
Reimagining Secret Sharing: Creating a Safer and More Versatile
Primitive by Adding Authenticity, Correcting Errors, and Reducing

Randomness Requirements

Mihir Bellare1, Wei Dai1, and Phillip Rogaway2

1 Department of Computer Science & Engineering, University of California, San Diego, USA
2 Department of Computer Science, University of California, Davis, USA

Abstract. Aiming to strengthen classical secret-sharing to make it a more directly useful primitive for
human end-users, we develop definitions, theorems, and efficient constructions for what we call adept
secret-sharing. Our primary concerns are the properties we call privacy, authenticity , and error correction.
Privacy strengthens the classical requirement by ensuring maximal confidentiality even if the dealer does
not employ fresh, uniformly random coins with each sharing. That might happen either intentionally—
to enable reproducible secret-sharing—or unintentionally, when an entropy source fails. Authenticity is a
shareholder’s guarantee that a secret recovered using his or her share will coincide with the value the dealer
committed to at the time the secret was shared. Error correction is the guarantee that recovery of a secret
will succeed, also identifying the valid shares, exactly when there is a unique explanation as to which shares
implicate what secret. These concerns arise organically from a desire to create general-purpose libraries
and apps for secret sharing that can withstand both strong adversaries and routine operational errors.

Keywords: adept secret-sharing · computational secret-sharing · cryptographic definitions · secret sharing

1 Introduction

Overview. This paper strengthens classical secret-sharing [17,40] to obtain a primitive we call adept secret-
sharing (ADSS). Our initial reason for developing ADSS was to address use cases involving journalists and
whistleblowers. We were motivated by a conversation with journalist Laurent Richard [36,22], by the Snowden
revelations [24], and by the development of Sunder [39]. We recognized that unadorned Shamir secret-sharing
[40] wouldn’t do; for example, garbage would be recovered if a share got accidentally corrupted, and a strong
adversary could force recovery of whatever secret it wanted by adjusting a single share. We set out to develop
a primitive that would guarantee more. It would need to be versatile, easy to understand, and support efficient
and provably secure realizations.

Our approach is definitionally focused. Modern cryptography has taught that stronger definitions lead to
conforming schemes that are easier to correctly use, so less prone to misuse. Our definitions are motivated by
use cases, although no one use case fully motivates all of our demands. This is customary. By way of analogy, no
application we know requires the full strength of IND-CCA public-key encryption [34], yet this has become the
accepted definitional target because it implies other properties, such as nonmalleability [19], that are useful in
numerous settings. We strive to create definitions that can play the same role for secret sharing that IND-CCA
plays for public-key encryption.

Sample use case. To start to appreciate why new definitions are needed, let us consider a realistic but fictitious
use case. German journalist D is visiting New York when a source hands him a thumb drive of shocking, classified
files. D transfers the archive to his laptop, encrypts it with a strong passphrase, and destroys the thumb drive.
D now wants to return to Berlin with these materials, but fears he will be detained, or worse, before he can
publish. D mustn’t have the sensitive plaintext on him at border crossings, where phone and laptop contents
may be copied by authorities.

To ensure that the material gets out no matter what, D decides to give the encrypted archive and a share
of its decryption key to colleagues A, B, and C. He intends that any two parties can reconstruct the archive.
D decides it would be safest to meet A at the Newark airport, B at the Icelandair lounge where D will transit,
and to send C her materials over Signal.

To begin, D needs to generate a share c of his passphrase for C. But the way secret-sharing schemes generate
shares is probabilistic: fresh coins are chosen with each sharing. So it would seem that D will need to retain A’s
share a until he meets A in Newark, and must retain B’s share b all the way to Iceland. But this is no good, for

2 Bellare, Dai, and Rogaway

Auth A share held by a user can recover, if anything, only the one secret committed to at the time of the sharing,
regardless of what other shareholders contribute.

Errx Recovery will reconstruct the secret and identify the valid shares if and only if there’s a unique plausible expla-
nation for what shares implicate what secret.

Priv Unauthorized sets of shares reveal the least possible amount of information given the combined entropy of the
secret and the provided coins.

Fig. 1. Properties of ADSS. When uniform coins are used for sharing, the Priv notion captures the complexity-
theoretic formalization of the classical secret-sharing goal; otherwise, it asks for more. Authenticity and error correction
concern attacks on the reconstruction of secrets—attacks that get participants to reconstruct the wrong secret, or no
secret at all.

keeping a and b on the laptop along with the encrypted achieve is equivalent to keeping the archive as plaintext.
A better choice might be to retain the coins that generated the shares, using them, and the passphrase, to
regenerate a or b only when they are needed. But it is unclear what security properties secret sharing will have
if an attacker learns retained coins. With Shamir secret-sharing, acquiring them (e.g., by confiscating the device)
along with any one share (say c) enables reconstruction of the secret. In any case, D needs to use off-the-shelf
tools, which, quite correctly, do not support the retention of coins used for share generation.

The scenario motivates reproducible secret-sharing: the ability to recompute a share, or a vector of shares,
as long as you still have the secret.

Continuing our example, we must report that, soon after his arrival, D mysteriously vanished in Berlin.
Meanwhile, A fell ill with COVID-19. Parties B and C nervously converge in Iceland. Unfortunately, C’s smart-
phone had already been hacked by a state intelligence agency, her share c quietly replaced by c̃. When B and C
reconstruct the passphrase and use it to decrypt, the plaintext looks fine—parties B and C don’t know that
anything is wrong—but the archive is less important than they anticipated. It is not the original one. This is
possible, at least in principle, because, with classical secret-sharing, if someone can control a single share, they
may be able to control the secret that is recovered, even without knowing other shares. Nothing in the classical
secret-sharing definition excludes this. This possibility motivates another non-standard aim: authenticity . It
guarantees that recovery using a share either fails or recovers the secret originally associated to it. Schemes like
Shamir’s achieve nothing like this.

Finally, as an alternative continuation of our story, party A, now recovered, meets up with B and C in
Iceland. Party C’s share is still wrong. When A, B, and C contribute their shares a, b, c̃ for recovery, a classical
secret-sharing scheme (like Shamir’s) will recover something—but something wrong. This time, the recovered
archive looks like random bits. The shareholders know that something went wrong, but they don’t know what.
If they had the insight to try recovery again without using C’s share c̃ they would recover the correct secret.
But they don’t know to do this. How much nicer it would be if the recovery algorithm itself would have said:
“look, share c̃ was bad, but shares a and b were fine, and implicate the following passphrase.” A scheme like that
enjoys error correction. Our formalization strengthens robustness [31,15], which would actually be sufficient for
this example (but not, say, for 2-of-4 secret sharing).

We use the labels Auth (authenticity), Errx (error correction), and Priv (privacy) for our main goals (the last
of these encompassing reproducibility). Fig. 1 provides a single-sentence description of each. Fig. 2 summarizes
definitional choices and their rationale more broadly. As that figure makes clear, we have taken clues from
multiple directions—not just use cases—as to what characteristics an ADSS scheme should enjoy.

Enhanced syntax. ADSS begins with an enriched syntax, over which the security notions above can be
defined. Let us start by taking a look at the new syntax.

Unlike a classical secret-sharing scheme, the sharing algorithm of an ADSS scheme is deterministic, surfac-
ing an input R that captures the provided coins. This enables reproducibility (described above) and hedging
(described later). The sharing algorithm also takes in a description of an access structure—the specification of
which sets of shareholders are authorized—rather than being specific to one. This enables runtime selection of
the access structure and for the access structure itself to be authenticated being crucial for security. Finally,
the sharing algorithm now takes in a string of associated data (AD), analogous to that seen in schemes for
authenticated encryption. Moving on, the recovery algorithm of an ADSS scheme no longer operates on vectors
of shares, but on sets of shares [2]. This better models the coming together of human participants who have
only their shares. And the algorithm not only returns the original secret, but also identifies which shares were
deemed to be valid. This allows a shareholder to reject a recovered secret if she has confidence in her own share

Reimagining Secret Sharing 3

Characteristic Reasons

The sharing algorithm is deter-
ministic but surfaces an input
R via which the caller can pro-
vide “coins.” (In contrast, classical
secret-sharing is probabilistic.)

Some settings require reproducibility : the ability of a dealer to recompute a share.
I Eg, a dealer may distribute shares of a passphrase to different shareholders at mul-
tiple points in time. I Or she may need to replace the share of a shareholder who has
lost access to it. I The analogous move from internal coins to coins provided across
the interface was pivotal for authenticated encryption (AE). IWithout surfacing R
one can’t investigate the impact of different choices for it.

The coins R provided to the shar-
ing algorithm might not be uni-
form. They might be fixed. They
might depend on persistent state.

I Failures in random-number generators are common. They arise from implementa-
tion errors or the inaccessibility of good randomness. I Install-time randomness or
maintaining state may be more feasible than per-sharing randomness. I Hedged and
deterministic encryption have proven to be useful. I Deterministic signature schemes
avoid security vulnerabilities that probabilistic signatures schemes are susceptible to.

A string of associated data (AD)
can be bound to a sharing.

I The AD might encode information like: time of deal or conditions under which
recovery may take place. I The inclusion of AD in AE has been very useful for
applications.

An encoding of the intended ac-
cess structure is provided as an in-
put to the sharing algorithm. It is
authenticated.

I General-purpose libraries and user-facing tools need to support a variety of ac-
cess structures. A caller might not know which it needs until runtime. IWithout
authenticating the access structure itself simple attacks are possible.

Recovery operates on set-valued
inputs, not the vector-valued in-
puts of classical secret-sharing.

IWhen a group of human shareholder get together for a reconstruction ceremony
there may be no side-information to order them. IWithout side information there
is no way to know even the number of shareholders needed to reconstruct.

Definitions envision shares being
arbitrarily changed or created.

I Real-world adversaries aren’t restricted to crossing-out shares from known share-
holders, but can modify shares and create shares for new, alleged shareholders.

An incorrect secret should never
be returned: either one should get
back the original message or an in-
dication of failure.

I Honest parties deserve to know if recovery was impossible. I Parties may be unable
at reconstruction time to assess if a recovered message “makes sense”. And “making
sense” is not evidence of authenticity, anyway (a common misunderstanding in en-
cryption). I Authenticity implies nonmalleability. Malleable schemes would allow an
adversary to adjust an unknown secret to one that better suits it.

Shares can have a designated non-
secret (“public”) portion.

I Secrets can be extremely long, which implies that some shares will be. Having to
store less privately can reduce the burden of custody. I It is desirable to be able to
store shares (at least the private part) in an HSM (hardware security module).

If shares get corrupted then the re-
covery process must fix the prob-
lem if there’s an unambiguous ex-
planation as to what went wrong.

I Shares can get corrupted for inconsequential reasons, like the accidental mixup
of shares from different sharings. I Robust secret-sharing is already recognized as
useful, but was formalized in a way that neither demands recovery from recoverable
errors nor forbids the recovery of junk when there is no authorized set of shareholders.

On recovery, particular shares can
be marked as trusted, or a known
access structure can be provided.

I If a shareholder reconstructs, she likely trust her own share. I If some shares were
signed by a trusted dealer, we can insist on using them. I The recovering party might
have side information on what access structure was used. I An adversary can try to
thwart recovery by adding a single share asserting a 1-of-1 access structure.

Fig. 2. Some ADSS definitional choices and their rationale. Considerations shaping our definitions include use
cases, philosophical arguments, and reasoning by analogy. Simplicity and strength were key desiderata.

but it was not deemed valid. As for the shares themselves, the access structure and AD must be encoded in
each, to ensure that no side information needs be known by the recovering party. And shares can have separate
secret and non-secret parts, so that shareholders need only keep the first in private storage. This enables the
sharing of arbitrarily long secrets even when shareholders are only able to privately store a limited amount. The
syntactic changes just sketched may seem low-level but are fundamental in enabling the capabilities we seek.

Enhanced security. A journalist could certainly share her documents using Shamir secret-sharing [40]. This
provides privacy. But as our extended example illustrates, the adversary may have other goals in mind, like
disrupting recovery, either by making it fail or by making shareholders recover something other than that
which the dealer shared. The adversary can attempt to achieve this goal by infiltrating a shareholder’s system
(something nation-state adversaries are good at) and changing her share. It can create entirely new shareholders
that show-up for reconstruction. We want to defend against such attacks to the maximal extent possible. To do
so, we develop Auth and Errx.

4 Bellare, Dai, and Rogaway

Authenticity (Auth), which we alternatively term binding, ensures that when a user is given a share S, there
is at most one secret M for which it might be a share. The share is effectively a commitment to that secret. A
shareholder can thus regard her share as a locked box containing some well-defined secret that she does not yet
know. (We do allow that if the dealer was dishonest then nothing might be in that box.) In short, authenticity
concretizes the basic intuition that a share is associated to some one particular thing.

Error correction (Errx) ensures that if some shares from a sharing of a secret get corrupted, or new shares
are added, but there remains a single nontrivial explanation as to what the secret must have been before the
shares got messed up, then the recovery process must identify that one correct secret. It must also indicate
which shares implicate it. Recovery must fail if there is no authorized subset of shares, or if there are two or
more explanations for what got corrupted. In short, an Errx-secure scheme must fix what is fixable, and must
indicate if shares irreparably messed up.

Auth and Errx are different from verifiable secret-sharing (VSS) [18]. VSS requires a reliable broadcast chan-
nel, which may not be available; Auth and Errx do not. Errx is related to but different from robustness [31,15],
which aims to guarantee message recovery despite the presence of some bad shares shuffled in among an autho-
rized collection of good ones. Errx formalizes different intuition: that recovery does the best job possible with
whatever is presented. For this reason, Errx is achievable for any access structure, while robustness is achievable
for threshold schemes with honest majority, but little more. Errx demands that nothing be recovered when there
is no authorized subset of shares, will robustness requires nothing. All of that said, Errx security does imply
robustness whenever the latter can be achieved. Auth and Errx have little in common with repairable threshold
schemes [25,32], which allow a party to reconstruct a missing share by interacting with fellow shareholders. In
scenarios we care about, shareholders may not have the ability to interact with one another prior to recovery.
See Section A for fuller comparisons with VSS, robustness, and repairability.

Enhanced usability. Our ADSS schemes employ hedging [5], using the anticipated unpredictability of the
secret itself, together with the entropy in the provided coins, to provide as much privacy as possible. This means
that privacy is maintained, to the extent possible, in settings where high-quality randomness is unavailable or
was inadequately harvested. At the same time, the approach provides for reproducibility, enabling the dealer, if
it so arranges, to re-share a secret M and get the same shares as before. Other ADSS elements that enhance
usability include: the ability to handle AD, having the recover algorithm operate on sets instead of vectors of
shares; and the capacity to deal with enormous secrets, as we now discuss.

Protocols and proofs. We construct simple, efficient, and provably secure ADSS schemes for arbitrary
access structures. Our schemes can be used for splitting anything from a PIN code to a huge archive of files (the
Panama papers were 2.6 terabytes [26]). In sharing out a large archive one needn’t encrypt it and then share
out the key; the user can regard the archive itself as the secret, which is conceptually and operationally simpler.

Our constructions begin with a scheme S1 that satisfies our ADSS syntax but only achieves Priv-security
with uniformly random coins—what we call classical privacy, or Priv$. The scheme only works for threshold
access structures. It is basically just Shamir’s scheme [40], but adapted to our syntax. Scheme S2 still achieves
only Priv$ privacy, but can handle any access structure, now presented as a circuit of threshold gates. Despite
the classical aim, we could find no full exposition or proof on how to carry out secret sharing for arbitrary access
structures; our paper fills this gap.

Our main construction is the transformation AX that converts a secret-sharing scheme S that achieves only
classical (Priv$) privacy to a scheme SS = AX[S] that achieves Priv and Auth security. This can then be com-
posed with a further transformation, EX, to achieve Errx security. Rather roughly, AX starts by symmetrically
encrypting the secret M to the ciphertext C, which is put in the public portion of each share. The key K for
this encryption is determined by applying a hash function to all inputs the sharing algorithm gets. The hash
function is here used as a randomness extractor [33]. The lower-level secret-sharing scheme S shares out K using
randomness that is again extracted from the inputs to SS. When speculative values are recovered, a correctness
check is done to see if re-sharing M with the recovered randomness R gives rise to a superset of the shares
received. Schemes SS1 and SS2 are the result of applying AX and then EX to S1 and S2. They are the concrete
ADSS schemes that we propose.

Discussion. Kacsmar, Komlo, Kerschbaum, and Goldberg [29] also address gaps between the formulation and
use of secret sharing. Their motivations are similar to ours: closing the theory/practice gulf in this domain.
They employ the idea of ceremonies [20] and design a proactive VSS scheme [27] to achieve goals that they
call integrity and availability. Our work is more formal, and, in carrying it out, we have insisted on retaining

Reimagining Secret Sharing 5

the fundamental elements of the classical model: ADSS abides no broadcast channels, no interaction among
shareholders, no preprocessing, no PKI (public-key infrastructure), and no algorithms but Share and Recover.

