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Abstract—This paper demonstrates fast and compact imple-
mentations of Elliptic Curve Cryptography (ECC) for efficient
key agreement over Curve25519. Curve25519 has been recently
adopted as a key exchange method for several applications
and included in the National Institute of Standards and Tech-
nology (NIST) recommendations for public key cryptography.
This paper presents three different performance level designs
including lightweight, area-time efficient, and high-performance
architectures. Lightweight hardware implementations are used
for several Internet of Things (IoT) applications due to their
resources being at premium. Our lightweight architecture utilizes
90% less resources compared to the best previous work while
it is still more optimized in term of A · T (area×time). For
efficient implementation from either time or utilized resources,
our area-time efficient architecture can establish almost 7,000
key sessions per second which is 64% faster than the previous
works. The area-time efficient architecture uses well scheduled
interleaved multiplication combined with a reduction algorithm.
Additionally, we offer a fast architecture for high performance
applications based on the 4-level Karatsuba method and Carry-
Compact Addition (CCA). Our high-performance architecture
also outperforms previous work in terms of A · T . The re-
sults show 9% and 29% improvement in A · T and Ad · T
(DSP_count×time), respectively. All architectures are variable-
base-point implemented on the Xilinx Zynq-7020 FPGA family
where performance and implementation metrics are reported and
compared. Finally, various side-channel attack countermeasures
are embedded in the proposed architectures.

Index Terms—Curve25519, elliptic curve Diffie-Hellman
(ECDH), field-programmable gate array (FPGA), point multi-
plication.

I. INTRODUCTION

Since the initial recommendation and standardization of
Elliptic Curve Cryptography (ECC) in [1], [2] and [3], there
has been significant progress towards security and performance
of computations in various levels of elliptic curves including
finite field arithmetic, curve level arithmetic, and protocol
level computations [4]. Due to a concern from the community
regarding the generation of potential weaknesses of the orig-
inal curves defined and recommended by National Institute
of Standards and Technology (NIST) in [1], organizations
shifted their attention to a newly developed family of elliptic
curves based on Montgomery curves (mainly Curve25519)
with some attractive properties [5]. Recently, Curve25519

became the most popular scheme for elliptic curve Diffie-
Hellman (ECDH) Key-Exchange which in late 2019 has
been recently recommended by IETF RFC 7748 [6], RFC
8032 [7], and NIST 800-186 [8]. Curve25519 is a 255-bit
elliptic curve offering approximately 128-bit classical security.
In comparison to the older versions of NIST recommended
curves for ECDH for prime fields, Curve25519 is the obvious
winner as it is fast and secure with uniform computations,
and no weaknesses known as of today. Curve25519 has been
employed in for several applications with software imple-
mentations and integration with SSL/TLS libraries. However,
its usage in hardware and small device applications is not
widely spread yet. For instance, Microchip Inc. recently de-
veloped an IoT device with ECC-based authentication and key
exchange schemes over Google cloud based on NIST-P256
curve which originally was recommended by NIST back in
1999 [1]. In comparison to NIST-P256, Curve25519 is smaller
and faster and even more secure against known side-channel
attacks including timing and cache attacks. Microsoft recently
introduced their first IoT device called Azure Sphere which
does not include Curve25519 for public key cryptography.
One reason could be the fact that due to interoperability,
Curve25519 was not included in early NIST recommendation
and governments sectors were not allowed to use it. The other
factor could be related to the migration to a new elliptic curve
which takes several years to happen.

In this paper, we would like to investigate the performance
of Curve25519 in hardware for various performance levels
so that IoT and embedded device manufacturing companies
could adopt Curve25519 as the mainstream for key exchange
mechanism. More specifically three different architectures
are provided to address wide range of applications including:
(i) implementations on low-end devices with small foot
prints, (ii) implementations on medium-end devices with
silicon area and speed trade-offs, and (iii) implementations on
high-end devices with fast computations. We prototype our
implementations on Xilinx FPGAs and report computation
times and occupied silicon areas for comparison to the
prior work available in the literature. Our implementations
for all mentioned three performance level implementations
outperform the counterparts available in the open literature.



