)

(p,G1,G2,G3, τ̂ , G1, G2)←$G(1k), select hash functions H1 : {0, 1}∗ → G1,H2 : {0, 1}∗ → Zp
return param← (G1,G2,G3, p, τ̂ , G1, G2,H1,H2)

CDL*KeyGen*(param)

α, β, γ ←$Z∗p, X ← G2
α ∈ G2, Y = G2

β ∈ G2, Z ← G2
γ

return gpk = (X,Y, Z), isk = (α, β, γ)

CDL*Update(r, t, (α, β, γ), i, reg, gpk)

if reg[i] =⊥ return ⊥ else let reg[i] = (F, (A,B,C,D))

a←$Z∗p, ω1 ← Aa, ω2 ← Aa(γH2(r,t)+β), ω3 ← AαaC
a(γH2(r,t)+β)

β A
−aα(γH2(r,t)+β)

β

πU ←$SPK{a : ω1 = Aa}
return (ω1, ω2, ω3, πU)

CDL*Sign(bsn,m, (f, (A,B,C,D), (ω1, ω2, ω3, πU), gpk, r, t)

if τ̂(ω2, G2) 6= τ̂(ω1, Y Z
H2(r,t)) or τ̂(ω3, G2) 6= τ̂(ω1ω

f
3 , X) or πU does not verify return ⊥

a←$Z∗p, A′ ← ωa1 , B
′ ← ωa2 , C

′ ← ωa3 , D
′ ← ωaf2

if bsn 6=⊥ J ← H1(bsn)f , π←$SPK{f : D′ = B′f ∧ J = H1(bsn)f}
if bsn =⊥ J ←⊥, π←$SPK{f : D′ = B′f}
return Ω = (A′, B′, C′, D′, J, π)

CDL*Verify(bsn,m, r, t, Ω, gpk)

Let Ω = (A′, B′, C′, D′, J, c, s), Ỹ ← Y ZH2(r,t)

Verify π with respect to A′, B′, C′, D′, J

if A′ = 1 or J = 1 return 0

if τ̂(A′, Ỹ) 6= τ̂(B′, G2) or τ̂(A′D′, X) 6= τ̂(C′, G2) return 0 else return 1

CDL*Link((bsn0,m0, r0, t0, Ω0), (bsn1,m1, r1, t1, Ω1), gpk)

For b ∈ {0, 1}, let Ωb = (A′b, B
′
b, C

′
b, D

′
b, Jb, cb, sb)

if bsn0 6= bsn1 or bsn0, bsn1 =⊥ return 0

if ∃b ∈ {0, 1} such that CDL*Verify(bsnb,mb, rb, tb, Ωb, gpk) = 0 return 0

if J0 = J1 return 1 else return 0

CDL*IdentifyT (T , (f,A,B,C,D))

Let T = (n, (F, πf), (cre, πcre)), if F = Gf1 and cre = (A,B,C,D) return 1 else return 0

CDL*IdentifyS(bsn,m, r, t, Ω, (f,A,B,C,D))

Let Ω = (A′, B′, C′, D′, J, c, s), if CDL*Verify(bsn,m, r, t, Ω) = 0 return 0

if D′ = B′f return 1 else return 0

Fig. 25. The algorithms of CDL*:

53

CDL*Join(gpk)
 CDL*Issue(isk, gpk, i)

choose n←$ {0, 1}k

� n

f ←$Z∗p, F ← Gf1 ,

πF ←$SPK{(f) : F = Gf1}(n)

-F, πF

Verify πF , F ∈ G1 and F 6= 1

s←$Z∗p, A← G1
s, B ← Aβ

C ← AαF sαβ , D ← F sβ

cre← (A,B,C,D), πcre ←$

SPK{t : B = Gt1 ∧D = F t}
reg[i]← (F, cre)

�cre, πcre

if A = 1 return ⊥
Verify πcre

if τ̂(A, Y) 6= τ̂(B,G2) or
τ̂(AD,X) 6= τ̂(C,G2)

return ⊥
gsk[i]← (f, cre)

Fig. 26. The < CDL*Join,CDL*Issue > Protocol

G Proof of Security of DAA* Construction

We now give proofs of security that the CDL* scheme satisfies the security re-
quirements for a DAA* scheme, assuming the DDH problem is hard in G1, the
Discrete Logarithm problem is hard in G1 and G2, the bilinear LRSW assump-
tion [43] is hard in (G1,G2), the SPK are zero knowledge, simulation sound and
online extractable (for the underlined values) and the random oracle model.

