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ABSTRACT Paillier’s scheme is a homomorphic public key encryption scheme which is widely used
in practical. For instance, Paillier’s scheme can be used in the data aggregation in smart grid. Damg̊ard
and Jurik generalized Paillier’s scheme to reduce the ciphertext expansion factor. However, the decryption
scheme of Damg̊ard and Jurik’s scheme is more complicated than Paillier’s original scheme. In this paper,
we propose a new generalization of Paillier’s scheme and all the Paillier’s schemes to our knowledge are
special cases of our scheme. We propose a very simple decryption algorithm which is more efficient than
other generalization algorithms. We prove that our generalized Paillier’s scheme is IND-CPA secure. Our
generalized Paillier’s scheme can be used in smart grid instead of Paillier’s scheme for higher flexibility.

INDEX TERMS Paillier’s scheme, IND-CPA secure, discrete logarithm problem, ciphertext expansion
factor

I. INTRODUCTION

PUBLIC key cryptosystem (PKC) is one of the most fun-
damental cryptographic primitives. In 1982, Goldwasser

and Micali introduced probabilistic public key cryptosystem
and proposed the first probabilistic public key cryptosystem
[1], which is IND-CPA secure under the Quadratic Residuos-
ity(QR) assumption. The message is encrypted bit by bit in
Goldwasser and Micali’s scheme, so the ciphertext expansion
factor which is defined to be the length of ciphertext divided
by the length of message is quite large. Paillier proposed
a public key encryption scheme [2] in 1999. In Paillier’s
scheme, the message space is Zn and the ciphertext space
is Z∗n2 where n = PQ is an RSA modulus. Paillier’s
scheme has low ciphertext expansion factor and it allows
efficient encryption and decryption, so it is widely used in
practical [3]–[5]. Paillier’s scheme is IND-CPA secure under
Decisional Composite Residuosity Assumption(DCRA).

Paillier’s scheme is homomorphic, which means
Encpk(m1)Encpk(m2) = Encpk(m1 + m2) such that it is
used in many applications [6]–[12]. For instance, Paillier’s
scheme can be used in the data aggregation in smart grid [9]–
[12]. Users’ data are encrypted by Paillier’s scheme and the
ciphertexts are sent to the gateway(GW). GM aggregates the
encrypted data without decrypting them using homomorphic
property and then sends the aggregated encrypted data to
control center(CC). CC can decrypt the sum of all the users’
data but it can not decrypt the data for a particular user. At
the end of a period of time(e.g. a month), GM aggregates
the encrypted data for each user and sends it to CC. CC can
decrypt the sum of data for each user over the entire billing

cycle but it can not decrypt the data for a particular time. This
guarantees the privacy of individual user.

There are several works researched on Paillier’s scheme
proposing some new schemes [13]–[19]. Damg̊ard and Jurik
[18] proposed a generalization of Paillier’s scheme, replacing
the message space Zn by Zns and the ciphertext space Z∗n2

by Z∗ns+1 . It contains Paillier’s scheme as a special case by
setting s = 1. The encryption scheme is the same as Paillier’s
scheme but the decryption scheme is more complicated. In
decryption scheme, they use binomial expansion and math-
ematical induction to extract the message part by part. The
number of multiplications for decryption isO(sκ+s2) where
κ is the security parameter. It is of a quadratic order of
complexity in s. Damg̊ard and Jurik’s scheme is IND-CPA
secure under DCRA, so it is as secure as Paillier’s scheme. It
reduces the expansion factor from 2 for Paillier’s scheme to
almost 1.

Low decryption efficiency is the main problem of
Damg̊ard and Jurik’s scheme. In 2008, Obi, Ali and Stipidis
proposed a new decryption method for this scheme [19]. The
number of multiplications for decryption is O(s+ κ), so the
decryption is of a complexity, linear in s. The decryption
method is more efficient than Damg̊ard and Jurik’s scheme.