Prior work: The first hardware implementation of
Curve25519 appeared in [9] by Sasdrich and Güneysu
which performs the point multiplication in 397 µs and
operates in 200 MHz. The focus in this work is on
lightweight applications. Same authors in [10] added side-
channel resistance in their earlier design to provide security
against physical attacks. Moreover, more improvement in
architecture security is done in [11] with adequate assessment
from leakage point of view. In [12], [13], Kopperman et
al. proposed high performance implementations and the
reported total time for point multiplication on Curve25519
is 92 µs operating at 115 MHz. Salarifard et al. [14], also
presented an optimized version targeting high performance
applications which is considered as the fastest design with 44
µs computation time operating at 87 MHz. Turan et al. [15]
proposed lightweight design with the total time of 714 µs at
105 MHz. Mehrabi and Doche [16] presented an optimized
lightweight architecture which does not employ any DSPs
and operates in 137.5 MHz with total time of 512 µs.

The main contributions of this paper are summarized below:
• We propose three different hardware architectures for

three performance levels of computing point multiplica-
tion over Curve25519.

• Efficient scheduling mechanism are proposed to com-
pute one step of Montgomery ladder which improves
the achieved time and area in comparison with those
presented in previous.

• We develop optimized field arithmetic unit for both
addition and multiplication. Our adder is based on Carry-
Compact Addition (CCA) which allows choosing differ-
ent parameters for area-time efficiency. Also, we investi-
gated four different levels of Karatsuba multiplication for
fast implementations of field multiplication.

• Our proposed architectures are implemented on a Xilinx
FPGA family and show that our results outperform the
counterparts available in the literature.

The rest of the paper is organized as follows. In Section II,
we discuss the preliminaries of ECC based on Curve25519.
In Section III, our proposed algorithms and architectures are
discussed. In Section IV, details of FPGA implementations
are provided. We discuss our results and compare to the
counterparts in Section V. Finally, we conclude the paper in
Section VI.

II. PRELIMINARIES

In this section, some relevant mathematical background are
provided. Then, side-channel analysis attack protection will be
described.
A. Field Arithmetic and ECDH Key Exchange

The elements of Galois Field GF (p) are defined as
{0, 1, . . . , p − 1} which is a finite field. Curve25519 over
GF (p) is defined by E : y2 = (x3 + 48666x2 + x) mod p
where p = 2255 − 19.

Curve25519 can be used for accelerating ECDH Key-
Exchange X25519 [17] and provides efficient modular arith-
metic operations including modular addition, subtraction, mul-

tiplication and inversion over GF (p) using pseudo Mersenne
prime reduction algorithm [18]. According to Fermat’s Little
Theorem (FLT), modular inversion over GF (p) is computed
by a−1 ≡ ap−2. In [5], authors proposed an addition chain
method using 254 squarings and 11 multiplications to compute
ap−2.

ECDH key exchange protocol computes a shared secret
key over Curve25519 between two parties using a set of
public parameters. Hence, they can communicate securely
by generated shared secret key, through, for instance, the
current symmetric-key cryptography standard, i.e., Advanced
Encryption Standard (AES).
B. Scalar Multiplication and Montgomery Ladder

Scalar multiplication Q = k · P is computed efficiently
for public base point P ∈ E and secret key k employing
Montgomery ladder point multiplication algorithm.