The proofs of Anonymity, Traceability and Non–Frameability are similar to
the simulation based proof of security of CDL [15]. We have adapted it to the
game based security requirements given above. As the security requirements in
[15] were designed to capture the all pre-existing daa security requirements it
is clear that the CDL scheme satisfies the requirements given in [7]. We show
that the modification to bind reputation to the scheme does not affect the secu-
rity of the scheme. We also show that CDL* satisfies the new Unforgeability of
Reputation requirement.

54

G.1 Correctness

The CDL* scheme is correct because the original CDL scheme is correct and the
modification simply replaces Y with Y ZH2(r,t), and β with β+γH2(r, t) in both

CDL*Sign and CDL*Verify. As G
β+γH2(r,t)
2 = Y ZH2(r,t), signatures generated

correctly with correctly generated secret keys will verify correctly. Linking follows
from the original correctness of the CDL scheme. For a signatures generated
honestly with secret key f , then D′ = B′F , so CDL*IdentifyS will correctly
identify the signature. CDL*IdentifyT will output 1, because the secret key input
was the same output by the protocol corresponding to T .

G.2 Anonymity

Theorem 2. [Anonymity]Assuming the random oracle model, and the DDH
assumption in G1, and the SPK is zero knowledge, simulation sound and online
extractable (when underlined), our signature scheme CDL* satisfies Anonymity.

Proof. We show that if an adversary A′ exists, such that Pr[ExpanonA′,Π(k) = 1]−
1/2 = ε, with q different bsn queries to the H1 and GSig oracles, in the choose
stage, and n queries to SndToU, in the choose phase, and ε is non negligible in k,
then we can can build an adversary A, that breaks the DDH assumption, with
non-negligible probability. We give A in Figure 27. Below we describe why the
simulation given in Figure 27 is indistinguishable to the Anonymity experiment
to A′ if a DDH tuple is input. We then show otherwise A′ guesses correctly with
probability 1/2, and therefore A successfully distinguishes DDH tuples.

Simulating the inputs to A′. Assuming A is input a DDH tuple, inputs to A′
are distributed identically to in the Anonymity experiment. If A does not abort,
the USK oracle is exactly the same as in the Anonymity experiment. The SndToU

oracle is distributed identically for i∗ because F is chosen randomly, and πF can
be simulated due to the zero knowledge property. Otherwise SndToU is identical
to in the experiment. Note that f is set as ⊥, but this is not output to A′, or
used in the next stage of the protocol. The GSig oracle is also the same as in the
experiment, provided i∗ is not input. If i∗ is input, the oracle first checks that
(ω1, ω2, ω3, πU) are distributed correctly as in CDL*Sign, by extracting exponent
of ω1 with respect to A from the proof πU , and extracting the exponent of A
with respect to G1 using the proof πcre. A

′, B′, C ′ are chosen as in CDL*Sign, D′

is distributed correctly because letting Q2 = Qf11 , then D′ = Q
aa′(γH2(r,t)+β)
2 =

Q
f1aa

′(γH2(r,t)+β)
1 = B′f1 . Because A has not aborted in GSig then d′ = 0, and so
H1(bsn) = Qd1, and J = Qd2 = H1(bsn)f1 . Due to the zero knowledge property,
π can be simulated. Therefore the output of GSig is distributed identically to
in the Anonymity experiment. The H1 oracle is distributed identically to the
random oracle model.

The (gpk, isk) input in the choosing phase are chosen exactly as in CDL*KeyGen.
(A′, B′, C ′, D′, J, π) input in the guessing phase, is distributed identically to in

the experiment, because letting Q4 = Qf23 then A′ = Qa3 , B′ = A′γH2(r,t)+β , C ′ =

55

SndToU(i,Min):

if i /∈ HUL

HUL← HUL ∪ {i}, l← l + 1,gsk[i]←⊥,Min ←⊥, Stuidjn ← (gpk)

if l = k∗ i∗ ← i, F ← Q,2 simulate πF with F, n,Stuidjn ← (⊥, F, πF)

return ((F, πF), cont)

