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Abstract Recently, in Asiacrypt 2019, Bonnetain et al. have shown attacks by quantum adver-
saries on FX construction and Even-Mansour Cipher without using superposition queries to the
encryption oracle. In this work, we use a similar approach to mount new attacks on HCTR and
HCH construction. In addition, we mount attacks on HCTR, Tweakable-HCTR and HCH using
the superposition queries to the encryption oracle using strategies proposed by Leander and May
in Asiacrypt 2017 and Kaplan et al. in Crypto 2016.

Keywords Grover’s Search Algorithm · HCTR · HCH · Simon’s Algorithm · Symmetric Key
Cryptography · Tweakable-HCTR

1 Introduction

The polynomial-time solvability of integer factorization problem and discrete logarithm problem
introduced by Shor’s algorithm [16] causes a major threat to public key cryptographic primitives
against quantum adversaries. In the case of symmetric key schemes, for a long time, the Grover’s
algorithm [7] has been considered to provide the best attack by speeding up the exhaustive search
of the private key by a quadratic factor. Thus, doubling the key-length resists such attacks by
upgrading the quantum security of the schemes to that of the classical ones. Leveraging on the
power of Simon’s algorithm [17], chosen plaintext attack on 3-round Feistel [13] and the quantum
attack on Even-Mansour cipher [14] by Kuwakado and Mori has opened up a new direction for
cryptanalysis of symmetric key schemes in the quantum setting.

One of the major questions in the analysis of quantum attacks is what should be the adversarial
model. In this regard, there are mainly two types of adversarial models, mainlyQ1 andQ2 models,
which are used extensively in the literature for mounting quantum attacks on cryptographic
schemes [1,5,2,12,10,6]. In the Q1 model, the attacker is allowed to make classical queries to the
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encryption oracle but has access to a quantum computer for making offline computations. In the
Q2 model, in addition of having an access to a quantum computer, the attacker is allowed to make
superposition queries to the oracle. In Q2 model, Kaplan et al. have shown attacks on mode of
operation for authentication and authenticated encryption by using the Simon’s algorithm [11].
Leander and May have shown how to combine Grover’s algorithm with Simon’s algorithm to
mount attacks on FX construction [15]. These attacks are also based on quantum superposition
queries to the quantum oracle. Recently, Bonnetain et al. have given attacks on several schemes
without making superposition queries to the oracle [1].

Our Contributions. The attacks presented in this paper have considered both Q1 and Q2 models.
The procedures proposed by Leander and May [15] are used to combine Grover’s search algorithm
with Simon’s algorithm for mounting attacks in Q1 model. The methods proposed in [1] are
also used to mount attacks without making superposition queries to the oracle. These results
are combined to mount quantum attacks on HCTR [18] and HCH [3]. Attacks in Q2 model are
mounted for HCTR, Tweakable-HCTR and HCH by following the approaches proposed by Kaplan
et al. [11]. All the attacks are presented with their corresponding complexities.

The rest of the paper is organized as follows. Initially, a preliminary discussion on necessary
quantum algorithms and their impact on cryptography is presented. Then the method of trun-
cating outputs of quantum oracles is described in Section 3. In Section 4, our attacks on various
schemes are described. First, attacks on HCTR in both Q1 and Q2 model are proposed. Then

attacks on H̃CTR are illustrated upon considering only Q2 model. Finally, attacks on HCH in Q1
and Q2 model are discussed. Then the paper is summarized furnishing with concluding remarks.

2 Preliminaries

Here, some quantum algorithms and how they have been used in cryptanalysis are discussed.
First, a brief description about Simon’s algorithm is given and how it was applied in [11] is
discussed. Next, Grover’s search algorithm is briefly mentioned. Finally, the results in [15] and
[1] are illustrated upon.

2.1 Simon’s Algorithm

In discussion of Simon’s algorithm [17], first of all, the problem that it solves needs to be defined.
The problem is popularly known as Simon’s Problem.

Problem 1: Simon’s Problem: Given a boolean function f : {0, 1}n 7→ {0, 1}n and the
promise that there exists s ∈{0, 1}n (Simon’s promise) such that for any (x, y) ∈{0, 1}n,
[f(x) = f(y)] ⇐⇒ [x⊕ y ∈ {0n, s}]; the goal is to find s.