In order to achieve efficient and resistant implementations
of point addition (PA) and point doubling (PD) the Mont-
gomery ladder, introduced by Peter L. Montgomery [19], is
implemented. In each iteration of Montgomery ladder point
multiplication shown in Algorithm 1, one PA and one PD are
performed in constant execution time. This algorithm needs
only x-coordinate of base point P to compute k ·P . Therefore,
y-coordinate can be eliminated during computations when
performed in projective coordinates. In the first stage of this
algorithm, a map from affine to projective coordinates is
executed such that (xp, yp) = (X/Z, Y/Z). Suppose P =
(xP , yP ) is given as the base point. Then, (1) to (4) describe
PA and PD in each iteration of Montgomery ladder where
P1 = (X1, Z1) and P2 = (X2, Z2):

XPD =(X1 − Z1)
2(X1 + Z1)

2 (1)

ZPD =X1Z1(X
2
1 + 121666X1Z1 + Z2

1 ) (2)

XPA =4(X1X2 − Z1Z2)
2 (3)

ZPA =4xp(X1Z2 − Z1X2)
2 (4)

Operations in Montgomery ladder require field addition,
subtraction and multiplication. After all Montgomery ladder
iterations are done, field inversion is computed via FLT to
map from projective to affine coordinates in the last stage.
C. Side-Channel Protection

Several considerations should be taken into account for
protecting cryptographic implementations against side-channel
analysis attacks (SCA). Using Montgomery ladder algorithm
makes the scalar multiplication resistant against timing and
simple power analysis attacks (SPA). Furthermore, authors in
[20] introduced some countermeasures in order to implement
resistant architectures against differential power analysis at-
tacks (DPA). These approaches including point randomization,
scalar blinding and memory address scrambling are imple-
mented in research works presented in [10], [11].
• In point randomization, the base point P = (X,Z) at the

beginning of Montgomery ladder algorithm is projected
by using a random value λ ∈ Z2255 \ {0} such that Pr =
(λ ·X,λ · Z). However, the scalar multiplication output



Algorithm 1 Montgomery Ladder Point Multiplication [19]
Input: xP s.t. P = (xP , yP ) and scalar k = (k254, k253, . . . , k0)2
Output: xQ s.t. Q = k.P = (xQ, yQ)
1: X1 ← xp , Z1 ← 1, X2 ← 1, Z2 ← 0, X1−2 ← xp

2: for i=254 downto 0 do
3: if ki = 1 then
4: (X1, X2)← (X2, X1)
5: (Z1, Z2)← (Z2, Z1)
6: end if
7: T1 ← X1 + Z1

8: T2 ← X1 − Z1

9: T3 ← X2 + Z2

10: T4 ← X2 − Z2

11: T5 ← T1 × T1

12: T6 ← T2 × T2

13: T7 ← T2 × T3

14: T8 ← T1 × T4

15: T9 ← T5 × T6

16: T10 ← T6 − T5

17: T11 ← T7 + T8

18: T12 ← T7 − T8

19: T13 ← T10 × 121666
20: T14 ← T11 × T11

21: T15 ← T12 × T12

22: T16 ← T6 + T13

23: T17 ← T16 × T10

24: T18 ← T15 ×X1−2

25: (X1, Z1)← (T9, T17), (X2, Z2)← (T14, T18)
26: end for
27: Z1 ← Z−1

1

28: xQ ← X1 × Z1

29: return xQ

is not changed due to the fact that xp = X
Z = λ·X

λ·Z mod
p.

• Scalar blinding changes the second term in scalar mul-
tiplication which is the secret key k. Multiple of group
order #E can be added to k in order to provide data
dependency between swap function in Montgomery lad-
der and corresponding bit in k. Let r be a random value,
blinded scalar is computed by kr = k + r ×#E.

• Memory address scrambling prevents data leakage based
on accessing specific location in memory. If memory
addresses are revealed for attackers in each execution, key
bits will be known. Therefore, memory addresses should
be generated randomly in each execution. This feature can
be achieved using a linear feedback shift register (LFSR)
for generating a random address and a random value as
a seed for the LFSR.