Secret sharing can be viewed as a flavor of encryption [15]: sharing corresponds to encryption; recovery
corresponds to decryption. From this vantage, the move from classical to adept secret-sharing mirrors the
move from semantically secure to authenticated encryption [11,13,30], as well as the move from probabilistic to
deterministic [4,8] and hedged [5] public-key encryption. We shift the focus from eavesdropping to interference,
and from perfect to possibly absent or deficient randomness. We trade internal randomness for an externally
supplied input [38]. We add in AD [37]. Of course there are spots where the analogy breaks down: secret sharing
involves no keys, while access structures were outside the ambit of encryption prior to ABE [23]. Still, the
analogy explains many aspects of our work.

Reproducibility comes at the price of diminished privacy for low-entropy secrets. But we never mandate
reproducibility; we merely enable it. If the dealer uses random coins shes gets classical privacy; if she wires in a
constant, she gets best possible privacy for a deterministic scheme. Similar tradeoffs are present for deterministic
and searchable public-key encryption [4] and for format-preserving encryption [12]. In addition, the strengthening
of secret sharing that begins by surfacing the coins includes other benefits, like hedging.

The value of new definitions is always somewhat speculative. Our definitional choices have been guided by
uses cases, by analogies, and by conversations with developers, journalists, whistleblowers, and cryptographers.
But only time will tell if we have identified the secret-sharing aims that can precipitate a flourishing.

2 Preliminaries

Notation. Fig. 3 summarizes the most frequently used notation in this paper. The table may serve as a reference
or overview of things to come.

Access structures. We need a way to specify which parties are authorized to reconstruct the secret. Number
parties 1, 2, . . . , n. We then define an access structure A as a set of sets of positive numbers. It must be finite,
nonempty, and exclude the empty set. Define n(A), the number of parties in A, as the least n such that U ⊆ [1..n]
for all U ∈ A. We say that U ⊆ [1..n(A)] is authorized if U ∈ A and unauthorized if U 6∈ A. We require access
structures be monotone, which means that an authorized set stays authorized if you add in parties: if U ∈ A

and U ⊆ V ⊆ [1..n(A)] then V ∈ A.

An example access structures is the 2-out-of-3 one A2,3 = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. More gener-
ally, for 1 ≤ t ≤ n the threshold access-structure An,t is {U ⊆ [1..n] : |U | ≥ t}. A secret-sharing scheme
for such access structures is called a threshold scheme. A simple non-threshold access-structure is A12∨13 =
{{1, 2}, {1, 3}, {1, 2, 3}}: party 1 and either party 2 or 3.

Classical secret-sharing. Let us briefly review the classical notion of a secret-sharing scheme—what a
scheme like Shamir’s targets [17,40]. One can formalize a classical secret-sharing scheme as a pair of algorithms
S = (Share,Recover) along with an associated access structure A, as follows:

Share The sharing algorithm Share probabilistically maps a message M ∈ Msg to a vector (or list) of n = n(A)
shares, each of them a string: S � Share(M).

Recover The recovery algorithm Recover is a deterministic algorithm that takes in an n-vector of values, n =
n(A), each being either a string or the special symbol ♦, which is used to indicate that the share is missing.
It returns a string M ← Recover(S).

If S = (S1, . . . , Sn) is an n-vector of strings and U ⊆ [1..n], let SU be the n-vector with ith component Si if
i ∈ U , and ♦ otherwise. So SU is S with ♦-symbols shuffled in at positions outside of U . Then we require the
following: if S � Share(M) and U ∈ A then Recover(SU) = M . In words: you can recover the secret from an
authorized subvector of shares.

For any M,M ′ ∈ Msg and any U 6∈ A, we can regard (Share(M))U as a distribution on vectors of shares,
the underlying randomness that of Share. The security notion for a classical secret-sharing scheme can then be
formalized by asking that distributions (Share(M))U and (Share(M ′))U be identical. In words: unauthorized
subvectors of shares reveal nothing about the secret. If desired, this condition can be relaxed to computational
indistinguishability or formalized in other ways [31,15].

6 Bellare, Dai, and Rogaway

{0, 1}∗ Set of all strings over {0, 1}
{0, 1}∗∗ Set of all vectors (= lists) of strings
〈 · · · 〉 A string encoding of what’s in the brackets
⊥ Indicates invalidity: no secret can be recovered
[1..n] Integers between 1 and n inclusive
a� X Sample, then assign. Uniform distribution if X is a set
A A string that names an access structure via an access-structure naming function
A An access structure: a set of subsets of [1..n(A)]
A An adversary
Acc Access-structure naming function
Access Set of strings that name access structures

Advauth
S (A) A’s advantage (a real number) in breaking Auth-security of S

Adverrx
S (A) A’s advantage (a real number) in breaking Errx-security of S

Advpriv
S (A) A’s advantage (a real number) in breaking Priv-security of S

AS The set of all possible access structures
Auth Main authenticity property we formalize
AX Transform to get Auth + Priv from Priv$
ε The empty string
Errx The error-correction property we formalize
EX Transform to get Errx security
Known Set of things the recovering party might be sure of
H Hash functionon vectors, modeled as a random oracle. Superscript is output length
M A secret shared out in a secret-sharing scheme
|M | Length of the string M (in bits)
Msg The set of possible secrets (messages)
n(A) Number of parties in the access structure A

P(X) Set of all finite subsets of the set X (finite power set)
Priv The new privacy property we formalize
Priv$ Classical privacy property. Weaker than Priv
R Randomness / coins given to Share. Might not be uniform
Rand All possible coins (randomness)
S A share. String-valued and have several parts
S A vector of shares, S = (S1, . . . , Sn)
S[i] The i-th entry of vector S = (S[1], . . .S[|S|])
S A set of shares, S = {S1, . . . , St}
S Generic ADSS scheme S=(Acc,Share,Recover)
S.as Access structure associated to share S
S.id Identity of party associated to share S
S.pub Non-secret part of share S
S.sec Secret part of share S
S.tag Tag (AD) part of share S
S1 Shamir-like SS scheme. Works for threshold access structures. Achieves Priv$
S2 Yao-like SS scheme. Works for any access structure. Achieves Priv$
Recover Algorithm that recovers a secret
Share Algorithm that shares a secret
Share All possible shares (which are strings)
Share∗ All possible vectors of shares
Shares All possible sets of shares
T Tag (associated data) (a string). Authenticated during sharing
Tag The set of all possible tags (AD values)
V Maximal set of valid shares, V ⊆ S

Fig. 3. Frequently used notation. Note that font styles for a given letter or word are routinely differentiated.

Reimagining Secret Sharing 7

3 Syntax

Changes. We enrich the syntax of a classical secret-sharing scheme in multiple directions. First, the access
structure A won’t be fixed, but, instead, the party who shares a secret, the dealer, will be able to specify the
access structure it wants. A string A will denote the desired access structure, a function Acc specifying its
interpretation. For example, the string “2,3” might denote the threshold access-structure A2,3. Second, our
sharing algorithm Share will have still more inputs. Beyond the access structure and the secret, the dealer will
provide coins and associated data. With coins now an explicit input, the algorithm will be deterministic. Finally,
the recovery algorithm Recover will output more: not only will it return the recovered secret, but also the shares
that were used. Alternatively, it may recover nothing, outputting a special I-can’t-recover-anything symbol. We
now make all of this precise.

Formal definition. We define a scheme for adept secret-sharing (ADSS) as a triple of deterministic functions
S = (Acc,Share,Recover), as follows.

Acc: The access-structure naming function

Acc: Access→ AS

associates an access structure A = Acc(A) with each string A ∈ Access. Here Access = {0, 1}∗ (Kleene star) is
the set of all binary strings, while AS is the set of all possible access structures. Note that there may be multiple
ways to name an access structure under Acc: distinct strings A and A′ such that Acc(A) = Acc(A′). Also, some
access structures might be impossible to name using Acc: for some A ∈ AS there might be no A ∈ Access with
Acc(A) = A. For example, a secret-sharing scheme designed for threshold access structures won’t be able to
request {{1, 2}, {1, 3}, {1, 2, 3}} (i.e., “1 and (2 or 3)”).

Share: The sharing algorithm

Share: Access×Msg × Rand× Tag→ Share∗

takes in a description A ∈ Access of an access structure, a message (or secret) M ∈ Msg, some coins R ∈
Rand, and a tag (or associated data) T ∈ Tag. It outputs a vector of shares. Here Msg, Access, Rand, Tag,

Share ⊆ {0, 1}∗ are binary strings. We require that M ∈ Msg implies {0, 1}|M | ⊆ Msg and R ∈ Rand implies

{0, 1}|R| ⊆ Rand. The sharing algorithm must generate the appropriate number of shares for the specified access
structure: |Share(A,M,R, T)| = n(Acc(A)) for all A ∈ Access, M ∈ Msg, R ∈ Rand, and T ∈ Tag: By | · | we
denote the length, cardinality, or number of components for string, set, or vector.

Recover: The message-recovery algorithm

Recover: Shares→ Msg × Shares ∪ {⊥}
maps a set of shares S ∈ Shares = P(Share) to a message M ∈ Msg and a set of valid shares V ⊆ S. Alternatively,
the algorithm can decline to produce such a pair and return ⊥ instead. By P(X) we mean the finite power set
of X, the set of all finite subsets of X. (The traditional power set of an infinite set such as Share = {0, 1}∗
includes infinite subsets. We don’t want that, as one provide Recover, like any algorithm, a finite set of strings.)
Note that Share returns a list of shares while Recover takes in a set of shares.

Parts of a share. We establish the convention that each share S ∈ Share is actually the encoding of five strings,
S = 〈S.id, S.as, S.sec, S.pub, S.tag〉. We call the parts of a share its identity, access structure, secret portion,
public portion, and AD. We extend the .sec and .pub operators to vectors, defining S.sec = (S1.sec, . . . , Sn.sec)
and S.pub = (S1.pub, . . . , Sn.pub) when S = (S1, . . . , Sn). We extend the .id operator to sets, defining S.id =
{S.id : S ∈ S}. We extend the .as operator to sets, so that S.as = A if S.as = A for all S ∈ S, and S.as = ⊥
otherwise. We insist that S = Share(A,M,R, T) = (S1, . . . , Sn) implies that Si.tag = T and Si.as = A and
Si.id = i for all i. Whenever Recover(S) returns a pair (M,V) we demand that all shares in S ∈ V share the
same .as component A, the same .tag component T , and that V.id ∈ Acc(A), meaning the set of shareholders
underlying V is authorized.

Random oracles. We allow the Share and Recover algorithms of an ADSS scheme may call an oracle Hash that
realizes a function H ∈ Ω, with Ω, the set of all functions H: N× {0, 1}∗∗ → {0, 1}∗ such that |H(`,X)| = `.
By {0, 1}∗∗ = ({0, 1}∗)∗ we denotes the space of vectors of strings. We can explicitly indicate the presence of
the oracle or hash function that Share and Recover may access by writing it as a superscript.

Basic correctness. An ADSS scheme S = (Acc,Share,Recover) enjoys basic correctness if for all A ∈ Access,
M ∈ Msg, R ∈ Rand, T ∈ Tag, H ∈ Ω, S ← ShareH(A,M,R, T), and U ⊆ [1..n(Acc(A))],

8 Bellare, Dai, and Rogaway

if U ∈ Acc(A) then RecoverH(S[U]) = (M,S[U]) , while

if U 6∈ Acc(A) then RecoverH(S[U]) = ⊥ .

Here S[U] = {S[i]: i ∈ U} is the set of shares from parties U . In words: applying Recover to a subset of shares
obtained by sharing out M gives M if the subset is authorized and ⊥ if it is not. We henceforth require that all
ADSS schemes satisfy basic correctness.

Notation. We write S.Acc, S.Share, and S.Recover for the components of S. In the same way, we write S.Access,
S.Msg, S.Rand, and S.Tag.

Discussion. Once the decision has been reached to provide the access structure to Share it is tempting to just
say that it’s encoded as a string 〈A〉 and leave it at that. But more care needs to be taken because what access
structures can be named, and how compactly, are central concerns of secret sharing. This is what motivates
making Acc a first-class component of an ADSS scheme.

Let us give some examples of access-structure naming functions Acc. For threshold schemes, a string 〈n, t〉
encoding numbers n and t could name An,t. It would be equally permissible, but less compact and convenient,
to have Acc expect a string listing authorized sets, like “{{1,2},{1,3},{2,3},{1,2,3}}’’. For a representation
that is compact and expressive, the string A could encode a Boolean circuit of threshold gates having a single
output wire and input wires 1, . . . , n. We’d say that U ∈ Acc(A) if the circuit named by A evaluates to true
when its n inputs indicate if a party is present (that bit is 1) or absent (it is 0).

Having Recover take in a set instead of a vector relieves shareholders of having to know their “position” in
line. It also opens the door to authenticity notions where multiple parties can impersonate some shareholder.

While the AD of an ADSS scheme is analogous to that of an authenticated-encryption (AE) scheme, there
are important differences. Our AD values are not assumed to be known by the party recovering a secret; an
AE scheme’s AD value is. This follows the philosophical view that for secret sharing one should not require the
receiver to know anything beyond what is in the shares.

The “public” portion of a share need not be public; we only mean that it is not a secret. The secret/public
distinction matters most when the message being shared is long. We anticipate that most or all of the public
portion of shares would be the same across all shares. When this is true, the public potion of shares might be
kept in some highly available repository, rather than stored with each share.

Extensions to the syntax of Recover are described in Section 6, where we allow a priori information K ∈
Known to be input to Recover, and allow coins R ∈ Rand to be output by Recover.

A paper on VSS by Bai, Damg̊ard, Orlandi, and Xia [2] employed some related syntactic choice. In par-
ticular, their Share algorithm takes in an access structure, assumed to be described by a circuit. But it is not
authenticated, returned during recovery, or guaranteed to be dropped into shares. The “public share” S0 that
their Share algorithm outputs resembles the public portion of a share from our own treatment. But the former
was actually used to formalize a broadcast channel, which is not present in our model.

4 Privacy

The idea. One way to formalize privacy for a classical secret-sharing scheme captures this idea: if an adversary
obtains an unauthorized set of shares, this will tell it nothing about the message beyond that which it already
knows [15]. Achieving this requires fresh, high-entropy coins with each sharing. In their absence, all bets are off.
Our formulation generalizes this idea, following the idea of hedging [5], so that the guarantee above continues to
hold, to the maximum extent possible, even when the coins are not good. We ask that if an adversary obtains an
unauthorized set of shares, this will tell it nothing about the message M as long as the (M,R) pair was drawn
from a set too large for the adversary to exhaust. Intuitively, this is the best possible, because if the adversary
could exhaust this set then it could violate privacy by running the sharing algorithm on each candidate (M,R)
to see which results are consistent with the shares it has seen.

What is the benefit of all of this? First, it enables reproducible secret-sharing with meaningful privacy
guarantees. For example, the random input R might be chosen at software-installation time, then supplemented
by a counter with each sharing. Share regeneration is now possible, but even if the adversary does get hold of
the device containing R, privacy will be preserved as long as M itself is unpredictable and the adversary obtains
only an unauthorized set of shares. For a classical secret-sharing scheme like Shamir’s that wouldn’t be true. A
related benefit is for the sharing algorithm to work as well as possible in the presence of imperfect randomness.
A cryptographic technique becomes safer to use when you can prove that it does not catastrophically fail when
the randomness isn’t perfect.

Reimagining Secret Sharing 9

Game Gpriv
S,I (A)

20 procedure Main
21 c� {0, 1}; H � Ω
22 q ← 0; (St ,B)� IDeal

23 if (∃ j : B[j] ∈ Acc(A[j])) then return false
24 c′ � AH(St ,S1[B[1]], . . . ,Sq[B[q]],P)
25 return (c = c′)

26 procedure Deal(A,M0,M1, R, T)
27 q ← q + 1; A[q]← A
28 Sq←S.ShareH(A,Mc, R, T); P [q]← Sq.pub
29 return

Game Gpred
I (P)

30 procedure Main
31 q ← 0; (St ,B)� IDeal

32 (M,R)� P(A,B,T ,L,St)
33 return ((M,R) ∈ D)

34 procedure Deal(A,M0,M1, R, T)
35 D ← D ∪ {(M0, R), (M1, R)}; q ← q + 1
36 A[q]← A; R[q]← R; T [q]← T ; L[q]←|M0|
37 return

Fig. 4. Defining privacy. Top: Game for measuring Priv security of an ADSS scheme S relative to an input generator
I and an adversary A. Bottom: Game for measuring the predictability of inputs selected by the input generator I.

