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Abstract

In this note, we study the security of oblivious transfer protocols in the
presence of adversarial superposition queries. We define a security notion
for the sender against a corrupted receiver that makes a superposition
query. We present an oblivious transfer protocol that is secure against a
quantum receiver restricted to a classical query but it is insecure when the
receiver makes a quantum query. In addition, we present an OT protocol
that resists to the attack presented in this paper. However, we leave
presenting a security proof for this protocol as a direction for the future
work.
Keywords. Oblivious Transfer, Post-Quantum Security, Superposition
Attack.

1 Introduction

The oblivious transfer (OT) [Rab05] is a fundamental cryptographic primitive
which allows a receiver to obtain one out of two inputs held by a sender, while
the receiver learns nothing on the other input and the sender learns nothing at
all (in particular, the input that the receiver receives). Later [Cré87] showed
that one-out-of-two OT is equivalent to the more generic case of one-out-of-n
OT, where the sender holds n inputs and the receiver receives one of them. The
importance of oblivious transfer is exemplified by a result by Goldreich, Micali,
and Wigderson [GMW87], where they prove that OT is MPC-complete, meaning
that it can be used as a building block to securely evaluate any polynomial-time
computable function without any additional primitive. Studying the security
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of this primitive becomes then of paramount importance, especially in light of
the advent of quantum computers, that numerous computer scientists and ex-
perts consider as imminent. When talking about attacks mounted through a
quantum computer, there is usually some ambiguity in the terminology and its
meaning. When an assumption is deemed “quantum resistant”, it means that
the underlying problem is supposed to be hard to solve even for a quantum
computer. However, building protocols that rely on quantum resistant assump-
tions might not be sufficient to claim that the protocol itself cannot be broken
with a quantum computer. The security essentially and crucially depends on
the adversarial model that we consider. One way to look at the problem is
imagining that the communication channels that connect the parties involved
in the protocol are purely classical, meaning that they can transport only clas-
sical information. Indeed, in this case it seems that instantiating the protocol
from quantum quantum resistant problems is sufficient to obtain the desired
proof of security.

However, in a line of works started in 2010, Kuwakado and Morii [KM10]
put forward a new and more general adversarial scenario. In this model, all
the communication channels controlled by the malicious parties support the
transmission of quantum information while the honest parties uses classical
constructions and communication. They show that 3-round Feistel cipher is
distinguishable from a random permutation when the adversary has quantum
access to the primitive. Subsequently, there have been extensive research works
to consider this model to define the security definition for the classical cryp-
tographic constructions and prove the security with the respected definition:
quantum secure pseudo-random functions [Zha12, Zha16], encryption schemes
[BZ13b, GHS16, MS16, ATTU16, CEV20, CETU20], message authentication
codes and signature schemes [BZ13a, AMRS18], hash functions [Zha15, Unr16],
multi-party computation protocols [DFNS13], and etc.

Security in this general model is harder to achieve, as the adversary is no
longer limited to attacking the protocol and the underlying problems with a
quantum computer, but can also send messages in superposition and try to take
advantage of this in order to extract information from the protocol’s transcripts.
For instance in [KM10], the authors use Simon’s algorithm [Sim97] to recover the
hidden (for a classical adversary) periodicity in 3-round Feistel cipher. Similarly,
the Simon’s algorithm has been used in [KM12, KLLN16] to break the security
of the Even-Mansour construction and some message authentication codes.

In this paper, we study the security of the OT protocols in the presence
of superposition queries. The motivation to consider this general model to
prove the security of OT protocols can be similar to the reasons presented in
the previous works [DFNS13, ATTU16] that consider this general model: 1) a
classical OT protocol can be used as a part of a quantum protocol that actively
uses quantum communications. So obviously the OT protocol may be run in
superposition. 2) to prove the security of some of classical protocols against
a quantum adversary, intermediate games in the security proof may actually
contain honest parties that will run in superposition (for instance the security
of zero-knowledge proof systems against a quantum adversary [Unr12, Wat09]).
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So to prove the security of such a systems, we may need to prove the security of
cryptographic constructions in the presence of adversarial superposition queries.
3) the miniaturization of classical devices that may reach a quantum scale, etc.

1.1 Related Works

Unconditionally secure quantum OT protocols. In [Lo98, SSS15], the
authors show that an unconditionally secure oblivious transfer protocol is not
achievable even using quantum systems. This is in contrast to the key distri-
bution task that is achievable with the unconditional security using quantum
communication and systems [BB84]. Therefore, the alternative is to design an
OT protocol that is computationally secure and obviously in the light of an
adversary with the quantum computing power, the computational assumption
needs to be quantum secure.

Computationally secure OT protocols against a quantum adversary.
Usually, the security of OT protocols will be proven in an Universal Composabil-
ity (UC) [Can01] style security model in which a real protocol will be compared
with an idea protocol. The real protocol is secure if there exists a simulator
that is interacting with the ideal protocol and it successfully mimics the be-
haviour of the adversary. The first translation of the UC framework to the
quantum setting appears in [Unr10] by Unruh. Later in [LKHB17], the authors
prove the security of the oblivious transfer protocol presented in [PVW08] in
the Unruh’s model. However, we emphasize that in the Unruh’s model, the
adversary is not allowed to make superposition queries to the protocol and the
ideal functionality measures the inputs of the adversary in the computational
basis. Considering that the adversary can make the superposition queries the
UC style security model need to be revisited. In [DFNS13], the authors address
this problem. However, they show that simulation based security is not pos-
sible for the model that gives more power to the adversary. In more details,
they show that the simulation is impossible in the model with supplied response
registers by the adversary. They achieve positive result by restricting the ad-
versary. Even considering a restricted adversary, they show that any protocol
secure in this model is “non-trivial” that means the protocol can not be proven
secure by running the classical simulator in superposition and the simulator has
to be “more quantum”.