Continue from line 5 of oracle in Anonymity experiment

USK(i):

if i = i∗ A return b′′

else perform original USK oracle

GSig(bsn,m, i, r, t, (ω1, ω2, ω3, πU):

if i = i∗

if πU not valid , return ⊥ else extract ã from πU

extract t from πcre saved for user i∗, a′ ← ãtβ−1

if ω2 6= G1
a′(γH2(r,t)+β) or ω3 6= Gαa

′
1 Q

a′α(β+γH2(r,t))
2 return ⊥

a←$Z∗p, A′ ← ωa1 , B
′ ← ωa2 , C

′ ← ωa3 , D
′ ← Q

aa′(γH2(r,t)+β)
2

if bsn =⊥ J ←⊥, simulate π return (A′, B′, C′, D′, J, π)

else h← H1(bsn) let (bsn, h, d, d′) ∈ H1

if d′ = 1 A return b′′ else J ← Qd2, simulate π, return (A′, B′, C′, D′, J, π)

else perform original GSig oracle

H1(in):

if ∃(in, out, ·) ∈ H1 return out

j = j + 1, if j = q∗ and b′ = 0, d←$Z∗p, H1 ← (in, Q3
d, d, 1) ∪H1, return Q3

d

else d←$Z∗p, H1 ← (in, G1
d, d, 0) ∪H1 return Q1

d

A(Q1, Q2, Q3, Q4)

b, b′, b′′ ←$ {0, 1}, k∗ ←$ [1, n], q∗ ←$ [1, q], l, j ← 0, create empty lists H1, set G1 ← Q1

Generate (param, gpk, isk) as in CDL*Setup,CDL*KeyGen

(St, i0, i1, bsn,m, r, t, (ω0,1, ω0,2, ω0,3, π0,U), (ω1,1, ω1,2, ω1,3, π1,U))←$A′SndToU,USK,GSig,H1(choose, param, gpk, isk)

if i∗ 6= ib, return 0, let gsk[ib−1] = (f, (...))

if b′ = 0, if (bsn, ·, ·, 1) /∈ H1 return 0, else let (bsn, h, d, 1) ∈ H1

if b′ = 1, if ∃(bsn, ·, ·, ·) ∈ H1 return 0 else d←$Z∗p, h← Qd3, H1 ← (bsn, h, d, 1) ∪H1

Check (ω0,1, ω0,2, ω0,3, π0,U), (ω1,1, ω1,2, ω1,3, π1,U) valid as in GSig otherwise return b′′

a←$Z∗p, A′ ← Qa3 , B
′ ← A′γH2(r,t)+β , C′ ← A′αQ

aα(γH2(r,t)+β)
4 , D′ ← Q

a(γH2(r,t)+β)
4

J ← Qd4, simulate π

b∗ ←$A′SndToU,USK,GSig,H1,H2(guess, St, (A′, B′, C′, D′, J, π))

if b∗ = b return 1, else return 0

Fig. 27. A which distinguishes between DDH tuples in G1, using A′ which breaks
Anonymity of CDL* Signatures

56

A′αQ
aα(γH2(r,t)+β)
4 = A′αA′(γH2(r,t)+β)αf2 , D′ = Q

a(γH2(r,t)+β)
4 = B′f2 . Because

H1(bsn) = Qd3, J = Qd4 = H1(bsn)f2 . Again, due to the zero knowledge property
π can be simulated. This signature is consistent with the USK, GSig and SndToU

oracles, because A does not abort, so ib = i∗, and (Q1, Q2, Q3, Q4) is a DDH
tuple, therefore f1 = f2.

Reduction to the DDH problem. If A was input a DDH tuple (Q1, Q2, Q3, Q4),
then we assume i∗ was chosen so that i∗ = ib, which occurs with probability
1/n, therefore A does not abort.

If A′ outputs bsn in the choosing phase that they have queried to H1 or
GSig, we assume b′ = 0, and that this was the q∗th such query, which occurs
with probability 1/2q. Then, all inputs to A′ are distributed identically to in the
Anonymity experiment, and A outputs 1, with the same probability as in this
experiment, ε + 1/2. Therefore assuming A′ was successful, A outputs 1 with
probability at least 1/2qn.

