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Abstract

In Paillier’s scheme, c = ymxn modn2, m ∈ Zn, x ∈ Z∗
n2 , n = PQ is

a product of two large primes. Damgård and Jurik generalized Paillier’s

scheme to reduce the ciphertext expansion, c = ymxns modns+1, m ∈

Zns , x ∈ Z∗
ns+1 . In this paper, we propose a new generalization of Pail-

lier’s scheme and prove that our scheme is IND-CPA secure under k-

subgroup assumption for Πk. Compared to Damgård and Jurik’s general-

ization, our scheme has three advantages. (a)We use the modulus P aQb

instead of P aQa, so it is more general. (b)We use a general y satisfy-

ing P a−1|orderPa(y), Qb−1|orderQb(y) instead of y = (1 + PQ)jxmodN

which is used in Damgård and Jurik’s generalization. (c)Our decryption

scheme is more efficient than Damgård and Jurik’s generalization system.

Keywords: Paillier’s PKC scheme, Damgård and Jurik’s generaliza-

tion scheme, discrete logarithm problem, k-subgroup assumption for Πk
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1 Introduction

Paillier proposed a public key encryption scheme Pai99 [1] in 1999. Pai99 is ef-

ficient and homomorphic, which means Epk(m1)Epk(m2) = Epk(m1 +m2) such

that it is widely used in many applications [2–14]. In Pai99, N = P 2Q2, P,Q are

large primes. The message space M = {m|m < k}, k = PQ. Randomly choose

y such that ordN (y[P−1,Q−1]) = k. The public key pk = (N, y, k) and the secret

key sk = [P − 1, Q− 1]. The encryption scheme c = ymxk modN, m ∈ M, x ∈

Z∗
N . The decryption scheme m = L(c[P−1,Q−1] modN)/L(y[P−1,Q−1] modN)mod k,

L(x) = (x− 1)/k. Pai99 is IND-CPA secure under (N,PQ) residuosity assump-

tion and the ciphertext expansion r =
|c|
|m|

=
|N |
|k|

= 2.

In order to reduce the ciphertext expansion of Pai99, Ivan Damgård and

Mads Jurik proposed a generalisation of Pai99 [15]. In DJ01, N = P aQa, k =

P a−1Qa−1, y = (1 + PQ)jxmodN, (j, PQ) = 1, x[P−1,Q−1] ≡ 1modN . The

encryption scheme is the same as Pai99 but the decryption scheme is more

complicated. In decryption scheme, c[P−1,Q−1] = (1 + PQ)mj[P−1,Q−1] modN.

Computing ⟨m⟩k from (1+PQ)mj[P−1,Q−1] modN , they use binomial expansion

and mathematical induction. We show the method in Section 2.1. DJ01 is

IND-CPA secure under (N,PQ) Residuosity assumption and the ciphertext

expansion r =
|N |
|k|

= a
a−1 . Pai99 is a special case of DJ01 when a = 2.

Low decryption efficiency is the main problem of DJ01. Another disadvan-

tage is the choice of the public key y. DJ01 required y = (1 + PQ)jxmodN

instead of ordN (y[P−1,Q−1]) = PQ in Pai99 for the sake of specific decryption

scheme. In 2008, Obi, Ali and Stipidis proposed a new decryption method [16]

for DJ01 and use a general y ∈ Z∗
N with the order of y a multiple of P a−1Qa−1.

The decryption scheme is similar to Pai99 in form and we show the method in

Section 2.2. When a = 2, the decryption scheme is the same as Pai99. OAS08

is the first scheme to use general y in generalisation of Paillier’s scheme. The

decryption method is more efficient than DJ01. The ciphertext expansion and

security of OAS08 is the same as DJ01.

