
Groth16 SNARKs are

Randomizable and (Weakly) Simulation Extractable

Mikhail Volkhov and Markulf Kohlweiss

The University of Edinburgh
mikhail.volkhov@ed.ac.uk mkohlwei@ed.ac.uk

Abstract

Due to its simplicity, succinctness, and performance, Groth16 is currently the most widely deployed succinct
(zero-knowledge) argument of knowledge (SNARK) system. Groth16 is known to be perfectly zero-knowledge
and knowledge sound in the generic (and algebraic) group model. However, the existing security arguments
for Groth16 are silent about the soundness of the proof system in the presence of simulated proofs—a common
requirement for both the composable security and game-hopping style security analysis of protocols built
using such argument systems. This important gap let to a line of work on simulation-extractable, also called
simulation knowledge sound, succinct proof systems. Groth16 itself cannot satisfy the strongest notion of
simulation-extractability that implies proof non-malleability—in fact proofs are perfectly randomizable.

Surprisingly, in this short note we show that Groth16 does satisfy a weaker notion of simulation-extractability
implying statement non-malleability. This property is often sufficient for typical applications that motivate the
use of strong simulation-extractability. Notably, one can obtain UC security using efficient compilers.

1 Introduction

Succinct non-interactive arguments of knowledge (SNARK) have revolutionized the deployment of zero-knowledge
proofs, particularly in the blockchain and cryptographic currency space [BCG+14; KMS+16; KKK20; BCG+18].
The ready availability of cryptographic libraries implementing SNARKs has also inspired other applications [NT16;
DFKP16]. See also the application chapter of [ZKPce].

Due to its exceptional performance and simplicity the most widely deployed SNARK proof system is perhaps
Groth16 [Gro16]. Naturally, this is susceptible to change, especially if its security is undermined by quantum
attacks. That withstanding, however, due to its near optimal proof size and verification performance, Groth16 is
likely to be a mainstay of cryptographic deployments, maybe comparable to ElGamal encryption [Gam85] and
Schnorr [Sch91] or DSA [PUB93] signature schemes. In this short note we identity and close what we believe
is a small but important gap in the security analysis of Groth16, namely its malleability and the limits of said
malleability.

Arguably, the strongest non-malleability property for SNARK systems is simulation-extractability (SE) [Sah99;
DSDCO+01], a security notion that extends knowledge-soundness (KS) by allowing the adversary to also access
the simulaton oracle. One of the important properties of this notion is that its straight-line, blackbox variant is
necessary to achieve Universally Composable (UC [Can01]) security, as shown more generally in [CLOS02; GOS06;
Gro06] for non-interactive zero-knowledge (NIZK) proof systems. Moreover, it is also needed in game-hopping style
proofs [Sho04] in which one game hop introduces the simulator and a subsequent game hop relies on knowledge
soundness [KMS+16; CDD17].

In this work we focus on the weaker notion of simulation-extractability, that allows for the limited malleability
of proofs, which we call weak simulation-extractability (weak-SE). Note that the notion of weak simulation ex-
tractability from [FKMV12] is unrelated. The “weakening” there refers to a non-blackbox and non-straight line
flavor of simulation extraction in the Random Oracle model. Rather, weak-SE and SE of proof systems are in
analogy to chosen message attack (CMA) and strong CMA unforgeability of signatures. Indeed, in weak-SE it is
the statement rather than the proof that cannot be mauled, a weak-SE based SNARKY signature scheme for a
hard key-pair relation, give rise to CMA, rather than strong CMA secure, signature scheme.

Our contribution. In this short note we show that Groth16 is both weakly-simulation extractable and perfectly
and efficiently randomizable. As in Groth16 the randomization of proofs obtained from the simulator are distributed
just like freshly generated proofs, this is seemingly the strongest extractability property that one can hope for.

1

mailto:mikhail.volkhov@ed.ac.uk
mailto:mkohlwei@ed.ac.uk

In the algebraic group model, however, we can show something even stronger, namely the extractor can either
obtain a witness or point to the unique simulated proof that was randomized to obtain the proof produced by the
adversary. Consequently, even if the adversary queries multiple proofs for the same statement, they cannot be
combined to form a new proof of the same statement. Therefore, weak-SE Groth16 can be directly lifted to (weak)
blackbox SE, which is required by UC, using the technique explained in [Bag19], improving the performance of
the resulting SNARK compared to Groth and Maller SNARK used in [Bag19].

Related Work. Simulation-extractability applies both to CRS-based and random-oracle (RO) based NIZKs.
NIZKs obtained from Σ-protocols using Fiat-Shamir heuristic in the random oracle (RO) model, are showed to
always satisfy simulation-extractability [FKMV12]. In this work we focus on simulation-extractability of CRS-
based NIZKs, and on SNARKs in particular.