If A′ outputs bsn in the choosing phase that they have not queried to H1 or
GSig, we assume b′ = 1 is chosen, which occurs with probability 1/2. Then, all
inputs to A′ are distributed identically to in the Anonymity experiment, and A
outputs 1, with the same probability as in this experiment, ε + 1/2. Therefore
assuming A′ was successful, A outputs 1 with probability at least 1/2n.

If (Q1, Q2, Q3, Q4) is not a DDH tuple, then A still aborts returning 0, with
the same probability as above. A′ is now given a signature in the guess stage,
that is independent of both fi0 and fi1 , therefore the probability A′ guesses
correctly is 1/2. If A′ queries USK with i∗ or GSig with i = i∗ and bsn, then A
outputs 1 with probability 1/2. Therefore If A′ outputs a bsn in the choosing
phase that they have queried to H1 or GSig, then the probability A outputs 1
is 1/4qn. If A′ outputs a bsn in the choosing phase that they have not queried
to H1 or GSig, then the probability A outputs 1 is 1/4n.

Therefore A has at least a ε/2qn advantage at distinguishing between DDH
tuples.

G.3 Traceability

We will use the security of the following signatures in our Traceability proof.
Camenisch–Lysyanskaya (CL) signatures [18] are existentially unforgeable under
the chosen message attack [34], under the LRSW assumption [43]. They consist
of algorithms: Key Generation, Sign and Verify given below:

– Key Generation: Choose α, β←$Z∗p. Output secret key sk ← (α, β), and

public key pk ← (X,Y) = (Gα1 , G
β
2).

– Sign: On input (m, sk), wherem is the message being signed, choose A←$G1,
output (A,Aβ , Aα+mαβ).

– Verify: On input (pk,m, (A,B,C)), where (A,B,C) is a signature on the
message m, output 1 if t̂(A, Y) = t̂(B,G2), t̂(ABm, X) = t̂(C,G2) and A 6=
1G1

, otherwise output 0.

57

Theorem 3. [Traceability]Assuming that CL signatures are existentially un-
forgeable under the chosen message attack , and the SPK is zero knowledge, sim-
ulation sound, and online extractable (for the underlined values), CDL* satisfies
Traceability.

Proof. First Traceability Game
We show that if an adversary A′ exists for the first Traceability game, such

that ExptraceA′,Π(k) = ε, which makes polynomial queries to the SndToI and Update

oracles, and ε is non negligible in k, then we can can build an adversary A,
that breaks existential unforgeability under the chosen message attack for CL
signatures. We give A in Figure 28. Below we describe why the simulation given
in Figure 28 is indistinguishable to the Traceability experiment to A′ and how
A works. A has input parameters (G1,G2,G3, p, t̂, G1, G2), the public key (X =

Gα2 , Y = Gβ2), and access to a CLSIGN oracle which takes input f and outputs
(a, aβ , aα+fαβ), for a←$G1.

We first show that all inputs that A provides to A′ are distributed identically
to in the Traceability experiment.

Simulating (param, gpk) gpk is chosen in exactly the same way as in Setup, except
Z = Y γ instead of Gγ1 . As γ is chosen randomly, this is distributed identically.

Simulating the SndToI oracle. fi can be extracted due to the online extractabil-
ity of πF . (Ai, Bi, Ci, Di) = (A,Aβ , AαAαβfi , Bfii), where A is chosen randomly
and independently, so are distributed identically to in CDL*Issue. πcre can be
simulated due to the zero knowledge property. The SndToI oracle is therefore
distributed identically to in the Traceability experiment because due to the ar-
gument above Z is distributed identically.

Simulating the Update oracle. (A,B,C) = (A,Aβ , AαAαβfi(1+γH2(r,t))), where
A is chosen randomly and independently. Therefore ω1 = A,ω2 = Aβ(1+γH2(r,t)),
ω3 = AαAαβfi(1+γH2(r,t)). As Z = Y γ this is distributed identically to in
CDL*Update. πU can be simulated due to the zero knowledge property.

Reduction to Existential Unforgeability of CL signatures. We now show that the
output of A is a valid forgery of a CL Signature with non-negligible probability.
For this to be the case, (f∗(1 + γH2(r, t)), A′, B′1/(1+γH2(r,t), C ′) output by A
should be a valid CL signature, and f∗(1+γH2(r, t) should not have been queried
to the CLSIGN oracle. For all potential strategies a successful A′ could take we
show that A is successful with non-negligible probability.