1.2 Our Contribution

In this paper, we study the security of OT protocols in the presence of adver-
sarial superposition queries. We choose a different approach from [DFNS13] to
study the security of OT protocols against superposition queries. We define
an indistinguishability based security notion against adversarial superposition
queries.
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Why not UC-style security model? Ideally, we may want to modify the UC-
style security model to guarantee the security against adversarial superposition
queries (as in [DFNS13]). This means that a real world protocol may be executed
in superposition by the adversary. Therefore to have a meaningful security
model, we need to consider an ideal protocol that will be run in superposition
too (in other words, the ideal functionality will not measure the quantum queries
of corrupted parties as in [Unr10]). Now, we will encounter obstacles to define
an ideal OT protocol secure against superposition queries. To illustrate this,
let assume an one-out-of-two (1-2) bit OT protocol. Roughly speaking, an ideal
functionality for 1-2 bit OT protocol can be define as [CLOS02]:

• Upon receiving messages m0,m1 from the sender, store the messages.

• Upon receiving a message b from the receiver, send mb to the receiver (if
the messages m0,m1 are stored) and halt.

We naively run this ideal functionality in superposition considering a corrupted
receiver. A corrupted receiver can send a superposition of its inputs using a
quantum input register Qin (for instance the state 1√

2
(|0〉+ |1〉)Qin

) to the ideal

functionality. The ideal functionality needs to answer with a superposition of
outputs using a quantum register Qout ( 1√

2
(|m0〉+ |m1〉)Qout

if Qout is initiated

with 0 by the ideal functionality). At this stage, a corrupted receiver can posses
a superposition of this form:

|Ψ〉 :=
1√
2

(|0〉Qin
|m0〉Qout

+ |1〉Qin
|m1〉Qout

).

When m0 = m1, this state |Ψ〉 can be written as

1√
2

(|0〉+ |1〉)Qin
⊗ |m0〉Qout

.

Therefore, a measurement in the {|+〉, |−〉} basis on Qin register will return
|+〉 with probability 1. But when m0 6= m1, this measurement returns |+〉 or
|−〉 with probability 1

2 . Therefore, overall, the corrupted receiver can guess if
the inputs of the sender are the same or not with probability 3

4 . The situa-
tion becomes more troublesome if the output register will also be provided by
the corrupted receiver. In this case the receiver can execute the Deutsch–Jozsa
algorithm [DJ92] to recover if m0 = m1 or m0 6= m1 with probability 1. Obvi-
ously, this implementation of the ideal OT functionality leaks the parity of the
sender’s inputs to a corrupted receiver.

In contrast, we observe that in the real world, a corrupted receiver may not
be able to produce such a superposition state as |Ψ〉. This is due to the fact
that an implementation of a superposition query to a real protocol may produce
some auxiliary registers that remains entangled with the input register Qin even
when m0 = m1 (see subsection 3.2 and Appendix A). So the attack sketched
above will not work in this case.
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So, we may encounter a situation that a real classical OT protocol remains
secure against adversarial superposition queries, but, as discussed above the
(classical) ideal OT functionality will be insecure against superposition queries.
For this reason, in this paper we choose a different approach and study the secu-
rity of OT protocols against superposition queries using an indistinguishability
based security model.

Our definition and result. To define an indistinguishability based security
definition, first, we need to discuss which party in an OT protocol may be able
to break the security of the protocol with a superposition query. Note that an
OT protocol is a two party protocol in which the receiver queries the sender
and the sender replies to the receiver’s query. Then, the receiver extracts the
targeted input from the sender’s answer. Therefore, there is no direct query
from the sender to the receiver. So if we consider a malicious sender and a
honest receiver, since the receiver’s query is classical all the communication will
be classical. However, if we consider a malicious receiver and a honest sender,
since the receiver’s query can be in superposition, then the answer of the sender
is in superposition too. So a malicious quantum receiver may be able to extract
some information about the inputs of the sender from the superposition state.
Therefore, we consider the security of the sender against a quantum receiver that
makes a superposition query in this paper. Considering an 1-2 bit OT protocol,
in our security definition the sender chooses two random bits as inputs. The
quantum receiver makes a quantum query to the sender and outputs a bit at the
end. We say that the oblivious protocol is secure if the quantum polynomial-time
receiver can guess the parity of the sender’s inputs with at most a probability
negligibly bigger than 1

2 . We generalize the security definition to more general
OT protocols. (See subsection 3.1.) We show that if the OT functionality will be
available to the receiver through an obfuscated program, the receiver can recover
the parity of the sender’s inputs with high probability. (See subsection 3.3.) In
subsection 3.4, we design an OT protocol based on a fully homomorphic public-
key encryption scheme and show that this scheme is secure when the receiver
makes a classical query, but, it is insecure when the receiver makes a quantum
query. We instantiate the protocol with a lattice based public key encryption
scheme that is fully homomorphic. From the discussion in subsection 3.2, we
conjecture that the security against a superposition query can be achieved for
some OT protocols. Specifically, in the Appendix A, we present an OT protocol
in which the direct application of the superposition attack presented in this
paper on the protocol will not be successful. However, we leave the proof of the
quantum security as an open question and a direction for a future work.