Classically, this problem can be solved in Θ(2n/2). Using Simon’s algorithm this problem can
be solved in O(n) quantum complexity. The steps of Simon’s algorithm are given in Algorithm 1.

Simon’s Algorithm in Cryptography. In cryptographic applications, it is not the case that always
Simon’s algorithm can be applied directly. The reason is that sometimes the function that needs
to be analyzed has some partial period apart from having a full period. Kaplan et al.. have also
shown the application of Simon’s algorithm under such constraints. This particularly handles the
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Algorithm 1: Simon’s Algorithm

1 Let’s consider a unitary map Uf given by |x, y〉 7→ |x, y ⊕ f(x)〉. Two registers are initialized with

n-qubit state |0〉 each. Hadamard transform H⊗n is applied to the first register to obtain quantum
superposition

1
√

2n

∑
x∈{0,1}n

|x〉 |0〉 .

2 f is queried to Uf using these two registers to obtain

1
√

2n

∑
x∈{0,1}n

|x〉 |f(x)〉 .

3 The second register is measured. Measuring the value in the second register collapses the value in both
the registers. If value in the second register is f(z), then state in the first register should be a
superposition state due to Simon’s promise. The state in first register is

1
√

2
(|z〉+ |z ⊕ s〉).

4 On first register, Hadamard transform H⊗n is again applied to obtain

1
√

2

1
√

2n

∑
y∈{0,1}n

(−1)y.z(1 + (−1)y.s) |y〉 .

5 Measuring the first register collapses it to a random vector y such that y.s = 0. The y vectors with
y.s = 1 have 0 amplitude; so, the first register never collapses to such values.

6 Steps 1 to 4 are repeated O(n) times which produce n− 1 random vectors orthogonal to s. These can be
solved to retrieve the value of s.

conditions where ∃t such that f(x) = f(x ⊕ t), t /∈ {0, s}. They have used ε(f, s) for computing
the success probability of the Simon’s algorithm based on rate of collision, where

ε(f, s) = max
t∈{0,1}n\{0,s}

Prx[f(x) = f(x⊕ t)].

The following theorems in [11] handles the conditions when Simon’s promise does not hold
precisely.

Theorem 1 (Simon’s Algorithm with Approximate Promise). [11] If ε(f, s) ≤ p0 ≤ 1,

then with probability at least 1 −
(

2
(
1+p0

2

)c)n
Simon’s algorithm returns s at the expense of cn

queries,.

If there is no bound on ε(f, s), then it is not possible to recover s always. But we can find a
t such that Prx[f(x) = f(x⊕ t)] is very high. The following theorem dictates that.

Theorem 2 (Simon’s Algorithm without Promise). [11] After the execution of cn steps of
Simon’s algorithm, if t is orthogonal to all vectors ui returned by each step of the algorithm, then

Prx[f(x) = f(x⊕ t)] >= p0 with probability at least 1−
(

2
(
1+p0

2

)c)n
.

In both cases, if c ≥ 3
(1−p0)

then the probabilities become high.

2.2 Grover’s Search Algorithm

Consider an unordered set X with N elements. To perform a search on this set, classically it
would take O(N) time. While using a quantum computer, Grover’s algorithm [7] searches an
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element in X in O(
√
N) time. It is a quadratic speed up over the classical brute force search, i.e.,

a 128-bit keyspace search can be performed in 264 iterations.

2.3 Simon’s Algorithm with Asymmetric Queries

Leander et al. have combined Grover’s search algorithm with Simon’s algorithm to recover keys
for FX construction [15]. This combination of algorithms for finding a period has huge impact on
cryptographic schemes and Bonnetain et al. have formally defined the problem as Asymmetric
Search of a Period [1].

Problem 2: Asymmetric Search of a Period [1]: Consider a family of functions F
indexed by {0, 1}m, denoted by F (i, ·) = fi(·) and a function g; they are defined as

F : {0, 1}m × {0, 1}n → {0, 1}l
g : {0, 1}n → {0, 1}l

The problem is to find an i0 and a s such that ∀x ∈ {0, 1}n, fi0(x)⊕ g(x) = fi0(x⊕ s)⊕
g(x⊕ s) for a certain s, under the following assumptions,

– Quantum oracle access to F is given.
– In Q1 model, classical oracle access to g is given whereas in Q2 setting g is accessed

as quantum oracle.
– There is exactly one i ∈ {0, 1}m such that fi ⊕ g has a hidden period.