Assuming A′ is successful then Ω is valid and so B′ = A′β(1+γH2(r,t)), C ′ =
(A′D′)α. We can extract f∗ from Ω due to the simulation soundness of π, such
that J = H1(bsn)f

∗
, D′ = B′f

∗
.

Therefore (A′, B′, C ′) = (A′, A′β(1+γH2(r,t)), A′αA′f
∗αβ(1+γH2(r,t))), and so

(A′, B′1/(1+γH2(r,t)), C ′) = (A′, A′β , A′αA′f
∗αβ(1+γH2(r,t))). Therefore A outputs

a valid CL signature.
We now show that f∗(1 + γH2(r, t)) was not queried to CLSIGN by A.

58

SndToI(i, (F, πF))

if i ∈ HU return ⊥
if i /∈ CU
CU ← CU ∪ {i}, decuid ← cont

n←$Z∗p return n

else if not the second query to SndToI for i continue from line 2 of original SndToI oracle

if πF not valid, F /∈ G1 or F = 1 return ⊥

Extract fi from πF , (Ai, Bi, Ci)←$ CLSIGN(fi), Di ← Bfii , cre← (Ai, Bi, Ci, Di)

Simulate πcre, reg[i]← (F, cre)

return (((Ai, Bi, Ci, Di), πcre), reg[i])

Update(i, t, r):

(A,B,C)←$ CLSIGN(fi(1 + γH2(r, t)))

ω1 ← A,ω2 ← B1+γH2(r,t), ω3 ← C, simulate πU

return (ω1, ω2, ω3, πU)

ACLSIGN((G1,G2,G3, p, t̂, G1, G2), X, Y)

param already defined, b←$ {0, 1}, create empty lists H1, H2, CU

γ ←$Z∗p, gpk ← (X,Y, Y γ)

(Ω,m, bsn, r, t, gsk1, · · · , gskl)←$A′SndToI,Update(param, gpk)

Extract f∗ from π include in Ω

Let Ω = (A′, B′, C′, D′, J, c, s)

return (f∗(1 + γH2(r, t)), A′, B′1/(1+γH2(r,t), C′)

Fig. 28. A which breaks Existential Unforgeability under the Chosen Message Attack
for CL signatures, using A′ which breaks Traceability of CDL* Signatures

59

For each i successfully queried to SndToI, with transcript T = (ni, (G
fi
1 , πF),

((Ai, Bi, Ci, Di), πcre)), as A is successful, there must be k ∈ [1, l] such that
CDL*IdentifyT (T , gskk) = 1. Therefore gskk = (fi, (Ai, Bi, Ci, Di)). As
CDL*IdentifyS(bsn,m, r, t, Ω, gskk)) = 0, then D′ 6= B′fi . Therefore fi 6= f∗ for
all i queried to SndToRH.

Then f∗(1 + γH2(r, t)) was only queried before to CLSIGN if for some i ∈
CU , f∗(1 + γH2(r, t)) = fi(1 + γH2(r′, t′) and (i, r′, t′) queried to Update and
(r′, t′) 6= (r, t), or f∗(1 + γH2(r, t)) = fi.

If f∗(1 + γH2(r, t)) = fi(1 + γH2(r′, t′), then γ(H2(r, t)f∗ − H2(r′, t′)fi) =
fi − f∗, therefore H2(r, t)f∗ − H2(r′, t′)fi) 6= 0 as fi − f∗ 6= 0. Therefore γ =

fi−f∗
H2(r,t)f∗−H2(r′,t′)fi

= and A can solve the discrete logarithm problem.

If f∗(1 + γH2(r, t)) = fi, then γ = (fif
∗−1 − 1)/H(r, t), so unless H2(r, t) or

f∗ = 0 then A can solve the discrete logarithm problem. If f∗ = 0 then fi = 0,
which is not possible as this would have been rejected by SndToI, H2(r, t) = 0
with negligible probability.

Second Traceability Game
In the second game the adversary wins if it outputs two valid signatures, and

a secret key, such that the signatures do not link, and both identify to the secret
key. Let a winning adversary output (bsn,m0,m1, r0, r1, t0, t1, Ω0, Ω1, (f,A,B,C,
D)), such that Ω0 = (A′0, B

′
0, C

′
0, D

′
0, J0, c0, s0), Ω1 = (A′1, B

′
1, C

′
1, D

′
1, J1, c1, s1).