1.3 Organization of The Paper

In section 2, we present some preliminaries and notations that are needed in
this paper. Next, in section 3, we present our result. This section consists of
a security definition for the sender against a malicious quantum receiver that
is permitted to make a superposition query (see subsection 3.1). It consists of
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a discussion subsection on how a malicious receiver with a superposition access
can break the security of an OT protocol. In the positive side, we show that
a superposition query to an OT protocol may cause some ancillary registers
that are entangled with the input register and therefore they will prevent the
attack to go through (an actual protocol that resists to the attack is presented
in Appendix A). In the negative side, we present some cases that the attack is
successful. Later in subsection 3.4, we present an OT protocol based on a fully
homomorphic encryption scheme that is vulnerable when the receiver makes a
superposition query. But is is secure against a malicious receiver restricted to
a classical query. We finish our paper with a section on conclusion and open
problems.

2 Preliminaries

Notation. We say a function f from the natural numbers to the real numbers
is negligible if for any positive polynomial P there exists a positive integer N
such that for any input n ≥ N , |f(n)| ≤ 1

P (n) . We use “neg(η)” to show a

negligible function in the security parameter η. The notation [n] depicts the set
{1, 2, · · · , n}. For two bits b0, b1, the notation [b0 = b1] indicates the parity of
two bits. For two distributions D1 and D2 defined over the finite set X , the
statistical distance between them is define as

∆(D1,D2) =
1

2

∑
x∈X
|Pr[D1 = x]− Pr[D2 = x]|.

We say two distributions are statistically close if the statistical distance between
them is a negligible function in the security parameter.

Quantum computation. We briefly recall some basic of quantum information
and computation needed for our paper below. Interested reader can refer to
[NC16] for more information. For two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn) and |Φ〉 =
(φ1, φ2, · · · , φn) in Cn, the inner product is defined as 〈Ψ,Φ〉 =

∑
i ψ
∗
i φi where

ψ∗i is the complex conjugate of ψi. Norm of |Φ〉 is defined as ‖|Φ〉‖ =
√
〈Φ,Φ〉.

The n-dimensional Hilbert space H is the complex vector space Cn with the
inner product defined above. A quantum system is a Hilbert space H and a
quantum state |ψ〉 is a vector |ψ〉 in H with norm 1. An unitary operation over
H is a transformation U such that UU† = U†U = I where U† is the Hermitian
transpose of U and I is the identity operator over H. The computational basis
for H consists of log n vectors |bi〉 of length log n with 1 in the position i and 0
elsewhere. With this basis, the unitary CNOT is defined as

CNOT : |m1,m2〉 → |m1,m1 ⊕m2〉,

where m1,m2 are bit strings. The Hadamard unitary is defined as

H : |b〉 → 1√
2

(
∣∣b̄〉+ (−1)b|b〉),
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where b ∈ {0, 1}. The control-swap unitary is defined as

|b〉|ψ0〉|ψ1〉 → |b〉|ψb〉|ψb̄〉,

for b ∈ {0, 1}. An orthogonal projection P over H is a linear transformation
such that P2 = P = P†. A measurement on a Hilbert space is defined with
a family of orthogonal projectors that are pairwise orthogonal. An example of
measurement is the computational basis measurement in which any projection
is defined by a basis vector. The output of computational measurement on state
|Ψ〉 is i with probability ‖〈 bi,Ψ〉‖2 and the post measurement state is |bi〉. For
two quantum systems H1 and H2, the composition of them is defined by the
tensor product and it is H1 ⊗H2. For two unitary U1 and U2 defined over H1

and H2 respectively, (U1 ⊗ U2)(H1 ⊗ H2) = U1(H1) ⊗ U2(H2). Any classical
function f : X → Y can be implemented as a unitary operator Uf in a quantum

computer where Uf : |x, y〉 → |x, y ⊕ f(x)〉. Note that it is clear that U†f = Uf .
A quantum adversary has “standard oracle access” to a classical function f if it
can query the unitary Uf . When only the input register will be provided by the
adversary and the output register is initiated with 0 by the oracle, we say the
adversary has “embedding oracle access” to the function. That is, the adversary
has oracle access to the unitary that maps |x, 0〉 → |x, f(x)〉 [CETU20].

1-2 oblivious transfer protocol. An 1-2 oblivious transfer is a two party
protocol between a sender and a receiver:

• The receiver on input a bit b chooses a randomness r and sends R1(b; r)
to the sender..

• The sender on inputs m0,m1 chooses a randomness r′. Then it sends
OT(R1(b; r),m0,m1; r′) to the receiver.

• The receiver applies a function R2 to OT(R1(b; r),m0,m1; r′) to extract
mb.

Informally, the sender’s security will be satisfied if the input mb̄ remains secret
to the receiver after execution of the protocol. The receiver’s security will be
achieved if the sender dose not learn the input of the receiver (the bit b). An
1-n oblivious transfer will be defined similarly. In this case, the sender has n
inputs m0, · · · ,mn and the receiver on input i ∈ [n] will obtain mi at the end
of the protocol. The security is defined similarly.

Deterministic public-key encryption. A deterministic public key encryp-
tion scheme E consists of three polynomial time algorithms (KeyGen,Enc,Dec)
as follows:

• On input of the security parameter, the randomized algorithm KeyGen
returns a pair of keys (pk, sk).

• The encryption algorithm Enc is a deterministic algorithm that on inputs
pk and a message m, returns the ciphertext c := Encpk(m).
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• The decryption algorithm is (possibly randomized) algorithm that on in-
put sk and the ciphertext c := Encpk(m) returns m (with high probability
if the decryption is randomized). For an invalid ciphertext, the decryption
returns ⊥.