Bonnetain et al. have observed that while testing whether fi ⊕ g have period or not; the
function g always remains same. Leveraging on that the number of queries to g is reduced and

the superposition |ψg〉 =
⊗cn

(∑
x∈{0,1}n |x〉 |g(x)〉

)
is used several times. In Q2 model, g is

queried using superposition queries; whereas in Q1 only classical queries are allowed to make

to g. From |ψg〉, |ψfi⊕g〉 =
⊗cn

(∑
x∈{0,1}n |x〉 |fi(x)⊕ g(x)〉

)
is formed by making quantum

superposition queries to fi.

In our work, we have used the existing techniques in [1] to attack encryption schemes. A brief
overview of all algorithms and their corresponding complexities introduced in [1] to solve the
problem of Asymmetric Search of a Period is given here (For details, refer to [1]).

– Alg-PolyQ2- Solves the problem of Asymmetric Search of a Period in Q2 model. It is allowed
to make quantum superposition queries to g for online computations.

– Alg-ExpQ1- Solves the problem of Asymmetric Search of a Period in Q1 model. It is allowed
to make classical queries to g for online computations.

During offline computations both Alg-PolyQ2 and Alg-ExpQ1 find an i using Grover’s search
algorithm, such that for that fixed i, fi⊕g has a period. Note that, both algorithms never returns
the actual period of fi ⊕ g. For finding the period, Simon’s algorithm is applied on fi ⊕ g. In Q1
model, for finding period Simon’s algorithm is applied by making classical queries to the oracle.
In regard to this Alg-SimQ1 has been defined in [1].

Cost Estimation. The attacks, presented in this work, make use of Alg-ExpQ1 and Alg-SimQ1.
The following two propositions (proposed in [1]) are regarding the cost estimation when these
algorithms are applied to mount attacks.
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Proposition 1 (Proposition 3 in [1]) Let c be a sufficiently large constant, m is in O(n)
and g ⊕ fi0 has a period for a good i0. Assume that

max
t∈{0,1}n\{0n},i∈{0,1}n\{i0},x∈{0,1}n

Pr[(fi ⊕ g)(x⊕ t) = (fi ⊕ g)(x)] ≤ 1

2
(1)

holds. Then a good i ∈ {0, 1}m with probability Θ(1) is found by Alg-ExpQ1 by making classical
and quantum queries to g and F respectively. The number of classical and quantum queries
are O(2n) and O(n2m/2) respectively. If for evaluating F once TF is the required time, then
Alg-ExpQ1 executes the offline computations in time O

(
(n3 + nTF )2m/2

)
. Note that, in offline

computation the time required for preparing the state |ψg〉 is not included.

Proposition 2 (Proposition 4 in [1]) Suppose that, fi0 ⊕ g has a period s 6= 0 and satisfies

max
t 6={s,0n}

Prx[(fi ⊕ g)(x⊕ t) = (fi ⊕ g)(x)] ≤ 1

2
. (2)

Then Alg-SimQ1 makes O(2n) classical queries to g and cn queries to fi0 and returns the period
s with a probability at least 1−2n.(3/4)cn. If Tf is the required time for evaluating fi0 once, then
the offline computation of Alg-SimQ1 runs in time O(n3 + nTf ).

For performing attacks in Q1 model, to form |ψg〉 whole codebook of g should be queried.
In order to reduce the number of queries to g, a trade-off between online classical queries to g
(Data complexity) and offline quantum computations (Time complexity) exists. In the rest of the
paper, number of online classical queries is denoted by D and number of offline computations is
denoted by T .

3 Output Truncation of Quantum Oracles

In the attack on 3-round Feistel cipher, Kuwakado and Morii [13] use the right half of the
output from the quantum oracle to mount distinguishing attacks. In [11], it is mentioned that
the output in the left half and the right half are entangled, but SIMON algorithm requires a
completely unentangled input. In [9,8], it is shown how to truncate the right half of the output
from the complete output when a quantum oracle is queried.

The attacks presented in this paper are on the modes of operation of block ciphers. Essen-
tially, a part of the ciphertexts are exploited to mount attacks. The truncation technique men-
tioned in [9,8] can be employed to take a part of the ciphertext. Let Ek encrypts m1|| · · · ||ms

to c1|| · · · ||cs where mi’s, ci’s are n-bit messages and y1|| · · · ||ys are ancilla qubits. Then the
corresponding quantum oracle Ok can be represented as

Ok : |m1〉 · · · |ms〉 |y1〉 · · · |ys〉
7−→ |m1〉 · · · |ms〉 |y1 ⊕Ok(m1, · · · ,ms)〉 · · · |ys ⊕Ok(m1, · · · ,ms)〉 .