III. PROPOSED ALGORITHM AND ARCHITECTURE

In this section, three different architectures are proposed for
different performance levels including lightweight, area-time
efficient, and high-performance designs.
A. Design I: Lightweight Architecture

Fig. 1 shows the top level architecture for our proposed
lightweight point multiplication scheme. It consists of Con-
troller, ROM, Dual Port RAM and Arithmetic Unit. Arithmetic
unit consists of Modular Addition and Modular Multiplication
illustrated in Fig. 1-(a). In this architecture, a controller is

connected to modular arithmetic units. On the other hand, con-
troller has an interface with ROM which gives the instruction
code for each cycle. During each cycle, controller sets required
addresses for arithmetic units considering corresponding bit of
chosen scalar k and the instruction code.

ROM size is 560×15-bit implemented by a 18Kb Block-
RAM. ROM includes control commands and three data ad-
dresses for arithmetic units. Furthermore, a RAM is considered
for decreasing resources as much as possible in order to save
intermediate data. A 255-bit data is stored by 15×17-bit words
in RAM. Thus, all computations are performed sequentially
and work with 17-bit data in each iteration due to the DSP
block input size.

1) Modular Addition/Subtraction: Addition/Subtraction is
computed between two 17-bit numbers in each iteration while
the carry/borrow is propagated to the next digit. Although
loading inputs and storing the results from/to RAM take some
iterations, the architecture is designed carefully in parallel to
compute in 30 iterations. In the last iteration, the carry/borrow
is reported to controller to set a flag. After computing
addition/subtraction, reduction computation is performed in
constant time. This computation needs adding/subtracting the
previous result with 19 which takes another 30 iterations to
store in another address. Finally, the mentioned flag indicates
RAM address for the correct result.

2) Modular Multiplication: Modular multiplication is de-
signed based on product scanning approach. According to
this method, 15 multiplications are performed for each 17-
bit product digit. Product scanning approach is completely
explained in [15] utilizing 15 parallel DSPs. In the lightweight
architecture, only 1 DSP unit is implemented which performs
multiplications sequentially. Computation for each product
digit can have maximum 42 bits, so 25 bits should be propa-
gated to next digit as carry. It can be shown by Ci+1×217+Pi,
where Ci and Pi are carry and product digits in ith iteration,
respectively. However, C15 should be considered for reduction.

The most efficient reduction method for Curve25519 is
pseudo Mersenne prime algorithm. In this method, modulo
p = 2255 − 19 is computed by the product of 19 × C15.
After computing 19 × C15, we cascade a modular multipli-
cation with modular addition to perform the reduction stage.
Eventually, performing a modular addition between 19×C15

and P14 × 214×17 + . . .+ P0 leads to modular multiplication
result.

B. Design II: Area-Time Efficient Architecture

The presented area-time efficient architecture considers a
trade-off between recourse utilization and required time in
comparison with fast and small architectures. In this archi-
tecture shown in Fig. 1-(b), modular multiplication is imple-
mented by 2-level Karatsuba multiplication. One of the most
important features for efficient architecture is utilization ratio
determined by:

UtilizationRatio % =
Utilization T ime

Total T ime
× 100 (5)
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Figure 1. The proposed architectures for different performance levels: Top level architecture: (a) The arithmetic units architecture in the proposed lightweight
design, (b) The arithmetic units architecture in the proposed area-time efficient design, and (c) The arithmetic units architecture in the proposed high-performance
design.

In the area-time efficient architecture, we maximize utiliza-
tion ratio for arithmetic units by concurrent computations and
pipelined multiplications.

1) Modular Addition/Subtraction: This unit is implemented
by two addition/subtraction operations. The first operation
computes C = A ± B in one cycle and sets carry/borrow
flag. The second operation takes the value C and computes
C ′ = C ± 19 during next cycle. The carry/borrow flag deter-
mines the correct output between C and C ′ which should be
stored into RAM. Therefore, modular addition/subtraction can
be performed in 4 cycles including computations and RAM
communication. Modular addition/subtraction is performed
in parallel with modular multiplication. Thus, its latency is
absorbed by multiplication cycles to increase utilization ratio.