As the two signatures identify under CDL*IdentifyS to (f,A,B,C,D), then D′1 =

B′1
f

and D′0 = B′0
f
. However the signatures are not linked so J0 6= J1. As the

signature is valid J0 = H1(bsn)f = J1. Which is a contradiction.

G.4 Non-Frameability

Theorem 4. [Non–Frameability]Assuming the random oracle model, the DL
assumption in G1, and the SPK is zero knowledge, simulation sound and online
extractable (where underlined), CDL* satisfies Non–Frameability.

Proof. We show that if an adversary A′ exists for the first Non–Frameability
game, such that Expnon−frameA′,Π (k) = ε, with n queries to SndToU for distinct
users and ε is non negligible in k, then we can can build an adversary A, that
breaks the DL problem. We give A in Figure 29. Below we describe why the
simulation given in Figure 29 is indistinguishable to the first game of the Non–
Frameability experiment, and how A′ works.

We first show that all inputs that A provides to A′ are distributed identically
to in the Non–Frameability experiment.

Simulating inputs to A′. This is because (gpk, isk) are chosen in exactly the
same way as in CDL*KeyGen. Provided A does not abort, the outputs of the
USK, SndToU and GSig oracles are identical to in the Non–frameability experi-
ment.

60

SndToU(i,Min):

if i /∈ HUL

HUL← HUL ∪ {i}, l← l + 1,gsk[i]←⊥,Min ←⊥, Stuidjn ← (gpk)

if l = k∗ i∗ ← i, F ← Q,2 simulate πF with F, n,Stuidjn ← (⊥, F, πF)

return ((F, πF), cont)

Continue from line 5 of oracle in Non–Frameability experiment

USK(i):

if i = i∗ A aborts

else perform original USK oracle

GSig(bsn,m, i, r, t, (ω1, ω2, ω3, πU):

if i = i∗

if πU not valid , return ⊥ else Extract a from πU

Extract t from πcre saved for user i∗, a′ ← atβ−1

if ω2 6= G1
a′(γH2(r,t)+β) or ω3 6= Gαa

′
1 Q

a′α(β+γH2(r,t))
2 return ⊥

a←$Z∗p, A′ ← ωa1 , B
′ ← ωa2 , C

′ ← ωa3 , D
′ ← Q

aa′(γH2(r,t)+β)
2

if bsn =⊥ simulate π return (A′, B′, C′, D′, J, π)

h← H1(bsn) let (bsn, h, d) ∈ H1

J ← Qd2, simulate π

return (A′, B′, C′, D′, J, π)

else perform original GSig oracle

H1(in):

if ∃(in, out, ·) ∈ H1 return out

else d′ ←$Z∗p, H1 ← H1 ∪ (in, Qd
′

1 , d
′) return Qd

′
1

A(Q1, Q2)

Create empty lists H1,HUL, l← 0, k∗ ←$Z∗p, G1 ← Q1

Other than G1 generate (gpk, isk) as in CDL*KeyGen

(bsn,m, i, r, t, Ω)←$A′SndToU,USK,GSig,H1(param, gpk, isk)

Extract f∗ from π included in Ω

return f∗

Fig. 29. A which breaks DL problem in G1, using A′ which breaks Non–frameability
in the first game of CDL* signatures

61

If A does not abort, the USK oracle is exactly the same as in the Non–
frameability experiment. The SndToU oracle is distributed identically for i∗ be-
cause F is chosen randomly, and πF can be simulated due to the zero knowledge
property. Otherwise SndToU is identical to in the experiment. Note that f is set
as ⊥, but this is not output to A′, or used in the next stage of the protocol. The
H1 oracle is distributed identically to the random oracle model.

If i 6= i∗ is input then the GSig oracles is identical to in the Non–frameability
experiment. If i = i∗ is input, the oracle first checks that (ω1, ω2, ω3, πU) are
distributed correctly as in CDL*Sign, by extracting the exponent of ω1 with
respect to A from the proof πU , and extracting the exponent of A with re-
spect to G1 using the proof πcre. A

′, B′, C ′ are chosen as in CDL*Sign, D′ is

distributed correctly because letting Q2 = Qf1 , then D′ = Q
aa′(γH2(r,t)+β)
2 =

Q
faa′(γH2(r,t)+β)
1 = B′f . J is distributed identically because H1(bsn) = Qd1, and

J = Qd2 = H1(bsn)f . Due to the zero knowledge property, π can be simulated.
Therefore the output of GSig is distributed identically to in the Non-Frameability
experiment.