OAS08 is the best work of the generalisation of Paillier’s scheme as we know.
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In this paper, we give a new generalisation of Pai99. In our scheme, we use N =

P aQb instead of N = P aQa so that it is more general. The message space M =

{m|m < k}, k = P kaQkb , 0 ≤ ka < a, 0 ≤ kb < b. The length of k is l. The

ciphertext expansion of our scheme is r = a+b
ka+kb

. If akb = bka, we can public k,

otherwise we use N in encryption scheme and public l to ensure |m| < l. We also

use a general y satisfying P a−1|orderPa(y), Qb−1|orderQb(y). In our decryption

scheme, we compute ⟨m⟩Pka and ⟨m⟩Qkb respectively, then we compute ⟨m⟩k
using Chinese Remainder Theorem(CRT). Because of k|φ(N), our decryption

scheme can be transformed into a discrete logarithm problem that cφ(N)/k ≡

(yφ(N)/k)m modN . We see how to solve this problem under certain conditionsin

in Section 2.4. The number of multiplications for decryption of DJ01, OAS08

and our scheme are O(aλ+a2), O(a+λ) and O(λ) respectively. λ is the security

parameter. The speed of our decryption algorithm is independent of a, so our

decryption scheme is more efficient than DJ01 and OAS08.

The idea of N = P aQb comes from Okamoto and Uchiyama’s scheme [17].

In OU98, N = P 2Q, k = P, ordP 2(yP−1) = P, |P | = l. The public key pk =

(N, y, l) and |m| < l. The encryption scheme c = ymxN modN, |m| < l, x ∈ Z∗
N .

The decryption scheme m = L(cP−1 modP 2)/L(yP−1 modP 2)modP, L(x) =

(x− 1)/k. The ciphertext expansion r = 3 and OU98 is IND-CPA secure under

P -subgroup assumption. According to P -subgroup assumption, we define k-

subgroup assumption for Πk and prove that k-subgroup assumption for Πk is

equal to (N, k) residuosity assumption in Section 2.6. We give the security

proof in Section 4 for a special case and the general case. For a special case, our

scheme is IND-CPA secure under (k′2, k′) residuosity assumption where k′ =

P
ka

(ka,kb)Q
kb

(ka,kb) . Both Pai99 and DJ01 satisfy the special case with k′ = PQ,

so we can prove that Pai99 and DJ01 is IND-CPA secure under (P 2Q2, PQ)

residuosity assumption. The same results are proved in their schemes. For

the general case, we prove that our scheme is IND-CPA secure under (N, k)

residuosity assumption. k can not be public when akb ̸= bka , so we use k-

subgroup assumption for Πk instead of (N, k) residuosity assumption in the

security proof. Our scheme is IND-CPA secure under k-subgroup assumption
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for Πk.

2 Preliminaries

Let us see some notations (see Table 1), definitions, theorems and assumptions

related to our scheme.

Table1: Notations used in this paper
Notation Description

(x, y) the greatest common divisor of x and y

[x, y] the least common multiple of x and y

⟨x⟩N xmodN , result in a non-negative minimal residue

⌊x⌋ the largest integer less than or equal to x

ZN ZN = {0, 1, 2, ..., N − 1}

Z∗
N Z∗

N = {x ∈ ZN |(x,N) = 1}

φ(N) Euler function of N

ordN (x) the order of x w.r.t. modulus N

R(N, k) R(N, k) = {y|y = xk modN, x ∈ Z∗
N}

x
R←− A randomly choose x from the set A

A\B A\B = {x|x ∈ A, x ̸∈ B}

|x| the length of the binary string x

|A| the number of elements of the set A

λ the security parameter of the our scheme

k the message space M = {m|m < k}

r ciphertext expansion r =
|c|
|m|

2.1 Decryption Method of DJ01

In this section, we review the main idea of decryption scheme in DJ01. Readers

can refer to [15] for more details. The most important step is computing ⟨i⟩na−1

from c = (1 + n)i modna, where n = pq. They give the following algorithm:
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i := 0;

for j := 1 to a− 1 do

begin

t1 := L(cmodnj+1);

t2 := i;

for k := 2 to j do

begin

i := i− 1;

t2 := t2 ∗ imodnj ;

t1 := t1 − t2∗nk−1

k! modnj ;

end

i := t1;

end

From the algorithm, we can see the number of multiplications for decryption is

O(aλ+ a2).

2.2 Decryption Method of OAS08

In this section, we review the decryption scheme of DJ01. Readers can refer

to [16] for more details.

In Pai99, L(x) = (x− 1)/n, n = PQ, x ≡ 1modn.