Fully homomorphic public-key encryption scheme [Gen09]. A fully
homomorphic public-key encryption scheme consists of three polynomial-time
algorithms (KeyGen,Enc,Dec,Evaluate) as follows:

• On input of the security parameter, the randomized algorithm KeyGen
returns a pair of keys (pk, sk).

• The encryption algorithm Enc is a randomized algorithm that on inputs
pk and a message m, chooses a randomness r and returns the ciphertext
c := Encpk(m; r).

• The decryption algorithm is (possibly randomized) algorithm that on in-
put sk and the ciphertext c := Encpk(m) returns m (with high probability
if the decryption is randomized). For an invalid ciphertext, the decryption

• The Evaluate algorithm is an (possibly randomized) algorithm that on
input any (pk, sk) generated by KeyGen, for any circuit C and any ci-
phertexts ci := Encpk(mi; ri) for i ∈ [n], returns a ciphertext

α = Evaluatepk(C, ci, · · · , cn)

such that Decsk(α) = C(m1, · · · ,mn).

Definition 1. We say a fully homomorphic encryption scheme is “circuit-
private” if for any (pk, sk) generated by KeyGen, any circuit C and any cipher-
texts ci := Encpk(mi; ri) for i ∈ [n], the two distribution Encpk(C(m1, · · · ,mn))
and Evaluatepk(C, ci, · · · , cn) are statistically close.

3 Our Result

In this section, we define a security definition that takes into consideration
adversarial superposition queries made by a malicious receiver. Then, we present
a discussion about how general OT protocols may be vulnerable to such queries
and what will be a possible solution to avoid such attacks. Later, we present an
actual protocol that will be broken in this model.

3.1 Security Definition

We define the security notion for the sender against a malicious receiver. First,
we assume that the sender’s database contains two bit entries, i.e., m0, m1

∈ {0, 1} and we generalize the security notion to bitstrings later. To capture the
sender’s security, we define the security definition through the following game.
We say a 1-2 bit OT protocol is computationally secure against a malicious
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quantum receiver if any polynomial-time adversary wins the following game
with probability at most 1

2 + negl(η).

Game 1. OT bit
2 -MR Game: (MR stands for malicious receiver)

Sender’s input: The challenger picks two bits m0,m1 uniformly at random.
Challenge query: The adversary on input b ∈ {0, 1} sends two quantum reg-
isters Qin, Qout to the challenger. The challenger applies UOT(·,m0,m1;r′) to
quantum registers Qin, Qout and send both registers to the adversary.
Guess: The adversary outputs a bit δ and wins if δ = [m0 = m1].

Definition 2. We say an 1-2 bit OT protocol is computationally secure against
a malicious quantum receiver if any polynomial-time quantum adversary wins
the OT bit

2 -MR Security Game with probability at most 1
2 + negl(η).

Restricted to an adversary that is only allowed to make a classical query,
the definition captures the sender’s security because the adversary can recover
the bit mb from OT (R1(b),m0,m1; r′) by the correctness property of the OT
protocol. Then learning if the unrecovered bit is the same as the recovered bit
or not should be negligibly close to 1

2 .

We generalize the security notion for a 1-2 bitstring oblivious transfer. We
say a 1-2 bitstring OT protocol is computationaly secure against a quantum
malicious receiver if any polynomial-time quantum adversary wins the following
game with probability at most 1

2 + negl(η).

Game 2. OT bitstring
2 -MR Game:

Sender’s input: The challenger picks two bitstrings M0 = (m1
0, . . . ,m

`
0),M1 =

(m1
1, . . . ,m

`
1) uniformly at random, that is, M0

$←− {0, 1}`,M1
$←− {0, 1}`.

Challenge query: The adversary on input b ∈ {0, 1} sends two quantum reg-
isters Qin, Qout to the challenger. The challenger applies UOT(·,M0,M1;r′) to
quantum registers Qin, Qout and send both registers to the adversary.
Guess: The adversary outputs a bit δ and an index i ∈ [`]. The adversary wins
if δ = [mi

0 = mi
1].

Roughly speaking, fulfilling the security definition above guarantees that the
adversary can not learn even one bit of the unrecovered message.

Similarly we can extend the security notion to the 1-n OT protocols. We
assume that the sender’s database contains n bit entries, i.e., m1, . . . , mn

∈ {0, 1}. To capture the sender’s security, we define the security definition
through the following game. We say a 1-n bit OT protocol is computationally
secure against a malicious quantum receiver if any polynomial-time quantum
adversary wins the following game with probability at most 1

2 + negl(η).

Game 3. OT bit
n -MR Game:

Sender’s input: The challenger picks n bits m1, . . . , mn uniformly at ran-
dom.
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Challenge query: The adversary on input b ∈ {0, 1} sends two quantum reg-
isters Qin, Qout to the challenger. The challenger applies UOT(·,m1, ..., mn;r′) to
Qin, Qout and then sends both registers to the adversary.
Guess: The adversary outputs a bit δ and two index i 6= j ∈ [n]. The adversary
wins if δ = [mi = mj ].

The definition above can be generalized to the bitstrings similarly.

Security of the receiver. Let R1 be a randomized function that the receiver
applies to its input b and then sends the result to the sender. Let R be the
set of randomness. Defining the security definition against a corrupted sender
is straightforward, namely, a malicious quantum polynomial-time sender should
not be able to guess the receiver’s input b (that is chosen uniformly at random
in the game) from R1(b; r) with probability non-negligibly more than 1

2 .