Suppose, the p-th ciphertext cp needs to be considered for further operation. Therefore, we
want to simulate an

Ok
{p} : |m1〉 · · · |ms〉 |yp〉

7−→ |m1〉 · · · |ms〉 |yp ⊕Ok(m1, · · · ,ms)〉 .
(3)
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This is similar to the simulation of the oracle

O′k{p} : |m1〉 · · · |ms〉 |yp〉

(s−1) times︷ ︸︸ ︷
|0n〉 · · · |0n〉

7−→ |m1〉 · · · |ms〉 |yp ⊕Ok(m1, · · · ,ms)〉

(s−1) times︷ ︸︸ ︷
|0n〉 · · · |0n〉 .

(4)

Let H⊗n is an n-bit Hadamard gate and |+〉 := H⊗n(0n). Considering
y1, · · · , yp−1, yp+1, · · · , ys = 0n and applying Hadamard on them, the oracle representa-
tion in (3) can be rewritten as

Ok : |m1〉 · · · |ms〉 |+〉 · · · |yp〉 · · · |+〉
7−→ |m1〉 · · · |ms〉 |+〉 · · · |yp ⊕Ok(m1, · · · ,ms)〉 · · · |+〉 .

Let swap(p) be a function that swaps (s + 1)-th output with (s + p)-th. Now, the oracle O′k{p}
can be defined as

(Ins+(p−1)n ⊗H⊗n ⊗ I(s−p)n) · swap(p) · Ok · swap(p)·
(Ins+(p−1)n ⊗H⊗n ⊗ I(s−p)n).‘

It can be verified that O′k{p} can be applied to truncate p-th ciphertext block when a quantum

access to Ok is given. Figure 1 shows how O′k{p} is constructed from Ok.

Fig. 1: Construction of O′k{p} from Ok
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4 Our Attacks

Based on the previous theoretical explanations, it is possible to mount attacks on HCTR,

Tweakable-HCTR(H̃CTR) and HCH constructions in Q1 and Q2 model. The attacks on HCTR
has been discussed extensively. The remaining two attacks are quite similar with the attack
on HCTR, and thus they have been briefly described. HCTR can encrypt a n-block message
(M1||M2|| · · ·Mn) to produce (C1||C2|| · · ·Cn). For mounting attack, the second ciphertext block
C2 has been used. Instead of C2, any Ci(2 ≤ i ≤ n) can be used in order to perform the attack.

Similar strategies has been followed for H̃CTR and HCH.

4.1 Attack on HCTR

Our first attack is on HCTR or Hash-Counter which is a tweakable enciphering scheme pro-
posed by Wang, Feng and Wu [18]. It is a strong tweakable pseudorandom permutation and
hash-encipher-hash based construction where the middle layer uses counter mode. It is a length
preserving tweakable enciphering scheme which supports input with arbitrary variable length.
Fig. 2 shows the HCTR construction. HCTR uses a block cipher E : {0, 1}m × {0, 1}n → {0, 1}n
and a universal hash function H =

{
Hh : {0, 1}∗ → {0, 1}n|h ∈ {0, 1}n

}
. Let M1||M2|| · · · ||Mr is

encrypted by HCTR[E,H] : {0, 1}m+n×{0, 1}t×{0, 1}≥n → {0, 1}≥n to obtain C1||C2|| · · · ||Cr,
then

C1||C2|| · · · ||Cr = HCTRT
K(M1||M2|| · · · ||Mr),

where T ∈ {0, 1}t is a tweak and K ∈ {0, 1}m is the key of underlying block cipher. To consider
only the i-th ciphertext block, we introduce the operator Πi. Note that, as all the blocks in
ciphertexts are entangled; it is not trivial to truncate the i-th ciphertext block. In this regard,
the method described in Section 3 can be followed for truncating a specific block of cipher.

