
Not enough LESS: An improved algorithm for
solving Code Equivalence Problems over Fq

Ward Beullens1

imec-COSIC, KU Leuven
ward.beullens@esat.kuleuven.be

Abstract. Recently, a new code based signature scheme, called LESS,
was proposed with three concrete instantiations, each aiming to provide
128 bits of classical security [3]. Two instantiations (LESS-I and LESS-
II) are based on the conjectured hardness of the linear code equivalence
problem, while a third instantiation, LESS-III, is based on the conjec-
tured hardness of the permutation code equivalence problem for weakly
self-dual codes. We give an improved algorithm for solving both these
problems over sufficiently large finite fields. Our implementation breaks
LESS-I and LESS-III in approximately 45 seconds and 2 seconds respec-
tively on a laptop. Since the field size for LESS-II is relatively small
(F7) our algorithm does not improve on existing methods. Nonetheless,
we estimate that LESS-II can be broken with approximately 244 row
operations.

Keywords: permutation code equivalence problem, linear code equivalence prob-
lem, code-based cryptography, post-quantum cryptography

1 Introduction

Two q-ary linear codes C1 and C2 of length n and dimension k are called per-
mutation equivalent if there exists a permutation π ∈ Sn such that π(C1) = C2.
Similarly, if there exists a monomial permutation µ ∈ Mn = (F×q)n n Sn such
that µ(C1) = C2 the codes are said to be linearly equivalent (a monomial per-
mutation acts on vectors in Fnq by permuting the entries and also multiplying
each entry with a unit of Fq). The problem of finding π ∈ Sn (or µ ∈Mn) given

This work was supported by CyberSecurity Research Flanders with reference num-
ber VR20192203 and the Research Council KU Leuven grants C14/18/067 and
STG/17/019. Ward Beullens is funded by an FWO fellowship.

equivalent C1 and C2 is called the permutation equivalence problem (or linear
equivalence problem respectively)1.

Definition 1 (Permutation Code Equivalence Problem). Given genera-
tor matrices of two permutation equivalent codes C1 and C2, find a permutation
π ∈ Sn such that C2 = π(C1).

Definition 2 (Linear Code Equivalence Problem). Given generator ma-
trices of two linearly equivalent codes C1 and C2, find a monomial permutation
µ ∈Mn such that C2 = µ(C1).

The hardness of the permutation equivalence problem is relevant for the
security of the McEliece and Girault post-quantum cryptosystems [10, 7]. More
recently, Biasse, Micheli, Persichetti, and Santini proposed a new code-based
signature scheme whose security only relies on the hardness of the linear code
equivalence problem or permutation code equivalence problem. The public key
consists of generator matrices for two equivalent codes C1 and C2, and a signature
is a zero-knowledge proof of knowledge of an equivalence µ ∈ Mn (or π ∈ Sn)
such that µ(C1) = C2 (or π(C1) = C2 respectively). In the case of permutation
equivalence, the codes C1 and C2 are chosen to be weakly seld-dual, because
otherwise π can be recovered in polynomial time [12].

Parameter set n k p equivalence

LESS-I 54 27 53 Linear
LESS-II 106 45 7 Linear
LESS-III 60 25 31 Permutation

Table 1. Proposed parameter sets for the LESS signature scheme.

1.1 Previous work

We will briefly go over some of the algorithms that have been proposed for the
permutation and linear code equivalence problems below. The state of the art
for the permutation code equivalence problem is that random instances can be
solved in polynomial time with the Support Splitting Algorithm (SSA), but that
instances with codes that have large hulls require a runtime that is exponential
in the dimension of the hull. Weakly self-dual codes (these are codes C such that

1 There also exists a more general notion of equivalence called semi-linear equivalence.
Our methods generalize to semi-linear equivalences, but since this is not relevant for
the security of LESS, we do not elaborate on this.

2

C ⊂ C⊥) have hulls of maximal dimension dim(H(C)) = dim(C) and are believed
to be the hardest instances of the permutation equivalence problem. The state
of the art for the linear code equivalence problem is that instances over Fq with
q ≤ 4 can be solved in polynomial time with the SSA algorithm via a reduction
to the permutation equivalence problem, but for q > 4 this reduction results in
codes with a large hull, which means the SSA algorithm is not efficient. Hence,
the linear code equivalence problem is conjectured to be hard on average for
q > 4 [13].

Leon’s Algorithm. Leon’s algorithm [9] for finding linear and permutation
equivalences relies on the observation that applying a permutation or a monomial
permutation does not change the hamming weight of a codeword. Therefore, if
we compute the sets X1 and X2 of all the minimal-weight codewords of C1
and C2 respectively, then it must be that X2 = π(X1) or X2 = µ(X1) in the
case of permutation equivalence or linear equivalence respectively. Leon gives an
algorithm to compute a µ ∈Mn that satisfiesX2 = µ(X1) with a time complexity
that is polynomial in |X1|. Usually, the sets X1 and X2 have “enough structure”,
such that if µ satisfies X2 = µ(X1), then also C2 = µ(C1) with non-negligible
probability. If this is not the case, then one can also consider larger sets X ′1 and
X ′2 that contain all the codewords in C1 and C2 respectively whose weight is one
more than the minimal weight. Since the sets X1 and X2 are usually small, the
complexity of the algorithm is dominated by the complexity of computing X1

and X2. Feulner gives an algorithm that computes a canonical representative of
an equivalence class of codes. The complexity of this algorithm is close to that
of Leon’s algorithm [6].