SE SNARKs have been discovered only recently. Groth and Maller [GM17] presented the first construction in
2017, targeting SAP, together with a lower bound of three group elements for the proof size, and two equations
for verification, for all non-interactive linear proofs (NILP) based SNARKs, which covers many previously known
pairing-based SNARKs, including [Gro16; GM17]. Bowe and Gabizon [BG18] provide a RO-based variant of
Groth16 for QAP that is simulation-extractable, and has five group elements and two verification equations.
Lipmaa [Lip19] presents a different technique that allows to lift known SNARKs for QAP and the three other
arithmetisation techniques from the QAP family (namely, SAP, SSP, and QSP), together with a simpler security
proof. Kim, Lee, and Oh [KLO19] present a SNARK for QAP with three elements but just a single verification
equation, avoiding the lower bound of Groth and Maller by using a random oracle in addition to a knowledge
extraction assumptions and a CRS.

General transformations and UC. A generic transformation that lifts ordinary NIZKs to be simulation extractable
has been known since [DSDCO+01] at least. Along this direction, [KZM+15b; KZM+15a] extend, analyse,
and optimise this transformation technique, while Atapoor and Baghery [AB19] apply it directly to Groth16
and evaluate the efficiency of the resulting strong SE argument. The transformation from non-blackbox SE to
blackbox SE is analysed by Baghery [Bag19], with particular focus on (strong-SE) SNARK by Groth and Maller,
although this technique should also work for lifting non-blackbox weak-SE to blackbox weak-SE. Other generic
transformations take into account CRS subversion and updatability [ARS20; BS20].

Regarding UC functionalities for NIZKs, it has been shown that a (non-malleable) FNIZK functionality can be
realised using (strong) blackbox-extractable SE NIZKs [CLOS02; Gro06] assuming static corruption. Kosba et
al. [KZM+15b; KZM+15a] suggest their own variant of FWEAK−NIZK without proving that a weak-SE NIZK can
realise it.

Weaker simulation extraction notions. Although (strong) SE is sometimes a desirable property, weak-SE can be
sufficient for UC applications, for instance in Hawk [KMS+16], as argued in [KZM+15b; KZM+15a].

Hawk uses SE NIZKs directly as a raw primitive (without employing a functionality), and it suggests to use
non-succinct strong SE NIZK, since no other candidates were known at that time. Kosba et al. [KZM+15b;
KZM+15a] point out that weak-SE NIZK can be used instead, without providing a formal proof. Lipmaa’s [Lip19]
presents an SE notion that is tag-based, although the construction presented prevents standard randomization.

2 Preliminaries

2.1 Notation

PPT stands for (uniform) probabilistic polynomial-time. We denote the security parameter by λ ∈ N. We say
that a function f : N → R is negligible, if f < 1/p(n) for all polynomials p(n) and n ∈ N big enough, which we

denote as f = negl(λ). For a distribution X we denote random sampling by x
$←− X, and when this notation is

used with a finite set S, x
$←− S denotes sampling uniformly from S. We write vectors in bold, and write a · b for

the inner product of two vectors a and b.
When working with polynomials, we generally use upper case letters for indeterminates as X,Y,∆, Xγ , and

lower case for concrete values x, y, δ, γ. We use vector notation to denote a list of formal variables, so for X =
X1, . . . , Xn, we write P (X) ∈ F[X1 . . . Xn] = F[X] for a polynomial in these variables, and for a x ∈ Fn, P (x)
will denote the polynomial evaluation P (x1 . . . xn). For a polynomial P (X) and a monomial M = Xb1

1 X
b2
2 · · ·Xbn

n ,
P[M] will denote the coefficient of P (X) at M , that is P (X) =

∑
M P[M]M .

Bilinear groups. Let (G1,G2,GT , e(·, ·), p) be a Type III bilinear group (asymmetric, with G1 6= G2 and
without any efficiently computable nontrivial homomorphism in either direction between G1 and G2, according
to the classification of [GPS08]) of prime order p with generators G,H, and e(G,H) respectively. The pairing
e : G1×G2 → GT is a bilinear map. We will write G1 and G2 additively, but GT multiplicatively. It will be

2

convenient to use square brackets notation to represent group elements by specifying their exponents: [a]ι , [a]Gι.
We will denote the (exponent-level) pairing for the square brackets notation as [a]1 • [b]2 , e([a]G, [b]H), and on
that instance GT notation is additive: [a]1 • [b]2 + [c]1 • [d]2 = [ab + cd]T instead of e([a]G, [b]H) · e([c]G, [d]H) =
e(G,H)ab+cd.

When a is a vector of values ai ∈ Zp, we will overload the square brackets notation, and denote a vector of
[ai]ι by [a]ι. In the same way we will overload [{a, b, c, . . .}]ι = {[a]ι, [b]ι, [c]ι, . . .} for sets. When set or vector A
contains elements from several groups, we will denote it by combining all the group indices in the subscript, e.g.
[A]1,2,T if A contains elements from all the three groups.

2.2 Randomization and Simulation-Extractability

Weak simulation extractability is an extension of knowledge-soundness, that allows the adversary access to the
simulator, and tolerates randomization of proofs. We first recall the definitions of KS and (derivation-private)
randomization.

For an algorithm P we define an execution transcript transP to be a structure containing private coins of P
and a list of P’s inputs and outputs, including its interactions with any oracles that it is provided with. Note that
the fact we are using transP implies non-blackbox access to P.