Definition. Fix an adept secret-sharing scheme S, an algorithm I called the input-selector, and an adversary A
called the privacy adversary. Consider the Gpriv

S,I (A) game of Fig. 4. The Priv advantage of A relative to I is
defined by

Advpriv
S,I (A) = 2 Pr[Gpriv

S,I (A)]− 1 .

We first explain the broad elements of the game, and then its fine points. The game picks a challenge bit c
at random. The input-selector represents the dealer. It has a Deal oracle via which it provides a pair of
message M0,M1 ∈ S.Msg that are required to be of the same length. It also provides an access-structure
description A ∈ S.Access and a tag T ∈ S.Tag. More unusually, it provides a string R ∈ S.Rand that will be
the randomness used by S.Share. The randomness is chosen by the input-selector, not the game. In response
to a query (A,M0,M1, T,R), oracle Deal creates a vector Si of shares by running S.Share, the message being
either M0 or M1 depending on the challenge bit c. The access structure and AD, and also the randomness,
are taken from the query. The oracle may be called as often as the input-selector likes, but with the following
non-repetition condition: if (A1,M1,0,M1,1, R1, T1), . . . , (Aq,Mq,0,Mq,1, Rq, Tq) are the queries made, then the
tuples (A1,M1,0, R1, T1), . . . , (Aq,Mq,0, Rq, Tq) are all distinct, and also the tuples (A1,M1,1, R1, T1), . . . , (Aq,
Mq,1, Rq, Tq) are all distinct. So for both c = 0 and c = 1, the inputs provided to Share will be distinct. This is
necessary because, otherwise, Share being deterministic, an adversary could trivially discover the challenge bit
c. The number of calls made is recorded in the variable q. As per line 29, nothing is returned to the adversary
in response to a Deal query. This ensures that the inputs to Deal are chosen non-adaptively, a choice we will
discuss later. The output of I consists of state information St , to be passed to its accomplice A, and a q-vector
B whose j-th component B[j] ⊆ [1..n(Acc(A[j]))], for each j ∈ [1..q], is a set of parties that the input-selector
is corrupting, meaning I is requesting the corresponding set of shares Sj [B[j]] be provided to A. If a set B[j]
returned by I is authorized, the game immediately returns false. Otherwise, the privacy adversary is executed on
input of the state information St from I and the sets of shares S1[B[1]], . . . ,Sq[B[q]] of the corrupted parties,
as well as the public parts of all shares dealt. It also gets the random oracle H, which was denied to I. The
privacy adversary returns its guess c′ for the challenge bit c and wins (the game returns true) if this guess is
correct.

Priv security is achievable only when the (M0, R), (M1, R) pairs in the Deal queries of I are unpredictable,
as we now formalize, following [4,8,5]. Game Gpred

I (P) of Fig. 4 measures the predictability of an input-selector
I via another adversary P called a predictor. The input-selector I is executed with its Deal oracle, the latter
now simply recording the adversary queries: no secret sharing is done, and nothing is returned to the adversary.
The predictor wins if it can predict (output) some secret-randomness pair that was returned by the adversary.
Its input is that which we allow secret sharing to leak to the second stage: the access structures, tags, message
lengths, which parties are corrupted, and the state returned by A in its first stage. The privacy-adversary A is

10 Bellare, Dai, and Rogaway

not relevant here; unpredictability is a metric on the input-selector alone. We let

Advpred
I (P) = Pr[Gpred

I (P)] and pred(I) = max
P

{
Advpred

I (P)
}
.

The notation reflects that I is the object whose security (in the sense of unpredictability) is being measured
and P is the adversary. The max is over all predictor adversaries P, regardless of their running time or the
number of H queries they make. Thus pred(I) measures the information-theoretic guessing probability. The
min-entropy of I could be defined as the negative log of this probability, but we do not need this.

Recovering classical privacy. Classical privacy corresponds to Priv security restricted to a class of input-
selectors denoted IIIpriv$. An input-selector I is in this class if there is an input-selector I1 and an integer r such
that I is defined as follows: it lets (St ,B) � IDeal∗

1 and returns (St ,B). Here Deal∗ is a subroutine defined
by I as follows: On input a query (A,M0,M1, R, T) made by I1, input-selector I picks R∗ � {0, 1}r, queries its
own Deal oracle with (A,M0,M1, R

∗, T), and returns. For such an input-selector, we drop the non-repeating
requirement; we expect that r is large, in which case non-repetition holds with high probability. For emphasis,
we can in this case write Advpriv$

S,I (A) in place of Advpriv
S,I (A). Note that pred(I) ≤ q ·2−r where q is the number

of Deal queries of I.

Discussion. In an asymptotic-security setting, where all advantages are functions of a security parameter, we
would say that I is unpredictable if pred(I) is negligible. Then we would say that S is Priv-secure if Advpriv

S,I (A)
is negligible for every polynomial-time, unpredictable I and every polynomial-time A. In our concrete-security
setting, we will informally use the terms in italics above with the understanding that polynomial-time means
“efficient” and negligible means “small.” Results will make this precise via concrete bounds on advantage. For
example, Theorem 2 upper-bounds Advpriv

SS,II(AA) as a function of pred(II), so that if the latter is small (II is
unpredictable) then the former is too (SS is Priv-secure). Unpredictability is necessary for Priv security in the
same way that it is necessary for the privacy of deterministic public-key encryption [4].

Denying I access to the hash function H is necessary to achieve Priv for the same reason that messages
in deterministic public-key encryption cannot depend on the public key [4] and in message-locked encryption
cannot depend on the parameters [10]. From a usage perspective, this models dealers (users) picking the inputs
to S.Share independently of H, which is what we expect real users to do. This is analogous to the argument
that users of deterministic public-key encryption will not usually encrypt messages that depend on the public
key of the recipient [4]. For both deterministic public-key encryption and message-locked encryption, allowing
messages to depend on the public key or parameters (respectively) has been considered [1,35,7]. Doing the same
here is an open question.

Our formalizations capture non-adaptive privacy, meaning that secrets (as well as the access structure, set of
corrupted parties and the randomness) are not chosen as a function of the shares the adversary sees of previously
shared secrets. This is in general necessary for Priv. In the case that the randomness is true and independent
across sharing, stronger privacy (adaptive and with I allowed access to Hash) is possible and in fact achieved
by our schemes. But we prefer the simplicity of a single definition to pursuing this because in usage, inputs to
S.Share are chosen by users who are unlikely to pick them adaptively or in a way depending on H.

Usage scenarios and their privacy. Different choices of randomness, made by a combination of user and
scheme choices, are captured by different classes of input-selectors. We discuss a few.

The S.Share interface of an implementation could give the caller options with regard to R, effectively ask-
ing: do you want to pick the coins, or do you want the implementation to? If the user selects the latter, the
implementation could pick R uniformly random from a large space for each invocation of Share. This would
be captured as the class of input-selectors that pick R in this way, and, for that class, achieving the definition
confers the standard indistinguishability-style privacy. However, it precludes reproducibility. A user desiring the
latter could select the option of itself providing R, and then has various choices of how to do so. It may omit it
altogether, setting R to the empty string, corresponding to an I that does the same, so that privacy is provided
as long as the message alone is unpredictable, as is possible if it is a good passphrase. To strengthen privacy in
the case the message may lack entropy, the user could maintain a separate, long-term, high quality password,
always using this in the role of R. Finally, the input-selector could choose such a long-lived R, but then append
a counter. All of these possibilities are modeled as different choices of I.

Reimagining Secret Sharing 11

Game Gauth0
S (A)

40 H � Ω

41 (A,M, T,St)� AH ; R� S.Rand
42 S ← S.ShareH(A,M,R, T)

43 S← {S[i] : i ∈ [1..|S|]}
44 S′ � AH(St ,S)

45 (M ′,V′)← S.RecoverH(S′)

46 return S ∩ V′ 6= ∅ and M 6= M ′

Game Gauth
S (A)

50 H � Ω

51 (S, S′)� AH

52 (M,V)← S.RecoverH(S)

53 (M ′,V′)← S.RecoverH(S′)

54 return V ∩ V′ 6= ∅ and M 6= M ′

Fig. 5. Defining authenticity. Games Auth0 and Auth capture security of S against adversary A. If ⊥ is ever parsed
into components (eg, at line 45), each is ⊥.

5 Authenticity

Authenticity captures the immutability of what is shared: if a dealer shares out M , then nothing else can be
recovered, even if some shares are changed. One could call the desired aim a binding property—one of the goals
of a commitment scheme.

We give two notions of authenticity, Auth0 and Auth. The former assumes an honest dealer. For the use
cases we have considered, it is sufficient. The Auth notion is simpler and implies Auth0. It does not assume an
honest dealer. We take Auth as our main definitional target, but retain Auth0 to clarify the key security aim
that Auth ensures.

The Auth0 goal. Our first notion for authenticity, Auth0, says that if you receive a share from an honest
dealer, contribute it to Recover, and a secret is recovered using your share, then that secret must be what the
dealer originally shared. In brief, a valid share is a commitment to the secret that was shared at that time. This
holds no matter what other parties do.

The definition of Auth0 employs the game Gauth0
S (A) defined in Fig. 5. An adversary A attacking Auth0

security runs a first stage to pick (A,M, T). The sharing algorithm is then run on these values, along with
uniformly random coins R, to produce a vector of shares S. The adversary, given S (and whatever state she
wants to retain from her first stage of execution, St), must now find a set of shares S′ that has some share S in
common with those in S. It wins if recovering a secret from S′ results in some message M ′ distinct from M and
employing the share S. Formally, we define Advauth0

S (A) = Pr[Gauth0
S (A)] as the probability that the specified

game returns true. Note that the game depends on the selection of a random oracle H, which we let A query.
Note that the common share S of our English exposition is not explicit in the game, but is an arbitrary element
of V ∩ V′. Recall that the second argument (M,V) returned by a call to Recover is the set of shares deemed
valid.

The Auth goal. There is a natural way to strengthen and simplify Auth0. A game that does so is again
defined in Fig. 5. Rather than insisting that shares arise from honestly sharing out a secret, we let the adversary
name two sets of shares, S and S′, in whatever way it likes. Recovery is then performed on both sets of shares.
The adversary wins if the two sets of shares have at least one share S in common, that share is used in recovery
operations, but the messages recovered differ. Note that strings are recovered if the adversary wins (that is,
M 6= ⊥ 6= M ′), because V 6= ⊥ 6= V′. We let Advauth

S (A) = Pr[Gauth
S (A)] be the probability that the game

returns true.

Auth implies is stronger than Auth0, as the adversary certainly has the option of creating S by sharing out
some (A,M, T) of its choice.

We can summarize the difference between Auth0 and Auth by saying that, in the former, a good share
commits the dealer to at most one M , while in the latter, any share, good or bogus, commits to at most one M .
Auth0 speaks to what a party can believe if it gets a share from an honest dealer; Auth speaks to what can be
believed if the share is of unknown provenance.

We prefer Auth to Auth0 because it is simpler and stronger. For applications the extra strength would
usually be irrelevant: in our motivating use cases, legitimate shareholders are assumed to hold valid shares.

We comment that having Recover identify which shares are good is important to making the authenticity
guarantee meaningful. In particular, a party holding a share S it believes to be valid and who recovers a

12 Bellare, Dai, and Rogaway

message M should only accept M as the underlying secret if her share S was identified as one of the good
shares.

6 Error Correction

Informal description. Basic correctness demands that Recover(S) return (M, S) when S is an authorized
subset of some sharing of M . But what should Recover do when S is not an authorized subset of any sharing
of M? One possibility is to have it return ⊥, thereby signaling that something is wrong. One might call such a
scheme error-detecting.

Error-detection comes with a liability: it enables the adversary to thwart message recovery by changing a
single share. There is no attempt to fix any problem. Error correction (Errx) goes to the opposite extreme: we
seek to recover from errors whenever we can.

Error correction can be regarded as an exercise in explanation seeking. The Recover algorithm is presented
with a set of shares. If there is a unique explanation for how they arose, we demand that Recover find this
explanation. Given shares S, the explanation will say: “Here is the message M that was previously shared out to
give a subset V 6= ∅ of the shares S. The remaining shares from S are all bad.” If there is no unique explanation
like this, then an Errx-secure scheme must say so. Note that we disregard the degenerate explanation in which
all shares are bad. That explanation is always a possibility, so an uninteresting one.

In this section we formalize Errx security. In Section 7.3 we show how to achieve Errx security, while in
Appendix A.2 we compare it to robustness [31,15].

Enriching the syntax. For ADSS schemes that target error correction we enrich the syntax for the Recover
algorithm in two directions.

First, we allow known information to be identified in Recover’s input. This information K ∈ Known =
Access ∪ Shares is either an access structure K = A ∈ Access that the recovering party somehow knows to be
the operative one, or it is the subset K ∈ Shares of the shares S given to Recover know to be valid.

Second, we demand that the recovery process identify not only the message M and the valid shares V ⊆ S

but also the randomness R that was used in the sharing.
Formally, we will say that an enriched ADSS scheme Π = (Acc,Share,Recover) has Acc and Share as

before but the message-recovery algorithm Recover: Known × Shares → Msg × Rand × Shares ∪ {⊥} gets the
indicated domain and range. We demand that Recover respects the known information: if A ∈ Access ∩ Known
and Recover(A, S) = (M,R,V) then V.as = A; and if G ∈ Shares ∩ Known and Recover(G, S) = (M,R,V) then
G ⊆ V. If the recovering party has no a priori information, select K = G = ∅.

As before, if Recover(K, S) = (M,R,V) then V ⊆ S and all shares from V have the same .as component and
the same .tag component. As for the return value R, we now describe our expectations.

Full correctness. For Π = (Acc,Share,Recover) an enriched ADSS scheme, we adjust basic correctness to
demand that the identified coins are right: for all A ∈ Access, H ∈ Ω, I ⊆ [1..n(Acc(A))], M ∈ Msg, R ∈ Rand,
T ∈ Tag, S ← ShareH(A,M,R, T), S = S[I], and K ∈ {A}∪P(S) (where P(S) is all subsets of the components
of S): (1) if I ∈ Acc(A) then RecoverH(K, S) = (M,R, S), and (2) if I 6∈ Acc(A) then RecoverH(K, S) = ⊥. If
all you are worried about is vanishing shares then Recover returns the right thing.

The following validity requirement for an enriched ADSS schemeΠ = (Acc,Share,Recover) can be considered
a converse to basic correctness: when Recover(K, S) = (M,R,V) and S = Share(V.as,M,R,V.tag) then V is an
authorized subset of S, meaning that V = S[G] for some G ∈ Acc(A), A = V.as. Informally, Recover(S) does
not lie by identifying an (M,R,V) that doesn’t work. Such lying would be pointless, as the party recovering can
verify that V is an authorized subset of Share(V.as,M,R,V.tag). An enriched ADSS scheme is fully correct if it
satisfies basic correctness and validity. When we speak of an ADSS scheme achieving Errx security, we always
assume it is fully correct.

Adjusting Auth. Enriching ADSS syntax is irrelevant for Priv security because that notion does not depend
on the Recover algorithm. On the other hand, the Auth security notion, previously defined by the game of
Fig. 5, needs a slight adjustment. The code of that game is replaced with:

50 H � Ω

51′ (K, S,K′, S′)� AH

52′ (M,R,V)← S.RecoverH(K, S)

53′ (M ′, R′,V′)← S.RecoverH(K′, S′)

54 return V ∩ V′ 6= ∅ and M 6= M ′

Reimagining Secret Sharing 13

Game Gerrx
S (A)

70 H � Ω ; (K, S)� AH

71 return S.RecoverH(K, S) 6= UniqueExplanationH(K, S)

72 procedure UniqueExplanationH(K, S)

73 if ∃(A,M,R,V) ∈ ExplanationsH(K, S) such that

74 (Â, M̂ , R̂, V̂) ∈ ExplanationsH(K, S)⇒ (A=Â ∧ M=M̂ ∧ R=R̂ ∧ V⊇ V̂)

75 then return this (necessarily unique) (M,R,V)

76 else return ⊥

77 procedure ExplanationsH(K, S)

78 return {(V.as,M,R,V) : Ŝ ⊆ S, (M,R,V) = S.RecoverH(K, Ŝ)}

Fig. 6. Defining error correction. We define an adversary A’s errx-advantage for S = (Acc, Share,Recover) as the
probability it wins the specified game.

The above continues to capture that a share commits to single underlying secret. By changing the “M 6= M ′

(line 54) to “(M,R) 6= (M ′, R′)” we would capture the idea that a share commits to a secret and coins. Our
main construction achieves this stronger variant as well.