In the original construction, the tweak length is fixed and can be zero. In the following attacks,
the tweak length is considered non-zero and each message block is n-bit. The attack is performed
using two message blocks, which can be easily extended for arbitrary number of message blocks.
Consider, HCTR is used to encrypt a message M1||M2 using a tweak t to obtain C1||C2 and K
is the key of the underlying block cipher. Then,

C1||C2 = HCTRT
K(M1||M2), (5)

IV = Hh(T ||M2)⊕M1 ⊕ EK

(
Hh(T ||M2)⊕M1

)
, (6)

C2 = EK(IV ⊕ 1)⊕M2, (7)

C1 = EK

(
Hh(T ||M2)

)
⊕Hh(T ||C2). (8)

Attack in Q2 Model. In Q2 model, quantum superposition queries can be made to HCTR oracle.
x||M2 is queried with tweak T0, T1 and output C2 is used to construct g(x).

g(x) = Π2
(
HCTRT0(x||M2)

)
⊕Π2

(
HCTRT1(x||M2)

)
= EK

(
Hh(T0||M2)⊕ x⊕ EK

(
Hh(T0||M2)⊕ x

)
⊕ 1
)
⊕

EK

(
Hh(T1||M2)⊕ x⊕ EK

(
Hh(T1||M2)⊕ x

)
⊕ 1
) (9)
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Clearly, g(x) is a periodic function with period Hh(T0||M2) ⊕Hh(T1||M2) and it can be recov-
ered by applying Simon’s algorithm on g(x) by making O(n) queries. Therefore, g(x) = g(x ⊕
Hh(T0||M2)⊕Hh(T1||M2)). So, Π2

(
HCTRT0(x||M2)

)
⊕Π2

(
HCTRT1(x||M2)

)
⊕Π2

(
HCTRT0(x⊕

s||M2)
)
⊕Π2

(
HCTRT1(x⊕ s||M2)

)
= 0, where s = Hh(T0||M2)⊕Hh(T1||M2). Figure 3 shows

how the simon function g(x) is constructed. Pi2(HCTR) returns the second ciphertext block
for the corresponding message blocks that are queried to the oracle. Note that, in Section 3 it is
discussed that given a quantum oracle access to HCTR, Pi2(HCTR) can be constructed.

Attack in Q1 Model. In the Q1 model, a quantum superposition state is formed from classical
oracle queries. While mounting such kind of attacks, the enciphering scheme needed to be reduced
to Problem 2.3. g(x) can be classically queried (online) to obtain |ψg〉 and then fi ⊕ g can be
tested offline whether periodic or not using Simon’s and Grover’s search algorithm. As mentioned
in [1], instead of querying the whole classical codebook, the advantage of algebraic structures
has been taken into account while mounting the attack.

Attack Description. Like previous attack, here also two message blocks have been considered.
The last message block and last (n−u) bits of first message block are kept constant. The queries
to the oracle is of the form (x||0n−u)||M2, where x||0n−u and M2 are the first and second message
block respectively and 0 ≤ u ≤ n. For constructing a periodic function, the second ciphertext
block C2 is considered. The value of M2 is fixed and by varying the value of x, 2u classical
queries are made to HCTR oracle to form |ψg〉. Define F : {0, 1}m+n−u × {0, 1}u by F (i||j, x) =
fi||j(x) = Ei

(
x||j ⊕ Ei(x||j ⊕ 1)

) (
i ∈ {0, 1}m and j ∈ {0, 1}n−u

)
and g : {0, 1}u → {0, 1}n by

g(x) = Π2
(
HCTRT

K((x||0n−u)||M2)
)
. Then,

Fig. 2: Construction of HCTR
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Fig. 3: Simon function for HCTR. In the figure, Π2(HCTR) truncates the ciphertext block C2 and it is constructed
by following the approach in Section 3. Note that, input and output lines corresponding to C1 are not shown.

g(x) = Π2
(
HCTRT

K((x||0n−u)||M2)
)

= EK

(
Hh(T ||M2)⊕ (x||0n−u)⊕ EK

(
Hh(T ||M2)⊕ (x||0n−u)

)
⊕ 1
)
.

(10)

Let first u bits of Hh(T ||M2) is denoted by l(1) and last n− u bits are denoted by l(2). Then
g(x) can be rewritten as

g(x) = EK

(
(l(1)||l(2))⊕ (x||0n−u)⊕ EK

(
(l(1)||l(2))⊕ (x||0n−u)⊕ 1

))
= EK

(
(l(1) ⊕ x)||l(2) ⊕ EK

(
(l(1) ⊕ x)||l(2) ⊕ 1

))
.