2) Modular Multiplication: Multiplication is executed by
combination of Karatsuba and combo methods. Centerpiece
of the multiplication unit is 64-bit by 64-bit combo multiplier
using 4 DSP components. To improve the delay of combo
multiplier, the first and last embedded pipeline stages of DSP
are used. 2-level Karatsuba multiplications are applied on 255-
bit inputs to convert them to 9 partial multiplications. Then,
partial multiplications are computed in parallel by combo
multipliers in 8 cycles. In order to design high-throughput
schemes, multiplication and reduction stages are interleaved
employing pipeline architecture. Thus, modular multiplication

latency is only 8 cycles after the first multiplication.
C. Design III: High-Performance Architecture

The most important component of arithmetic unit is modular
multiplication. This unit is performed in both Montgomery
ladder and FLT computations, and its performance roughly
determines that of the entire architecture. It consists of a
multiplication algorithm followed by a reduction stage. There
are several multiplication algorithms which can be considered
for the area or time optimization (e.g., Schoolbook or Toom-3
methods). For ECC computation over prime field, Karatsuba
multiplication [21] has suitable efficiency in comparison with
other methods [12], [22].

Different levels of Karatsuba can be applied on 256-bit
by 256-bit multiplication shown in Fig. 2. Using more than
4-level Karatsuba reduces utilization of DSP resources due
to DSP specifications which takes 25-bit by 18-bit signed
numbers as inputs. Therefore, 1 to 4 levels of Karatsuba are
considered for modular multiplication. Although increasing
the levels of Karatsuba reduces required latency for mul-
tiplication, it expands addition tree which limits maximum
operation frequency and raises area utilization. As a result, we
should consider the compromise between latency, frequency
and resource utilization. Fig. 3 presents total required time,
resource utilization and A · T (area×time) to compute a point
multiplication based on different applied levels of Karatsuba
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multiplication. According to this figure, 4-level Karatsuba
results in minimum latency and utilized almost 2 times more
resources compared to 2-level Karatsuba. Eventually, 4-level
Karatsuba has the best performance in terms of A·T compared
to other implementations.

The proposed high-performance architecture is illustrated in
Fig. 1-(c). This architecture includes a Controller, ROM, Mod-
ular Addition and Modular Multiplication. Controller takes
instruction code corresponding to each cycle from ROM to
compute Q = k · P . In order to reduce loading and storing
cycles, register files are used instead of RAM in this design.
Thus, all required addresses are read in one cycle from ROM
to speed up the computations.

1) Modular Addition/Subtraction : This unit is imple-
mented based on Carry-Compact Addition (CCA) scheme
introduced in [23]. Our developed adder can significantly
reduce the critical path in an FPGA target by choosing
different parameters for area and time efficiency in order to
combine carry-look ahead and parallel prefix adders. Two
main parameters in designed CCA are L and H for level of
carry chain and hierarchy level, respectively. For computing
modulo p, two addition units are cascaded and both are 255-
bit. The first unit performs C = A + B, and the second unit
performs the reduction C mod p. L = 30 and H = 2 are
found experimentally for our target FPGA, which causes the
minimum critical path.
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Figure 4. Design I data dependency diagram for one step Montgomery ladder
execution over Curve25519.

2) Modular Multiplication: In proposed high-performance
architecture interleaved multiplication is designed for maxi-
mizing the performance. All partial multiplication steps are
performed in one cycle using 4-level Karatsuba multiplication,
while 81 DSP components work in parallel. Using modulo
2p = 2256 − 38 in intermediate steps for the fast reduction,
C = A × B with 387-bit is achieved from consecutive
Karatsuba multiplication.