Errx security. We now define the Errx security of an ADSS schemeΠ. See Fig. 6. We then define Adverrx
S (A) =

Pr[Gerrx
S (A)] as the probability that the adversary wins the error-correction game. An ADSS scheme S has perfect

error correction if it never fails to correct a correctable error: Adverrx
S (A) = 0 for any A.

The error-correction game is structured in a way to directly reflect the intended intuition. The adversary
wins if it forces Recover to recover something wrong—something other than the unique explanation, when there
is one, for the provided shares. We carry out the thought experiment of looking at all plausible explanations for
the shares, and see if one is unique. At the lowest level, at lines 78–7A, the plausible explanations are indicated
by the Recover procedure itself.

Alternative Errx definition. There is an equivalent way to define Errx security: one defines the plausible
explanations for a set of shares according to the Share procedure instead of the Recover procedures. Specifically,
lines 77–78 of Fig. 6 can be replaced by the following:

78′ procedure ExplanationsH(K, S)

79′ if K ∈ Access then return

7A′ {(K,M,R,V) : G ∈ Acc(K), R ∈ Rand, T ∈ Tag,S=ShareH(K,M,R, T),V=S[G] ⊆ S}
7B′ else return

7C′ {(A,M,R,V) : A ∈ Access, G ∈ Acc(A), R ∈ Rand, T ∈ Tag,S=ShareH(A,M,R, T),V=S[G] ⊆ S,K⊆V}

No other changes are made. We justify the equivalence of the definitions in Appendix C.2.

Discussion. We defined ADSS in such a way that the reconstructing party is not required to know the operative
access structure; rather, it recovers this from the valid shares. This choice interacts badly with use of an
expressive access-structure naming function. Suppose, for example, that Acc supports the 1-out-of-1 threshold
scheme. Then an adversary can replace a single share S from a deal S with a share S1 for a message M1, the
share asserting the 1-out-of-1 access structure. Message recovery will either be thwarted by the presence of this
one bogus share (when S \ {S} is qualified), or (M1, {S1}) will be recovered (when S \ {S} is not qualified).
Neither outcome is good.

The underlying problem is a failure to distinguish between the access structures that a secret-sharing scheme
can handle and those that a reconstructing party might regard as reasonable. Once that distinction is drawn,
one can consider it an important but out-of-model step that the recovering party discards any share asserting
an access structure it deems unreasonable. A simple special is when the receiver knows what the right access
structure is. It can provide this side information to Recover.

A well-known variant of secret sharing [41] envisages that a shareholder who trusts her own share S is
performing recovery. In such a case, explanations from Recover that do not include this share should be regarded
as implausible. More generally, we have enriched Recover so that any subset of shares can be designated as
trusted. Only explanations that include all trusted shares are considered valid. Note that marking any share

14 Bellare, Dai, and Rogaway

as trusted establishes a known access-structure, too. Both make it harder for an adversary to obstruct message
recovery.

One way for the receiving party to obtain assurance that a given share is trusted is for the share to be
digitally signed by the dealer and for the reconstructing party to know the dealer’s public key. Such a model for
secret sharing meaningfully disadvantages the adversary, but takes us outside our basic model.

Coin recovery. Our enriched syntax demands that Recover, when presented the set of shares S, return not
only M and V but also the coins R that were used in the sharing of M and gave rise to V ⊆ S. Why?

The returned coins serve as a certificate that the the valid shares really could arise from a legal sharing of
the message M . Beyond this, a unique explanation (M,R,V) for the set of shares S becomes a demonstration
that, for an honest dealer, it was a single sharing of M that gave rise to shares V. In effect, returning R and
absorbing it into the Errx definition makes the definition stronger, ensuring that it was one sharing from which
we are seeing shares. It eliminates degeneracies about what Recover should do when, for example, two shares of
a 2-out-of-4 secret-sharing are combined with two shares from a different 2-out-of-4 secret-sharing for the same
message. Such possibilities returning ⊥ (as we think they should) would thwart claims that Errx security imply
robustness; they would make it untrue. We find that to be undesirable: error-correction intuitively should imply
robustness (once side conditions are added so that robustness becomes achievable), but with other definitional
choices we explored that do not surface R, such a claim is untrue.

7 Constructions

This section provides schemes and transformations for achieving ADSS. We start with a version of Shamir’s
secret-sharing scheme, S1. It achieves classical privacy, Priv$, and works for threshold access structures. We then
provide the main construction of this paper: the transformation AX. It turns an ADSS scheme S achieving only
Priv$ security into an ADSS scheme SS = AX[S] that achieves Priv and Auth security. Finally, transformation
EX adds in Errx security. Proofs for our constructions are in Appendix C.

Transformations AX and EX leave unchanged the access structure of the scheme they are applied to, so
SS1 = EX ◦AX ◦S1 is the the concrete ADSS scheme we put forward for threshold access structures. To handle
arbitrary access structures all that is needed is to start with a base-level scheme that works for arbitrary access
structures. We give such a scheme, S2, in Appendix B. The access structures is presented as a circuit of threshold
gates. Scheme SS2 = EX ◦AX ◦ S2 is our suggestion for an ADSS scheme on arbitrary access structures.

We discuss the efficiency of our schemes at the end of this section.

7.1 Base-level scheme S1

We begin by describing Shamir secret-sharing [40], but with a few minor twists: scheme S1 operates over the
field F with 2β points and is extended blockwise; the polynomial coefficients are determined by a pseudorandom
generator (PRG) based on a pseudorandom function (PRF); and, in keeping with our syntax, a description of the
(threshold) access structure is an input to Share. Concretely, Fig. 7 defines secret-sharing scheme S1 = S1[β, f]
where

(1) β ≥ 2 is the blocklength. In practice, one would likely select β = 8, corresponding to the partitioning of a
plaintext into bytes; and

(2) f : {0, 1}κ × N × {0, 1}∗∗ → {0, 1}∗ formalizes how the entropy source R ∈ {0, 1}κ is used to create the
internal randomness. We require |f `R(x)| = ` (the first two arguments of f written as a subscript then
superscript).

The set S1.Access contains all 〈k, n〉 (a string that encodes k and n) where 1 ≤ k ≤ n < 2β . The access-structure
naming function S1.Acc maps each 〈k, n〉 ∈ S1.Access to the set Ak,n = {U ∈ [1..n] : |U | ≥ k}. The message

space of S1 is Msg = B∗ where B = {0, 1}β . The randomness space is Rand = {0, 1}κ. The scheme uses the finite
field F having 2β points, which must be more than the maximum number of parties. We fix some canonical
representation of field points as β-bit strings. We interchangeably regard β-bit strings, numbers in [0..2β − 1],
and points in F. For lines 106 and 111 recall that the fourth and fifth components of a share Si represent the
public portion Si.pub and the tag Si.tag. Both are ε since scheme S1 doesn’t support tags and doesn’t mark
any portion of a share as public.

The security of S1 relies on the PRF security of f , which is defined in Appendix C.1. We give the following
proposition, which states that if f is a secure PRF, then S1[β, f] is Priv$ secure. Recall the latter is Priv

Reimagining Secret Sharing 15

procedure S1.Share(A,M,R, T)

100 〈k, n〉 ← A

101 M1‖ · · · ‖Mm ←M where |M1| = · · · = |Mm| = β

102 for (i, j) ∈ [1..(k − 1)]× [1..m] do Rj,i ← fβR(i, j)

103 for i ∈ [1..n] do

104 for j ∈ [1..m] do

105 Bi,j ←Mj +Rj,1 · i+Rj,2 · i2 + · · ·+Rj,k−1 · ik−1

106 Si ← 〈i, 〈k, n〉, Bi,1 · · ·Bi,m, ε, ε〉
107 return (S1, . . . , Sn)

procedure S1.Recover(S)

110 t← |S|; {S1, . . . , St} ← S

111 for i ∈ [1..t] do 〈ιi, 〈ki, ni〉, Bi,1 · · ·Bi,mi , ε, ε〉 ← Si
112 (k, n,m)← (k1, n1,m1)

113 if t < k then return ⊥
114 for j ∈ [1..m] do

115 ϕj(x)← Interpolateβ({(ι1, B1,j), . . . , (ιk, Bk,j)})

116 Mj ← ϕj(0)

117 return (M1 · · ·Mm, S)

Fig. 7. Secret-sharing scheme S1. Scheme S1 = S1[β, f] depends on the number β and a PRF f : {0, 1}κ×N×{0, 1}∗∗ →
{0, 1}∗ satisfying |f `R(·)| = `. The message space is Msg = ({0, 1}β)∗, the entropy space is Rand = {0, 1}κ, the AD space
is Tag = {ε}. The set Access = {〈k, n〉: 1 ≤ k ≤ n} and Acc(A) = AA. Lines 105, 115, 116 do arithmetic in F. Procedure
Interpolateβ takes a set of points in F2 and returns the unique minimal-degree polynomial over F that passes through
them. If a value cannot be parsed as indicated, the routine returns ⊥.

restricted to input-selectors in the class IIIpriv$, namely those who pick the coins in their Deal queries uniformly
and independently of anything else.

Proposition 1. Let S1 = S1[β, f] with β ≥ 2 and f : {0, 1}κ × N× {0, 1}∗∗ → {0, 1}∗. Then S1 satisfies Priv$.
Concretely, given input-selector I ∈ IIIpriv$ and given Priv-adversary A we build a PRF-adversary B such that
Advpriv$

S1,I (A) ≤ Advprf
f (B). Adversary B is efficient when I and A are.

7.2 Main construction AX

The AX transformation turns a Priv$-secure secret-sharing scheme S into a secret-sharing scheme SS that
augments this with Priv- and Auth-security. SS uses the enriched ADSS syntax but does not yet target error
correction; that will come next. The AX transformation also expands the message space—scheme SS can share
messages of any length, while S might only be able to share short ones. AX also handles associated-data, which
scheme Shares is not required to support. The access structures that can be handled by SS are exactly those
that can be handled by Share. Besides the secret-sharing scheme S the transformation will use PRF and a
random-oracle-modeled hash-function. The former can be built from the latter, but we leave them separate
because we anticipate, for example, an AES-based construction for the PRF and a SHA256-based construction
for the hash.

The AX transformation is given in Fig. 8. It specifies SS.Share and SS.Recover for SS = AX[S, f]. Access-
structure naming function SS.Acc is S.Acc.

Theorem 2. Let SS = AX[S, f] where S is an ADSS scheme with message space S.Msg ⊇ {0, 1}κ, tag space
S.Tag = {ε}, and entropy space S.Rand = {0, 1}κ, and where f : {0, 1}κ × N× {0, 1}∗∗ → {0, 1}∗. Then:

1. If S is Priv$-secure then SS is Priv-secure. Given an input-selector II making qD calls to Deal and adver-
sary AA (attacking the Priv security of SS) making q queries to Hash, we build input-selector I ∈ IIIpriv$ and
adversaries A and B s.t.

Advpriv
SS (AA) ≤ 2 (qD + q)pred(AA) + 4 (Advpriv$

S (A) + 4 Advprf
f (B)) . (1)

Adversaries A,B are about as efficient as AA.

16 Bellare, Dai, and Rogaway

M R TA

C

H

J L K

msg

rnd

C

C

C

T

T

T

∆1

∆2

∆3

.sec .pub .tag

Σ1

Σ2

Σ3

acc D

D

D

D

.id

1

2

3

A

A

A

.as

= S1

= S2

= S3

.sec .pub

(S1, S2, S3) ’ ’ ’

J

J

J

KM KRFM

L

A

K

S.Share

FR

procedure SS.ShareHash(A,M,R, T)

300 J ‖K ‖ L← H4κ(A,M,R, T) where |J | = 2κ and |K| = |L| = κ

301 C ←M ⊕ f |M|K (ε); D ← R⊕ fκK(0); n← n(S.Acc(A))

302 (S′1, . . . , S
′
n)← S.Shareh(A,K,L, ε)

303 for i ∈ [1..n] do

304 Σi ← S′i.sec; ∆i ← S′i.pub

305 for i ∈ [1..n] do

306 Pi ← 〈∆i, C,D, J〉
307 Si ← 〈i, A,Σi, Pi, T 〉
308 return (S1, . . . , Sn)

procedure h`(x)

320 return Hash(`, 0 ‖ x)

procedure H`(x)

330 return Hash(`, 1 ‖ x)

procedure SS.RecoverHash(K, S)

310 t← |S|; {S1, . . . , St} ← S

311 for i ∈ [1..t] do

312 〈ji, Ai, Σi, Pi, Ti〉 ← Si
313 〈∆i, Ci, Di, Ji〉 ← Pi
314 S′i ← 〈ji, Ai, Σi,∆i, ε〉
315 S′ ← {S′i : i ∈ [1..t]}
316 (K,G)← S.Recoverh(S′)

317 〈·, A, ·, 〈·, C,D, J〉, T 〉 ← S1

318 M←C ⊕ f |C|K (ε); R←D⊕ fκK(0)

319 if H4κ(A,M,R,T)[1..3κ] = J‖K
31A and S.id ∈ S.Acc(A)

31B and S ⊆ SS.ShareHash(A,M,R, T)

31C then return (M,R, S) else return ⊥

Fig. 8. The AX transform SS = AX[S, f]. The construction depends on a Priv$-secure S and a PRF f : {0, 1}κ×N→
{0, 1}∗∗ → {0, 1}∗. Top: Illustration of sharing. PRGs FM (K) = f

|M|
K (ε) and FR(K) = fκK(0) are defined from f . The

message K is shared by S using access structure A and coins L. Hash function H is defined from the random oracle Hash.
Bottom: Definition of the scheme. It is Priv and Auth secure, in the random-oracle model, when S is Priv$-secure and f
is a PRF.

Reimagining Secret Sharing 17

procedure SS.Recover(K, S)

80 let S1, . . . , Sw ∈ P(S) include all K-plausible sets of shares, Si ⊇ Sj ⇒ i ≤ j
81 for i← 1 to w do if (M,R,V)← S.Recover(K, Si) and V = Si then goto 84

82 return ⊥
83 {S′1, . . . , S′u} ← {Si+1, . . . , Sw} \ P(V)

84 for i← 1 to u do if (M ′, R′,V′)← S.Recover(K, S′i) and V′ 6⊆ V then return ⊥
85 return (M,R,V)

Fig. 9. The EX construction. The method turns a coin-recovering secret-sharing scheme S into a coin-recovering
secret-sharing scheme SS = EX[S] with the Errx property. We let SS.Acc = S.Acc and SS.Share = S.Share.

2. SS is Auth-secure. For any A making qH queries to Hash, we have

Advauth
SS (A) ≤ (qH + 1)(qH + 2) · 2−(2κ+1) .

A more explicit theorem statement would quantify the resources of the constructed adversaries. In this case,
adversary A makes qD queries to Deal and q queries to Hash, while B makes qD queries to New and 2 queries
per instance to Fn. The running times of A and B are about the same as that of AA. For brevity we omit such
details in this and other result statements. They can be gleaned from the proofs.

7.3 Error correction with EX

Fig. 9 defines a transformation EX that turns an enriched ADSS scheme S into an error-correcting scheme SS.
EX avoids making any changes to Share, putting all the work in Recover.

For line 80, a set of shares S′ is said to be K-plausible if all the shares in S′ name the same access-structure
encoding A, and A = K if K names an access structure; the shares name distinct identities in [1..n(Acc(A))];
these parties are authorized according to Acc(A); the shares all have the same tag T ; and the shares include
all those in K if K is a set of shares. Further scheme-dependent criteria can be added without harming the
correctness of EX as long as one omits no element of P(S) that could arise in a valid sharing that respects
the known information K. As an example, if Share happens to place the same word J in each share of a deal
then the definition of K-plausible sets can further include the constraint that all shares have the same J-value.
Line 81 looks for a first explanation Si for S such that the identified set of valid shares V is equal to Si. If we fail
to find one, we fail at line 82. Otherwise we seek at line 84 a second explanation for S. If we find one, we again
fail, but now because there are two explanations for S. At line 83 we prune the plausible second explanations
to only include those that are not a subset of the first.

Theorem 3. Let S be any enriched ADSS scheme with full correctness, and let SS = EX[S]. Then:

1. If S is Auth-secure then so is SS. Concretely, given adversary AA (for attacking the Auth security of SS),
we construct adversary A with complexity similar to AA (for attacking the Auth security of S) such that
Advauth

SS (AA) ≤ Advauth
S (A).