(11)

the function F (i||j, x)⊕ g(x). It has a hidden period l(1) for F (K||l(2), x)⊕ g(x). The attack
steps are listed below.

1. Alg-ExpQ1 is run for F and g to recover K and l(2).
2. Alg-SimQ1 is run on fK||l(2) ⊕ g to recover l(1).

Note that, by the above approach key of the underlying block cipher can be recovered. Al-
though, it is unable to recover hash key h, but using l(1) and l(2), Hh(T ||M2) can be constructed.
The attack can be extended for arbitrary number of message blocks.

Analysis. The analysis of the attack is similar with the analysis of the attack on Even-Mansour
cipher in [1]. First, it is assumed that the size of keyspace of the underlying block cipher is in
O(n). In the attack, if u is kept too small, although too few queries are required to construct
|ψg〉, but the cost of Grover’s search increases significantly. Under the constraints that u is not
too small and E is a secure block cipher, we can assume that

max
t∈{0,1}u\{0u},x←{0,1}u

Prx[(fi||j ⊕ g)(x⊕ t) = (fi||j ⊕ g)(x)] ≤ 1

2
(12)
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holds for (i||j) 6= (K||l(2)). By virtue of this, Proposition 1 and 2 holds for Alg-ExpQ1 and
Alg-SimQ1 respectively. Overall, the key of underlying block cipher and l(1)||l(2) is recovered
by following this attack using D = O(2u) classical queries to HCTRT

K and performing T =

O(n32
m+n−u

2 ) offline computations. Here, it is also assumed that one evaluation of F is in O(1)
which makes TF = O(1). The trade-off DT 2 = n32m+n is applied; data and time complexity

balances at D = O(2
m+n

3 ) and T = O(n32
m+n

3 ). As mentioned in [1], by construction of Alg-
ExpQ1 and Alg-SimQ1 our attack uses qubits in the order of polynomial and negligible classical
bits. Note that, generic attacks takes O(2

m
2 ) time. So, this attack is better than generic attacks

when n32
m+n

3 < 2
m
2 =⇒ m > 6 log2(n32

n
3 ).

4.2 Attack on Tweakable-HCTR

Tweakable-HCTR or H̃CTR was proposed by Dutta and Nandi [4] which is a variant of HCTR
where each block cipher call is replaced by tweakable block cipher (TBC). Another major dif-

ference between HCTR and H̃CTR is the use of tweak. In H̃CTR instead of using the tweak in
upper and lower hash functions, it is used in an independent keyed (n+ t)-bit hash function H ′L.
The output of H ′L is divided into two parts: n-bit H1 which is masked with the input and the
output of leftmost TBC and t-bit H2 which acts as tweak for the underlying TBC. Underlying
TBC Ẽ : {0, 1}m × {0, 1}t × {0, 1}n → {0, 1}n is denoted by ẼH2

K where K is m-bit key and

H2 is t-bit tweak. Let M1||M2|| · · · ||Mr is encrypted by H̃CTR to obtain C1||C2|| · · · ||Cr, then

C1||C2|| · · · ||Cr =H̃CTRT
K(M1||M2|| · · · ||Mr), where T ∈ {0, 1}∗ is a tweak and K ∈ {0, 1}m is

the key of underlying block cipher.

The Q1 and Q2 attacks for H̃CTR are quite similar with the attacks on HCTR. For the sake of
simplicity, only corresponding periodic functions are mentioned here. Consider the encryption of
two n-bit message blocks. Then

IV = ẼH2

K

(
HKh

(M2)⊕M1 ⊕H1

)
⊕HKh

(M2)⊕M1 ⊕H1, (13)

C2 = ẼH2

K (IV ⊕ 1)⊕M2. (14)

Attack in Q2 Model. Consider the function g(x) constructed from second ciphertext block and
H ′L(T ) = (H1, H2).

g(x) = Π2
(
H̃CTR

T

K(x||M2)
)
⊕Π2

(
H̃CTR

T

K(x||M ′2)
)

= ẼH2

K

(
ẼH2

K

(
HKh

(M2)⊕ x⊕H1

)
⊕HKh

(M2)⊕ x⊕H1

)
⊕

ẼH2

K

(
ẼH2

K

(
HKh

(M ′2)⊕ x⊕H1

)
⊕HKh

(M ′2)⊕ x⊕H1

)
⊕M2 ⊕M ′2

(15)

Clearly, g(x) is a periodic function with period HKh
(M2) ⊕ HKh

(M ′2). Applying Simon’s
algorithm on g(x) recovers the period in O(n) queries.