Reduction computation follows multiplications using mod-
ulo p = 2255 − 19 at the end of computation using developed
CCA. Reduction is applied on C as follows:

Cl ←C(254 . . . 0) (6)
Ch ←C(386 . . . 255) (7)
t0 ← (Ch + (Ch << 1)) + (Cl + (Ch << 4)) (8)
t1 ←t0 − p (9)

Additionally, we employ several registers between stages
to design high-throughput architecture. Therefore, low latency
modular multiplication is performed in 3 clock cycles.

IV. FPGA IMPLEMENTATIONS

In this section, scheduling, latency, implementation consid-
erations and SCA protection methods are discussed. In all
designs, we implement modular inversion with 265 modular
multiplications performed after point multiplication.
A. Design I: Lightweight Implementation

Fig. 4 demonstrates lightweight architecture data depen-
dency for executing Montgomery ladder. As described in
Section III-A, reduction is implemented by modular addition
which follows multiplication. Modular addition and modular
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multiplication required cycles are 61 and 277 clock cycles,
respectively.
B. Design II: Area-Time Efficient Implementation

Fig. 5 shows Montgomery ladder scheduling for area-
time efficient architecture. The latency of modular addi-
tion/subtraction, multiplication and reduction are 4, 8 and 4
clock cycles, respectively. As detailed in Section III-B, mod-
ular addition and reduction latencies are absorbed by modular
multiplication due to interleaved architecture. Additionally,
multiplier is kept busy most of the time to maximize the
utilization ratio which can be calculated by 80

88 × 100 ' 91%.
C. Design III: High-Performance Implementation

Montgomery ladder scheduling for fast architecture is il-
lustrated in Fig. 6. According to this figure, PA and PD
are executed in only 13 cycles using carry-compact addition
and 4-level consecutive Karatsuba multiplication. Modular
multiplication requires 3 clock cycles, while it is interleaved
by the pipeline strategy described in Section III-C.

The critical path of the circuit is almost 17 ns. According
to (8), an addition tree is implemented using one 256-bit
CCA and two parallel CCAs which have 133-bit and 255-
bit width. CCA implementation causes 11.3% improvement
in comparison with regular addition due to its low latency
architecture.
D. Side-Channel Protected Implementation

Various side-channel attack countermeasures are embedded
in proposed architectures. 387-bit fresh random value (255 bits
for λ, 129 bits for r and 3 bits for address randomization) are
required for SCA resistant scheme. Since designing the ran-
dom number generator is not in scope of this study, we assume
it is delivered externally. Point randomization is achieved by
using (λ ·xP , λ) as a randomized projective coordinate where
XP = λ · xP and ZP = λ. This approach dose not change
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Figure 6. Design III data dependency diagram for one step Montgomery
ladder execution over Curve25519.

area utilization, since the proposed architectures are variable-
base-point implemented and accept different base points for
every operation.

In [11], authors proposed that at least half of bit size #E for
r is required in order to prevent advanced SCA [24]. Addition
between k and r×#E generates a 384-bit scalar which causes
executing 384 Montgomery ladder steps instead of 255 steps.
Therefore, applying scalar blinding increases latency. Similar
to [10], we suppose blinded scalar is provided externally.

Memory address scrambling as the third strategy does not
have significant overhead for Design I and Design II, because
just the LFSR is added to them. In Design III, the register
files are expanded to provide 23 times larger space compared
to the required memory.