2. SS is perfectly Errx-secure. Concretely, for any adversary A, Adverrx
SS (A) = 0.

7.4 Efficiency of the constructions

We apply AX and then EX to S1 to obtain a threshold scheme SS1, or AX and then EX to S2 to obtain a
scheme SS2 for any access structure. These schemes are highly efficient: sharing an m-byte message M will
take O(m) time and, more concretely, about the amount of time to symmetrically encrypt and hash M . This
assumes a fixed number of shareholders n, a fixed access-structure encoding A, a fixed tag T , and fixed scheme
parameters. Concretely, to share M one will need to apply a hash function like SHA-256 to a string that’s
|A|+ |T |+κ bits longer than M (likely κ ∈ {128, 256}); run a blockcipher like AES in counter mode to generate
a pad κ bits longer than |M |; and run a sharing under S1/S2. That last part is fast because the message being
shared is just the κ-bit string K. For S2 one needs time linear in the number of threshold gates in the circuit
described by A. Practical access structures will have no more than a few gates.

Message recovery for AX ◦ S1 or AX ◦ S2 takes about the same time as sharing, but once EX is added the
recovery process can be slow: exponential in the number of shares n presented to Recover. In the worst case,

18 Bellare, Dai, and Rogaway

the recovery algorithm, given S = {S1, . . . , Sn}, might inspect as many as 2n subsets of S. Still, in practical
contexts the number n is likely to be so small that 2n is still small. Beyond this, we have designed EX so that
exponential-time recovery can only arise when there are adversarial edits to shares, not just omissions. In the
setting where shares are either valid or absent, Recover will run in essentially the same time as Share.

8 Conclusions and Open Problems

Classical secret-sharing envisages an adversary that does no more than erase some users’ shares. Its only aim is
to learn what it shouldn’t know. Real adversaries aren’t so restrained. In response, one can reduce expectations
or increase guarantees. We’ve done the latter.

An unresolved technical problem is how to achieve Errx security with efficient worst-case message-recovery
time. Many constructions are plausible. For example, one could add n hash values to each of the n shares, a
check-value for each share on each share, using these to partition shares into plausible subsets. Or one could
add to each share a dealer-generated digital signature. We suspect that techniques like these can work, and can
also make for a simpler Recover than that of EX.

We have not implemented our ADSS schemes. We hope to soon see implementations by others, both as
a callable library and as an end-user tool. Ultimately, ADSS implementations should conform to a standards
document, such as an RFC. In this way, techniques for adept secret-sharing may become as fixed as those for,
say, authenticated encryption.

Our formulation of ADSS has shares leak metadata such as the share number and the operative access
structure. Definitions and schemes for metadata-concealing ADSS should be possible.

Underlying our work has been a belief that secret sharing has been underutilized. Secret sharing is not just
a tool for doing other things; it is also an aim directly tied to a human aspiration. Shamir wrote in 1979 [40]
that “Threshold schemes are ideally suited to applications in which a group of mutually suspicious individuals
with conflicting interests must cooperate.” Such cooperation is needed now more than ever.

Acknowledgments

A meeting with J. Alex Halderman and Laurent Richard led to this project. A later meeting with staff at the
Freedom of the Press Foundation helped clarify our goals, especially authenticity.

Thanks to John Chan, Jake Craige, Fred Jacobson, Romain Ruetschi, and Conor Schaefer for useful feedback.
Thanks to the PoPETs referees for their excellent comments and suggestions.

Bellare and Dai were supported by NSF CNS 1717640, Rogaway by NSF CNS 1717542.

References

1. M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked encryption for lock-dependent
messages. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 374–391.
Springer, Heidelberg, Aug. 2013.

2. G. Bai, I. Damg̊ard, C. Orlandi, and Y. Xia. Non-interactive verifiable secret sharing for monotone circuits. In
D. Pointcheval, A. Nitaj, and T. Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS, pages 225–244.
Springer, Heidelberg, Apr. 2016.

3. A. Beimel. Secret-sharing schemes: A survey. In Y. M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and
C. Xing, editors, Coding and Cryptology, pages 11–46, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

4. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Heidelberg, Aug. 2007.

5. M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and S. Yilek. Hedged public-key encryption:
How to protect against bad randomness. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
232–249. Springer, Heidelberg, Dec. 2009.

6. M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The cascade construction and its
concrete security. In 37th FOCS, pages 514–523. IEEE Computer Society Press, Oct. 1996.

7. M. Bellare, W. Dai, and L. Li. The local forking lemma and its application to deterministic encryption. In S. D.
Galbraith and S. Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 607–636. Springer,
Heidelberg, Dec. 2019.

8. M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equivalences and
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 360–378.
Springer, Heidelberg, Aug. 2008.

Reimagining Secret Sharing 19

9. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In T. Yu, G. Danezis, and V. D. Gligor,
editors, ACM CCS 2012, pages 784–796. ACM Press, Oct. 2012.

10. M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure deduplication. In T. Johansson
and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 296–312. Springer, Heidelberg, May
2013.

11. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer,
Heidelberg, Dec. 2000.

12. M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-preserving encryption. In M. J. Jacobson Jr.,
V. Rijmen, and R. Safavi-Naini, editors, SAC 2009, volume 5867 of LNCS, pages 295–312. Springer, Heidelberg,
Aug. 2009.

13. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy in plaintexts for
efficient cryptography. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 317–330. Springer,
Heidelberg, Dec. 2000.

14. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing proofs.
In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June
2006.

15. M. Bellare and P. Rogaway. Robust computational secret sharing and a unified account of classical secret-sharing
goals. In P. Ning, S. De Capitani di Vimercati, and P. F. Syverson, editors, ACM CCS 2007, pages 172–184. ACM
Press, Oct. 2007.

16. J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 27–35. Springer, Heidelberg, Aug. 1990.

17. G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Computer Conference, 48:313–
317, 1979.

18. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving simultaneity in the
presence of faults (extended abstract). In 26th FOCS, pages 383–395. IEEE Computer Society Press, Oct. 1985.

19. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391–437, 2000.
20. C. Ellison. Ceremony design and analysis. Cryptology ePrint Archive, Report 2007/399, 2007. http://eprint.

iacr.org/2007/399.
21. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th FOCS, pages 427–437. IEEE

Computer Society Press, Oct. 1987.
22. Freedom Voices Network. Forbidden stories, webpage, visited 2019.09.19.
23. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted

data. In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press,
Oct. / Nov. 2006. Available as Cryptology ePrint Archive Report 2006/309.

24. G. Greenwald. No Place to Hide. Metropolitan Books, 2014.
25. X. Guang, J. Lu, and F. Fu. Repairable threshold secret sharing schemes. CoRR, abs/1410.7190, 2014.
26. L. Harding. What are the Panama papers? A guide to history’s biggest data leak. The Guardian, 04 2016.

https://goo.gl/rXUNdj.
27. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope with perpetual leakage.

In D. Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 339–352. Springer, Heidelberg, Aug. 1995.
28. Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and D. Wichs. Be adaptive, avoid overcommitting.

In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 133–163. Springer,
Heidelberg, Aug. 2017.

29. B. Kacsmar, C. Komlo, F. Kerschbaum, and I. Goldberg. Mind the gap: Ceremonies for applied secret sharing.
PoPETs, 2020(2):497–415, 2020.

30. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation. In B. Schneier,
editor, FSE 2000, volume 1978 of LNCS, pages 284–299. Springer, Heidelberg, Apr. 2001.

31. H. Krawczyk. Secret sharing made short. In D. R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 136–146.
Springer, Heidelberg, Aug. 1994.

32. T. M. Laing and D. R. Stinson. A survey and refinement of repairable threshold schemes. J. Mathematical Cryptology,
12(1):57–81, 2018.

33. N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43–52, 1996.
34. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In

J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Heidelberg, Aug. 1992.
35. A. Raghunathan, G. Segev, and S. P. Vadhan. Deterministic public-key encryption for adaptively chosen plaintext

distributions. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 93–110.
Springer, Heidelberg, May 2013.

36. L. Richard. A warning to the corrupt: if you kill a journalist, another will take their place. The Guardian, April
2016. https://goo.gl/U868Ye.

37. P. Rogaway. Authenticated-encryption with associated-data. In V. Atluri, editor, ACM CCS 2002, pages 98–107.
ACM Press, Nov. 2002.

http://eprint.iacr.org/2007/399
http://eprint.iacr.org/2007/399

20 Bellare, Dai, and Rogaway

38. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient authenticated
encryption. In M. K. Reiter and P. Samarati, editors, ACM CCS 2001, pages 196–205. ACM Press, Nov. 2001.

39. C. Schaefer. Meet Sunder, a new way to share secrets, May 2018. webpage, visited 2019-02-09.
40. A. Shamir. How to share a secret. Communications of the Association for Computing Machinery, 22(11):612–613,

Nov. 1979.
41. M. Tompa and H. Woll. How to share a secret with cheaters. In A. M. Odlyzko, editor, CRYPTO’86, volume 263

of LNCS, pages 261–265. Springer, Heidelberg, Aug. 1987.
42. V. Vinod, A. Narayanan, K. Srinathan, C. P. Rangan, and K. Kim. On the power of computational secret sharing. In

T. Johansson and S. Maitra, editors, INDOCRYPT 2003, volume 2904 of LNCS, pages 162–176. Springer, Heidelberg,
Dec. 2003.

A Relations

Our Auth security goal for ADSS may seem similar to the verifiable secret-sharing (VSS) goal to the first
formulated by Chor, Goldwasser, Micali, and Awerbuch (CGMA85) [18]. In this section we contrast these goals.
Then we contrast Auth with robustness [31,15] and, finally, with repairability [25,32].

A.1 Comparison with VSS

VSS arose in the context of multiparty computation (MPC), where each party would, in a first phase, share out
its secret, and later, in a second phase, compute on these shares. For the second phase to work, it was important
that, at the end of the first phase, honest parties could be sure that, for each dealer, there existed a single value
such that, if, at some later stage, an authorized subset of honest parties attempted recovery, they would recover
this unique value.

The original VSS method of CGMA85 [18] involved interaction among the shareholders. Feldman was the
first to describe a non-interactive scheme for VSS [21]. Each shareholder performs a local verification step,
applying a verification algorithm specified by the scheme to its own share and some public quantity broadcast
by the dealer. The result informs a party if its share is valid. This local validity was required to ensure the
global unique recoverability property.

Thus two points of difference with ADSS that emerge from the above are: (1) the presence, in a VSS setting,
of the verification algorithm; and (2) the presence, in the model for VSS, of a broadcast channel. ADSS does
not have a verification algorithm and does not anticipate a broadcast model. Formally, for different definitions
D of ours like Auth or Errx, questions like “does VSS imply D, or does D imply VSS” do not make formal sense,
as the goals involve different syntax and models.

Rather than end the comparison on this unsatisfactory note, we treat VSS in the ADSS context. We extend
the syntax and model to include a verification algorithm and a broadcast channel. With a formal definition of
VSS in place, we show that a VSS-secure scheme is Auth-secure. That is, VSS is effectively a stronger demand
than Auth.

However, achieving VSS instead of Auth seems to involve more work: known VSS schemes are substantially
less efficient than the Auth-secure schemes we propose. Worse, VSS needs what is, in our context, the untenable
assumption of a broadcast channel: for our motivating use cases, this isn’t present.

Formalizing VSS. To enable a formal comparison of Auth and VSS we must provide VSS with an ADSS-
like syntax. We say that a scheme for verifiable-ADSS is a four-tuple of deterministic algorithms VS =
(Acc,Share,Recover,Verify). We require that S = (Acc,Share,Recover) is an ADSS scheme, called the ADSS
scheme induced by VS. The new algorithm

Verify: Share→ {0, 1}
will tell a shareholder whether or not its share S is valid. Basic correctness for VS is that of its induced ADSS
scheme together with the requirement that S = ShareH(A,M,R, T) implies that VerifyH(S[i]) = 1 for all i. We
may speak of Priv, Auth security of VS, by which we simply mean those of its induced ADSS scheme.

The new requirement is VSS-security. Consider the Gvss
VS (A) game on the left of Fig. 10. The VSS advantage

of A is defined by

Advvss
VS (A) = Pr[Gvss

VS (A)] .

In the game, the adversary at line 81 returns an access structure description A and two sets S, S′ of shares.
Line 82 enforces the broadcast constraint that the public portions of all shares are the same. Line 83 says that

Reimagining Secret Sharing 21

Game Gvss
VS (A)

80 H � Ω; (A,A′, S, S′)� AH

81 if (∃S, S′ ∈ S ∪ S′ : S.pub 6= S′.pub) then return false

82 if (∃S ∈ S ∪ S′ : VS.Verify(S) = 0) then return false

83 if (S.id 6∈ VS.Acc(A) or S′.id 6∈ VS.Acc(A′))

84 then return false

85 Y ← VS.RecoverH(S); Y ′ ← VS.RecoverH(S′)

86 if (Y = ⊥ or Y ′ = ⊥) then return true

87 (M,V)← Y ; (M ′,V′)← Y ′

88 return (M 6= M ′)

Fig. 10. Game defining VSS security of a broadcast-model VSS scheme VS = (Acc, Share,Recover,Verify)

all shares have passed verification. Line 84 says that the parties underlying both sets of shares are authorized.
With these constraints, security (the adversary does not win) requires that the two sets of shares recover to a
common, non-⊥ value.

VSS implies Auth. Let VS = (Acc,Share,Recover,Verify) be a verifiable-ADSS scheme. Define

procedure Recover′(S)

if (∃S ∈ S : Verify(S) = 0) then return ⊥
Y ← Recover(S); return Y

The following says that ADSS scheme S′ = (Acc,Share,Recover′) satisfies Auth.

Proposition 4. Let VS = (Acc,Share,Recover,Verify) be a verifiable-ADSS scheme and let ADSS scheme S′
= (Acc,Share,Recover′) be defined as above. Given adversary Aauth we build adversary Avss, about as efficient
as Aauth, such that Advauth

S′ (Aauth) ≤ Advvss
VS (Avss).

Proof. We define Avss as follows:

Adversary AHvss
(S, S′)� AHauth
Y ← Recover′(S); Y ′ ← Recover′(S′)
if (Y = ⊥ or Y ′ = ⊥) then return ⊥
A← S.as; A′ ← S′.as; (M,V)← Y ; (M ′,V′)← Y ′

return (A,A′, S, S′)

Our syntax demands Recover(S) return ⊥ unless the public parts of all S ∈ S are the same and likewise for S′.
If Aauth wins in game Gauth

S′ (Aauth) then Y 6= ⊥ and Y ′ 6= ⊥. Since additionally S∩S′ 6= ∅, we get that all shares
in S∪S′ have the same public part, ensuring that line 82 of game Gvss

VS (Avss) does not return false. The definition
of Recover′ tells us that line 83 also does not return false. Our syntax demands that if Recover(S) returns the
non-⊥ value (M,V) then access structures S.as = A of all S ∈ S are the same and additionally S.id ∈ Acc(A),
and likewise for S′. So line 84 also does not return false. Now if Aauth wins we have Y, Y ′ 6= ⊥ and M 6= M ′, so
Avss wins.

A.2 Comparison with robustness

Robustness was introduced in [31] and formalized in [15]. We start by adapting the notion of the latter to
ADSS. We consider the game of Fig. 11 and let Advrob

S (A) = Pr[Grob
S (A)] be the advantage of an adversary A

in this game. The game picks R at random. The adversary runs in two phases. In the first, it returns A,M, T
and state information St . The game then creates S ← S.ShareH(A,M,R, T). In its second stage, given St , the
adversary can adaptively corrupt parties, one by one, obtaining their shares, as long as the set G of uncorrupted
parties remains authorized and the set B of bad (corrupted) parties remains unauthorized. Finally the adversary
outputs a set B of shares for the corrupted parties. We require that, for any identity, there is at most one share
in B with that identity. The game requires that the set of identities across all the shares in B be precisely the

22 Bellare, Dai, and Rogaway

Game Grob
S (A)

90 H � Ω; R� S.Rand; (A,M, T,St)� AH(ε)

91 S←S.ShareH(A,M,R,T); n← |S|; G← [1..n]

92 B← AH,Corrupt(St)

93 if (B.id 6= B or B.as 6= A) then return false

94 S← S[G] ∪ B; Y ′ ← S.RecoverH(S)

95 if Y ′ 6= ⊥ then (M ′,V)← Y ′

96 return (Y ′ = ⊥ or M ′ 6= M)

97 procedure Corrupt(i)

98 if (G \ {i} 6∈ Acc(A)) then return ⊥
99 if (B ∪ {i} ∈ Acc(A)) then return ⊥
9A B ← B ∪ {i}; G← G \ {i} ; return S[i]

Fig. 11. Defining robustness of ADSS scheme S. Adapted from the secret-sharing definitions of [15,31].

set of corrupted parties, and that all these shares name access structure A. The adversary wins if the message
M ′ returned by SS.Recover, on S = S[G] ∪B, is different from M , meaning either some other string or ⊥.

The following says that Errx implies this Rob notion, meaning if an enriched ADSS scheme has the former,
then the ADSS scheme it induces (this means the scheme in which Recover no long returns coins and other
algorithms are unchanged) automatically has the latter. Errx is thus stronger than Rob. We can also give
examples to show it is strictly stronger.