Support Splitting Algorithm. The support splitting algorithm of Sendrier [12]
defines the concept of a signature. A signature is a property of a position in a
code that is invariant for permutations. More precicely, it is a function S that
takes a code C and a position i ∈ {1, · · · , n} as input and outputs an element of
an outputput space P , such that for any permutation π ∈ Sn we have

S(C, i) = S(π(C), π(i)) .

We say that a signature is totally discriminant for C if i 6= j implies that
S(C, i) 6= S(C, j). If a signature S is efficiently computable and totally dis-
criminant for a code C1, then one can easily solve the permutation equivalence
problem by computing S(C1, i) and S(C2, i) for all i ∈ {1, · · · , n} and compar-
ing the outputs. Even if the signature is not totally discriminant, a sufficiently
discriminant signature can still be used to solve the permutation equivalence
Problem by iteratively refining the signature.

The support splitting algorithm uses the concept of the hull of a code to
construct an efficiently computable signature. The hull of a code C is the inter-

3

section of the code with its dual2: H(C) = C ∩ C⊥. This concept is very useful
in the context of the permutation equivalence problem because taking the hull
commutes with applying a permutation

H(π(C)) = π(C) ∩ π(C)⊥ = π(C ∩ C⊥) = π(H(C)) .

The Support Splitting Algorithm defines a signature as S(C, i) := W (H(Ci)),
where Ci is the code C punctured at position i, and W (C) denotes the weight
enumerator polynomial of the code C. While this signature is typically not fully
discriminant, it is still discriminant enough to efficiently solve the permutation
equivalence Problem for random matrices. However, a limitation of the SSA
algorithm is that computing the enumerator of the hull is not efficient when the
hull of C is large. For random codes this is not a problem because typically the
hull is small.

Algebraic approach. The code equivalence problems can be solved alge-
braically, by expressing the condition π(C1) = C2 or µ(C1) = C2 as a system
of polynomial equations, and trying to solve this system with Gröbner basis
methods [11]. Similar to the SSA algorithm, this solves the permutation code
equivalence problem for random instances in polynomial time, but the complex-
ity is exponential in the dimension of the hull. The approach also works for the
linear code equivalence problem, but it is only efficient for q ≤ 4.

1.2 Our contributions

In this paper, we propose an improvement on Leon’s algorithm for code equiva-
lence that works best over sufficiently large finite fields. If x ∈ C1 and y = π(x) ∈
C2, then the multiset of entries of x matches the multiset of entries of y. Our
algorithm is based on the observation that if the size of the finite field is large
enough then the implication also holds in the other direction with large prob-
ability: If x ∈ C1 and y ∈ C2 are low-weight codewords with the same multiset
of entries, then with large probability π(x) = y. Our algorithm does a collision
search to find a small number of such pairs (x,y = π(x)), from which one can
easily recover π. We also give a generalization of this idea that works for the
linear equivalence problem.

We implemented our algorithm and used it to break the LESS signature
scheme. In the LESS-I and LESS-III parameter sets the finite field is large enough
for our algorithm to improve on Leons’s algorithm. We show that we can recover
a LESS-I or LESS-III secret key in only 45 seconds or 2 seconds respectively. We

2 This is not the case for monomial permutations, which is why the SSA can not be
directly applied to find linear equivalences.

4

estimate that recovering the secret key is also possible in practice with Leon’s
algorithm, but it would be significantly more costly. LESS-II works over F7,
which is too small for our algorithm to improve on Leon’s algorithm: We estimate
that our algorithm requires approximately 250.4 row operations, while Leon’s
algorithm would take only 243.9 row operations.

2 Preliminaries

2.1 Notation.

For a q-ary linear code C of length n and dimension k we say a matrix G ∈ Fk×nq

is a generator matrix for C if C = 〈G〉, where 〈G〉 denotes the span of the rows

of G. Similarly, we say that a matrix H ∈ F(n−k)×n
q is a parity check matrix for

C if C⊥ = 〈H〉, where C⊥ = {x ∈ Fnq |x ·y = 0∀y ∈ C} is the dual code of C. For
a vector x ∈ Fnq we denote by wt(x) the Hamming weight of x, which counts the
number of non-zero entries of x. We denote by Bn(w) the Hamming ball with
radius w, i.e. the set of vectors in x ∈ Fnq with wt(x) ≤ w. For a permutation π ∈
Sn and a vector x of length n, we write π(x) for the vector obtained by permuting
the entries of x with the permutation π, that is we have (π(x))i = xπ(i) for all
i ∈ {1, · · · , n}. For a monomial permutation µ = (ν, π) ∈Mn = (F×q)n n Sn and
a vector x ∈ Fnq , we write µ(x) to denote the vector obtained by applying µ to
the entries of x. Concretely, we have (µ(x))i = νi · xπ(i) for all i ∈ {1, · · · , n}.
For a code C and π ∈ Sn (or µ ∈Mn), we denote by π(C) (or µ(C)) the code that
consist of permutations (or monomial permutations respectively) of codewords
in C.