Definition 2.1 (Knowledge Soundness). Let NIZK = (Setup,Prove,Verify,Sim) be a NIZK for the relation R. We
say that NIZK is knowledge sound if for any PPT adversary A there exists a polynomial time extractor XA such
that Advweak−SEA,XA

(λ) ,

Pr
[

(σ, τ)← Setup(R, 1λ); (φ, π)← A(σ);w ← XA(transA);Verify(σ, φ, π) = 1 ∧ (φ,w) /∈ R
]

= negl(λ)

where transA is a transcript of the execution of A.

We will call the proof system for the relation R randomizable, if there exists a (non-trivial) PPT procedure
Rand such that Pr[Verify(crs, φ,Rand(π))] = 1 for all honestly generated proofs π for crs and φ.

Definition 2.2 (Derivation-Private Randomization). The proof system is (perfectly) derivation-private with re-
spect to the randomization transformation Rand, if for all crs for λ and R and (x,w) ∈ R:

{Prove(crs, x, w)}λ = {Rand(Prove(crs, x,w))}λ

where the randomness is over the random variables used in Prove and Rand.

Note that a proof system can in principal have several randomization procedures, so the notion is defined with
respect to a particular one. The Rand for Groth16 will be parametrised with two random variables r1, r2, and it
will be still valid when setting one of the two to zero (thus, at least three randomization procedures are known),
but in this case the transformation will lose derivation-privacy which the original Rand achieves.

Definition 2.3 (Weak Simulation Extractability, [KZM+15b]). Let NIZK = (Setup,Prove,Verify,Sim) be a NIZK
for the relation R. We say that NIZK is weakly simulation extractabile if for any PPT adversary A there exists
a polynomial time extractor XA such that Advweak−SEA,XA

(λ) ,

Pr

[
(σ, τ)← Setup(R, 1λ); (φ, π)← ASσ,τ (σ);

w ← XA(transA)
:

Verify(σ, φ, π) = 1∧
(φ,w) /∈ R ∧ φ /∈ Q

]
= negl(λ)

where Sσ,τ (φ) is a simulator oracle that calls Sim(σ, τ, φ) internally, and also records φ into Q, and transA is a
transcript of the execution of A.

The important distinction between this notion and strong simulation-extractability lies in the last condition of
the presented security game. In strong SE one would require (φ, π) /∈ Q, where S would record pairs of queried
instances and simulated proofs. If NIZK is randomizable, A could just pass re-randomized simulated proof for a
false instance and win the strong SE game. This is forbidden, thus the strong-SE scheme must be non-malleable.
Honest proofs are also non-randomizable, otherwise zero-knowledge would not hold. Weak-SE relaxes this non-
malleability requirement by allowing to produce π′ 6= π for the simulated (and thus also real) proof π.

Lemma 2.1. The notion of weak-SE is not trivial: there exist weak-SE NIZKs for circuit satisfiability that are
not strongly simulation extractable.

The proof of this statement is presented in the Appendix A and is based on the randomizability of Groth-Sahai
proofs [GS08].

3

2.3 Algebraic Proof Techniques for NILPs based SNARKs

The purpose of this section is to give general lemmas for SNARKs based on non-interactive linear proofs with
algebraic assumptions, that will simplify the proofs of this note. We do not define NILPs formally, since our
intention is to cover pairing based SNARKs in the CRS model, and although the definition would capture the
required class of SNARKs, we formalise the involved properties separately, thus minimising the statements we
prove.

Following [FKL18; Lip19], we say that the algorithm A is algebraic, if there is a way to express any element
it returns as a linear combination of elements it has seen before with known (extracted) coefficients. Security
against algebraic adversaries can be formalised either as a standard model non-blackbox knowledge-extraction
assumption [BV98; PV05; Lip19], or by lifting this assumption and defining a separate cryptograpic model as
done in the AGM [FKL18], similar to the generic group or RO model. We are following the extraction assumption
style from [Lip19], without considering the stronger hashed version that additionally allows A to sample random
elements in G without knowing their exponents.

Definition 2.4 (Algebraic Algorithm, [Lip19]). A PPT algorithm A is algebraic with respect to a cyclic group Gι
of prime order p, if there exists a polynomial time extractor X alg

A returning a coefficients matrix K, such that for

all m and all efficiently sampleable distributions D over (Z∗p)m, AdvakG,D,A,X alg
A

(λ) ,

Pr
[
σ

$←− Dλ; e
$←− A([σ]ι);K ← X alg

A (transA) : e 6= [Kσ]ι

]
= negl(λ)

It is easy to see how this definition extends to the asymmetric bilinear group setup (now X alg
A should return K

with m1 + m2 rows, and (e1 e2)T =
[
K(σ1 σ2)T

]
1,2

), and to the case when A obtains elements from an oracle

(transA captures communication with it). In the soundness and KS games, adversary A is limited to the CRS
elements only, and in the simulation-based setting A also sees the simulated proof elements.