In OAS08, n = PQ, N = na, k = na−1, y ∈ Z∗
N with the order of y a multiple

of k.

Define a new function La(x) = Σa
i=1(−1)i−1(x− 1)i/i. When a = 1, La(x)/n =

L(x).

d ∈ Z∗
n such that d ≡ 0mod [P − 1, Q− 1].

The decryption scheme m =
La−1(c

d modN)modN

La−1(yd modN)modN
mod k.

From the algorithm, we can see the number of multiplications for decryption is

O(a+ λ).
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2.3 λ-acceptable Tuple (N, k)

Definition 2.1 (λ-acceptable tuple (N, k)).

We call a tuple (N, k) is λ-acceptable if N and k satisfies the following condi-

tions:

P,Q are large primes and |P | = |Q| = λ. Both P−1, Q−1 contain at least one

large prime factor.

N = P aQb, a ≥ 1, b ≥ 1, k = P kaQkb , 0 ≤ ka < a, 0 ≤ kb < b.

2.4 (y, k,N) Discrete Logarithm Problem

In this section, we introduce (y, k,N) discrete logarithm problem and show that

it is easy to solve for a special case which we used in our decryption scheme.

Definition 2.2 ((y, k,N) discrete logarithm problem).

N is positive integer, y ∈ Z∗
N , ordN (y) = k.

c ≡ ym modN. Given (c, y,N, k), compute < m >k .

Theorem 2.1.

If k2|N , then (y, k,N) discrete logarithm problem can be solved effectively.

Proof.

d = N/k, S = {x|x ≡ 1mod d, 0 < x < N, (x,N) = 1}, |S| = k.

S′ = {x|xk ≡ 1modN, 0 < x < N, (x,N) = 1}, |S′| = k.

It is easy to prove that S = S′.

ordN (y) = k, y ∈ S, y = td+ 1, 0 < t < k.

Define the function L(x) = x−1
d , x ∈ S.

k2|N, N |d2, ym = (td+ 1)m ≡ mtd+ 1 ≡ cmodN.

mtd+ 1 ≡ cmod d, c ≡ 1mod d, c = t′d+ 1, c ∈ S.

mtd ≡ t′dmodN, mt ≡ t′ mod k.

g = (t, k), y
k
g = (td+ 1)

k
g ≡ 1modN.

ordN (y)|kg , ordN (y) = k, k|kg , g = 1.

(t, k) = 1, m ≡ t′t−1 ≡ L(c)
L(y) mod k.
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2.5 (N, k) Residuosity Assumption

Definition 2.3 ((N, k) residuosity assumption).

(N, k) is λ-acceptable.

R(N, k) = {y|y = xk modN, x ∈ Z∗
N}

D(N, k, x) is a distinguisher to decide whether x ∈ R(N, k).

Pr =
∣∣∣Pr[D(N, k, x) = 1|x R←− Z∗

N\R(N, k)]− Pr[D(N, k, x) = 1|x R←− R(N, k)]
∣∣∣ .

For any PPT D, Pr is negligible.

2.6 k-subgroup Assumption for Πk

In 1998, Okamoto and Uchiyama proposed P -subgroup assumption to prove

their scheme OU98 to be semantic secure [17].

In OU98, N = P 2Q, k = P. Now we redefine OU98 with λ-acceptable (N, k).

We call the new scheme Πk :

- Gen(1λ) :

(N, k) is λ-acceptable. The length of k is l.

Y (N, k) =

{
y

∣∣∣∣P a−1|orderPa(y), Qb−1|orderQb(y)

}
, y

R←− Y (N, k).

h0
R←− Z∗

N , h = hk
0 modN.

pk = (N, y, h, l), sk = (P,Q).

- Encpk(m) :

c = ymhx modN, m ∈ {0, 1}l−1, x
R←− ZN .

- Decsk(c) :

⟨m⟩Pka = L(cP
a−2(P−1) mod Pa)

L(yPa−2(P−1) mod Pa)
modP ka , ⟨m⟩Qkb = L(cQ

b−2(Q−1) mod Qb)

L(yQb−2(Q−1) mod Qb)
modQkb .

Compute ⟨m⟩k using CRT.

Then we define k-subgroup assumption for Πk to prove our scheme.