Definition 3. We say an OT protocol is secure against a quantum malicious
sender if for any quantum polynomial-time distinguisher D,

|Pr[D(R1(0; r0)) = 1; r0
$←− R]− Pr[D(R1(1; r1)) = 1; r1

$←− R]| ≤ 1

2
+ neg(η).

3.2 Discussion

In this section, we implement a superposition query to an OT protocol. Note
that the purpose of this section is to illustrate the ideas used in the superposition
attacks on some specific OT protocols in later sections. This section also explains
the challenges that appear when we want to implement such an attack on more
general OT protocols and it opens a direction to design a secure OT protocols
in the presence of adversarial superposition queries. Recall that any boolean
function f : X → Y can be implemented efficiently as a unitary operator Uf :
|x〉|y〉 → |x〉|y ⊕ f(x)〉 using quantum gates [NC16]. Let R1 be a randomized
function that is applied by the receiver on its input. Then, the UR1 is an unitary
operation applied by the receiver that maps

|b〉|y〉 → |b〉|y ⊕ R1(b; r)〉.

The UOT is an unitary operation applied by the sender that maps

|R1(b; r)〉|y〉 → |R1(b)〉|y ⊕OT(R1(b; r),m0,m1; r′)〉,

where m0 and m1 are sender’s inputs. Let R2 is a function applied by the
receiver to extract mb from OT(R1(b; r),m0,m1; r′). Then, UR2 maps

|b〉|R1(b; r)〉|OT(R1(b; r),m0,m1; r′)〉|y〉

to
|b〉|R1(b; r)〉|OT(R1(b; r),m0,m1; r′)〉|y ⊕mb〉.

Note that R2 ◦OT ◦R1 is a function from {0, 1} to {0, 1} that is constant when
m0 = m1 and it is balanced when m0 6= m1. Now we may be able to use
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the Deutsch-Jozsa (DJ) algorithm [DJ92] to decide if the function is constant or
balanced with the probability 1 and breaks the security in the sense of Definition
2. However, the function OT will be applied by the sender and may produce
some garbage in an ancillary register. These garbage information can not be
undone by the sender and therefore it may interfere the analysis of the DJ
algorithm. (In Appendix A, we present an OT protocol in which such a scenario
happens and the ancillary register that contains some unknown information from
the receiver’s point of view will prevent the OT protocol to be attacked.) In the
following, we implement the DJ algorithm to attack the OT protocols.

Qb :|0〉 H
UR1(·,r)

UR2

UR1(·,r)

H

Qin :|0〉
UOT(·,m0,m1;r′)

|0〉

Qout :|0〉

QDec :|1〉 H

In the circuit above, the register Qout contains some garbage information that
will interfere the analysis of the DJ algorithm. One can undone the register
Qout by a second application of OT function as depicted in the circuit below.
But since m0,m1 and the randomness r′ are not known to the receiver, this
second application also have to be done by the sender. Therefore, we will end
up to make two quantum queries to the sender and breaks the security that is
trivially useless. We depict the circuit below that uses two queries to the sender.

Qb :|0〉 H
UR1(·,r)

UR2

UR1(·,r)

H

Qin :|0〉
UOT(·,m0,m1;r′) UOT(·,m0,m1;r′)

|0〉

Qout :|0〉 |0〉

QDec :|1〉 H

Even though the attack may not work for all OT protocols, there might be
some cases that one superposition access will break the security of oblivious
transfers completely. For instance, if the unitary operator UR2 ◦OT can be ap-
plied by the receiver, then the attack will work. We present such a scenario in
the subsection 3.3 using the obfuscated program of OT.

Also, we can use a variant of the DJ algorithm to attack an OT protocol
that satisfies the following:

• OT(R1(0; r),m0,m1; r′) = OT(R1(1; r),m0,m1; r′) when m0 = m1.

In the subsection 3.4, we design an OT protocol that satisfies the property
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above. We draw the circuit below to attack such an OT protocol.

Qb :|0〉 H
UR1(·,r)

UR2

UR1(·,r)

��

H

Qin :|0〉
UOT(·,m0,m1;r′)

|0〉

Qout :|0〉

QDec :|0〉

|Ψ〉
We analysis the output of the circuit. The output of the circuit right before
applying the Hadamard operator is:

|Ψ〉 =
1√
2

(|0〉Qb
|0〉Qin

|OT(R1(0; r),m0,m1; r′)〉Qout
|m0〉QDec

+

|1〉Qb
|0〉Qin

|OT(R1(1; r),m0,m1; r′)〉Qout
|m1〉QDec

).

When m0 = m1. We can write the state |Ψ〉 as follows where we use only m0

in the state.

|Ψ〉 =
1√
2

(|0〉+ |1〉)Qb
)⊗ |0〉Qin

|OT(R1(0; r),m0,m1; r′)〉Qout
|m0〉QDec

.

Therefore, after applying the Hadamard operator, the state will be in |0〉 and
the measurement will return 0 with the probability 1.
When m0 6= m1. In this case, we can not write |Ψ〉 as above and the register
Qb remains entangled with QDec. So the measurement returns 0 with the prob-
ability 1

2 and it returns 1 with the probability 1
2 .

Overall probability of success. Therefore, overall, the attack breaks the
security notion in 2 with the probability 3

4 .

Remark. Note that in the attack above, the output register Qout starts with
zero. Therefore, the attack works even when the malicious receiver has embed-
ding oracle access to the sender that is a weaker oracle access compare to the
standard oracle access. This shows that even measuring the output register by
the sender will not help to prevent the superposition attack.