Definition 2.5 (q-Discrete Logarithm Assumption). Let G be a cyclic group with generator G. We say that

q-dlog holds in G, if for all PPT A, Advq−dlogG,A ,

Pr
[
x

$←− Z∗p; z
$←− A([x]G, [x2]G, . . . , [xq]G) : x = z

]
= negl(λ)

Since we will be working with asymmetric bilinear groups, we will say that (m1,m2)-dlog holds, when mι-dlog
holds in Gι for ι ∈ {1, 2}.

For the following lemma we assume a two-step sampling procedure Sλ = (Dλ,Setupλ), where an effectively
sampleable distribution Dλ defines a set of trapdoors τ ∈ (Z∗p)n, and a polynomial time deterministic procedure
Setupλ(τ) generates elements in G1 and G2 as polynomials of τ . Let T = T1, . . . , Tn be a set of formal variables
corresponding to the trapdoors. This setup models CRS generation, that is Setupλ constructs two sets of elements
σ1 and σ2, where every σι,i = Pι,i(τ) for some {Pι,i(T)}ι,i.

Lemma 2.2 (Algebraic Verification Satisfiability). Let E = (E1,1, . . . , E1,m1
, E2,1, . . . , E2,m2

) be a vector of formal
variables in Zp, where Eι,i represents an exponent value of some [Eι,i]ι ∈ Gι. Let V (E) be a pairing equation,
expressed in the GT exponent1.

For all algebraic PPT A, and all two-step sampling procedures Sλ with trapdoor variables T :

Pr

[
τ

$←− Dλ; (σ1 σ2)← Setupλ(τ); [e]1,2
$←− A([σ1]1, [σ2]2);

K ← X alg
A ([σ1]1, [σ2]2, transA)

: V (e) = 0 ∧ V
(
K(Setupλ(T))

)
6= 0

]
= negl(λ)

assuming (d1, d2)-dlog holds, where dι = maxi(degPι,i(T)) of Setupλ, and V
(
K(Setupλ(T))

)
denotes V (e) inter-

preted as a polynomial over T . The probability is quantified over Dλ and the private coins of A.

In other words, the lemma says that A has negligible success in constructing e as linear combination of CRS
elements such that V (e) evaluates to zero, but V ′(T) = V (K·Setupλ(T)) is not identically zero as a polynomial
in T . It is not hard to generalise this statement for an adversary A that also obtains some group elements through
queries to oracles, or for multiple equations that A aims to satisfy.

The proof of this statement is based on the observation that if A is “blind” to σ, then by the Schwartz-Zippel
lemma A cannot guess e such that V (e) = 0 ∧ V ′(T) 6= 0; and if A otherwise makes e depend on the particular
choice of σ, we can embed (d1, d2)-dlog into σ and solve it. The proof sketch builds on [FKL18] and is deferred
to Appendix B.

1That is, V (E) =
∑
i Γit1,it2,i for tι,i being either some Eι,i or a constant from Z∗p, and Γi ∈ Z∗p. This corresponds to the base

group elements pairing equation
∏
i e(z1,i, z2,i)

Γi = 1 with zι,i being either variable or constant group elements [tι,i]ι.

4

Another small remark is that the lemma is defined with respect to positive powers polynomials, while Groth16
CRS is defined for Laurent polynomials. This obstacle is easy to overcome – as shown in [FKL18], it is enough
to modify the group generator by raising it to a certain trapdoor power such that all the negative powers cancel
out. This does not change the main statement of Lemma 2.2, although it slightly increases the required degree of
(d1, d2)-dlog2.

3 Weak-SE of Groth16

Groth16 has been shown to be both knowledge sound (KS) and randomizable. The main result of this section
is that Groth16 SNARK is additionally weakly simulation extractable (SE). We present both KS and weak-SE
proofs – although KS was shown in the original work. Our SE proof builds on KE, and is simpler to understand
in conjunction with our KS proof. We first remind the reader how Groth16 is constructed.

Quadratic arithmetic programs (QAP) Recall that a QAP consists of the quotient polynomial t(x) of degree
n, and three sets of polynomials {ui(X)}mi=0, {vi(X)}mi=0 and {wi(X)}mi=0 of degree n − 1 that define the circuit
being computed. A particular wire assignment {ai}mi=0, that we split into l instance wires, and the remaining m− l
witness wires, satisfies the QAP if and only if (

∑m
i=0 aiui(X))(

∑m
i=0 aivi(X)) − (

∑m
i=0 aiwi(X)) = h(X)t(X) for

some h(X) of degree n− 2. That is, t(x) divides the left hand side of the equation.

Groth16 reference string The CRS consists of the following two sets of elements, in G1 and G2 correspondingly:

σ1 : [α, β, δ]1, {[xi]1}n−1i=0 ,
{[βui(x) + αvi(x) + wi(x)

γ

]
1

}l
i=0

,
{[βui(x) + αvi(x) + wi(x)

δ

]
1

}m
i=l+1

,
{[xit(x)

δ

]
1

}n−2
i=0

,

σ2 : [β, γ, δ]2, {[xi]2}n−1i=0

with α, β, γ, δ, x being trapdoors, uniformly chosen from Z∗p. Note that the group generators G and H are available,
and explicitly included as [x0]ι.