In this paper, we give a new generalisation of Paillier’s
scheme. In our scheme, we use N = P aQb instead of
N = P aQa so that it is more general. The ciphertext space is
Z∗N and the message space is Zk, where k = P a−1Qb−1. All
the Paillier’s schemes to our knowledge are special cases of
our scheme. For example, Okamoto and Uchiyama’s scheme
[13] is a special case of our scheme by setting a = 2, b = 1.
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Paillier’s scheme [2] is a special case of our scheme using
a = b = 2.Damg̊ard and Jurik’s scheme [18] is also a special
case of our scheme with a = b = s+ 1, s > 1. Notice that if
a 6= b, we can not public k. It is because if we public k, then
we can compute P and Q using k and N . We public l in this
case, where l is the length of k. When we encrypt a message,
we choosem, |m| < l to ensure thatm < k.We publicK in-
stead of k in our scheme. If a = b, then K = k, else K = N .
In our decryption scheme, we compute mmodP a−1 and
mmodQb−1 respectively, then we compute mmod k using
Chinese Remainder Theorem(CRT). The main idea of our
decryption algorithm is transforming the ciphertext into a
discrete logarithm problem in a special case which we can
solve it effectively(see Theorem 1). Theorem 1 is the most
impotent tool of our work and we give an efficient algorithm
to solve the discrete logarithm problem in a special case. The
number of multiplications for decryption of our scheme is
O(κ) which is independent of a and b, so our decryption
scheme is more efficient than Damg̊ard and Jurik’s scheme
and Obi’s scheme(see Table 1). We prove that our general-
ized Paillier’s scheme is IND-CPA secure under k-subgroup
assumption and our scheme is as secure as Paillier’s scheme.

TABLE 1. Comparison of efficiency with equal security parameter κ

Scheme Damg̊ard and
Jurik’s scheme

Obi’s
scheme

Our
General
Scheme

number of multiplica-
tions for decryption

O(aκ+ a2) O(a+ κ) O(κ)

Our generalized Paillier’s scheme is homomorphic so it
can be used in smart grid instead of Paillier’s scheme. Com-
pared to Paillier’s scheme, our generalized Paillier’s scheme
has higher flexibility. For instance, when we want to save the
storage of the ciphertext, we can use N = P 2Q instead of
N = P 2Q2. When we want to reduce the expansion factor,
we can use N = P aQb with large a and b. Notice that our
decryption scheme is as fast as Paillier’s scheme even if we
use large a and b. Our generalized Paillier’s scheme provides
us with more choices on parameters.

II. PRELIMINARIES
Notations. Let’s see some notations we used in this paper.
bxc denotes the largest integer less than or equal to x and
〈x〉N demotes xmodN . We denote by ϕ(N) Euler’s totient
function taken on N and by ordN (x) the order of x in the
group Z∗N . Assume A and B are two sets, we let the set
A\B = {x|x ∈ A, x 6∈ B} and x R←− A means randomly
choose an element x from the set A. |x| denotes the length of
thee binary string x and |A| denotes the number of elements
of the set A.

A. PUBLIC KEY ENCRYPTION AND IND-CPA SECURITY
A public key encryption scheme PKE consists of the follow-
ing three algorithms: KeyGen, Enc and Dec.

KeyGen(1κ) : The KeyGen algorithm takes the security
parameter 1κ as input and outputs a public key pk and
secret key sk.

Encpk(m) : The encryption algorithm takes a message m
from the message space M and a public key pk as input
and outputs a ciphertext c.

Decsk(c) : The decryption algorithm takes a ciphertext c
and secret key sk as input, and outputs x ∈M ∪ {⊥}.

Correctness: For correctness, we require that for all security
parameters κ, (pk, sk)

R←− KeyGen(1κ) and messages m ∈
M, Decsk(Encpk(m)) = m.

Definition 1 (IND-CPA Security). A public key encryption
scheme PKE = (KeyGen,Enc,Dec) is said to be IND-CPA
secure if for all security parameters κ and probabilistic poly-
nomial time adversariesA, AdvIND−CPA

A,PKE (κ) is negligible in
κ.

AdvIND−CPA
A,PKE (κ) =

∣∣∣∣Pr[EXPIND−CPA(PKE ,A, κ) = 1]− 1

2

∣∣∣∣
is the advantage of A and EXPIND−CPA(PKE ,A, κ) is
defined in Figure 1.

FIGURE 1. IND-CPA Security Experiment

B. PAILLIER’S SCHEME
We introduce Paillier’s scheme and its security assumption in
this section.
KeyGen(1κ) : On input the security parameter κ, choose

two large primes P,Q and compute N = P 2Q2 and
k = PQ, where |P | = |Q| = κ. Randomly choose
y ∈ Z∗N such that k divides ordN (y). Let λ = lcm(P −
1, Q− 1). The public key pk is (N, y, k), and the secret
key sk is κ.