V. IMPLEMENTATION RESULTS AND COMPARISON

Our proposed point multiplication architectures for
lightweight, area-time efficient, and high-performance designs
are synthesized with Xilinx Vivado 2019.2 on a Xilinx
Zynq-7020 FPGA device. All given results are obtained
after place-and-route (PAR). We report the area and time
specifications for our proposed work and compare to the
counterparts in Table I. As one can see, the results are
compared in terms of A · T and Ad · T , where A, Ad and
T are required area, DSP block, and time, respectively. To
have a fair comparison, we also employ an equivalent area
utilization to provide a baseline comparison. To investigate
the equivalent slice number corresponding, the Vivado
synthesis tool configuration has been changed to use only
LUT instead of DSP. Therefore, we recognized one DSP is
almost equivalent to 100 occupied Slices.
Results for Design I: The lightweight architecture requires
only few resources on our target device, i.e., 110 (0.8%) of
the Slices, 1 (0.5%) of DSP block and 1 (0.7%) BlockRAM. It
occupies 90% less resources compared to [9], [10]. According



Table I
FPGA IMPLEMENTATION RESULTS FOR DIFFERENT PERFORMANCE LEVEL ARCHITECTURES

Work Platform
Area Time

A · T Ad · T
LUTs FFs Slices DSPs BRAMs Latency Freq Total time

[cc] [MHz] [µs] (10−3) (10−3)
Lightweight Architecture

[9], [10] XC7Z020 2,783 3,592 1,029 20 2 79,400 200 397 1,203 (6.1%) 7.9 (31.6%)
[15] Zynq SoC 2,707 962 775 15 0 75,000 105 714 1,624 (30.4%) 10.7 (49.5%)
[16] Zynq 7000 7,380 3,141 ~ 0 0 70,370 137.5 512 1,511 (25.2%) ~

[25]† Mont. XC7Z020 1,069 1,894 565 16 7 58,967 190 310 671 5.0
Our Design I XC7Z020 290 277 110 1 1 1,076,251 200 5381 1,130 5.4

Area-Time Efficient Architecture
[9], [10] XC7Z020 2,783 3,592 1,029 20 2 79,400 200 397 1,203 (22.4%) 7.9 (35.4%)

[16] Zynq 7000 7,380 3,141 ~ 0 0 70,370 137.5 512 1,511 (38.2%) ~
[25]† End. XC7Z020 4,217 4,413 1,691 27 10 29,739 190 157 689 4.2

Our Design II XC7Z020 7,364 3,995 2,951 36 5.5 27,973 196 143 934 5.1
High-Performance Architecture

[14] XC7Z020 12,989 2,705 3,362 182 0 3,858 87 44 948 (9.3%) 8.0 (28.8%)
[12] Zynq 7030 26,483 21,107 8,639 260 0 13,639 115 118 4,087 (79%) 30.7 (81.4%)
[13] Zynq 7030 17,939 21,077 6,161 175 0 10,465 115 92 2,177 (60.5%) 16.1 (64.6%)

Our Design III XC7Z020 14,337 4,107 4,237 81 0.5 4,117 60 70 860 5.7
†These designs use FourQ Curve.

Table II
FPGA IMPLEMENTATION RESUTLS FOR SIDE-CHANNEL PROTECTED ARCHITECTURES

Work Platform
Area Time

A · T Ad · T
LUTs FFs Slices DSPs BRAMs Latency Freq Total time

[cc] [MHz] [µs] (10−3) (10−3)
[11] XC7Z020 2,077 4,223 1,006 20 2 11,4980 200 575 1,728 11.5
[14] XC7Z020 23,709 9,837 5,928 170 0 5,289 81 65 1,490 11

Our Design I XC7Z020 344 401 160 1 1 1,692,412 200 8,462 2,200 8.5
Our Design II XC7Z020 7,462 4,188 3,018 36 5.5 42,464 196 217 1,434 7.8
Our Design III XC7Z020 24,817 9,285 6,183 81 0.5 6,178 60 103 1,471 8.3