3.3 Superposition Attack on Obfuscated OT

Here we show that when the malicious quantum receiver possesses the obfus-
cated program of OT(·,m0,m1; r′) where m0,m1 are the sender’s input it can
break the security of OT protocol. In this case, the receiver can implement the
OT protocol on a quantum device and run it on quantum inputs. The attack
uses the Deutsch-Jozsa quantum algorithm [DJ92, CEMM98] that distinguishes
a constant function from a balanced function by one quantum access to the
function. In details, if a function f : {0, 1}n → {0, 1} is promised to be either
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a constant function (it outputs 0 or 1 for all inputs) or a balanced function
(half of the inputs maps to 0 and the other half maps to 1), then Deutsch-Jozsa
algorithm finds if the function is constant or balanced with probability 1 and
using only one quantum query to Uf . We illustrate how the Deutsch-Jozsa
quantum algorithm can be used to break the OT bit

2 -MR security of the obfus-
cated oblivious transfer protocols. Let assume R1 be the operation that will
be done by the receiver on its input b. Let R2 be the function to recover mb

from OT(R1(b; r),m0,m1; r′) that is applied by the receiver. Roughly speaking,
R2 ◦OT ◦R1 is a function from {0, 1} to {0, 1} that is constant when m0 = m1

and it is balanced when m0 6= m1. Therefore, one superposition query to
UR2 ◦OT ◦R1

can break OT bit
2 -MR security with the probability 1. We draw the

circuit to attack in the following that is exactly the DJ algorithm.

Qin : |0〉 H
UR2 ◦OT ◦R1

H

QDec : |1〉 H

3.4 A Separation Example

In this section, we present an OT protocol that is secure against a quantum
adversary that is only allowed to make a classical query, but, it is insecure
when the adversary makes a quantum query. Our protocol is based on a fully
homomorphic lattice-based encryption scheme.

Protocol 1. Let E = (KeyGen,Enc,Dec) is a fully homomorphic public-key
encryption scheme. Let F be a circuit that on input (b,m0,m1) returns (1 −
b)m0 + bm1. We define an OT protocol as follows.

• The receiver on input b ∈ {0, 1} runs KeyGen to generate a pair of keys
(pk, sk). Then it sends pk and cb = Encpk(b; r) to the sender.

• The sender computes c′0 = Encpk(m0; r0) and c′1 = Encpk(m1; r1). Then it
computes cfinal = Evaluatepk(F, cb, c

′
0, c
′
1; r′) and sends it to the receiver.

• The receiver decrypts cfinal using the secret key sk to obtain mb.

Theorem 1. On the existence of a fully homomorphic public-key encryption
scheme that is circuit-private, the Protocol 1 is secure against a quantum polynomial-
time malicious receiver (in the sense Definition 2).

Proof. Since the public-key encryption is circuit-private, then Evaluatepk(F, cb, c
′
0, c
′
1)

is statistically close to Encpk(F (b,m0,m1)) that is Encpk(mb). Therefore, cfinal
is statistically close to Encpk(mb). This finishes the proof because Encpk(mb) is
independent of the bit mb̄.

Instantiation. We can instantiate this protocol with a lattice-based public-key
encryption scheme that is fully homomorphic and it is circuit-private [Gen09,
BPMW16].
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3.4.1 Superposition Attack

We show that when the receiver makes a quantum query, the Protocol 1 will
be broken. Below, we draw the circuit of the attack on the protocol. Then we
compute the output of the circuit and the success probability. Note that in the
circuit below c′0 and c′1 are classical values that the sender computes by encrypt-
ing its inputs. In other words, c′0 = Encpk(m0; r0) and c′1 = Encpk(m1; r1). The
registers Qb, Qin, Qout and QDec are quantum registers provided by the receive
and all are initiated by 0.

Qb :|0〉 H
UEncpk(.;r) UEncpk(.;r)

��

H

Qin :|0〉

UEvaluate(.;r′)

|0〉

|c′0〉

|c′1〉

Qout :|0〉
UDecsk

QDec :|0〉

|Ψ〉
If the measurement returns 0, then the adversary outputs that the inputs of the
sender are the same. Otherwise, it outputs that the inputs are different. The
output of the circuit right before the application of the Hadamard operator is:

|Ψ〉 =
1√
2

(|0〉Qb
|0〉Qin

|Evaluatepk(F, c0, c
′
0, c
′
1; r′)〉Qout

|m0〉+

|1〉Qb
|0〉Qin

|Evaluatepk(F, c1, c
′
0, c
′
1; r′)〉Qout

|m1〉).

Let R be a randomness that is used in Evaluate function and it depends on
r, r0, r1 and r′. We can write the state |Ψ〉 as follows:

|Ψ〉 =
1√
2

(|0〉Qb
|0〉Qin

|Encpk(m0;R)〉Qout
|m0〉+

|1〉Qb
|0〉Qin

|Encpk(m1;R)〉Qout
|m1〉).

The success probability. Note that when m0 = m1 we can write |Ψ〉 as
follows where we use m0 instead of m1.

|Ψ〉 =
1√
2

(|0〉+ |1〉)Qb
|0〉Qin

|Encpk(m0;R)〉Qout
|m0〉.

Now, the state after applying the Hadamard operator is

|0〉Qb
|Encpk(m0;R)〉Qout

|m0〉,
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and therefore the measurement returns 0 with the probability 1. In the other
hands, when m0 6= m1, we can not write |Ψ〉 as 1√

2
(|0〉+ |1〉)Qb

⊗ |φ〉 for some

state |φ〉. In other words, the register Qb is entangled with other registers and
therefore, the measurement returns 0 or 1 with the probability 1

2 . Overall, the
adversary can break the security notion in Definition 2 with the probability 3

4 .