2.2 Information set decoding.

The algorithms in this paper will make use of information set decoding to find
sparse vectors in q-ary linear codes. In particular, we will use the Lee-Brickell
algorithm with parameter p = 2. To find low-weight codewords in a code C =
〈M〉 the algorithm repeatedly computes the echelon form of M with respect
to a random choice of k pivot columns. Then, the algorithm inspects all the
linear combinations of p = 2 rows of the matrix. Given the echelon form of the
matrix, we are guaranteed that all these linear combinations have weight at most
n− k+ 2, but if we are lucky enough we will find codewords that are even more
sparse. We repeat this until a sufficiently sparse codeword is found.

5

Complexity of the algorithm. The complexity of the algorithm depends on
the length n and the dimension k of the code, target weight w, and whether
we want to find a single codeword, all the codewords, or a large number N of
codewords.

First, suppose there is a distinguished codeword x ∈ C with weight w that we
want to find. For a random choice of pivot columns, the Lee-Brickell algorithm
will output x if the support of x intersects the set of pivot columns (also known
as the information set) in exactly 2 positions. The probability that this happens
is

P∞(n, k, w) :=

(
n−k
w−2

)(
k
2

)(
n
w

) .

Therefore, since the cost of each iteration is k2 row operations for the Gaussian
elimination and

(
k
2

)
q row operations to iterate over all the linear combinations

of 2 rows (up to multiplication by a constant), the algorithm will find x after
approximately

C∞(n, k, w) =

(
k2 +

(
k

2

)
q

)
P (n, k, w)−1 = O

(
q
(
n
w

)(
n−k
w−2

))

row operations.

Heuristically, for random codes we expect the support of the different code-
words to behave as if they are “independent”, so if there exist (q−1)N codewords
of weight w (i.e. N different codewords up to multiplication by a scalar), then we
expect the probability that one iteration of the Lee-Brickell algorithm succeeds
to be

P1(n, k, w) = 1− (1− P∞(n, k, w))N .

Thus, ifN is small enough, we have P1(n, k, w) ≈ NP∞(n, k, w), and the com-
plexity of finding is a single weight-w codeword is C1(n, k, w) ≈ C∞(n, k, w)/N .

Finally, if the goal is to find L out of the N distinct weight-w codewords
(up to multiplication by a scalar), the cost of finding the first codeword is C1 =
C∞(n, k, w)/N , the cost of finding the second codeword is C∞(n, k, w)/(N − 1),
the cost of finding the third codeword is C∞(n, k, w)/(N−2) and so on. Summing
up these costs, we get that the cost of finding L distinct codewords is

CL(n, k, w) ≈ C∞(n, k, w) ·

(
L−1∑
i=0

1

N − i

)
.

Therefore, is L << N , we can estimate CL ≈ C∞L/N , and if the goal is to
find all the codewords, we get CN ≈ C∞ ln(N), where ln denotes the natural

logarithm, because
∑N
i=1 1/i ≈ ln(N).

6

3 New algorithm for Permutation Equivalences over Fq

In this section, we introduce an algorithm for the permutation equivalence Prob-
lem over sufficiently large fields Fq (which is the case of the LESS-III parameter
set). The complexity of the algorithm is independent of the size of the hull of
the equivalent codes. Therefore, our algorithm can be used to find equivalences
when the hull is so large that using the SSA algorithm becomes infeasible. The
complexity of the algorithm is better than Leon’s algorithm when the size of the
finite field is sufficiently large.

Main idea. Leon’s algorithm computes the sets X1 = C1∩Bn(wmin) and X2 =
C2 ∩Bn(wmin), where wmin is the minimal weight of codewords in C1 and solves
the Code equivalence problem by looking for π ∈ Sn such that π(X1) = X2.
An easy observation is that permuting a codeword x does not only preserve its
Hamming weight, but also the multiset of entries of x. Therefore, if there is
an element x ∈ X1 with a unique multiset, then one can immediately see to
which vector y = π(x) ∈ X2 it gets mapped. If Fq is sufficiently large, then
with large probability a lot of the multisets of the vectors in X1 will be unique,
and therefore we get a large number of pairs of vectors of the form (x, π(x)).
Heuristically, given Ω(log(n)) of these pairs is sufficient to recover π.

The bottleneck of Leon’s algorithm is computing X1 = C1 ∩ Bn(wmin) and
X2 = C2 ∩Bn(wmin), so if we want to improve the complexity of the attack we
need to avoid computing all of X1 and X2. If the multisets of the codewords in
X1 are distinct then this is possibe: If we compute only Θ(

√
|X1| log n) elements

of X1 and X2, then we expect to find Θ(log n) pairs (x, π(x)), which suffices
to recover π. This speeds up the procedure by a factor Θ(

√
|X1|/n), which

is only small factor. We can improve this further by considering larger sets
X ′1 = C1 ∩ Bn(w) and X ′2 = C2 ∩ Bn(w) for a weight w that is not minimal. In
the most favorable case where the multisets of the vectors in X ′i are still unique
for w = n−k+1, then we can sample from X ′1 and X ′2 in polynomial time using

gaussian elimination, and we get an algorithm that runs in time Õ
(√(

n
k−1
))

,

where Õ is like the usual big-O notation but ignoring polynomial factors.