Encpk(m) : On input the message m ∈ Zk, randomly
choose x ∈ Z∗k and compute the ciphertext c =
ymxk modN.

Decsk(c) : On input the ciphertext c ∈ Z∗N , compute m =
L(cλ modN)

L(yλ modN)
mod k, where L(x) = (x− 1)/k.

Paillier’s scheme is IND-CPA secure under Decisional
Composite Residuosity Assumption. DCRA is equivalent to
(N, k) residuosity assumption, and (N, k) residuosity as-
sumption is defined as follows.
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Definition 2 ((N, k) Residuosity Assumption). Assume N
and k are positive integers. We define R(N, k) = {y|y =
xk modN, x ∈ Z∗N} as the set of kth-power residues mod-
ulo N . Let D(N, k, x) be a distinguisher to decide whether
x ∈ R(N, k) or x ∈ Z∗N\R(N, k). (N, k) residuosity
assumption asserts that the functionAdvD(κ), defined as the
distance

|Pr[D(N, k, x) = 1|x R←− Z∗N\R(N, k)]

−Pr[D(N, k, x) = 1|x R←− R(N, k)]|
is negligible in κ for any probabilistic polynomial time D.

C. (C, Y,K,N) DISCRETE LOGARITHM PROBLEM
We give the definition of (c, y, k,N) discrete logarithm prob-
lem here and we show how to solve it in Section III. We
also give two basic lemmas here, which can help us to prove
Theorem 1. We believe that experts are familiar with Lemma
1, so we omit the proof. We just give a brief proof of Lemma
2.

Definition 3 ((c, y, k,N) discrete logarithm problem). As-
sume N is a positive integer, y is an element in Z∗N of order
k. (c, y, k,N) discrete logarithm problem is computing m
from (c, y,N, k), where c ≡ ym modN .

Lemma 1. IfG is a cyclic group of order n, let Sd = {x|x ∈
G, ord(x) = d, d|n}, then |Sd| = ϕ(d).

Lemma 2. Assume N = ps11 p
s2
2 · · · p

st
t and k =

pk11 p
k2
2 · · · p

kt
t , where ∀1 6 i, j 6 t, si > 1, 0 6 ki < si, pi

are diffident odd primes and gcd(pi, pj − 1) = 1. If x ∈ Z∗N
and ordN (x) = k, then ordpsii

(x) = pkii where 1 6 i 6 t.

Proof. Assume x ∈ Z∗N and ordN (x) = k, then we have
xk ≡ 1 modN and we get the following equation.

xk ≡ 1 mod psii , 1 6 i 6 t. (1)

Let di = ordpsii
(x), then we have di divides k from

Equation (1). Let di =

t∏
i=1

prii where 0 6 ri 6 ki. Since

the order of an element divides the order of the group, this
implies immediately that di divides ϕ(psii ). Clearly,

t∏
i=1

prii |(pi − 1)psi−1i .

Since pi is coprime to pj and pi is coprime to pj − 1, we
can notice that di = prii . Since xdi ≡ 1 mod psii , then we
have

xd1d2···dt ≡ 1 mod psii .

We claim that ki is less than or equal to ri, and it follows

because
t∏
i=1

pkii divides
t∏
i=1

prii . Since we define ri to be less

than or equal to ki, then we prove that ri = ki and di =
pkii .

III. OUR GENERALIZED PAILLIER’S SCHEME
Before we present our generalized Paillier’s scheme, we
give an efficient algorithm SDLP(c, y, k,N) to solve the
(c, y, k,N) discrete logarithm problem in a special case. This
algorithm is used in our decryption scheme. Then we propose
our scheme and prove that it is IND-CPA secure under k-
subgroup assumption.

A. ALGORITHM FOR (C, Y,K,N) DISCRETE
LOGARITHM PROBLEM
We introduce Theorem 1 to show how to solve a specific
(c, y, k,N) discrete logarithm problem effectively. Now we
give a lemma which is used in our proof of Theorem 1.

Lemma 3. If N = pa, k = pb, where a > 2, 1 6 b 6 ba
2
c

and p is an odd prime, then (c, y, k,N) discrete logarithm
problem can be solved effectively.

Proof. Compute v = N/k = pa−b and let

S = {x|x ≡ 1 mod v, x ∈ Z∗N}.

Clearly, there are k elements in the set S. Let

S′ = {x|xk ≡ 1 modN, x ∈ Z∗N}.