Groth16 verification equation Let φ = {ai}li=0 and w = {ai}mi=l+1 be the instance and the witness for which
we are constructing the proof. The verification equation, parametrised by three proof elements [A]1, [B]2, [C]1 is:

[A]1 • [B]2 = [α]1 • [β]2 + [

l∑
i=0

ai
βui(x) + αvi(x) + wi(x)

γ
]1 • [γ]2 + [C]1 • [δ]2

It can be represented in a more convenient way as a polynomial in the GT exponent, over Zp[A,B,C]:

V (A,B,C) = AB − αβ − ϕ(φ)γ − Cδ = 0 (1)

where ϕ(φ) =
∑l
i=0 ai(βui(x) + αvi(x) + wi(x))/γ.

Groth16 proof generation and simulation The proof ([a]1, [b]2, [c]1) is constructed in the following way:

a = α+

m∑
i=0

aiui(x) + rδ b = β +

m∑
i=0

aivi(x) + sδ

c =

l∑
i=0

ai(βui(x) + αvi(x) + wi(x))

δ
+
h(x)t(x)

δ
+ as+ br − rsδ

where (r, s)
$←− Z2

p is a pair of uniformly seleted random values. We note that although it is possible and even
more practically feasible for some applications to use a variant of Groth16 with random values set to zero, thus
sacrificing zero-knowledge, our primary interest covers the original, randomizable version of Groth16.

Following the distribution defined by the honest proof generation, the simulator also uses two random elements

(µ, ν)
$←− Z2

p (as opposed to just one for SAP in Groth and Maller SNARK), by setting a = µ, b = ν, and

c =
µν − αβ −

∑l
i=0 ai(βui(x) + αvi(x) + wi(x))

δ
2In case of Groth16, we multiply by γδ, thus [xn−2t(x)/δ]1 becomes [γxn−2t(x)]1 of degree 2n− 1, hence d1 = 2n− 1

5

Groth16 is randomizable and thus malleable It is known that Groth16 is randomizable, which is a property
of the proof verification equations. If π = (a, b, c) satisfies 1, then so does π′ = Rand(π) = (a′, b′, c′) where:

a′ =
1

r1
a b′ = r1b+ r1r2δ c′ = c+ r2a (2)

The correctness of this randomization is trivial to verify:

a′b′ − αβ − ϕ(φ)γ − c′δ = a(b+ r2δ)− αβ − ϕ(φ)γ − (c+ r2a)δ

= ab− αβ − ϕ(φ)γ − cδ

Although the randomization of Groth16 is mentioned in many works that explore simulation extraction of
related constructions, it is not known whether proofs can be mauled in any other way. In particular, this can
depend on the restrictions placed on the adversary. In this work, we show as a corollary of Theorem 3.2 that for
algebraic adversaries the randomization of proofs is the most general form of malleability for Groth16.

Theorem 3.1 ([FKL18]). Groth16 achieves knowledge soundness against algebraic adversaries under the (2n −
1, n− 1)-dlog assumption.

Proof. We start by assuming a certain number of variables to be unknown to A, in this particular case these are
just the CRS trapdoors τ = (α, β, γ, δ, x). We rely on Lemma 2.2. When A presents the proof π = ([a]1, [b]2, [c]1)
that satisfies the verification equation (1), that is V (π) = 0, we conclude that A could not come up with π
satisfying V unless for V ′ = V (K·Setupλ(T)) we have V ′(T) = 0 as a polynomial. Then we, step by step, analyze
the coefficients K of the verification equation, by relying on the property that every monomial coefficient of the
equation is zero (because the polynomial is constant zero). This is the most technical part of the proof, and we
remind the reader that the other part that provides the reduction to (2n − 1, n − 1)-dlog is deferred generically
to Lemma 2.2.

The matrix K contains a representation of A,B, and C as linear combination of public CRS elements:

A = A1α+A2β +A3δ +

n−1∑
i=0

A4,ix
i +

l∑
i=0

A5,i
βui(x) + αvi(x) + wi(x)

γ
+

m∑
i=l+1

A6,i
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

A7,i
xit(x)

δ

B = B1β +B2γ +B3δ +

n−1∑
i=0

B4,ix
i

C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,i
βui(x) + αvi(x) + wi(x)

γ
+

m∑
i=l+1

C6,i
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

C7,i
xit(x)

δ

We let C = (A1, . . . , A7,n−2, . . . , B4,n−1, . . . , C7,n−2) denote this set of variables serving as linear combination
coefficients. In the following we will write CRS trapdoors as concrete values (α, β, . . . , x), though they can be
equally interpreted as formal variables (Xα, Xβ , . . . , Xx); we will avoid these former notation for convenience, since
the main variables in scope that the system of equation is over are {Ai}, {Bi}, {Ci}, and we use trapdoor variables
only to show how to form the system. This is, however, an important distinction: When we write P (α, x) = 0, we
imply P (Xα, Xx) is constant zero, and not just zero at (α, x).