Description of the algorithm. The algorithm works as follows:

1. Let w be maximal subject to n!
(n−w)!q

−n+k < 1
4 logn and w ≤ n− k + 1.

2. Repeatedly use information set decoding to generate a lists L that con-
tains

√
|Bn(w)| · q−n+k−1 · 2 log n pairs of the form (x, lex(x)), where x ∈

C1 ∩Bn(w) and where lex(x) is the lexicographically first element of the set
{π(αx)|π ∈ Sn, α ∈ F×q }.

7

3. Initialize an empty list P and repeatedly use Information Set Decoding to
generate y ∈ C2∩Bn(w). If there is a pair (x, lex(x)) in L such that lex(x) =
lex(y), then append (x,y) to P . Continue until P has 2 log(n) elements.

4. Use a backtracking algorithm to iterate over all permutations π that satisfy
〈π(x)〉 = 〈y〉 for all (x,y) ∈ P until a permutation is found that satisfies
π(C1) = C2.

Heuristic analysis of the algorithm. Heuristically, we expect that for x ∈
C1∩Bn(w) the probability that there exists x′ ∈ C1∩Bn(w) such that 〈x′〉 6= 〈x〉
and lex(x) = lex(x′) to be bounded by n!

(n−w)!q
−n+k, because there are at most

n!
(n−w)! values of x′ (up to multiplication by a unit) for which lex(x′) = lex(x),

(namely all the permutations x), and each of these vectors is expected to be in
C1 with probability q−(n−k). In step 1 of the algorithm we choose w such that the
probability estimate that x is part of such a collision in lex is at most 1/(4 log n).

Since π(C1 ∩ Bn(w)) = C2 ∩ Bn(w) we also have lex(C1 ∩ Bn(w)) = lex(C2 ∩
Bn(w)) and heuristically the size of this set is close to |C1 ∩ Bn(w)|/(q − 1) ≈
|Bn(w)|/qn−k+1 since lex is almost (q − 1)-to-one. Therefore, it takes roughly
|Bn(w)|2 log n/qn−k+1|L| iterations of step 3 until 2 log n pairs (x,y) with lex(x) =
lex(y) are found. We chose the list size |L| =

√
|Bn(w)|2 log n/qn−k+1 so that

the work in step 2 and step 3 is balanced.

The last part of the algorithm assumes that for each pair (x,y) found in step 3
we have 〈π(x)〉 = 〈y〉. This can only fail with probability bounded by 1/4 log n,
because this implies that π(x) and y ∈ C2 ∩ Bn(w) form a collision for lex.
Summing over all the 2 log n pairs we get that the probability that 〈π(x)〉 = 〈y〉
holds for all the pairs in P is at least 1/2. If this is the case then there are typically
very few permutations σ (most of the time only one) that satisfy 〈σ(x)〉 = 〈y〉
and the true code equivalence π must be one of them.

The complexity of the attack is dominated by the cost of the ISD algorithm
to find |L| weight-w codewords in C1 and C2 in step 2 and 3, which is

2 · C|L|(n, k, w)

In our implementation we have used the Lee-Brickell algrithm [8] with p = 2
to instantiate the ISD oracle3. In this case, the number of row-operations used
by the ISD algorithm can be approximated (see section 2.2) as

2 · C|L|(n, k, w) ≈ C∞
|L|

|C1 ∩Bn(w)|/(q − 1)
= O

((
n
w

)√
log n(

n−k
w−2

)
·
√
|Bn(w)|q−n+k

)
.

3 One can also use more advanced ISD algorithms such as Stern’s algorithm [14], but
since we will be working with relatively large the finite fields we found that this does
not offer a big speedup. To simplify the analysis and the implementation we have
chosen for the Lee-Brickell algorithm.

8

The algorithm in practice. An implementation of our algorithm in C is made
publicly available at

www.github.com/WardBeullens/LESS_Attack.

We used this implementation to break the LESS-III parameter set. The public
key of a LESS-III signature consist of two permutation equivalent codes C1 and
C2 of length n = 60 and dimension k = 25 over F31. The codes are chosen to be
weakly self-dual. From experiments, we see that the weakly self-dual property
does not seem to affect the complexity or the success rate of our attack.

For these parameters, the maximal value of w that satisfies n!
(n−w)!q

−n+k <
1

4 logn is w = 30, so we use the Lee-Brickell algorithm to find codewords in C1 and

C2 with Hamming weight at most 30. The list size is
√
|Bn(w)| · q−n+k−1 · 2 log n ≈

25000. With these parameter choices, the algorithm runs in about 2 seconds on
a laptop with an Intel i5-8400H CPU at 2.50GHz. The rate at which pairs are
found closely matched the heuristic analysis of the previous section: The analysis
suggests that we should have to do approximately 214.7 Gaussian eliminations,
while the average number of Gaussian eliminations measured in our experiments
is 214.6. However, we find that the heuristic lower bound of 1/2 for the success
probability is not tight: The algorithm terminates successfully in all of the exe-
cutions. This is because in our heuristic analysis we used n!/(n−w)! as an upper
bound for the number of permutations of a vector x of weight w. This upper
bound is only achieved if all the entries of x are distinct. For a random vector x
the number of permutations is much smaller, which explains why the observed
probability of a bad collision is much lower than our heuristic upper bound.