Proposition 5. Let S′ = (Acc,Share,Recover′) be an enriched ADSS scheme satisfying full correctness. De-
fine Recover(S) to let (M,R,V) ← Recover′(∅, S) and return (M,V), and now let S be the ADSS scheme
(Acc,Recover,Share). Given adversary Arob we build adversary Aerrx such that Advrob

S (Arob) ≤ Adverrx
S′ (Aerrx).

The running time of Aerrx is about that of Arob.

Proof (Proposition 5). We assume line 93 does not return false and define adversary AHerrx as follows:

Adversary AHerrx
R� S.Rand ; (A,M, T,St)� AHrob(ε)

S←S.ShareH(A,M,R,T); n← |S|; G← [1..n]

B← AH,CorruptSim
rob (St); S← S[G] ∪B

return (∅, S)

procedure CorruptSim(i)

if (G \ {i} 6∈ Acc(A)) then return ⊥
if (B ∪ {i} ∈ Acc(A)) then return ⊥
B ← B ∪ {i} ; G← G \ {i}; return S[i]

This adversary runs Arob, simulating the latter’s Corrupt oracle. It returns the set of shares that game
Grob

S (Arob) would pass to Recover, with the known information set to ∅. Let Y ′ ← Recover′(S) and if Y ′ 6= ⊥ then
parse it as (M ′, R′,V′)← Y ′. Suppose Arob wins in game Grob

S (Arob). This means either Y ′ = ⊥ or M ′ 6= M . We
want to show Aerrx wins in game Gerrx

S′ (Aerrx). This means we must show that Y ′ 6= UniqueExplanation(∅, S).

This is true because all members of ExplanationsH(A, S) have the form (A,M,R,V) for some V.

Robustness of an ADSS scheme does not imply that it has our Auth property. For example, in a robust
2-of-3 threshold scheme, if a share S[1] for M is combined with shares S[2] and S[3] for another secret M ′, then
all parties, including the first, must recover M ′, and party 1 is provided no indication that M ′ is not the secret
that was used to create S[1]. In the same situation, an auth scheme would return ⊥, so that party 1 is not given
a secret inconsistent with her share. In fact, Auth implies non-robustness, and robustness permits that a party
can recover anything that an adversary chooses if it controls the remaining shares.

Reimagining Secret Sharing 23

A.3 Comparison with repairability

Repairable threshold schemes [25,32] allow a party to reconstruct a missing share by interacting with fellow
shareholders. In our applications, we do not anticipate that shareholders have any desire or ability to interact
with one another prior to recovery. They might not even know who other shareholders are, or how to reach
them. We anticipate that if a party has lost her share, or thinks it may no longer be accurate, she can ask the
dealer to regenerate it. If reproducibility was targeted, the dealer can give the party the same share as before.
Without reproducibility, the dealer would need to re-share the secret, which means it must contact all other
shareholders and get them to replace their shares.

B Base-Level Scheme S2

We describe an alternative to S1 that supports arbitrary access structures instead of just threshold ones. The
access structure is represented by a circuit of threshold gates, a compact way to describe any access structure.
That threshold gates are rich enough to represent any access structure follows from the fact that AND and OR
gates are threshold gates, these two gates are already enough to represent any monotone Boolean function, and
access structures must be monotone.

We name our scheme S2. It combines the folklore idea of Yao’s secret-sharing scheme [3,42,28] with Benaloh-
and-Leichter’s scheme for monotone formulas [16]. The reason we call Yao’s scheme “folklore” is because there is
no written description of it by him. Rather, he sketched the idea in one or more talks, including one in 1989 [2,
p. 228].

The reason for attending to non-threshold access structures is that natural ones do arise. They tend to be
simple—things like “2 and (1 or 3)”, meaning that one requires the participation of shareholder-2 and either
the participation of shareholder 1 or 3.

Threshold circuits. The top of Fig. 12 depicts a threshold circuit C = (n, q, in, th) with n = 3 inputs and
q = 3 gates. The input wires are numbered 1, 2, 3. The gates, and the wires coming out of them, are numbered 4,
5, 6. Wire 6 is the output wire. The drawing shows connectivity that could be described by a function in from
gates to sets of wires where in(4) = {1, 2}, in(5) = {2, 3}, and in(6) = {4, 5}. The threshold value for gates 4
and 5 (written near its apex) is 2, th(4) = th(5) = 2, so these are 2-out-of-2 gates, meaning two-input AND
gates. The threshold value of gate 6 is 1, th(6) = 1, so this is a two-input OR gate. The circuit computes
the boolean function x1x2 ∨ x2x3 = x2(x1⊕x3) over bits x1, x2, x3 and thereby encodes the access structure
A = {{1, 2}, {2, 3}, {1, 2, 3}}.

Proceeding more formally, we follow a minimalist formalization for garbled circuits [9], saying that a threshold
circuit (that is, a circuit of threshold gates) is a 4-tuple C = (n, q, in, th). The values n ≥ 2 and q ≥ 1 represent
the number of input wires and the number of gates, respectively. We number input wires Inp = [1..n], gates
Gates = [n + 1..n + q], and all wires Wires = [1..n + q]. We identify a gate with the wire coming out of it.
The output wire for the entire circuit is wire n + q. Function in: Gates → P(Wires) identifies the inputs to
each gate, |in(g)| ≥ 2. We will alternatively regard in(g) as a numerically ordered list (e.g., in(4) = (1, 2) rather
than in(4) = {1, 2}). Function th: Gates → N is the threshold value of each gate (how many of the inputs
must be 1 for the output to be). We require that for all g ∈ Gates, ∅ 6= in(g) ⊆ [1..g − 1] (so no cycles) and
1 ≤ th(g) ≤ |in(g)|.

For k ∈ [1..n] and X ∈ {0, 1}n let THk(X) be 1 if X has k or more 1-bits, and 0 otherwise. For X ∈ {0, 1}n
and I ⊆ [1..n], let X[I] be the |I|-bit substring of X that includes only the bits at positions in I (indexing
starting at 1). For a threshold circuit C = (n, q, in, th) and X ∈ {0, 1}n, define C(X) = Eval(C, X) by

procedure Eval(C, X)
(n, q, in, th)← C

for g ← n+ 1 to n+ q do
X[g]← THth(g) (X[in(g)])

return X[n+ q]

For compactness, the code above extends the n-bit string X to n + q bits, using the additional q bits to
record the values flowing on non-input wires.

A threshold circuit C = (n, q, in, th) names an n-party access structure A = Acc(〈C〉) that contains G ⊆ [1..n]
exactly when C(G) = 1, where G is the n-bit string with G[i] = 1 when i ∈ G and G[i] = 0 when i 6∈ G.

24 Bellare, Dai, and Rogaway

X2X1 X3

X4

gate 7

1

21 3

4 5

6

2 2

1

L1,4 L2,4 L1,5 L2,5

L1,6 L2,6

X2,4X1,4

X5

X2,5X1,5

X6

X2,6X1,6

1

22

Gate-5 labels

(X1,5 , X2,5) ← share2,2,5(X5) // 2-of-2 share X5 to get (X1,5 , X2,5)

L1,5 ← X1,5 ⊕ H
λ(1,5, X2) // encrypt X1,5 using token X2 as the key

L2,5 ← X2,5 ⊕ H
λ(2,5, X3) // encrypt X2,5 using token X3 as the key

Gate-6 labels

(X1,6 , X2,6) ← share1,2,6(X6) // 1-of-2 share X6 to get (X1,6 , X2,6)

L1,6 ← X1,6 ⊕ H
λ(1,6, X4) // encrypt X1,6 using token X4 as the key

L2,6 ← X2,6 ⊕ H
λ(2,6, X5) // encrypt X2,6 using token X5 as the key

Gate-4 labels

(X1,4 , X2,4) ← share2,2,4(X4) // 2-of-2 share X4 to get (X1,4 , X2,4)

L1,4 ← X1,4 ⊕ H
λ(1,4, X1) // encrypt X1,4 using token X1 as the key

L2,4 ← X2,4 ⊕ H
λ(2,4, X2) // encrypt X2,4 using token X 2 as the key

R

R

R

Encrypting the plaintext

C ← M ⊕ H
| M | (X6)

Tokens

X1 ←f λ (1)

X2 ←f λ (2)

X3 ←f λ (3)

X4 ←f λ (4)

X5 ←f λ (5)

X6 ←f λ (6)

R

R

R

R

R

R

procedure S2.ShareH(C,M,R, T)

200 〈n, q, in, th〉 ← C

201 for i ∈ [1..n+ q] do Xi ← fλR(i)

202 for g ∈ [n+ 1..n+ q] do

203 (ι1, . . . , ιη)← in(g); k ← th(g)

204 (X1,g, · · · , Xη,g)← sharek,η,gR (Xg)

205 for i ∈ [1..η] do Li,g ← Xi,g ⊕Hλ(i, g,Xιi)

206 L← 〈Li,g: g ∈ [n+ 1..n+ q], i ∈ [1..|in(g)]〉
207 C ← H |M|(Xn+q)⊕M ; C̃← 〈C,L〉
208 for i ∈ [1..n] do Si ← 〈i,C, Xi, C̃, ε〉
209 return (S1, . . . , Sn)

procedure sharek,η,gR (M)

210 M1‖ · · · ‖Mm←M where |M1|= · · ·= |Mm|=β

211 for (i, j) ∈ [1..j−1]× [1..m] do ai,j ← fβR(g, i, j)

212 for j ← 1 to m do ϕj(x) = Mj +
∑k−1
i=1 ai,j · x

i

213 for i← 1 to η do Si ← ϕ1(i) ‖ · · · ‖ ϕm(i)

214 return (S1, . . . , Sη)

procedure S2.RecoverH(S)

220 {S1, . . . , St} ← S; X1, X2, . . .← ⊥
221 for i ∈ [1..t] do 〈ιi,C, Xιi , C̃, ε〉 ← Si
222 〈n, q, in, th〉 ← C; 〈C,L〉 ← C̃

223 〈Li,g: g ∈ [n+ 1..n+ q], i ∈ [1..|in(g)|]〉 ← L

224 for g ← n+ 1 to n+ q do

225 (ι1, . . . , ιη)← in(g); k ← th(g)

226 for i← 1 to η do Xi,g ← Li,g ⊕Hλ(i, g,Xιi)

227 Xg ← recoverk,η,gR (X1,g, . . . , Xη,g)

228 if Xn+q = ⊥ then return ⊥
229 return (H |C|(Xn+q)⊕C, S)

procedure recoverk,η,gR (S1, . . . , Sη)

230 P ← {(i, Si) : i ∈ [1..η], Si 6= ⊥}
231 if |P | < k then return ⊥
232 m← bytelength (relative to β) of 2nd components of P
233 for j∈ [1..m] let Pj be P with 2nd components just byte j

234 for j ← 1 to m do ϕj(x)← Interpolateβ(Pi)
236 return ϕ1(0) · · ·ϕm(0)

Fig. 12. Secret-sharing scheme S2 for achieving classical privacy and accommodating any access structure.
On reconstruction, shares are either unchanged or absent. S2 = S2[β, f, λ] depends on β, λ, µ ∈ N and f : {0, 1}κ × N ×
{0, 1}∗∗ → {0, 1}∗ satisfying |f `R(·)| = `. Hash functionH`(x) returns ` uniform bits. The access structure is described by a
circuit C = 〈n, q, in, th〉 of threshold gates each having fewer than 2β inputs. Sharing depends on random bits R ∈ {0, 1}κ.
No tag T is supported. Top: Illustration of sharing with an access structure having AND gates 4 and 5, and OR gate 6.
Each wire i is associated with a λ-bit token Xi. The boxed text describes how the dealer computes randomizer U ,
tokens Xi, ciphertext C, and the Li,j labels. The share for party i has a Xi for its secret part and a public part that
includes C, U , and all the Li,j labels. Bottom: Definition of the scheme. Arithmetic at line 213 is in the finite field with
2β points. Procedure Interpolate is as before. Procedures share and recover use arguments and local variables M and Si
distinct from the caller’s variables by those names.

Reimagining Secret Sharing 25

Base-level scheme S2. We begin with an informal description, using the example at the top of Fig. 12.
Consider the task you face in reconstructing a secret M . You obtain from shares the circuit shown in the
figure—everything drawn in black—and the gate labels Li,j written in blue. You also extract from each share
the strings we call C and U . All these things are public. The secret part of the share Si from party i is the
λ-bit token we denote Xi. For input wires, you either have the token (if party i provided a share) or you do not,
whence one can regard Xi = ⊥. You now propagate tokens up the circuit, getting tokens or ⊥-values for each
gate, in numerical order. For each gate, if you have the threshold number of tokens for incoming wires then you
will be able to propagate your tokens across the gate, getting a token for the output wire of the gate. If you
don’t have a threshold number of tokens for the gate, then the outgoing token is ⊥. At line 226, we take the
convention that if Xιi = ⊥ for some i, then Xi,g = ⊥. Continuing in this way, you obtain a token for the output
wire exactly when you held input tokens for an authorized set of users. If you obtain an output token, you use
it decrypt the ciphertext C that accompanies the circuit. The result is the recovered secret.

How do you propagate a threshold number of tokens from the input wires of a gate to its output wire?
The gate label for each gate functions as a ciphertext which gets decrypted using a the corresponding token as
the key. The decryption also depends on U and the gate number. The plaintext that results is a share of the
token for the wire coming out of the gate. The recovered shares are combined using polynomial interpolation
(Shamir’s method) to recover the needed token. That’s all there is to it. The top-right of Fig. 12 shows the
sharing process, while what we just described the recovery process.

More formally now, scheme S2 = S2[β, f, λ] is parameterized by a block length β (likely 8), a PRF f : {0, 1}κ×
N × {0, 1}∗∗ → {0, 1}∗ satisfying |f `R(x)| = ` for all x, and integer λ (the length of gate-labels).The scheme

depends on a hash function H: {0, 1}N × {0, 1}∗∗ → {0, 1}∗, given as an oracle and satisfying |H(`,x)| = `. We
write H`(x) for H(`,x). The message space for S2 is SS.Msg = {0, 1}∗ and the coins are Rand = {0, 1}κ.

Strings in S2.Access encode threshold circuits (n, q, in, th) where |in(j)| < 2β for j ∈ [n + 1..n + q]. Each
circuit C encoded by a string in S2.Access represents the access structure S2.Acc(〈C〉) as described above. The
sharing and recovery algorithms of S2 are given in Fig. 12. It is not hard to check the basic correctness of
S2[β, f, λ], which we do in Appendix C.3.

We move on to show that S2[β, f, λ] satisfies Priv$ security if f is a secure PRF. In particular, we give
the following theorem, which relates the Priv$ advantage of a given adversary A to the PRF advantage of a
related PRF adversary plus “small terms” given that λ are sufficiently large. The proof of the following is in
Appendix C.5.

Theorem 6. Let S2 = S2[β, f, λ] for valid parameters β, f , λ. Then S2 satisfies Priv$. Concretely, given input-
selector I ∈ IIIpriv$ making qD Deal queries, whose access structures has overall gate count of at most g, and
given Priv-adversary A making qH queries to H, we construct a PRF adversary B such that

Advpriv$
S2,I (A) ≤ Advprf

f (B) +
g(g − 1) + 2qH

2λ+1
. (2)

Adversary B is efficient when I and A are.

Use of a random-oracle-modeled hash function in S2 is only for convenience: the encryption at lines 205
and 207 could also have been done with a standard-model tool, like the same PRF f .

C Proofs

C.1 PRF security definition

Before providing any proofs we define PRF-advantage, adapting a multiuser variant from Bellare, Canetti, and
Krawczyk [6], which lets the adversary simultaneously attack any number of independently keyed instances, the
adaption being that their formalization was for fixed-output-length (FOL) PRFs, while we are using variable-
output-length (VOL) PRFs. When that number of instances is at most q, the advantage degrades by a multi-
plicative factor of q relative to the usual, single instance case. That result is in the reference above for the FOL
case, but it is easy to check that it also holds in the VOL case.

Let f : K×N×X → {0, 1}∗ be a function. Consider the game Gprf
f given in Fig. 13. We define the (multi-user)

PRF-advantage of adversary A attacking f as Advprf
f (A) = 2 Pr[Gprf

f (A)]− 1.

26 Bellare, Dai, and Rogaway

Game Gprf
f (A)

b� {0, 1}; q ← 0; b′ � ANew,Fn; return (b = b′)

procedure New()

q ← q + 1; Kq � K

procedure Fn(i, `,X)

if i 6∈ [1..q] then return ⊥
if b = 1 then return f `Ki

(X)

if T [i, `,X] then return T [i, `,X]

return T [i, `,X]� {0, 1}`

Fig. 13. Security game capturing the PRF security of f : {0, 1}κ × N×X → {0, 1}∗.