For each monomial M , we write out the corresponding monomial coefficient V ′[M] as an equation V ′[M] = 0, and
iteratively simplify the system of equations in C. To simplify the proof, the ’monomials’ we consider implicitly
contain sums of powers of x 3, thus xi will appear in coefficients. We start with examining the following equations:

αβ in AB − αβ : A1B1 = 1 =⇒ A1 6= 0, B1 6= 0

β2 in AB : A2B1 = 0 =⇒ A2 = 0

3For monomial M instead of analysing V ′
[M]

= 0 we set Ṽ ′
[M]

=
∑
i V[Mxi] = 0. This is still a valid statement, since V ′(T) = 0

implies V ′
[Mxi]

= 0 for each i, so each sum over xi for M not containing any powers of x is also zero. It is always possible to split Ṽ ′
[M]

further as (Ṽ ′
[M]

)[xi], extracting coefficients of xi from it. We will do so implicitly in the “different spans of x powers” argument in

the proof.

6

αγ : A1B2 = 0 =⇒ B2 = 0

β2/δ :
(m∑
i=l+1

A6,iui(x)
)
B1 = 0 =⇒

m∑
i=l+1

A6,iui(x) = 0

βα/δ :
(m∑
i=l+1

A6,ivi(x)
)
B1 = 0 =⇒

m∑
i=l+1

A6,ivi(x) = 0

β/δ in AB :
(m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x)

)
B1 +

(m∑
i=l=1

A6,iui(x)
)(n−1∑

i=0

B4,ix
i
)

= 0 ∧

1/δ :
(m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x)

)(n−1∑
i=0

B4,ix
i
)

= 0

=⇒
n−2∑
i=0

A7,ix
it(x) = 0 ∧

m∑
i=l+1

A6,iwi(x) = 0

If (

n−1∑
i=0

B4,ix
i) = 0 then from β/δ we have

m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x) = 0,

otherwise from 1/δ we have

m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x) = 0,

since the sums have different spans of xi powers,
n−2∑
i=0

A7,ix
it(x) = 0 and

m∑
i=l+1

A6,iwi(x) = 0.

β2/γ in AB :
(l∑
i=0

A5,iui(x)
)
B1 = 0 =⇒

l∑
i=0

A5,iui(x) = 0

βα/γ :
(l∑
i=0

A5,ivi(x)
)
B1 = 0 =⇒

l∑
i=0

A5,ivi(x) = 0

β/γ :
(l∑
i=0

A5,iwi(x)
)
B1 +

(l∑
i=0

A5,iui(x)
)(n−1∑

i=0

B4,ix
i
)

= 0 ∧

1/γ :
(l∑
i=0

A5,iwi(x)
)(n−1∑

i=0

B4,ix
i
)

= 0 =⇒
l∑
i=0

A5,iwi(x) = 0 from β/γ and 1/γ as with 1/δ

We now consider the following three monomials (β, α, and 1 that is only x powers) that we will call critical
(and, respectively, the related equations too). Critical equations contain parts of the QAP, and we will eventually
extract the witness from them. The underlined coefficients are already known to be zero, and thus the related
sums are immediately cancelled:

β in AB − ϕ(φ)γ − Cδ :(n−1∑
i=0

A4,ix
i
)
B1 +

(n−1∑
i=0

B4,ix
i
)
A2 +

(l∑
i=0

A5,iui(x)
)
B2 +

(m∑
i=l+1

A6,iui(x)
)
B3 =

l∑
i=0

aiui(x) +

m∑
i=l+1

C6,iui(x)

α in AB − ϕ(φ)γ − Cδ :(n−1∑
i=0

B4,ix
i
)
A1 +

(l∑
i=0

A5,ivi(x)
)
B2 +

(m∑
i=l+1

A6,ivi(x)
)
B3 =

l∑
i=0

aivi(x) +

m∑
i=l+1

C6,ivi(x)

1 (only x) in AB − ϕ(φ)γ − Cδ :(n−1∑
i=0

A4,ix
i
)(n−1∑

i=0

B4,ix
i
)

+
(l∑
i=0

A5,iwi(x)
)
B2 +

(m∑
i=l+1

A6,iwi(x) +

n−2∑
i=0

A7,ix
it(x)

)
B3

=

l∑
i=0

aiwi(x) +

m∑
i=l+1

C6,iwi(x) +

n−2∑
i=0

C7,ix
it(x)

7

Substituting the first two equations into the left hand side of the third one, using that A1B1 = 1:

(l∑
i=0

aiui(x) +

m∑
i=l+1

C6,iui(x)
)(l∑

i=0

aivi(x) +

m∑
i=l+1

C6,ivi(x)
)

=

l∑
i=0

aiwi(x) +

m∑
i=l+1

C6,iwi(x) +

n−2∑
i=0

C7,ix
it(x)

And what we obtain is exactly a QAP statement with h(x) =
∑n−2
i=0 C7,ix

i, hence {C6,i}mi=l+1 is the assignment
of the witness wires. The extractor can thus simply return these values.

Theorem 3.2. Assume that {wi(x)}li=0 are linearly independent and Span {wi(x)}li=0 ∩ Span {wi(x)}mi=l+1 = ∅.
Then Groth16 achieves (weak) simulation-extractability against algebraic adversaries under the (2n−1, n−1)-dlog
assumption.

Proof. Let q denote the number of simulation queries of A, and {ai,j}lj=0 denote the instance for the ith query.