Remark 3. If we use the algorithm for longer codes the list L will quickly be so
large that it would be very costly to store the entire list in memory. To avoid
this we can define 2 functions F1 and F2 that take a random seed as input, run
an ISD algorithm to find a weight w codeword x in C1 or C2 respectively and
output lex(x). Then we can use a memoryless claw-finding algorithm such as the
Van Oorschot-Wiener algorithm [16] to find inputs a, b such that F1(a) = F2(b).
This makes the memory complexity of the algorithm polynomial, at essentially
no cost in time complexity. Since memory is not an issue for attacking the LESS
parameters we did not implement this approach.

Comparison with Leon’s algorithm and new parameters for LESS. We
expect recovering a LESS-III secret key with Leon’s algorithm would require
224.5 iterations of the Lee-Brickell algorithm, significantly more than the 214.6

iterations that our algorithm requires. Figure 1 shows how the complexity of our
attack and Leon’s attack scales with increasing code length n. The left graph
shows the situation where the field size q and the dimension k increases linearly
with the code length, while the graph on the right shows the case where q = 31 is

9

www.github.com/WardBeullens/LESS_Attack

fixed. In both cases, our algorithm outperforms Leon’s algorithm, but since our
algorithm can exploit the large field size, the gap is larger in the first case. The
sawtooth-like behavior of the complexity of Leon’s algorithm is related to the
number of vectors of minimal weight, which oscillates up and down. We see that
in order to achieve 128 bits of security (i.e. an attack needs 2128 row operations)
we can use a q-ary code of length n = 280, dimension k = 117 and q = 149.
Alternatively, if we keep q = 31 fixed, we could use a code of length n = 305
and dimension k = 127. This would result in an average signature size of 18.8
KB or 21.1 KB respectively. This is almost a factor 5 larger than the current
signature size of 3.8 KB 4. The public key size would increase from 0.53 KB 5

to 16.8 KB or 13.8 KB for the q = 149 or q = 31 parameter set respectively, an
increase of more than a factor 25. The fact that our algorithm performs better
in comparison to Leon’s algorithm for larger finite fields is illustrated in fig. 2,
where we plot the complexity of both algorithms for n = 250, k = 104 and for
various field sizes.

0 50 100 150 200 250 300
Code length n

0

20

40

60

80

100

120

140

160

180

se
cu

rit
y

le
ve

l (
bi

ts
)

128 bit security
LESS-III parameters
our algorithm
Leon's algorithm

0 50 100 150 200 250 300
Code length n

0

20

40

60

80

100

120

140

160

180

se
cu

rit
y

le
ve

l (
bi

ts
)

128 bit security
LESS-III parameters
our algorithm
Leon's algorithm

Fig. 1. Complexity of Leon’s algorithm and our algorithm for finding permutation
equivalences in function of the code Length. In the left graph the field size scales
linearly with the code length, in the right graph the field size q = 31 is fixed. In both
cases the rate of the code is fixed at k/n = 5/12.

4 The LESS paper claims 7.8 KB. but 4 KB of the signature consists of commitments
that can be recomputed by the verifier, so this does not need to be included in the
signature size.

5 The LESS paper claims 0.9 KB public keys, but the generator matrix can be put in
normal form, which reduces the size from k × n field elements to k × (n − k) field
elements.

10

0 20 40 60 80 100
Field size q

40

60

80

100

120

140

se
cu

rit
y

le
ve

l (
bi

ts
)

our algorithm
Leon's algorithm

Fig. 2. Complexity of Leon’s algorithm and our algorithm for finding permutation
equivalences in function of the finite field size for random linear codes of length n = 250
and dimension k = 104.

4 New algorithm for Linear Equivalences over Fq

In this section, we generalize the algorithm from the previous section to the linear
equivalence Problem. The main obstacle we need to overcome is that it does not
seem possible given sparse vectors x ∈ C1 and y ∈ C2 to verify if µ(x) = y,
where µ ∈ Mn is the monomial transformation such that µ(C1) = C2. In the
permutation equivalence setting, we could guess that if the multiset of entries
of x equals the multiset of entries of y then π(x) = y. If the size of the finite
field was large enough, then this was correct with large probability. This strategy
does not work in the linear equivalence setting, because monomial permutations
do not preserve the multiset of entries. In fact, monomial transformations do
not preserve anything beyond the hamming weight of a vector, because for any
two codewords x and y with the same weight there exists µ ∈ Mn such that
µ(x) = y.