4 Conclusion and Open Problems

In this paper, we study the security of OT protocols in a scenario when the
receiver can make a quantum query to the sender. We define a security notion
in this model. We design an OT protocol that is secure against a quantum
malicious receiver when it is only allowed to make a classical query. But, the
protocol is insecure when the receiver makes a quantum query. Our OT pro-
tocol is based on a lattice-based fully homomorphic encryption scheme. The
attack works even when the malicious receiver is only allowed to provide the
input register and the output register will be initiated with 0 by the sender.
We present an OT protocol that resists to the attack presented in this paper,
however, we leave as an open question presenting a formal proof of the security
for this protocol.

Acknowledgement. We would like to thank Elham Kashefi for discussions
about this work.
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Montréal, Québec, Canada, pages 494–503. ACM, 2002.
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A A Possibly Secure OT Protocol?

In this section, we present an OT protocol that is secure against a honest-but-
curious quantum receiver when it is only allowed to make a classical query.
Then, we show that the direct application of the superposition attack presented
in this paper will not work. Our protocol is based on a deterministic lattice-
based public-key encryption scheme. The idea is that the sender encrypts its
inputs with two public keys: a random key that is chosen by himself and a
key that is generated by the receiver. Now, the receiver is able to decrypt the
ciphertext corresponding to his public key, but, he should not be able to decrypt
the other ciphertext. (Similar idea has been used in [PVW08, DvdGMN12])

A.0.1 Our Protocol

We define the protocol abstractly and prove that it is secure if the underling
public-key encryption fulfils some properties. Then, we instantiate the protocol
with a lattice based cryptosystem fulfilling the required properties.

Protocol 2. Let E = (KeyGen,Enc,Dec) is a deterministic public-key encryp-
tion scheme. We define an OT protocol as follows.

• The sender picks a randomly chosen public key pk′ from the key space and
sends it to the receiver.

• The receiver runs the KeyGen algorithm to obtain a pair (pk, sk). Then
on input b ∈ {0, 1}, it sets PKb = pk and PKb̄ = pk ⊕ pk′. It sends PK0

to the sender.
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• The sender sets PK1 = PK0 ⊕ pk′. Then, it chooses two randomness
r0, r1 and sends c0 = EncPK0(m0, r0) and c1 = EncPK1(m1, r1) to the
receiver.

• The receiver decrypts cb using the secret key sk to obtain Mb and outputs
the first bit of Mb.

Note that a malicious receiver can choose its public key pk depend on pk′

in a way that later he be able to decrypt both ciphertexts c0, c1 partially. We
can overcome this using a commitment scheme. That is, the receiver should
commit to a public key before receiving pk′. Since our purpose in presenting
this protocol is to show how the ancillary registers can prevent the superposition
attack presented in this paper to go through, we skip using the commitment.
Instead, we consider the security against a honest-but-curious quantum receiver,
that is, the receiver follows the protocol.

In order that the protocol above be secure against a honest-but-curious re-
ceiver, the cryptosystem E has to fulfill the following properties:

1. Ciphertext-Indistinguishablity. For a quantum polynomial-time dis-
tinguisher D, a generated ciphertext by a public key has to be indistin-
guishable from a random ciphertect. That is, for any message m,

|Pr[D(pk, c) = 1 : (pk, sk)← KeyGen, c := Encpk(m)]−

Pr[D(pk, c∗) = 1 : c∗
$←− C]| = neg.

2. Key-Indistinguishability. A public key generated by KeyGen algo-
rithm has to be statistically close to a uniformly at random key from
the public key space. That is ∆(PKKeyGen,U) ≤ neg where ∆ is the
statistical distance between two distributions, PKKeyGen is a distribution
over the public key space corresponding to KeyGen and U is the uniform
distribution over the public key space.

Theorem 2. On the existence of a public key encryption scheme that is cipher-
indistinguishable and key-indistinguishable, the Protocol 2 is secure against a
quantum honest-but-curious receiver that is only allowed to make a classical
query.

Proof. Since the public key encryption is key-indistinguishable, we can replace
Pkb̄ with a key pk′′ that is generated by KeyGen. That is, EncPKb̄

(mb̄, rb̄) is
indistinguishable from Encpk′′(mb̄, rb̄) for the receiver. Then, since the public
key encryption scheme is ciphertext-indistinguishable, the receiver can not dis-
tinguish Encpk′′(mb̄, rb̄) from a randomly chosen ciphertext c∗. Therefore, the
OT protocol is secure respected to the security Definition 2.

Remark. Note that by the key-indistinguishablity property of the public key
encryption scheme, the Protocol 2 is also secure against a malicious sender.
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However, we do not present a formal proof since we consider the malicious re-
ceiver in this paper.

Instantiation. We instantiate the Protocol 2 with a public-key encryption
scheme that fulfills the required properties above. We use the D-PKE scheme
presented in [XXZ12] that is a lattice based encryption scheme. It has been
proven in Theorem 1 in [XXZ12] that the D-PKE scheme is “PRIV1-INDr” se-
cure. It is clear that PRIV1-INDr security notion (see Definition 1 in [XXZ12])
implies ciphertext-indistinguishablity defined above. Also, by Lemma 4 in
[XXZ12] a public key generated by KeyGen is statistically close to a random
public key. So the D-PKE scheme fulfills the key-indistinguishablity property.