C.2 Equivalence of Errx notions

We claim that the two definitions of Errx given in Section 6 are equivalent. To see this, we fix a hash function
H ∈ Ω, as well as some K ∈ Known and S ∈ Shares. Let E1 = ExplanationsH(K, S) be the set returned
by the algorithm given in lines 78–7A. Let E2 = ExplanationsH(K, S) be the set returned by the alternate
algorithm. First, suppose K ∈ Access. Let (K,M,R,V) ∈ E2, which means that there exists some T ∈ Tag,
G ∈ Acc(K), such that for S ← ShareH(K,M,R, T), we have that V = S[G] and S ⊆ S (viewing S as a
set). Consider RecoverH(K,V), by full correctness, we will get back (M,R,V). Furthermore, V.as = K since
honestly dealt shares should have the same access structure. This means that (K,M,R,V) ∈ E1. On the other
hand, let (V.as,M,R,V) ∈ E1, which means that (M,R,V) = RecoverH(K, S′) for some S′ ⊆ S. By the validity
requirement, V is authorized, meaning V = S[G] for S = ShareH(V.as,M,R,V.tag), and some G ∈ Acc(K).
This means that (V.as,M,R,V) ∈ E1. Second, suppose K ∈ Shares. Let (A,M,R,V) ∈ E2, which means
that for some T ∈ Tag and G ∈ Acc(A), S ⊆ S = ShareH(A,M,R, T) and K ⊆ V = S[G]. By full correctness,
RecoverH(K,V) must return (M,R,V). Furthermore, V.as = A. Hence (A,M,R,V) ∈ E2. On the other hand, let
(V.as,M,R,V) ∈ E1, which means that (M,R,V) = RecoverH(K, S′) for some S′ ⊆ S. By the validity condition,
V must be an authorized subset of S = ShareH(V.as,M,R,V.tag), meaning V = S[G] for some G ∈ Acc(V.as).
By requirements of Recover, we know that K ⊆ V ⊆ S′. Hence (V.as,M,R,V) ∈ E2. We conclude that E1 = E2.

C.3 Correctness of the constructions

Basic correctness of S1[β, f]. We show S1 satisfies basic correctness. Let 〈k, n〉 ∈ S1.Access, M ∈ Msg,
R ∈ {0, 1}κ, and S ← S1.Share(〈k, n〉,M,R, ε). Let G ⊆ P([1..n]). If G ∈ Acc(〈k, n〉) then |G| ≥ k, which means
that line 113 will not return ⊥ in S1.Recover(S[G]) and the recovery will succeed (since 113 is the only place
in S1.Recover that can fail for a properly formatted set of shares). On the other hand, if G 6∈ Acc(〈k, n〉) then
|G| < k, which means that line 113 will return ⊥ in S1.Recover(S[G]).

Basic correctness of S2[β, f, λ]. We check that S1 satisfies basic correctness. Let C = 〈n, q, in, th〉 ∈
S2.Access, M ∈ S2.Messsage, R ∈ {0, 1}κ, H ∈ Ω, and S ← S2.ShareH(C,M,R, ε). Let G ⊆ P([1..n]). We
claim that if the check of line 21D holds for a gate g ∈ [n+ 1..n+ q] then the Xg recovered is the same as the
Xg sampled in the original sharing; furthermore, if the check of line 21D does not hold for gate g, then Xg = ⊥.
This can be checked by induction on g ∈ [n + 1..n + q] and we omit the details. Let sG be a string of length
n such that sG[i] = 1 if i ∈ G and 0 otherwise. If G ∈ Acc(C) then C(sG) = 1 by definition. Note that this
means line 21D will succeed for g = n + q when we run S2.RecoverH(S[G]), which means that Xn+q 6= ⊥ and
in turn M will be recovered correctly. On the other hand, suppose G 6∈ Acc(C), then C(sG) = 0. Note that this
means line 21D will fail for g = n+ q in S2.RecoverHS[G], resulting in Xn+q = ⊥. Hence S2.RecoverHS[G] will
return ⊥ at line 21J.

Full correctness of SS = AX[S, f]. We first check that SS satisfies basic correctness if S does. Let A ∈
SS.Access, M ∈ SS.Messsage, R ∈ {0, 1}κ, H ∈ Ω, and S ← S2.ShareH(C,M,R, ε). Let G ⊆ P([1..n(Acc(A))]).
Consider SS.RecoverH(S[G]). If G ∈ Acc(A), we note that by the basic correctness of S, the correct (K,G) can
be recovered at line 316 and in turn the correct M and R. This means that the check at 319 will also succeed
and the (A,M) returned by SS.RecoverH(S[G]) is correct. On the other hand, suppose G 6∈ Acc(A). Then

Reimagining Secret Sharing 27

Game G0,G1 and G2

c� {0, 1}; α← 0

(St ,B)� IDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false

c′ ← A(St ,S1[B[1]], . . .Sα[B[α]],P)

return (c = c′)

procedure Deal(A,M0,M1, R, T)

M ←M c; α← α+ 1; 〈k, n〉 ← A; R� {0, 1}κ

M1‖ · · · ‖Mm ←M where |M1| = · · · = |Mm| = β

for (i, j) ∈ [1..(k − 1)]× [1..m] do

Rj,i ← fβR(i, j); G1,G2: Rj,i � {0, 1}β

for i ∈ [1..n] do

for j ∈ [1..m] do

Bi,j ←Mj +Rj,1 · i+Rj,2 · i2 + · · ·+Rj,k−1 · ik−1

G2: Bi,j � {0, 1}β

Si ← 〈i, 〈k, n〉, Bi,1 · · ·Bi,m, ε, ε〉
Sα ← (S1, . . . , Sn); P [α]← Sα.pub; return

Fig. 14. Game G0, G1, G2 used in the proof of Proposition 1.

BNew,Fn

c� {0, 1}; α← 0

(St ,B)� IDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false

c′ ← A(St ,S1[B[1]], . . .Sα[B[α]],P)

return (c = c′)

procedure Deal(A,M0,M1, R, T)

M ←M c; α← α+ 1; New(); 〈k, n〉 ← A

M1‖ · · · ‖Mm ←M where |M1| = · · · = |Mm| = β

for (i, j) ∈ [1..(k − 1)]× [1..m] do

Rj,i ← Fn(α, β, (i, j))

for i ∈ [1..n] do

for j ∈ [1..m] do

Bi,j ←Mj +Rj,1 · i+Rj,2 · i2 + · · ·+Rj,k−1 · ik−1

Si ← 〈i, 〈k, n〉, Bi,1 · · ·Bi,m, ε, ε〉
Sα ← (S1, . . . , Sn); P [α]← Sα.pub; return

Fig. 15. PRF-adversary B used in the proof of Proposition 1.

by the basic correctness of S, SS.RecoverH(S[G]) will return ⊥ at line 313. We move on to check the validity
condition. Fix some H ∈ Ω,K, and S ∈ Shares. Suppose (M,R,V)← SS.RecoverH(K, S). Then by construction
(specifically line 31B), we know that V = S indeed came from an honest sharing of M and R.

Full correctness of SS = EX[S]. Fix some scheme S, H ∈ Ω, A ∈ Access, M ∈ SS.Msg, R ∈ Rand, and
T ∈ Tag. Let S = S.ShareH(A,M,R, T) and K ∈ {A}∪P(S). If G ∈ Acc(A) then full correctness of S implies that
S.RecoverH(K, S[G]) = (M,R, S[G]), this also means that SS.RecoverH(K, S[G]) = (M,R, S[G]) (line 82termi-
nates with i = 1). If G 6∈ Acc(A) then by monotonicity, we know that for any S′ ⊆ S[G], S.RecoverH(K, S′) = ⊥.
This means that SS.RecoverH(K, S[G]) = ⊥ (⊥ must be returned at line 82). Validity condition is inherited be-
cause both scheme share the same sharing algorithm and that SS.RecoverH(K, S) only returns S.Recover(K, S′)
for some S′ ⊆ S.

28 Bellare, Dai, and Rogaway

C.4 Proof of Proposition 1

Besides the use of the PRF f , scheme S1 is essentially Shamir’s scheme [40]. The shares of Shamir’s scheme can
be perfectly simulated as long as no more shares than the threshold is given out. Implementing this intuition,
let us consider games G0 and G1 given in Fig. 14. Note that G0 is the same as Gpriv

S1,I (A). Thus,

Advpriv$
S,I (A) = 2 · Pr[G0]− 1 . (3)

Since S1 does not use on any random-oracle-modeled hash function, we omit writing H and giving it to the
adversary A. We emphasize that since I ∈ IIIpriv$, R is sampled uniformly at random for each Deal query
regardless of the R value in the input. Coefficients Ri,j are derived using f (with a uniformly random and
independent seeds, R) in G0 but are randomly sampled in G1. It is standard to check that

Pr[G0] = Pr[G1] + Advprf
f (B) , (4)

where B is the PRF-adversary given in Fig. 15. Consider the game G2 given in Fig. 14. The values of Bi,j are
randomly sampled in G2. We claim that

Pr[G1] = Pr[G2] . (5)

This is because for any random degree k polynomial over F, any k− 1 distinct points are uniformly distributed.
Note the both games return false if the adversary attempts to obtain more shares (points) than the threshold
k. Finally, since the information given to A does not depend on the bit c in game G2, we have that

Pr[G2] =
1

2
. (6)

Putting (3), (4), (5) and (6) together concludes the proof.

C.5 Proof of Theorem 6

Equation (2) holds trivially if g ≥ 2λ, so we restrict to the case where g < 2λ. Let A be an adversary and

consider the game Gpriv
S2,I (A), where I ∈ IIIpriv$. Recall that this is the class of input-selectors that select coins R

independently and uniformly at random for each Deal query. Consider the games G0, G1 and G2 given in
Fig. 16. In contrast to Gpriv

S2[β,f,λ],I(A), we lazily sample H for each query via the procedure HASH given in game

G0 (which is the same one used for G1 and G2). Game G0 is equivalent to Gpriv
S2[β,f,λ],I(A). Hence

Pr[Gpriv
S2[β,f,λ],I(A)] = Pr[G0] . (7)

We claim that
Pr[G0] = Pr[G1] + Advprf

f (B) , (8)

where B is given on the left column of Fig. 18. This is because games G0 and G1 differ only in how Xi is defined,
this being PRF-derived in G0 and uniformly sampled in G1. (Note that the PRF keys are the R-values sampled
by I, which are independently and uniformly random.) It is standard to build the PRF adversary whose PRF
advantage bounds the closeness of these two games. We note that G1 and G2 are identical-until-bad. By the
Fundamental Lemma of Game Playing [14] and the standard birthday argument,

Pr[G1]− Pr[G2] ≤ Pr[G1 sets bad] =
g(g − 1)

2λ+1
. (9)

Next, we shall rewrite the code of Deal so that the labels L do not contain information about bit c. Concretely,

consider H0 given in Fig. 17. The label L
(α)
i,j are randomly sampled in H0. Note that game H0 “programs” the

hash function given to A to behave consistently with the L
(α)
i,j . Furthermore, in game H0, we compute whether

each wire is known to the adversary and store this information inside variable s. Specifically, sα[g] = 1 if and
only if the adversary can compute the label for wire g in the α-th sharing from the set of corrupt shares. Game
H0 is constructed to behave identically to G2, and

Pr[G2] = Pr[H0] . (10)

Reimagining Secret Sharing 29

Game G0,G1 and G2

c� {0, 1}; α← 0; (St ,B)← IDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false

c′ � AHash(St ,S(1)[B[1]], . . . ,S(α)[B[α]],P)

return (c′ = c)

procedure Deal(A,M0,M1, R, T)

α←α+ 1; A[α]←A; M
(α)
0 ←M0; M

(α)
1 ←M1

Rα ← R� {0, 1}κ; (nα, qα, inα, thα)← A

for i ∈ [1..n+ q] do

Xi � {0, 1}λ; G0: Xi ← fλR(i)

If Xi ∈ X then

bad← true; G2: Xi � {0, 1}λ −X
X ← X ∪ {Xi}

for g ∈ [n+ 1..n+ q] do

(ι1, . . . , ιη)← in(g); k ← th(g)

(X1,g, · · · , Xη,g)← sharek,η,gR (Xg)

For i ∈ [1..η] do Li,g ← Xi,g ⊕Hλ(i, g,Xιi)

L← 〈Li,g: g ∈ [n+ 1..n+ q], i ∈ in(g)〉
C ← H |M|(Xn+q)⊕Mc; C̃← 〈L,C〉
for i ∈ [1..n] do Si ← 〈i,A, Xi, C̃, ε〉
S(α) ← (S1, . . . , Sn) ; P [α]← S(α).pub; return

procedure Hash`(x)

if not T [x, `] then T [x, `]� {0, 1}`

return T [x, `]

Fig. 16. Games G0, G1, G2 used in the proof of Theorem 6. Algorithm share is defined in Fig. 12.

Next, let us consider games H1 given in Fig. 17. Game H1 no longer programs Hash to return the correct value
when the corresponding gate is not corrupt (unknown to the adversary via corrupt shares). Since H0 and H1

are identical-until-bad,

Pr[H0]− Pr[H1] ≤ Pr[H1 sets bad] . (11)

We shall bound Pr[H1] and Pr[H1 sets bad]. First, bit c is only used when computing the value Z for the
output gates in HASH, and in H1, HASH is not programmed to output Z when the gate is not corrupt (which
must be true for all output gates). Hence H1 does not leak any information about bit c, and

Pr[H2] =
1

2
. (12)

Next, consider H2, which differ from H1 only in the value of X
(α)
i,g for g ∈ [(n(α) + 1)..(n(α) + q(α))] such that

sι[g] = 0 (gate g is not corrupt). Similar to the proof of Proposition 1, we can substitute the values of X
(α)
i,g to

uniform random ones. So,

Pr[H1 sets bad] = Pr[H2 sets bad] . (13)

Also, no information about X
(α)
g is given if sα[g] = 0. Hence for each Hash query there is at most 2−λ probability

of setting bad. Using a union bound over qH queries to Hash, we have

Pr[H2 sets bad] ≤ qH
2λ

. (14)

Finally, Equation (2) is derived by combining Equations (7–14) and the definition of Advpriv$
S2[β,f,λ],I(A):

Advpriv$
S2[β,f,λ],I(A) = 2 Pr[Gpriv

S2[β,f,λ],I(A)]− 1 .

30 Bellare, Dai, and Rogaway

Game H0, H1 and H2

c� {0, 1}; α← 0; (St ,B)← IDeal

for j ← 1, . . . , α do

for ι ∈ [1..nj] do sj [ι]← (ι ∈ B[j])

for g ← nj + 1 to nj + qj do

sj [g]← TH
th(j)(g),|in(j)

(g)|
(sj [in

(j)[g]])

(ι1, . . . , ιη)← in(j)(g); k ← th(j)(g)

(X
(j)
1,g , · · · , X

(j)
η,g)← sharek,η,g

R(j) (X
(j)
g)

For i ∈ [1..η] do

H2: if sj [g] = 0 then X
(α)
i,g � {0, 1}

λ

Li,g ← Xi,g ⊕Hλ(i, g,Xιi)

if (∃α : sα[n(α) + q(α)] = 1) then return false

c′ � AH(S(1)[B[1]], . . . ,S(α)[B[α]], P (1), . . . , P (α))

return (c′ = c)

procedure Deal(A,M0,M1, R)

α← α+ 1; A[α]← A; R(α) ← R� {0, 1}κ

M
(α)
0 ←M0; M

(α)
1 �M1

(n(α), q(α), in(α), th(α))← A

for i ∈ [1..n(α) + q(α)] do

X
(α)
i ← {0, 1}λ −X ; V [X

(α)
i]← α; X ← X ∪ {X}

L(α)←〈Li,g�{0, 1}λ: g∈ [n(α)+ 1..n(α) + q(α)], i ∈ in(α)(g)〉
C(α) ← {0, 1}|M|; C̃← 〈L(α), C(α)〉
for i ∈ [1..n] do Si ← 〈i,A, X(α)

i , C̃, ε〉
S(α) ← (S1, . . . , Sn) ; P (α) ← S(α).pub; return

procedure Hash`(x)

j ← ⊥; if not T [x, `] then T [x, `]� {0, 1}`

if (i, g,X)← x and j ← V [X] then

Z ← X
(j)
i,g ⊕L

(j)
i,g ; (ι1, . . . , ιη)← in(j)(g) ; κ← ιi

if X←x and j←V [X] then κ←n(j)+q(j); Z←M
(j)
c ⊕C(j)

if (` = |Z|) and (X = X
(j)
κ) then

if (sj [κ] = 0) then

bad← true; H0: T [x, `]← Z

else T [x, `]← Z

return T [x, `]

Fig. 17. Games H0, H1, H2 used in the proof of Theorem 6. Algorithm Share is defined in Fig. 12.