Main Idea. To overcome this problem, be will replace sparse vectors by 2-
dimensional subspaces with small support. Let

X1(w) = {V ⊂ C1|dim(V) = 2 and |Supp(V)| ≤ w}

be the set of 2 dimensional linear subspaces of C1 with support of size at most w
and similarly we let X2(w) be the set of 2-spaces in C2 with support of size w. If
µ ∈Mn is a monomial permutation such that µ(C1) = C2, then for all V ∈ X1(w)
we have µ(V) ∈ X2. Analogously with the algorithm from the previous section,
we will sample 2-spaces from X1(w) and from X2(w) in the hope of finding
spaces V ∈ X1(w) and U ∈ X2(w) such that µ(V) = W . Then, after finding
Ω(log(n)) such pairs we expect to be able to recover the equivalence µ. To detect
if µ(V) = W we define lex(V) to be the lexicographically first basis of a 2-space

11

in the Mn-orbit of V . Clearly, if µ(V) = W , then the Mn-orbits of V and W
will be the same and hence lex(V) = lex(W). Moreover, since the dimension of
V and W is only 2, it is feasible to compute lex(V) and lex(W) efficiently.

Computing lex(V). To compute lex(V) we can simply consider all the bases
x,y that generate V (there are (q2 − 1)(q2 − q) of them) and for each of them
find the monomial transformation µ such that µ(x), µ(y) comes first lexico-
graphically, and then take the permuted basis that comes first out of these
(q2 − 1)(q2 − q) options. Given a basis x,y, finding the lexicographically first
value of µ(x), µ(y) is relatively straightforward: First make sure that µ(x) is
minimal, and then use the remaining degrees of freedom to minimize µ(y). The
minimal µ(x) consists of n − wt(x) zeroes followed by wt(x) ones, which is
achieved by multiplying the non-zero entries of x (and the corresponding entries
of y) by their inverse and permuting x such that all the ones are in the back.
The remaining degrees of freedom of µ can be used to make the first n−wt((x)
entries of µ(y) consist of a number of zeros followed by a number of ones and to
sort the remaining entries of µ(y) in ascending order.

A basis x,y for V can only lead to the lexicographicallt first µ(x, µ(y) if the
hamming weight of x is minimal among all the vectors in V . Therefore, we only
need to consider bases x,y where the hamming weight of x is minimal. When
the first basis vector is fixed, choosing the second basis vector and minimizing
the basis, can be on average done with a constant number row operations, so
the average cost of the algorithm is q+ 1 +O(N) = O(q) row operations, where
the q + 1 operations stem from finding the minimal weigth vectors in V , and N
is the number of such vectors.

Example 4. The following is an example what lex(V) could look like:

V =

〈(
19 3 21 36 17 44 0 47 34 19 48 3 0 47 0 38 27 8 49 18 8 0 0 31 26 52 7 30 37 47
35 24 13 0 50 40 0 52 6 19 37 28 0 13 0 49 34 20 24 30 24 45 0 39 42 0 18 17 28 36

)〉

lex(V) =

(
0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 1 1 2 3 4 5 9 9 11 13 15 19 20 21 23 27 32 33 34 36 37 39

)

Description of the algorithm. The algorithm works as follows:

1. Let w be maximal subject to n!
(n−w)!q

w−1+2k−2n < 1
4 logn and w ≤ n− k+ 2.

2. Repeatedly use information set decoding to generate a lists L that con-

tains
√(

n
w

)
· q2(−n+k+w−2) · 2 log n pairs of the form (V, lex(V)), where V ∈

X1(w).

12

3. Initialize an empty list P and repeatedly use Information Set Decoding to
generate W ∈ X2. If there is a pair (V, lex(V)) in L such that lex(V) =
lex(W), then append (V,W) to P . Continue until P has 2 log(n) elements.

4. Use a backtracking algorithm to iterate over all monomial permutations µ
that satisfy µ(V) = W for all (V,W) ∈ P until a monomial permutation is
found that satisfies µ(C1) = C2.

Heuristic analysis of the algorithm. The heuristic analysis of this algorithm
is very similar to that of our permutation equivalence algorithm. This time the
size of a M2-orbit of a 2-space V with |Supp(V)| ≤ w is bounded by n!

(n−w)! (q −

1)w−1 and a random 2-space has probability of (qk−1)(qk−q)
(qn−1)(qn−q) ≈ q2(k−n) of being

a subspace of C1. So as long as we pick w such that n!
(n−w)!q

w−1+2k−2n < 1
4 logn

we expect the probability that one of (V,W) the pairs that we found are such
that lex(V) = lex(W) but µ(V) 6= W is bounded by 1/2. The size of X1(w) and

|X2(w)| is expected to be at most
(
n
w

) (qw−1)(qw−q)
(q2−1)(q2−q) q

−2(n−k) ≈
(
n
w

)
q2(w−2−n+k),

because for each of the
(
n
w

)
supports S of size w, there are (qw−1)(qw−q)

(q2−1)(q2−q) 2-spaces

whose support is included in S, and we expect one out q2(n− k) of them to lie

in C1. Therefore, if we set the list size to
√(

n
w

)
· q2(−n+k+w−2) · 2 log n then we

expect the third step of the algorithm to terminate after roughly |L| iterations.
(We are counting the subspaces V with |Supp(V)| < w multiple times, so X1(w)
is slightly smaller than our estimate. This is not a problem, because it means
that the third step will terminate slightly sooner than our analysis suggests.)