We now add the three proof elements [ãi]1, [b̃i]2, [c̃i]1 revealed in each simulation to the list of elements that A can

use as an algebraic extraction basis: ãi = µi, b̃i = νi, and c̃i = (µiνi−αβ−
∑l
j=0 ai,j(βuj(x)+αvj(x)+wj(x)))/δ.

We write out the representation of A, B, C from the verification equation as the linear combination of the public
CRS and these new simulated proof elements (in boxes):

A = A1α+A2β +A3δ +

n−1∑
i=0

A4,ix
i +

l∑
i=0

A5,i
βui(x) + αvi(x) + wi(x)

γ
+

m∑
i=l+1

A6,i
βui(x) + αvi(x) + wi(x)

δ

+

n−2∑
i=0

A7,i
xit(x)

δ
+

q∑
i=1

A8,iµi +

q∑
i=1

A9,i

µiνi − αβ −
∑l
j=0 ai,j(βuj(x) + αvj(x) + wj(x))

δ

B = B1β +B2γ +B3δ +

n−1∑
i=0

B4,ix
i +

q∑
i=1

B5,iνi

C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,i
βui(x) + αvi(x) + wi(x)

γ
+ +

m∑
i=l+1

C6,i
βui(x) + αvi(x) + wi(x)

δ

+

n−2∑
i=0

C7,i
xit(x)

δ
+

q∑
i=1

C8,iµi +

q∑
i=1

C9,i

µiνi − αβ −
∑l
j=0 ai,j(βuj(x) + αvj(x) + wj(x))

δ

Our goal is to reduce the theorem to the knowledge-soundness case by restricting the coefficients related to
the new simulated proofs variables, namely A8,i, A9,i, B5,i, C8,i, C9,i. We will show that a successful A must either
reuse one of the simulated proofs (potentially randomizing it), or it must not have used any simulation-related
variables, thus allowing for the reuse of the extraction argument from knowledge soundness. We start by inspecting
the coefficients of the following monomials (affect by simulated proofs):

αβ in AB − Cδ : A1B1 −
q∑
i=1

A9,iB3 +

q∑
i=1

C9,i = 1

µiνj(i 6= j) in AB : A8,iB5,j = 0

µiνi in AB − Cδ : A9,iB3 +A8,iB5,i − C9,i = 0

µiνiνj/δ in AB : A9,iB5,j = 0

µiνiβ/δ in AB : A9,iB1 = 0

µiβ in AB : A8,iB1 = 0

µiγ in AB : A8,iB2 = 0

µiδ in AB − Cδ : A8,iB3 − C8,i = 0

νiα in AB : B5,iA1 = 0

νiβ in AB : B5,iA2 = 0

νiδ in AB : B5,iA3 = 0

First, we show that all A9,i = 0. Assume the contrary: A9,k 6= 0 for some k. Then from Equation (µkνkνj/δ) for
all j: B5,j = 0. From Equation (µiνi) for all i we have that C9,i = A9,iB3, which, substituted into Equation (αβ)
give us A1B1 = 1. Hence B1 6= 0, but from Equation (µkνkβ/δ) we see that A9,kB1 = 0, but neither A9,k nor B1

is zero, a contradiction. Thus, all A9,i = 0, and furthermore Equation (αβ) simplifies to A1B1 +
∑q
i=1 C9,i = 1

and Equation (µiνi) simplifies to A8,iB5,i = C9,i.
We now show, that if at least one A8,k 6= 0, then A reuses the kth simulatated proof, and otherwise if all

A8,i = 0 it does not use any simulation-related elements.

• Assume, first, that all A8,i = 0: From Equation (µiνi) all C9,i = 0. Then, A1B1 = 1 by Equation (αβ), so
from Equation (νiα) all B5,i = 0 (since A1 6= 0), and from Equation (µiδ) all C8,i = 0 because all A8,i = 0.

8

We now have cancelled all the simulation-related variables, and thus A does not use simulation queries when
constructing its proof, and we can reduce the proof to the knowledge soundness case.

• Assume, otherwise, that at least one A8,k 6= 0: Then B1 = B2 = 0 from Equation (µkβ) and Equation (µkγ).
For all j 6= k from Equation (µkνj) we have B5,j = 0, and since C9,j = B5,jA8,j , all C9,j = 0 for j 6= k
too. From Equation (αβ) we obtain C9,k = 1, thus B5,k = 1/A8,k by Equation (µiνi). Since now B5,k 6= 0,
from the Equations (νkα), (νkβ), (νkδ) we have A1 = A2 = A3 = 0. Thus, we are only left with exactly one
nonzero triple (A8,k, B5,k, C9,k), which means A has used at most one simulated proof number k, not being
able to combine several simulated proofs into one.