We want to prove that S = S′. Let

Sd = {x|ordN (x) = d, x ∈ Z∗N , d|k},

so S′ =
⋃
d|k
Sd. Due to Lemma 1, we see

|S′| =
∑
d|k

|Sd| =
∑
d|k

ϕ(d) = k.

For every element x in the set S, x can be written as tv + 1,
where t is an integer less than k. Since b 6 ba

2
c, then k2

divides N and N divides v2. By definition of x,

xk = (tv + 1)k ≡ tvk + 1 ≡ 1 modN. (2)

We can notice that x is in the set S′ from Equation (2). Then
we prove that S = S′.

In (c, y, k,N) discrete logarithm problem, the order of y
is k, so y is in the set S′ and y is in the set S. We define the
function L() by

L(x) = x−1
v , x ∈ S.

Assume y = tv + 1 and 0 < t < k, since

c = ym ≡ mtv + 1 modN ,

then clearly we have

L(y) = t, L(c) = mtmod k.

Let g = gcd(t, k) and we have

y
k
g = (tv + 1)

k
g ≡ 1 modN. (3)
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Due to Equation (3), we see that the order of y divides kg , i.e.,
k divides k

g . So the greatest common divisor of t and k is 1
and

m =
L(c)

L(y)
mod k.

Theorem 1. If N =

t∏
i=1

psii , k =

t∏
i=1

psi−1i , ∀1 6 i, j 6

t, si > 1, k > 1, gcd(pi, pj − 1) = 1, pi are diffident odd
primes, then (c, y, k,N) discrete logarithm problem can be
solved effectively.

Proof. Since pi are diffident odd primes, for all i from 1 to
t and si > 1, if we can compute 〈m〉

p
si−1

i
, then we can

compute 〈m〉k using Chinese Remainder Theorem(CRT). We
now show how to compute 〈m〉

p
si−1

i
. By definition,

c = ym mod psii . (4)

The order of y in the group Z∗N is k and we proved that the
order of y in the group Z∗

p
si
i

is psi−1i in Lemme 2. Computing

〈m〉
p
si−1

i
from Equation (4) is a (cmod psii , y, p

si−1
i , psii )

discrete logarithm problem. Compute a = bsi
2
c and we can

compute 〈m〉
p
si−1

i
in two cases.

Case 1: If si = 2, then p2(si−1)i divides psii , then we can
compute 〈m〉

p
si−1

i
directly using Lemma 3.

Case 2: If si > 2, then 〈m〉
p
si−1

i
can be written as m1 +

m2p
a
i , where 0 6 m1 < pai , 0 6 m2 < psi−1−ai . Then

we get the following equation

cp
si−1−a

i ≡ (yp
si−1−a

i )m1+m2p
a
i ≡ (yp

si−1−a

i )m1 mod psii . (5)

Since the order of y in the group Z∗
p
si
i

is psi−1i ,

then the order of yp
si−1−a

i in the group Z∗
p
si
i

is pai .

Computing m1 from Equation (5) is a (cp
si−1−a

i mod

psii , y
p
si−1−a

i , pai , p
si
i ) discrete logarithm problem. Since

p2ai divides psii , so we can compute m1 using Lemma 3.
Due to Equation (4), we have

cy−m1 ≡ (yp
a
i )m2 mod psii . (6)

We see the order of yp
a
i in the group Z∗

p
si
i

is

psi−1−ai . Computing m2 from Equation (6) is a
(cy−m1 mod psii , y

pai , psi−1−ai , psii ) discrete logarithm
problem. Since p2(si−1−a)i divides psii , so we can com-
pute m2 using Lemma 3. Then we compute

〈m〉
p
si−1

i
= m1 +m2p

a
i .

This theorem leads to Algorithm 1 to solve the
(c, y, k,N) discrete logarithm problem. In Algorithm 1,
CRT(m1, p1,m2, p2, . . .mt, pt) means computing 〈m〉p1p2...pt ,
such that m ≡ m1 mod pi for all i from 1 to t and pi > 1.
We use the this algorithm in our decryption scheme.