The complexity of the algorithm consists of the ISD effort to sample |L|
elements from X1(w) and X2(w) respectively, and the costs of computing lex.
We have to compute lex an expected number of 2|L| times; once for each of the 2-
spaces in the list L and once for each 2-space found in step 3. Since the number
of row operations per lex is O(q), the total cost of computing lex is O(q|L||).
To sample the 2-spaces we use asn adaptation of the Lee-Brickell algorithm:
We repeatedly put a generator matrix of C1 in echelon form with respect to a
random choice of pivot columns, and then we look at the span of any 2 out of
k rows of the new matrix. Given the echelon form of the matrix, the support
of these 2-spaces has size at most n− k + 2, and if we are lucky the size of the
support will be smaller than or equal to w. The complexity of this algorithm is
very similar to that of the standard Lee-Brickell algorithm for finding codewords
(see section 2.2).

For a 2-space V ∈ X1(w), the Lee-Brickell algorithm will find V if the random
choice of pivots intersects Supp(V) in 2 positions, which happens with probabil-
ity P∞(n, k, w) =

(
n−k
w−2

)(
k
2

)
/
(
n
w

)
. The cost per iteration is O(k2 +

(
k
2

)
= O(k2)

row operations for the Gaussian elimination and for enumerating the 2-spaces,
so the expected number of row operations until we find |L| elements in X1(w)

13

and X2(w) is

O

(
k2
(
n
w

)
|L|(

n−k
w−2

)(
k
2

)
|X1(w)|

)
≈ O

√(

n
w

)
· log n(

n−k
w−2

) q−w+2+n−k

 .

4.1 The algorithm in practice.

We have implemented the algorithm and applied it to the LESS-I parameter set.
The public key of a LESS-I signature consist of two linearly equivalent codes C1
and C2 chosen uniformly at random of length n = 54 and dimension k = 27 over
F53.

The largest value of w satisfying n!
(n−w)!q

w−1+2k−2n < 1
4 logn is w = 28, so we use

the Lee-Brickell algorithm to generate
√(

n
w

)
· q2(−n+k+w−2) · 2 log n ≈ 2800000

subspaces of C1 and C2 with support of size at most 28. From our implementa-
tion we see that this takes on average about 220.6 Gaussian eliminations, which
matches the heuristic analysis of the previous section very well. The attack takes
in total about 230.9 row operations, which amounts to about 45 seconds on a lap-
top with an Intel i5-8400H CPU at 2.50GHz. Approximately 15 seconds are spent
computing the spaces V , the remaining 30 seconds are spent computing lex(V).

Remark 5. Similar to the Permutation equivalence case, it is possible to use a
memoryless collision search algorithm to remove the large memory cost of the
attack at essentially no runtime cost.

Comparison with Leon’s algorithm and new parameters for LESS. We
expect Leon’s algorithm (using the Lee-Brickell algorithm to instantiate the ISD
oracle) to require 238.3 row operations, which is significantly more than the 230.9

operations that our algorithm requires. Figure 3 shows the complexity of our
algorithm and Leon’s algorithm for increasing code length. If the size of the
finite field increases linearly with the code length, then the gap between our
algorithm and Leon’s algorithm increases exponentially. In contrast, if the field
size is fixed, then Leon’s algorithm will eventually outperform our algorithm.
Figure 4 shows that our algorithm exploits the large field size so well, that in
some regimes increasing the field size hurts security. Therefore, when picking
parameters for LESS, it is best not to pick a field size that is too big. To achieve
128 bits of security against our algorithm and Leon’s algorithm one could use
linearly equivalent codes of length 250 and dimension 125 over F53. This results
in a signature size of 28.4 KB, more than 3 times the original LESS-I signature
size of 8.4 KB. The public key size would be 11.4 KB, more than 22 times the
original public key size of 0.5 KB. We found that for the LESS-II parameter set,
the finite field F7 is too small for our algoritm to improve over Leon’s algoritm,
which we estimate would take about 244 row operations.

14

0 50 100 150 200 250
Field size q

0

20

40

60

80

100

120

140

se
cu

rit
y

le
ve

l (
bi

ts
)

0 50 100 150 200 250
Field size q

0

20

40

60

80

100

120

140

se
cu

rit
y

le
ve

l (
bi

ts
)

128 bit security
LESS-I parameters
our algorithm
Leon's algorithm

Fig. 3. Complexity of Leon’s algorithm and our algorithm for finding linear equiva-
lences in function of the code Length. In the left graph the field size scales linearly
with the code length, in the right graph the field size q = 53 is fixed. In both cases the
rate of the code is fixed at k/n = 1/2.

0 50 100 150 200 250
Field size q

40

60

80

100

120

140

160

se
cu

rit
y

le
ve

l (
bi

ts
)

our algorithm
Leon's algorithm

Fig. 4. Estimated complexity of Leon’s algorithm and our algorithm for finding linear
equivalences in function of the finite field size for random weakly self-dual codes of
length n = 250 and dimension k = 125.