Definition 2.4 (k-subgroup assumption for Πk).

Given (pk, c), it is hard to decide whether c ∈ Encpk(0) or c ∈ Encpk(1).
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Theorem 2.2. k-subgroup assumption for Πk ⇔ (N, k) residuosity assumption.

Proof.

(1) k-subgroup assumption for Πk ⇒ (N, k) residuosity assumption.

D : Input (pk, c). Task: decide whether c ∈ Encpk(0) or c ∈ Encpk(1).

D′ : Input (N, x). Task: decide whether x ∈ R(N, k) or x ∈ Z∗
N\R(N, k).

AdvD′(1λ) =
∣∣∣Pr[D′(N, x) = 1|x R←− R(N, k)]− Pr[D′(N, x) = 1|x R←− Z∗

N\R(N, k)]
∣∣∣ .

D feeds D′ with (N, c) and gets the output b′ of D′. D outputs b′.

If c ∈ Encpk(0), c ∈ R(N, k).

If c ∈ Encpk(1), c ∈ Z∗
N\R(N, k).

negl(λ) ≥ |Pr[D(pk, c) = 1|c R←− Encpk(0)]− Pr[D(pk, c) = 1|c R←− Encpk(1)]|

≥ AdvD′(1λ).

Therefore, k-subgroup assumption for Πk ⇒ (N, k) residuosity assumption.

(2) (N, k) residuosity assumption ⇒ k-subgroup assumption for Πk.

D : Input (N, x). Task: decide whether x ∈ R(N, k) or x ∈ Z∗
N\R(N, k).

D′ : Input (pk, c). Task: decide whether c ∈ Encpk(0) or c ∈ Encpk(1).

D takes the role of challenger in the challenge game of D′. D randomly choose

a bit b ∈ {0, 1} and compute a challenge ciphertext c = ybxr modN, r
R←− ZN .

D feeds D′ with (pk, c) and gets the output b′ of D′. D outputs b′.

AdvD′(1λ) = |Pr[D′(pk, c) = 1|c ∈ Encpk(0)]− Pr[D′(pk, c) = 1|c ∈ Encpk(1)]| .

If x ∈ R(N, k), c ∈ Encpk(b).

If x ∈ Z∗
N\R(N, k), AdvD′(1λ) = 0.

negl(λ) ≥ |Pr[D(N, x) = 1|x ∈ R(N, k)]− Pr[D(N, x) = 1|x ∈ Z∗
N\R(N, k)]|

≥ AdvD′(1λ).

Therefore, (N, k) residuosity assumption ⇒ k-subgroup assumption for Πk.

3 Our Generalized Paillier’s Scheme

3.1 KeyGen(1λ) :

(N, k) is λ-acceptable. The length of k is l.

If akb = bka, K = k, otherwise K = N .
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Y (N, k) =

{
y

∣∣∣∣P a−1|orderPa(y), Qb−1|orderQb(y)

}
.

P a−1 | orderPa(y) ⇔ yφ(Pa)/P ̸≡ 1modP a, Qb−1 | orderQb(y) ⇔ yφ(Qb)/Q ̸≡

1modQb.

Randomly choose y ∈ Y (N, k).

pk = (N, y, l,K), sk = (P,Q, k).

3.2 Encpk(m) :

If K = N , the message space M = {0, 1}l−1, otherwise M = {m |m < K}.

Compute the ciphertext c = ymxK modN, m ∈M, x ∈ Z∗
N .

3.3 Decsk(c) :

k = P kaQkb , if we can compute ⟨m⟩Pka and ⟨m⟩Qkb respectively, then we can

compute ⟨m⟩k using Chinese Remainder Theorem(CRT).

If ka ≥ 1, compute ⟨m⟩Pka .

c = ymxK modN, c = ymxK modP a.

K = k or K = N, P ka |K.

cφ(Pa)/Pka ≡ (yφ(Pa)/Pka
)mxφ(Pa)K/Pka ≡ (yφ(Pa)/Pka

)m modP a.

P a−1|orderPa(y), orderPa(yφ(Pa)/Pka
) = orderPa (y)

(orderPa (y),φ(Pa)/Pka )
= P ka .