Reduction to the DL problem. Assuming A′ was successful, Ω was not output by
GSig, therefore due to the simulation soundness property, f∗ can be extracted
from π.

We assume i = i∗, which occurs with probability 1/n, then as Ω is valid, and
identifies under CDL*IdentifyS to user i∗, then D′ = B′f so f = f∗, therefore
A successfully solves the discrete logarithm problem. As A′ is successful, i∗ was
not queried to the USK oracle and so A does not abort.

This means A successfully finds the discrete logarithm with probability ε/n.

Second Non–Frameability Game

We show that if an adversary A′ exists for the second Non–Frameability
game, such that Expnon−frameA′,Π (k) = ε, with q different bsn queries to H1 and ε
is non negligible in k, then we can can build an adversary A, that breaks the DL
problem. We give A in Figure 30. Below we describe why the simulation given
in Figure 30 is indistinguishable to the second game of the Non–Frameability
experiment, and how A′ works.

All inputs that A provides to A′ are distributed identically to in the Non–
Frameability experiment. This is because gpk, isk are generated identically and
the hash functions are in the random oracle model.

Let Ω0 = (A′0, B
′
0, C

′
0, D

′
0, J0, π0), Ω1 = (A′1, B

′
1, C

′
1, D

′
1, J1, π1). We assume

A′ is successful, As Ω0, Ω1 are valid signatures f0, f1 can be extracted such
that J0 = H1(bsn0)f0 and J1 = H1(bsn1)f1 . As the signatures link J0 = J1. If
f0 = f1 then bsn0 = bsn1 and will both signatures identify to the same user so
the adversary will not win, therefore f0 6= f1 and so bsn0 6= bsn1. We assume
bsn0 was the k∗th query made to H1, which occurs with probability 1/q. Then

J0 = Q
d′0f0
2 and J1 = Q

d′1f1
1 , and so Q2 = Q

d′1f1
d′0f0
1 . This means A successfully finds

the discrete logarithm with probability ε/q.

62

H1(in):

if ∃(in, out, ·) ∈ H1 return out

l← l + 1, if l = k∗ d′ ←$Z∗p, H1 ← H1 ∪ (in, Qd
′

2 , d
′) return Qd

′
2

else d′ ←$Z∗p, H1 ← H1 ∪ (in, Qd
′

1 , d
′) return Qd

′
1

A(Q1, Q2)

Create empty lists H1, l← 0, k∗ ←$ [1, q]

Generate (param, gpk, isk) as in CDL*Setup,CDL*KeyGen

(bsn0,m0, r0, t0, Ω0, bsn1,m1, r1, t1, Ω1, gsk)←$A′H1(param, gpk, isk)

Extract f0, f1 from proofs included in Ω0, Ω1

Let (bsn0, Y0, d
′
0), (bsn1, Y1, d

′
1) ∈ H1

return
d′1f1
d′0f0

Fig. 30. A which breaks DL problem in G1, using A′ which breaks Non–frameability
in the second game of CDL* signatures

G.5 Unforgeability of Reputation

Theorem 5. [Unforgeability of Reputation]Assuming that CL signatures
are existentially unforgeable under the chosen message attack , and the SPK
is zero knowledge, simulation sound, and online extractable (for the underlined
values), CDL* satisfies Unforgeability of Reputation.

Proof. We show that if an adversary A′ exists for the Unforgeability of Repu-
tation game, such that Expunforge−repA′,Π (k) = ε, and ε is non negligible in k, then
we can can build an adversary A, that breaks existential unforgeability under
the chosen message attack for CL signatures. We give A in Figure 31.

The simulation given in Figure 31 is indistinguishable to the Unforgeability
of Reputation experiment, because it is identical to in the Traceability proof,
and the input to the adversary in Unforgeability of Reputation and Traceability
are the same.

We now show why A breaks the unforgeability of CL signatures with non–
negligible probability.