C.6 Proof of Theorem 2

For part 1, consider the games G0 and G1 given in Fig. 19. For simplicity, we will consider oracles h and H
separately. Our game sequence will modify the code for H while keeping the code for h unchanged. In addition,
we will give adversary access to both H and h, instead of Hash. Game G0 is Gpriv

SS,II(AA) with a lazily sampled H
(via procedure Hash) and the sharing algorithm of SS inlined inside the Deal oracle. Queries to Hash in G0

are programmed to be consistent with queries to Deal (note that Hash queries happen after all Deal queries
are made). The only difference between game G1 and game G0 is that Hash is not programmed to be consistent
with Deal by omitting the boxed code. By construction, G0 and G1 are identical-until-bad. Hence

1

2
+

1

2
Advpriv

SS,II(AA) = Pr[G0]

= Pr[G1] + (Pr[G0]− Pr[G1])

≤ Pr[G1] + Pr[G1 sets bad] , (15)

Reimagining Secret Sharing 31

Adversary B
c� {0, 1}; α← 0; (St ,B)← ADeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false

c′ � AHash,Deal(St ,S(1)[B[1]], . . . ,S(α)[B[α]], P (1), . . . , P (α))

return (c′ = c)

procedure Deal(A,M0,M1, R, T)

New() ; α← α+ 1

A[α]← A; M0
α ←M0; M1

α �M1

(nα, qα, inα, thα)← A

for i ∈ [1..n+ q] do Xi ← Fn(α, λ, i)

for g ∈ [n+ 1..n+ q] do

(ι1, . . . , ιη)← in(g); k′ ← th(g)

(X1,g, · · · , Xη,g)← sharek,η,gR (Xg)

For i ∈ [1..η] do Li,g ← Xi,g ⊕Hλ(i, g,Xιi)

L← 〈Li,g: g ∈ [n+ 1..n+ q], i ∈ in(g)〉
C ← H |M|(Xn+q)⊕Mc; C̃← 〈L,C〉
for i ∈ [1..n] do Si ← 〈i,A, Xi, C̃, ε〉
S(α) ← (S1, . . . , Sn) ; P (α) ← S(α).pub; return

procedure Hash`(x)

if not T [x, `] then T [x, `]� {0, 1}`

return T [x, `]

Fig. 18. PRF-adversary B used in the proof of Theorem 6. Algorithm Share is defined in Fig. 12.

where the inequality is by the Fundamental Lemma of Game Playing [14]. We move on to bound Pr[G1] and
Pr[G1 sets bad]. Consider game G2 and game G3 given in Fig. 19. Game G2 differs from G1 only by the value
of Z given to SS.Share. Game G3 differs from G2 only in uniform sampling of ciphertext C and D. We build
input selector I (which is in class IIIpriv$) as well as Priv$ adversaries A0 and A1 (all given in Fig. 20) such that

Pr[G1] = Pr[G2] + Advpriv$
S,I (A0) (16)

and
Pr[G1 sets bad] = Pr[G2 sets bad] + Advpriv$

S,I (A1) . (17)

To check the above, notice that the only difference between G1 and G2 is the input message to Share. Hence, we
can utilize the Priv$ game for the underlying scheme S to bridge the different between G1 and G2. Furthermore,
adversary A0 is built to simulate and return the return value of either game G1 or game G2, while A1 is built
to simulate and return the flag bad. This justifies (16) and (17). Since A behaves as Ad based on a randomly
chosen bit d,

2 ·Advpriv$
S,I (A) = Advpriv$

S,I (A0) + Advpriv$
S,I (A1) . (18)

We proceed to bound Pr[G2] and Pr[G2 sets bad]. We build PRF adversaries B0 and B1 (given in the left panel
of Fig. 21) such that

Pr[G2] = Pr[G3] + Advprf
f (B0) (19)

and
Pr[G2 sets bad] = Pr[G3 sets bad] + Advprf

f (B1) . (20)

The above is true because the only different between game G2 and game G3 is how values of C and D are
derived (game G2 uses f while game G3 samples them uniformly at random). Since B behaves as Bd based on
a randomly chosen bit d,

2 ·Advprf
f (B) = Advprf

f (B0) + Advprf
f (B1) . (21)

Finally, we claim that

Pr[G3] =
1

2
(22)

32 Bellare, Dai, and Rogaway

Game Gx //x ∈ {0, 1, 2, 3}
c� {0, 1}; i← 0; (St ,B)← IIDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false

c′ � AAH,h(St ,S′1[B[1]], . . . ,S′i[B[i]], P1, . . . , Pi)

return (c = c′)

procedure Deal(A,M0,M1, R, T)

i← i+ 1; A[i]← A

Ji ← {0, 1}2κ; Ki ← {0, 1}κ; Li � {0, 1}κ

Xi ← 〈A,Mc, R, T 〉
C ←M ⊕ f |M|K (ε); D ← R⊕ fκK(0)

G3: C � {0, 1}|M|; D � {0, 1}κ

Z ← Ki; G2,G3: Z � {0, 1}κ

Si ← Shareh(A,Z,Li, T)

for j ← 1, . . . , |S| do

S′i[j]← 〈Si[j].id, A,Si[j].sec, 〈C,D, Ji,Si[j].pub〉, T 〉
Pi ← S′i.pub

return

procedure H`(X)

if (∃j ≤ i : X = Xj and ` = 4κ) then

bad← true; G0: T [X]← Jj‖Kj‖Lj
if T`[X] = ⊥ then T`[X]� {0, 1}`

return T`[X]

procedure h`(X)

if T ′` [X] = ⊥ then T ′` [X]� {0, 1}`

return T ′` [X]

Fig. 19. Games G0,G1,G2, and G3 for proof of part 1 of Theorem 2. The boxed code are only executed by the game(s)
indicated.

Adversary IDeal

i← 0; b� {0, 1}; (St ,B)� IIDealSim

X← (X1, . . . , Xi); C← (C1, . . . , Ci, D1, . . . , Di)

St ′ ← (St ,X,C,J,T)

return (St ′,B)

subroutine DealSim(A,M0,M1, R, T)

i← i+ 1

T [i]← T ; J[i]� {0, 1}

Ki � {0, 1}κ ; Li � {0, 1}κ

Ci ←Mb⊕ f |M|Ki
(ε); Di ← R⊕ fκKi

(0)

Z � {0, 1}κ

return Deal(A,Ki, Z, Li, T)

Adversary Ahx(St ′,S1, . . . ,Si, . . .)

//x ∈ {0, 1, ε}
d� {0, 1}; (St ,X,C,J,T)← St ′

for i← 1, . . . , |T | do

for j ← 1, . . . , |Si| do

S′i[j]← 〈Si[j].id,Si[j].sec,

〈Ci, Di, Ji,Si[j].pub〉, T 〉
Pi ← S′i.pub

b′ � AAH,h(St ,S′1, . . . ,S
′
i, P1, . . . , Pi)

A0: return (b = b′)

A1: return bad

A: if d then (b = b′) else return bad

subroutine H`(X)

if (∃j ≤ qd : X = Xj) then bad← true

if T`[X] = ⊥ then T`[X]� {0, 1}`

return T`[X]

Fig. 20. Left: input-selector I. Right: Adversaries A0, A1 and A for proof of part 1 of Theorem 2.

and

Pr[G3 sets bad] ≤ (qD + q) · pred(II) . (23)

Reimagining Secret Sharing 33

Adversary BNew,Fn
x //x ∈ {0, 1, ε}

d� {0, 1}; c� {0, 1}; (St ,B)← IIDeal

If (∃ j : B[j] ∈ Acc(A[j])) then

return false

c′ � AAH,h(St ,S′1[B[1]], . . . ,

S′i[B[i]], P1, . . . , Pi)

B0: return (c = c′)

B1: return bad

B: if d then (c = c′) else return bad

subroutine Deal(A,M0,M1, R, T)

New(); i← i+ 1; A[i]← A

Ji ← {0, 1}; Ki ← {0, 1}κ; Li � {0, 1}κ

Xi ← 〈A,Mc, R, T 〉; Ri ← R

Ci ←Mc⊕Fn
|Mc|
i (ε)

Di ← R⊕Fnκ(0); Z � {0, 1}κ

Si ← S.Shareh(A,Z,Li, T)

for j ← 1, . . . , |Si| do

S′i[j]← 〈Si[j].id, A,Si[j].sec,

〈Ci, Di, Ji,Si[j].pub〉, T 〉
Pi ← S′i.pub

return

subroutine H`(X)

if (∃j ≤ qd : X = Xj) then bad← true

if T`[X] = ⊥ then T`[X]� {0, 1}`

return T`[X]

procedure h`(X)

if T ′` [X] = ⊥ then T ′` [X]� {0, 1}`

return T ′` [X]

Adversary P(A,B,T ,L,St)

for i← 1, . . . , |A| do

A← A[i]; T ← T [i]; Ji ← {0, 1}κ

C � {0, 1}|M|; D � {0, 1}κ

Z � {0, 1}κ

Si ← Shareh(A,Z,Li, T)

for j ← 1, . . . , |Si| do

S′i[j]← 〈Si[j].id, A,Si[j].sec,

〈C,D, Ji,Si[j].pub〉, T 〉
AAH,h(St ,S1[B[1]], . . . ,S|A|[B[|A|]],

P1, . . . , P|A|)

p� [q]

return (Mp, Rp)

subroutine H`(X)

q ← q + 1; 〈A,Mq, Rq, T 〉 ← X

if not T`[X] then T`[X]� {0, 1}`

return T`[X]

procedure h`(X)

if T ′` [X] = ⊥ then T ′` [X]� {0, 1}`

return T ′` [X]

Fig. 21. Adversaries for part 1 of Theorem 2. Left: adversaries B0,B1, and B. Right: Predictor P.

Equation (22) is by the fact that no information about bit c is leaked to either the input selector nor the
adversary. Equation (23) is justified as follows. Consider P given in the right panel of Fig. 21, which makes at
most qD + q queries to Hash. Predictor P randomly selects and (M,R) from one of the Hash queries to return as
the its guess. If G3 sets bad, then it must be that some query X to Hash matches some Xj during the execution
of AA. We lastly need to check that the inputs and oracle for AA is simulated correctly for AA by P—this is
possible because in G3, variables C,D and Z are all uniformly random and can be simulated by P. This justifies
Equation (23). Finally, Equation (1) is obtained by combining Equations (15–23).

For part 2, consider the game Gauth
SS (A), modified as per our Section 6 discussion on adjusting Auth, to allow

for Recover also returning coins. Let (M,R,V) and (M ′, R′,V′) be the variables defined on line 52′ and 53′. If
V ∩ V′ 6= ⊥ and (M,R) 6= (M ′, R′) it must be that there is a collision among the J-values in the two different
sharings—that is, a collision on the first 2κ-bits in the output of H. This is because line 31B ensures that the
Ji values are the same across all shares. Overall, there are at most qH + 2 queries to H (since Recover calls H
exactly once). Hence the game outputs true with probability at most (qH + 1)(qH + 2)2−2κ.

C.7 Proof of Theorem 3

For part 1, consider the adversary A (constructed from AA) and games G0,G1 given in Fig. 22. Adversary A runs
AA to obtain inputs that it forwards to SS.Recover, and returns only the valid sets of shares VSS,V

′
SS returned by

SS.Recover. By construction G0 = Gauth
SS (AA) and G1 = Gauth

S (A). By construction of EX (in particular line 82
in Fig. 9) and the full correctness of SS, we know that if neither of the two runs of SS.Recover returns ⊥ then
it must be that VSS = VS, V′SS = V′S, MSS = MS, and M ′SS = M ′S. Hence

Advauth
SS (AA) = Pr[G0] ≤ Pr[G1] = Advauth

S (A) , (24)

34 Bellare, Dai, and Rogaway

Adversary AH

(K, S,K′, S′)� AAH

(MSS, R,VSS)← SS.RecoverH(K, S)

(M ′SS, R
′,V′SS)← SS.RecoverH(K′, S′)

Return (VSS,V
′
SS)

Game G0 / G1

H � Ω

(K, S,K′, S′)� AAH

(MSS, R,VSS)← SS.RecoverH(K, S)

(M ′SS, R
′,V′SS)← SS.RecoverH(K′, S′)

(MS,VS)← S.RecoverH(VSS)

(M ′S,V
′
S)← S.RecoverH(V′SS)

return VSS ∩ V′SS 6= ∅ and (MSS, R) 6= (M ′SS, R
′) // G0

return VS ∩ V′S 6= ∅ and MS 6= M ′S // G1

Fig. 22. Adversary A (left) and games G0 and G1 (right) used in the proof of Theorem 3.

which concludes the proof for part 1.
For part 2, fix some H ∈ Ω. We claim that for any (K, S),

SS.RecoverH(K, S) = UniqueExplanationH(K, S) . (25)

Before we show this we first point out some facts about SS.Recover and S.Recover. First, if S.RecoverH(K, S) =
(M,R, S) then SS.RecoverH(K, S) = (M,R, S) (take S1 = S at the for loop at line 81). Second, we note that
if SS.RecoverH(K, S) 6= ⊥ then it must be that S.RecoverH(K, S′) 6= ⊥ for some S′ ⊆ S. Now to show (25),
consider the set E = ExplanationsH(K, S) and consider the following cases.

Case 1: E = ∅. First, we necessarily have

UniqueExplanationHash(K, S) = ⊥

by the definition of UniqueExplanation. Second, SS.RecoverH(K, S) is also ⊥ since there does not exists Si ⊆ S

that makes S.RecoverH(K, Si) return non-⊥.
Case 2a: E 6= ∅, UniqueExplanationH(K, S) = ⊥. We will show that SS.RecoverH(K, S) = ⊥. Let S1, . . . , Sw

be the K-plausible shares defined on line 80 of SS.RecoverH(K, S). Let Si be the first share (smallest i) for which
(M,R,V) ← S.RecoverH(K, Si) and Si = V is true. Note that SS.Recover(K, Si) must also return (M,R,V).
Hence Si ∈ ExplanationsH(K, S). We claim that there must exist some j > i such that Sj ∈ ExplanationsH(K, S)

and Sj 6⊆ Si. This is the by the fact that UniqueExplanationH(K, S) returns ⊥. To see this, suppose for

contradiction that for all j > i such that Sj ∈ ExplanationsH(K, S), Sj ⊆ Si. Then since the list of K-plausible
shares were exhaustive, Si must have made the if statement at line 73–74 true, which contradicts the assumption
for case 2a. The existence of such Sj means that for (Mj , Rj ,Vj)← SS.RecoverH(K, Sj), Vj 6⊆ Vi. Lastly, there

exists some k ≥ j such that Sk = Vj . Furthermore, we have that for (Mk, Rk,Vk) ← S.RecoverH(K, Sk),

Vk 6⊆ Vi. This means that SS.RecoverH(K, S) returns ⊥ at line 86.
Case 2b: E 6= ∅, UniqueExplanationH(K, S) 6= ⊥. We will show that SS.RecoverH(K, S) 6= ⊥. Let S0 ⊆ S

be a set of shares whose recovery (M,R,V) ← SS.RecoverH(K, S) makes the if-statement true at line 73 of
UniqueExplanationH(K, S). Let S1, . . . , Sw be the K-plausible shares defined on line 80 of SS.RecoverH(K, S).
Now consider the sequence of K-plausible shares resulting from S0 ⊆ S (this is a subsequence of S1, . . . , Sw),
say S′1, . . . , S

′
v. Suppose S′1 = Sj for some j ≥ 1 (there is a unique j that satisfy this). We claim that for

any 0 < i < j either S.RecoverH(K, Si) = ⊥ or for (·, ·,Vi) ← Si, Vi 6= Si. This means that during the run of
SS.RecoverH(K, S), the for-loop at line 82 ends with i = j. Seeking a contradiction, suppose S.RecoverH(K, Si) 6=
⊥ and for (·, ·,Vi)← S.RecoverH(K, Si), Vi = Si. We know that Si ∈ ExplanationsH(K, S). Hence Si = Vi ⊆ Vj .

This means that j ≤ i, which contradicts the assumption that i < j. Lastly, note that SS.RecoverH(K, S)
only returns ⊥ if there exists S′ ∈ {S1, . . . , Sw} − P(Sj) such that S.RecoverH(K, S′) = (·, ·, S′) and S′ 6⊆ Sj
(note that SS.RecoverH(K, S′) = S.RecoverH(K, S′) here). But this cannot be true since this would mean that
S′ ∈ ExplanationsH(K, S) and it would have made UniqueExplanationH(K, S) return ⊥.

	Reimagining Secret Sharing: Creating a Safer and More Versatile Primitive by Adding Authenticity, Correcting Errors, and Reducing Randomness Requirements