to our Design I in Fig. 4, one step Montgomery ladder is
performed in 18A + 10M = 18 × 61 + 10 × 277 = 3,868
clock cycles. As shown 255 Montgomery ladder computations
followed by 265 modular multiplications are executed in
1,076,251 clock cycles to compute a point multiplication.
This lightweight architecture computes more than 185 key
sessions per second. We observe that A · T is 1,130 which
shows 6.1%, 30.4% and 25.2% improvement compared to [9],
[10], [15] and [16], respectively. Moreover, the lightweight
architecture reduces 31.6% and 49.5% Ad · T in comparison
to [9], [10] and [15], respectively.
Results for Design II: Our proposed area-time efficient
architecture requires 143 µs for computing a point
multiplication. Design II needs 2A + 10M = 88 cycles
for performing Montgomery ladder shown in Fig. 5. Each
iteration of inversion needs to execute a multiplication and
reduction procedure which take (8 + 4)× 265 = 3,180 clock
cycles. Considering required cycles for handling the units
and loading and storing in RAM, its latency is 27,973 clock
cycles to compute a point multiplication. This design uses
silicon area more than lightweight architecture and less than
high-performance design, i.e., 2,951 Slices, 36 DSPs, and
5.5 BlockRAMs. Additionally, its latency is 38 times less
than the proposed lightweight design and 6.8 times more
than the high-performance architecture. Thus, this design can

be considered for some applications which needs a trade-off
between area and time. According to Table I, the area-time
efficient architecture shows 22.4% and 38.2% decrease in
A · T compared with [9], [10] and [16], respectively. Also, it
is almost 64% faster than [9], [10] occupying only 16 more
DSPs.
Results for Design III: Our proposed high-performance
design employs 4-level consecutive Karatsuba multipliers
utilizing 4,237 Slices, 81 DSPs and 0.5 BlockRAM, and its
total latency is equal to 4,117 clock cycles which can be
calculated by 13× 255+ 3× 265 = 4,110 plus 7 clock cycles
for initialization/handling the units. The circuit maximum
operation frequency is dropped to 60 MHz due to addition
tree circuit. However, a session key can be computed in
70 µs. This architecture has 9.3% improvement in terms of
A · T metrics in comparison to [14]. Furthermore, the critical
resource in FPGA is DSP component which has significant
effect on performance. In [14], 182 DSPs are utilized which
are 82.7% of total resources. Our proposed design saves
55.5% DSPs compared to [14], and its performance is 28.8%
more efficient in terms of Ad · T metric.

Between different architectures for providing 128-bit secu-
rity level, the work in [25] shows better performance employ-
ing FourQ curve. These architectures use simpler arithmetic
in Fp2 over Mersenne prime. However, FourQ curve has not
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Figure 7. FPGA implementation performance in terms of A · T for different
architectures.

been investigated for side-channel analysis and has not been
standardized/recommended for standardization by NIST.

All reported implementations over Curve25519 are illus-
trated in Fig. 7 for better visualization and comparison. Ac-
cording to this figure, there are different optimization goals
based on application. Our lightweight architecture is close
to x-axis where area-constraints are considered, while the
proposed high-performance design is so nearby to y-axis
where time-constraints have more priority. Meanwhile, the
area-time efficient architecture is placed between them. As
one can see from Fig. 7, the proposed implementations are all
superior in their respective use case.

We also added side-channel resistant considerations to the
proposed architectures, and the results are reported in Table II.
According to this table, our proposed architectures outperform
the designs in [11] and [14].

VI. CONCLUSION

In this paper, we offer three hardware design strategies
for recently proposed elliptic curve Curve25519 implemented
on Xilinx Zynq-7020 FPGA. In these designs, one scalar
point multiplication is computed in 5.4 ms, 143 µs and 70
µs for lightweight, area-time efficient and high-performance
architectures, respectively. Additionally, the required resources
for these architectures are less than the one in previous work.

The proposed architectures improve point multiplication
over Curve25519 in terms of A · T and Ad · T employ-
ing pipelined architecture, low latency CCA and interleaved
multiplication. Additionally, efficient scheduling for parallel
computation is designed to high performance. Various side-
channel attack countermeasures are embedded in proposed
architectures.
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