Reduction to Existential Unforgeability of CL signatures. We now show that the
output of A is a valid forgery of a CL Signature with non-negligible probability.
For this to be the case, (f∗(1 + γH2(r, t)), A′, B′1/(1+γH2(r,t), C ′) output by A
should be a valid CL signature, and f∗(1+γH2(r, t) should not have been queried
to the CLSIGN oracle.

Assuming A′ is successful then Ω is valid and so B′ = A′β(1+γH2(r,t)), C ′ =
(A′D′)α. We can extract f∗ from π due to the simulation soundness property,
such that J = H1(bsn)f

∗
, D′ = B′f

∗
.

63

SndToI(i, (F, πF))

if i ∈ HU return ⊥
if i /∈ CU
CU ← CU∪ = ∪{i}, decuid ← cont

n←$Z∗p return n

else if not the second query to SndToI for i continue from line 2 of original SndToI oracle

if πF not valid, F /∈ G1 or F = 1 return ⊥

Extract fi from πF , (Ai, Bi, Ci)←$ CLSIGN(fi), Di ← Bfii

Simulate πcre, reg[i]← (F, cre)

return (((Ai, Bi, Ci, Di), πcre), reg[i])

Update(i, t, r):

(A,B,C)←$ CLSIGN(fi(1 + γH2(r, t)))

ω1 ← A,ω2 ← B1+γH2(r,t), ω3 ← C, simulate πU

return (ω1, ω2, ω3, πU)

ACLSIGN((G1,G2,G3, p, t̂, G1, G2), X, Y)

param already defined, b←$ {0, 1}, create empty lists H1, CU

γ ←$Z∗p, gpk ← (X,Y, Y γ)

(Ω,m, bsn, r, t, gsk1, · · · , gskl)←$A′SndToI,Update(param, gpk)

Let Ω = (A′, B′, C′, D′, J, π)

Extract f∗ from π

return (f∗(1 + γH2(r, t)), A′, B′1/(1+γH2(r,t), C′)

Fig. 31. A which breaks existential unforgeability under the chosen message attack for
CL signatures, using A′ which breaks Unforgeability of Reputation of CDL* Signatures

64

Therefore (A′, B′, C ′) = (A′, A′β(1+γH2(r,t)), A′αA′f
∗αβ(1+γH2(r,t))), and so

(A′, B′1/(1+γH2(r,t)), C ′) = (A′, A′β , A′αA′f
∗αβ(1+γH2(r,t))). Therefore A outputs

a valid CL signature.
We now show that f∗(1 + γH2(r, t)) was not queried to CLSIGN by A.
As A′ is successful, they have output i∗ and gsk∗ such that Ω identifies to

gsk∗ under CDL*IdentifyS and gsk∗ is the secret key associated to the transcript
of the SndToI query for user i∗ under CDL*IdentifyT . Therefore f∗ = fi∗ . As
(i∗, t, r) /∈ UL, f∗(1 + γH2(r, t)) was not queried to CLSIGN during a query to
the Update oracle or SndToI oracle for user i∗.

For all other j ∈ CU , there exists gsk′ associated to this user output by A′, if
fj = f∗ then this would identify to the signature under CDL*IdentifyS meaning
that |KL| > 1, which is a contradiction. Therefore fj 6= f∗.

Then f∗(1 + γH2(r, t)) was only queried before to CLSIGN if for some j ∈
CU/{i∗}, f∗(1 + γH2(r, t)) = fj(1 + γH2(r′, t′) where (j, r′, t′) was queried to
Update and (r′, t′) 6= (r, t), or f∗(1 + γH2(r, t)) = fj .

If f∗(1 + γH2(r, t)) = fj(1 + γH2(r′, t′), then γ(H2(r, t)f∗ −H2(r′, t′)fj) =
fj − f∗, therefore H2(r, t)f∗ − H2(r′, t′)fj) 6= 0 as fj − f∗ 6= 0. Therefore γ =

fj−f∗
H2(r,t)f∗−H2(r′,t′)fj

= and A can solve the discrete logarithm problem.

If f∗(1+γH2(r, t)) = fj , then γ = (fjf
∗−1−1)/H2(r, t), so unlessH2(r, t) = 0

or f∗ = 0 then A can solve the discrete logarithm problem. f∗ = 0 is not
possible as this would have been rejected by SndToI, H2(r, t) = 0 with negligible
probability.

Therefore A can break the existential unforgeability under chosen message
attacks of CL signature with non–negligible probability.

65