15

5 Conclusion

We have introduced a new algorithm for finding permutation equivalences and
linear equivalences between codes that improves upon Leon’s algorithm for suf-
ficiently large field sizes. Leon’s algorithm requires computing the set of all the
codewords of minimal length, in contrast, to find permutation equivalences our
algorithm only requires to compute a small (square root) fraction of the code-
words that have a certain (non-minimal) weight. To find linear equivalences we
compute a small fraction of the 2-dimensional subspaces of the code with small
(but not minimal) support. We implement the algorithm and use it to break
the recently proposed LESS system. We show that the LESS-I and LESS-III
parameter sets can be broken in only 45 seconds and 2 seconds respectively. We
propose larger parameters that resist our attack and Leon’s original attack that
come at the cost of at least a factor 3 increase in signature size and a factor
22 increase in key size. We compare the new parameters of LESS to some other
code-based signature schemes in table 2. Despite the significant increase in sig-
nature size and key size, LESS still has considerably smaller signatures than
other zero-knowledge based signatures in the Hamming metric, such as Stern’s
protocol [15], Veron’s protocol [17] and the CVE scheme [4], whose signatures are
in the range of 150 to 250 kilobytes at 128 bits of security. However, this smaller
signature size comes at the cost of larger public keys. Compared to cRVDC [2],
a recent zero-knowledge-based proposal using the rank metric, the signature size
of LESS is very similar, but the LESS public keys are much larger. Compared to
the Durandal scheme [1], LESS has a similar public key size, but larger signa-
tures. Finally, compared to WAVE [5] LESS has much smaller public keys, but
also much larger signatures.

Stern [15] cRVDC [2] Durandal [1] Wave [5] LESS-I LESS-III

Metric Hamming Rank Rank Hamming Hamming
Type FS FS FS w/ abort Trapdoor FS

Public Key 64 B 152 B 15 KB 3.2 MB 11 KB 17 KB
Signature 245 KB 22 KB 4.0 KB 1.6 KB 28 KB 19 KB

Table 2. Comparison of the new LESS parameters with some other code-based sig-
nature schemes.

References

[1] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles
Zémor. Durandal: A rank metric based signature scheme. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 728–758. Springer, Heidelberg, May 2019.

16

[2] Emanuele Bellini, Florian Caullery, Philippe Gaborit, Marc Manzano, and Victor
Mateu. Improved veron identification and signature schemes in the rank metric.
In 2019 IEEE International Symposium on Information Theory (ISIT), pages
1872–1876. IEEE, 2019.

[3] Jean-Francois Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini.
Less is more: Code-based signatures without syndromes. Cryptology ePrint
Archive, Report 2020/594, 2020. https://eprint.iacr.org/2020/594.

[4] Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui. A zero-
knowledge identification scheme based on the q-ary syndrome decoding problem.
In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, SAC 2010,
volume 6544 of LNCS, pages 171–186. Springer, Heidelberg, August 2011.

[5] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new
family of trapdoor one-way preimage sampleable functions based on codes. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume
11921 of LNCS, pages 21–51. Springer, Heidelberg, December 2019.

[6] Thomas Feulner. The automorphism groups of linear codes and canonical repre-
sentatives of their semilinear isometry classes. Adv. in Math. of Comm., 3(4):363–
383, 2009.

[7] Marc Girault. A (non-practical) three-pass identification protocol using coding
theory. In Jennifer Seberry and Josef Pieprzyk, editors, AUSCRYPT’90, volume
453 of LNCS, pages 265–272. Springer, Heidelberg, January 1990.

[8] Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In C. G. Günther, editor, EUROCRYPT’88, volume 330
of LNCS, pages 275–280. Springer, Heidelberg, May 1988.

[9] Jeffrey Leon. Computing automorphism groups of error-correcting codes. IEEE
Transactions on Information Theory, 28(3):496–511, 1982.

[10] Robert J McEliece. A public-key cryptosystem based on algebraic coding theory.
Jet Propulsion Laboratory DSN Progress Report 42–44, 1978.

[11] Mohamed Ahmed Saeed. Algebraic Approach for Code Equivalence. PhD thesis,
Normandie Université; University of Khartoum, 2017.

[12] Nicolas Sendrier. Finding the permutation between equivalent linear codes:
The support splitting algorithm. IEEE Transactions on Information Theory,
46(4):1193–1203, 2000.

[13] Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence over
and its application to code-based cryptography. In Philippe Gaborit, editor, Post-
Quantum Cryptography - 5th International Workshop, PQCrypto 2013, pages 203–
216. Springer, Heidelberg, June 2013.

[14] Jacques Stern. A method for finding codewords of small weight. In International
Colloquium on Coding Theory and Applications, pages 106–113. Springer, 1988.

[15] Jacques Stern. A new identification scheme based on syndrome decoding. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 13–21. Springer,
Heidelberg, August 1994.

[16] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-
analytic applications. Journal of Cryptology, 12(1):1–28, January 1999.

[17] Pascal Véron. Improved identification schemes based on error-correcting codes.
Applicable Algebra in Engineering, Communication and Computing, 8(1):57–69,
1997.

17

https://eprint.iacr.org/2020/594

	Not enough LESS: An improved algorithm for solving Code Equivalence Problems over Fq