4.3 Attack on HCH

Another variant of HCTR is HCH or Hash-Counter-Hash, proposed by Chakraborty and Sarkar
which is based on hash-encrypt-hash paradigm [3]. In HCH, tweak T is not directly used by the
polynomial hash; instead it is encrypted twice to obtain R and Q which are used with the hash
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function H (In HCH, the hash function is denoted by HR,Q). Figure 4 shows the construction
of HCH. In the attacks presented, as generation of R and Q is not used, the fact that for a
fixed T , R and Q remains fixed is considered. In the counter-mode, instead of IV , S is used
for initialization which is obtained by encrypting the input and output of leftmost block cipher.
If M1||M2|| · · · ||Mr (|Mi| = n) is encrypted using HCH to obtain C1||C2|| · · · ||Cr (|Ci| = n),
then C1||C2|| · · · ||Cr = HCHT

K(M1||M2|| · · · ||Mr), where K is the key of underlying block cipher
E : {0, 1}m × {0, 1}n → {0, 1}n denoted by EK(.) and T is the tweak. Our attack is based on
the second ciphertext block, which is given as

C2 = EK(S)⊕M2 (16)

where

S = EK

(
EK

(
HR,Q(M2)⊕M1

)
⊕HR,Q(M2)⊕M1

)
. (17)

In the following attacks, only the periodic functions are mentioned as the attacks are almost
same as the attacks on HCTR.

Fig. 4: Construction of HCH
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Attack in Q2 Model. Consider the function g(x) constructed from second ciphertext block.

g(x) = Π2
(
HCHT

K(x||M2)
)
⊕Π2

(
HCHT

K(x||M ′2)
)

= EK

(
EK

(
EK

(
HR,Q(M2)⊕ x

)
⊕HR,Q(M2)⊕ x

))
⊕

EK

(
EK

(
EK

(
HR,Q(M ′2)⊕ x

)
⊕HR,Q(M ′2)⊕ x

))
⊕M2 ⊕M ′2

(18)

Note that, g(x⊕HR,Q(M2)⊕HR,Q(M ′2)) = g(x). So, period is HR,Q(M2)⊕HR,Q(M ′2). Applying
Simon’s algorithm on g(x) recovers the period in O(n) queries. Figure 5 shows the process of
generating g(x).

Fig. 5: Simon function for HCH. In the figure, Π2(HCH) truncates the ciphertext block C2.

Attack in Q1 Model. Let u be a integer and 0 ≤ u ≤ n. Define F : {0, 1}m+n−u×{0, 1}u → {0, 1}n
by

F (i||j, x) = fi||j(x) = Ei

(
Ei

(
Ei

(
x||j

)
⊕ x||j

))
(19)

and g : {0, 1}u → {0, 1}n by g(x) = Π2
(
HCHT

K

(
(x||0n−u)||M2

))
. Then

g(x) = EK

(
EK

(
EK

(
HR,Q(M2)⊕ (x||0n−u)

)
⊕HR,Q(M2)⊕ (x||0n−u)

))
⊕M2.

Let first u bits of HR,Q(M2) be l(1) and last (n− u) bits be l(2). Then

g(x) = EK

(
EK

(
EK

(
l(1)||l(2) ⊕ (x||0n−u)

)
⊕ l(1)||l(2) ⊕ (x||0n−u)

))
⊕M2

= EK

(
EK

(
EK

(
(l(1) ⊕ x)||l(2)

)
⊕ (l(1) ⊕ x)||l(2)

))
⊕M2.

Consider the function fi||j(x)⊕ g(x). The function fK||l(2) ⊕ g(x) is periodic with period l(1).
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The analysis of this attack is similar with the analysis of the attack on HCTR and hence the

details are omitted. The data and time complexity of this attack is O(2
m+n

3 ) and O(n32
m+n

3 )
respectively.

5 Conclusion

In this paper, we analyzed the HCTR, Tweakable-HCTR and HCH in quantum adversarial model.
The work presented here developes upon the previous works in [11,1,15]. All our attacks have
made use of encryption oracle only. This arises a question whether the availability of decryption
oracle can make a significant benefit in terms of the complexity of mounting such attacks.
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