A.0.2 Direct Implementation of Superposition Attack

In this section, we show that the direct implementation of the superposition
attack in subsection 3.2 on Protocol 2 does not work. We present the attack
step by step in the following. Note that all the quantum registers are provided
by the receiver. For simplicity, we show any zero string 0n with 0. This means
that |0〉 can be a state of bigger size. At the beginning, the receiver prepares
three quantum registers Qb, QPK0

and QPK1
. The register Qb contains the

state 1√
2
(|0〉+ |1〉), and the registers QPK0

and QPK1
contain the state |0〉. The

receiver applies the following operation to these registers defined over basis.

|0〉Qb
|0〉QPK0

|0〉QPK1
→ |0〉Qb

|pk〉QPK0
|pk ⊕ pk′〉QPK1

and

|1〉Qb
|0〉QPK0

|0〉QPK1
→ |1〉Qb

|pk ⊕ pk′〉QPK0
|pk〉QPK1

.

Next, the sender encrypts its inputs m0,m1 and stores them in the registers
Qout0, Qout1 provided by the receiver.

|0〉Qb
|pk〉QPK0

|pk ⊕ pk′〉QPK1
|0〉Qout0

|0〉Qout1
→

|0〉Qb
|pk〉QPK0

|pk ⊕ pk′〉QPK1
|Encpk(m0, r0)〉Qout0

|Encpk⊕pk′(m1, r1)〉Qout1

and

|1〉Qb
|pk ⊕ pk′〉QPK0

|pk〉QPK1
|0〉Qout0

|0〉Qout1
→

|1〉Qb
|pk ⊕ pk′〉QPK0

|pk〉QPK1
|Encpk⊕pk′(m0, r0)〉Qout0

|Encpk(m1, r1)〉Qout1
.

Now the receiver uses its secret key to decrypt and outputs the but mb. It
prepares two registers QDec0 and QDec1 containing |0〉. We show this operation
below.

|0〉Qb
|pk〉QPK0

|pk ⊕ pk′〉QPK1

|Encpk(m0, r0)〉Qout0
|Encpk⊕pk′(m1, r1)〉Qout1

|0〉QDec0
|0〉QDec1

→

|0〉Qb
|pk〉QPK0

|pk ⊕ pk′〉QPK1

|Encpk(m0, r0)〉Qout0
|Encpk⊕pk′(m1, r1)〉Qout1

|m0〉QDec0
|⊥〉QDec1
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and

|1〉Qb
|pk ⊕ pk′〉QPK0

|pk〉QPK1

|Encpk⊕pk′(m0, r0)〉Qout0
|Encpk(m1, r1)〉Qout1

|0〉QDec0
|0〉QDec1

→

|1〉Qb
|pk ⊕ pk′〉QPK0

|pk〉QPK1

|Encpk⊕pk′(m0, r0)〉Qout0
|Encpk(m1, r1)〉Qout1

|⊥〉QDec0
|m1〉QDec1

.

Note that since the receiver knows pk and pk′, it can undo the registers QPK0

and QPK1
and gets back |0〉. Therefore, we can consider the following states.

|0〉Qb
|Encpk(m0, r0)〉Qout0

|Encpk⊕pk′(m1, r1)〉Qout1
|0〉QDec0

|0〉QDec1
→

|0〉Qb
|Encpk(m0, r0)〉Qout0

|Encpk⊕pk′(m1, r1)〉Qout1
|m0〉QDec0

|⊥〉QDec1

and

|1〉Qb
|Encpk⊕pk′(m0, r0)〉Qout0

|Encpk(m1, r1)〉Qout1
|0〉QDec0

|0〉QDec1
→

|1〉Qb
|Encpk⊕pk′(m0, r0)〉Qout0

|Encpk(m1, r1)〉Qout1
|⊥〉QDec0

|m1〉QDec1
.

Next, the receiver can apply the control-swap unitary to registersQb andQout0, Qout1

and QDec0, QDec1 where the control register is Qb. We show this operation be-
low.

|0〉Qb
|Encpk(m0, r0)〉Qout0

|Encpk⊕pk′(m1, r1)〉Qout1
|m0〉QDec0

|⊥〉QDec1
→

|0〉Qb
|Encpk(m0, r0)〉Qout0

|Encpk⊕pk′(m1, r1)〉Qout1
|m0〉QDec0

|⊥〉QDec1

and

|1〉Qb
|Encpk⊕pk′(m0, r0)〉Qout0

|Encpk(m1, r1)〉Qout1
|⊥〉QDec0

|m1〉QDec1
→

|1〉Qb
|Encpk(m1, r1)〉Qout1

|Encpk⊕pk′(m0, r0)〉Qout0
|m1〉QDec1

|⊥〉QDec0
.

At this point, the final state can be written as follows when we remove the last
register that contains ⊥ in the presentation.

|Ψ〉 :=
1√
2

(|0〉Qb
|Encpk(m0, r0)〉Qout0

|Encpk⊕pk′(m1, r1)〉Qout1
|m0〉QDec0

+

|1〉Qb
|Encpk(m1, r1)〉Qout1

|Encpk⊕pk′(m0, r0)〉Qout0
|m1〉QDec1

)

Now if we apply the Hadamard unitary to the Qb register and then measure the
Qb register in the computational basis, the probability of getting 0 is equal to
the probability of getting 1 in both cases of m0 = m1 and m0 6= m1. This is due
to the fact that the randomness r0 and r1 are not equal with high probability
and therefore we can not write

|Ψ〉 =
1√
2

(|0〉+ |1〉)Qb
)⊗ |Φ〉 for some state |Φ〉,

for both cases of m0 = m1 and m0 6= m1. Therefore, the direct application of
the attack does not work.
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