It is a (yφ(Pa)/Pka
, P ka , P a) discrete logarithm problem.

Compute a′ = ⌊a
2
⌋.

- If ka ≤ a′, P 2ka |P a, then we can compute ⟨m⟩Pka directly using Theorem

2.1.

- If ka > a′, ⟨m⟩Pka = m1P
a′
+m2, 0 ≤ m1 < P ka−a′

, 0 ≤ m2 < P a′
.

cφ(Pa)/Pa′

≡ (yφ(Pa)/Pa′

)mxφ(Pa)K/Pa′

≡ (yφ(Pa)/Pa′

)m2 modP a.

P a−1|orderPa(y), orderPa(yφ(Pa)/Pa′

) = orderPa (y)

(orderPa (y),φ(Pa)/Pa′ )
= P a′ .

It is a (yφ(Pa)/Pa′

, P a′
, P a) discrete logarithm problem. We can compute m2

using Theorem 2.1.

cφ(Pa)/Pka ≡ (yφ(Pa)/Pka
)m1P

a′
+m2 modP a.
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cφ(Pa)/Pka
(yφ(Pa)/Pka

)−m2 ≡ (yφ(Pa)/Pka−a′

)m1 modP a.

orderPa(yφ(Pa)/Pka−a′

) = orderPa (y)

(orderPa (y),φ(Pa)/Pka−a′ )
= P ka−a′ .

It is a (yφ(Pa)/Pka−a′

, P ka−a′
, P a) discrete logarithm problem. We can com-

pute m1 using Theorem 2.1.

⟨m⟩Pka = m1P
a′
+m2.

If kb ≥ 1, compute ⟨m⟩Qkb in the same way.

Compute ⟨m⟩k using CRT.

From the decryption algorithm, we can see the number of multiplications for

decryption is O(λ). It is independent of a and b, so our scheme is faster than

other generalized Paillier’s schemes in decryption.

4 Security of our Generalized Paillier’s Scheme

In this section, we prove that our generalized Paillier’s scheme is IND-CPA

secure under k-subgroup assumption for Πk we mentioned in Section 2.6. In

fact, if akb = bka,
ka

(ka,kb)
≥ a− ka,

kb

(ka,kb)
≥ b− kb, it is IND-CPA secure under

(k′2, k′) residuosity assumption, where k′ = P
ka

(ka,kb)Q
kb

(ka,kb) . Both Pai99 and

DJ01 satisfy this condition. We see DJ01 as a example, a = b = a, ka = kb =

a−1, k′ = PQ, ka

(ka,kb)
≥ a−ka, kb

(ka,kb)
≥ b−kb. DJ01 is IND-CPA secure under

(P 2Q2, PQ) residuosity assumption through Theorem 4.2. The same result is

given in DJ01. In addition to the special case of DJ01, some other cases can

use Theorem 4.2 to prove security. For instance, a = 12, b = 8, ka = 9, kb =

6, k′ = P 3Q2, ka

(ka,kb)
≥ a − ka,

kb

(ka,kb)
≥ b − kb, we can prove this scheme is

IND-CPA secure under (P 6Q4, P 3Q2) residuosity assumption.

Theorem 4.1. Our generalized Paillier’s scheme is IND-CPA secure under

k-subgroup assumption for Πk.

Proof.

D : Input (N, y, h, l, c) for Πk. Task: decide whether c ∈ EncΠ,pk(0) or c ∈

EncΠ,pk(1)
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A is a PPT IND-CPA adversary for the generalized Paillier’s scheme.

D take the role of the challenger of IND-CPA game for the generalized Paillier’s

scheme. D receives m0 and m1 from A and computes c1 = cm0−m1modN, c2 =

c1y
m0modN, c3 = c2x

KmodN, x ∈ Z∗
N .

D feeds A with c3 and gets the output b of A. D outputs b.

If c ∈ EncΠ,pk(0), c3 ∈ Encpk(m0).

If c ∈ EncΠ,pk(1), c3 ∈ Encpk(m1).

Assume that our generalized Paillier’s scheme is not IND-CPA secure: i.e., A can

distinguish Encpk(m0) and Encpk(m1) with non-negligible probability. Then

D can distinguish EncΠ,pk(0) and EncΠ,pk(1) with non-negligible probability,

which is contradictory to k-subgroup assumption for Πk.