Algorithm 1 SDLP(c, y, k,N)

Input: Integer c ∈ Z∗
N , base y, order k and modulusN , where ordN (y) =

k, N =
t∏

i=1

p
si
i , k =

t∏
i=1

p
si−1
i , ∀1 6 i, j 6 t, si > 1, k >

1, gcd(pi, pj − 1) = 1, pi are diffident odd primes.
Output: m ∈ Zk such that c ≡ ym(modN).
1: for i from 1 to t do
2: if si = 1 then
3: mi = 0;
4: else if si = 2 then
5: ci ← cmod p2i ;
6: mi ← (ci−1)/pi

(y−1)/pi
mod pi;

7: else
8: a← b

si

2
c;

9: c1 ← cp
si−1−a
i mod p

si
i ;

10: y1 ← yp
si−1−a
i mod p

si
i ;

11: m1 ←
(ci−1)/p

si−a
i

(yi−1)/p
si−a
i

mod pai ;

12: c2 ← cy−m1 mod p
si
i ;

13: y2 ← yp
a
i mod p

si
i ;

14: m2 ←
(c2−1)/pa+1

i

(y2−1)/pa+1
i

mod p
si−1−a
i ;

15: mi ← m1 +m2pai ;
16: end if
17: end for
18: m← CRT(m1, p

s1−1
1 , . . .mt, p

st−1
i );

19: Output m;

B. OUR GENERALIZED PAILLIER’S SCHEME
We are now ready to describe our generalized Paillier’s
scheme. Our scheme consists of the following three algo-
rithms: KeyGen, Enc and Dec.
KeyGen(1κ) : On input the security parameter κ, we

choose two large primes P andQ such that |P | = |Q| =
κ, and both P − 1 and Q − 1 contain at least one large
prime factor. We also choose two natural numbers a and
b such that a > 2 or b > 2. Compute N = P aQb

and k = P a−1Qb−1. If a = b, we set K = k,
otherwise we set K = N and l is the length of k.
Let λ = lcm(P − 1, Q − 1) and randomly choose
y ∈ Z∗N such that k divides ordN (y). ordN (y) should
contain at least one large prime factor of λ for the sake
of preventing us from getting the factor ofN . The public
key is (N, y, l,K) and the secret key is (P,Q, k, λ).

Encpk(m) : IfK = N , the message spaceM = {0, 1}l−1,
otherwise M = {m |m < K}. Compute the ciphertext
c = ymxK modN, m ∈M, x ∈ Z∗N .

Decsk(c) : Compute c′ = cλ modN and y′ = yλ modN .
Then we compute m = SDLP(c′, y′, k,N).

Correctness: Since c = ymxK modN , then

cλ ≡ ymλxKλ modN. (7)

We know that xKλ ≡ 1 modN , then we can remove the
random number x from Equation (7) and get the equation

c′ ≡ y′m modN. (8)

Since k divides ordN (y), then we have ordN (y′) is k.
Thus Equation (8) is a (c′, y′, k,N) discrete logarithm prob-
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lem and we can solve it using Algorithm 1. So m =
SDLP(c′, y′, k,N).

C. SECURITY OF OUR GENERALIZED PAILLIER’S
SCHEME
In this section we define k-subgroup assumption and prove
that k-subgroup assumption is equivalent to (N, k) residu-
osity assumption. Then we prove our scheme is IND-CPA
secure under k-subgroup assumption. Paillier’s scheme is
IND-CPA secure under DCRA which is equivalent to (N, k)
residuosity assumption, so our generalized Paillier’s scheme
is as secure as Paillier’s scheme. We use k-subgroup assump-
tion instead of (N, k) residuosity assumption because we
can not public k when a 6= b. The relation P2 ⇒ P1(resp.
P1 ⇔ P2) denotes that the problem P1 is polynomially
reducible (resp. equivalent) to the problem P2.

Definition 4 (k-subgroup Assumption). LetPKE =(KeyGen,
Enc,Dec) denotes our generalized Paillier’s scheme. k-
subgroup assumption asserts that Advk−subgroupA,PKE (κ) is neg-
ligible in κ for all security parameters κ and probabilistic
polynomial time adversaries A, where

Adv
k−subgroup(κ)
A,PKE =

∣∣∣∣Pr[EXPk−subgroup(PKE ,A, κ) = 1]− 1

2

∣∣∣∣
is the advantage of A and EXPk−subgroup(PKE ,A, κ) is
defined in Figure 2.

FIGURE 2. k-subgroup Assumption Experiment

Theorem 2. k-subgroup assumption ⇔ (N, k) residuosity
assumption.

Proof. (1) k-subgroup assumption ⇒ (N, k) residuosity
assumption.

Let D be a distinguisher that can tell apart R(N, k) and
Z∗N\R(N, k) with non-negligible advantage ε. We show that
D implies a k-subgroup distinguisher D′ with advantage ε.
D′ takes (pk, c) as input. Its task is to decide whether

c ∈ Encpk(0) or c ∈ Encpk(1).D′ feeds D with (N, c).
D gets (N, c) and decides whether c ∈ R(N, k) or c ∈
Z∗N\R(N, k). When the distinguisher D halts, D′ outputs
whatever D outputs. If c ∈ Encpk(0), then c ∈ R(N, k).
If c ∈ Encpk(1), then c ∈ Z∗N\R(N, k). Clearly, we have

AdvD′(κ) > AdvD(κ) = ε.

It contradicts with k-subgroup assumption. Therefore,

k-subgroup assumption⇒ (N, k) residuosity assumption.

(2) (N, k) residuosity assumption⇒ k-subgroup assump-
tion.

Let D be a distinguisher that can tell apart Encpk(0) and
Encpk(1) with non-negligible advantage ε. We show that D
implies a (N, k) residuosity distinguisher D′ with advantage
ε.
D′ takes (N, x) as input. Its task is to decide whether

x ∈ R(N, k) or x ∈ Z∗N\R(N, k). D′ takes the role
of challenger in the k-subgroup assumption experiment of
D. D feeds D′ with pk = (N, y, l,K) and D′ randomly
chooses a bit b ∈ {0, 1} and computes a challenge ciphertext
c = ybxr modN, r

R←− ZN . D
′ feeds D with c. D needs

to decide whether c ∈ Encpk(0) or c ∈ Encpk(1). When the
distinguisher D halts, D′ outputs whatever D outputs. If x ∈
R(N, k), c ∈ Encpk(b). If x ∈ Z∗N\R(N, k), AdvD(κ) =
0. Clearly, we see

AdvD′(κ) > AdvD(κ) = ε.

It contradicts with (N, k) residuosity assumption. Therefore,

(N, k) residuosity assumption⇒ k-subgroup assumption.

Then we prove that k-subgroup assumption is equivalent
to (N, k) residuosity assumption.

Theorem 3. Our generalized Paillier’s scheme is IND-CPA
secure under k-subgroup assumption.

Proof. Let D be a k-subgroup distinguisher. D takes (pk, c)
as input and its task is to decide whether c ∈ Encpk(0)
or c ∈ Encpk(1). Let A is a PPT IND-CPA adversary for
our generalized Paillier’s scheme. D takes the role of the
challenger of IND-CPA game for our scheme.D receivesm0

and m1 from A and computes c1 = cm1−m0 modN, c2 =
c1y

m0 modN, c3 = c2x
K modN, x ∈ Z∗N . D feeds

A with c3 and gets the output b of A. D outputs b. If
c ∈ Encpk(0), c3 ∈ Encpk(m0). If c ∈ Encpk(1), c3 ∈
Encpk(m1).

Assume that our generalized Paillier’s scheme is not
IND-CPA secure, i.e., A can distinguish Encpk(m0) and
Encpk(m1) with non-negligible advantage ε. Then D can
distinguish Encpk(0) and Encpk(1) with advantage ε, which
contradicts with k-subgroup assumption. So we prove that
our generalized Paillier’s scheme is IND-CPA secure under
k-subgroup assumption.

IV. CONCLUSIONS
In this paper, we propose a generalization of Paillier’s scheme
and all the Paillier’s schemes to our knowledge are special
cases of our scheme. In our scheme, N = P aQb and
k = P a−1Qb−1, so the ciphertext expansion r = a+b

a+b−2
which is smaller than Paillier’s scheme when a > 2 and
b > 2. The number of multiplications for decryption of
Damg̊ard and Jurik’s scheme, Obi’s scheme and our scheme
are O(aκ + a2), O(a + κ) and O(κ) respectively, where

5



Ying Guo et al.: A Generalization of Paillier’s Public-Key System With Fast Decryption

κ is the security parameter. The speed of our decryption
algorithm is independent of a, so our decryption scheme
is more efficient than other generalization algorithms. Our
generalized Paillier’s scheme is IND-CPA secure under k-
subgroup assumption and it is as secure as Paillier’s scheme.
Our generalized Paillier’s scheme can be used in the data
aggregation in smart grid for its homomorphic property.
Compared to Paillier’s scheme, our generalized Paillier’s
scheme provides us with more choices on parameters.
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