Our generalized Paillier’s scheme is IND-CPA secure under k-subgroup assump-

tion for Πk.

Theorem 4.2. For a special case akb = bka,
ka

(ka,kb)
≥ a− ka,

kb

(ka,kb)
≥ b− kb,

compute k′ = P
ka

(ka,kb)Q
kb

(ka,kb) , our generalized Paillier’s scheme is IND-CPA

secure under (k′2, k′) residuosity assumption.

Proof.

Theorem 2.2 proves that k-subgroup assumption for Πk ⇔ (N, k) residuosity

assumption.

Theorem 4.1 proves that our generalized Paillier’s scheme is IND-CPA secure

under k-subgroup assumption for Πk.

So our generalized Paillier’s scheme is IND-CPA secure under (N, k) residuosity

assumption.

If we can prove that (k′2, k′) residuosity assumption ⇒ (N, k) residuosity as-

sumption, then we can prove this theorem. We prove it in two steps.

(1) (k′2, k′) residuosity assumption ⇒ (k′s+1, k′s) residuosity assumption

We prove it by mathematical induction.

When s = 1, it is obvious. Suppose (k′2, k′) residuosity assumption⇒ (k′t+1, k′t)

residuosity assumption for t ≥ 2. We just need to prove that (k′t+1, k′t) residu-

osity assumption ⇒ (k′t+2, k′t+1) residuosity assumption.
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D: Input (k′, t, x). Task: decide whether x ∈ R(k′t+1, k′t).

D′: Input (k′, t, x). Task: decide whether x ∈ R(k′t+2, k′t+1).

D computes x′ = xk′ mod k′t+2 and feeds D′ with (k′, t, x′).

If x ∈ R(k′t+1, k′t), x = ck′t+1 + rk
′t
, x′ ≡ rk

′t+1 mod k′t+2, x′ ∈ R(k′t+2, k′t+1).

If D′ can distinguish R(k′t+2, k′t+1) and Z∗
k′t+2\R(k′t+2, k′t+1) with non-negligible

probability, then D can distinguish R(k′t+1, k′t) and Z∗
R(k′t+1,k′t)\R(k′t+1, k′t)

with non-negligible probability, which is contradictory to the assumption. So

(k′t+1, k′t) residuosity assumption ⇒ (k′t+2, k′t+1) residuosity assumption.

(2) (k′(ka,kb)+1, k′(ka,kb)) residuosity assumption ⇒ (N, k) residuosity assump-

tion

k′(ka,kb)+1 = P kaP
ka

(ka,kb)QkbP
kb

(ka,kb) , k′(ka,kb) = k.

ka

(ka,kb)
≥ a− ka,

kb

(ka,kb)
≥ b− kb, so N |k′(ka,kb)+1.

It is easy to prove (dN, k) residuosity assumption ⇒ (N, k) residuosity assump-

tion, so we prove that (k′(ka,kb)+1, k′(ka,kb)) residuosity assumption ⇒ (N, k)

residuosity assumption.

5 Conclusions

In this paper, we propose a generalization of Paillier’s scheme and all the Pail-

lier’s schemes to our knowledge are special cases of our scheme. In our scheme,

N = P aQb, k = P kaQkb , so the ciphertext expansion r = a+b
ka+kb

. We use a

general y satisfying P a−1|orderPa(y), Qb−1|orderQb(y) instead of some special

y such as y = 1 + PQmodN . We also propose a very simple decryption al-

gorithm which is more efficient than other generalization algorithms(see Table

2). Our generalized Paillier’s scheme is IND-CPA secure under k-subgroup as-

sumption for Πk which is equivalent to (N, k) Residuosity assumption. Other

generalization schemes are special cases of our scheme which we can prove the

security under (k′2, k′) residuosity assumption where k′ = P
ka

(ka,kb)Q
kb

(ka,kb) . So

our scheme is as secure as other generalization schemes.
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Table2: Comparison of efficiency with equal security parameter λ

Scheme DJ01 OAS08 Our General Scheme

number of multiplications

for decryption

O(aλ+ a2) O(a+ λ) O(λ)
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