We next look at additional coefficients related to monomials that include νk and νk. From Equations (νiβ/δ),

(νiα/δ), (νi/δ) we have
∑m
i=l+1A6,i(βui(x) + αvi(x) + wi(x))/δ +

∑n−2
i=0 A7,ix

it(x)/δ = 0 (related terms of
A are the only terms matching this νi in B):

νkβ/δ in AB :
(m∑
j=l+1

A6,juj(x)−
q∑
i=1

A9,i

l∑
j=0

uj(x)
)
B5,k = 0 =⇒

m∑
j=l+1

A6,juj(x) = 0

νkα/δ in AB :
(m∑
j=l+1

A6,jvj(x)−
q∑
i=1

A9,i

l∑
j=0

vj(x)
)
B5,k = 0 =⇒

m∑
j=l+1

A6,jvj(x) = 0

νk/δ in AB :
(m∑
j=l+1

A6,jwj(x) +

n−2∑
i=0

A7,ix
it(x)−

q∑
i=1

A9,i

l∑
j=0

wj(x)
)
B5,k = 0

=⇒
m∑

j=l+1

A6,jwj(x) = 0 ∧
n−2∑
i=0

A7,ix
it(x) = 0 (different powers of x)

Similarly, from Equations (νiβ/γ), (νiα/γ), (νi/γ) we have
∑l
i=0A5,i(βui(x)/γ) =

∑l
i=0A5,i(αvi(x)/γ) =∑l

i=0A5,i(wi(x)/γ) = 0 (the coefficients are also extracted from AB).

νkβ/γ in AB :
(l∑
j=0

A5,juj(x)
)
B5,k = 0 =⇒

l∑
j=0

A5,juj(x) = 0

νkα/γ in AB :
(l∑
j=0

A5,jvj(x)
)
B5,k = 0 =⇒

l∑
j=0

A5,jvj(x) = 0

νk/γ in AB :
(m∑
j=0

A5,jwj(x)
)
B5,k = 0 =⇒

m∑
j=l+1

A5,jwj(x) = 0

Because of Equation (νk) and Equation (µk) we have
∑n−1
i=0 A4,ix

i = 0 and
∑n−1
i=0 B4,i = 0 related terms

cancelled as well:

νk in AB :
(n−1∑
i=0

A4,ix
i
)
B5,k = 0 =⇒

n−1∑
i=0

A4,ix
i = 0

µk in AB :
(n−1∑
i=0

B4,ix
i
)
A8,k = 0 =⇒

n−1∑
i=0

B4,ix
i = 0

Which also implies A4,i = B4,i = 0 for all i. Having in mind C9,k = 1, the following third critical equation
now gives us:

1 (only x) : (

n−1∑
i=0

A4,ix
i) · (

n−1∑
i=0

B4,ix
i) + (

l∑
i=0

A5,iwi(x))B2

+(

n−2∑
i=0

A7,it(x)xi +

m∑
i=l+1

A6,iwi(x)−
q∑
i=1

A9,i

l∑
j=0

ai,jwj(x))B3

=

l∑
i=0

aiwi(x) +

m∑
i=l+1

C6,iwi(x) +

n−2∑
i=0

C7,ix
it(x) +

l∑
i=0

ak,iwi(x) +

q∑
i=1,i6=k

C9,i

l∑
j=0

ai,jwj(x)

9

a = A1α+A3δ +A1

m∑
i=0

aiui(x) b =
1

A1
β +B3δ +

1

A1

m∑
i=0

aivi(x)

c = B3A+A3B −A3B3δ +

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

Figure 1: The kernel of Groth16 verification equation (a subspace of Z9+5n+2m
p) structured as a proof generation

routine (the most general one). Note the additional random value A1, that is not used in the original honest proof
generation, but is affected by randomization.

After simplification:

1 (only x) : 0 =

l∑
i=0

aiwi(x) +

m∑
i=l+1

C6,iwi(x) +

n−2∑
i=0

C7,ix
it(x) +

l∑
i=0

ak,iwi(x)

=⇒
n−2∑
i=0

C7,ix
it(x) = 0 considering only xi for i ≥ n

Because of disjointness4 between wi(x) for witness and instance sets of indices we have both
∑l
i=0(ai −

ak,i)wi(x) = 0 and
∑m
i=l+1 C6,iwi(x) = 0, thus also ai = ak,i because of the linear independence of the first

set. Then A has reused the simulated instance φk = {ak,i}li=0, which concludes the proof.

In fact, what Theorem 3.2 proves is stronger than standard weak-SE. Not only can we decide whether the proof
π′ provided by algebraic A was a modification of the simulated proof π queried before (or otherwise, if it’s not,
extract from it), but we can pinpoint which exact simulated proof it was derived from, and what (randomization)
transformation T gets π to π′. Even if A obtains simulated π1 and π2 for φ ∈ L, and returns π′ equal to the
randomization of either of the two, we will be able to decide which πi was used. This does not contradict derivation-
privacy of Groth16, that we also prove here, since the derivaction-privacy adversary does not get to see the AGM
coefficients. The following corollaries investigate this stronger property, and the randomizability of Groth16 in
general. The proofs of these statements are provided in Appendix C.

Corollary 3.2.1. Let V (C) = 0 with C = (A1, . . . , A7,n−2, B1, . . . , B4,n−1, C1, . . . , C7,n−2) be the verification
equation of Groth16 (Equation (1)) expressed in terms of exponent of GT with the 9 + 5n + 2m variables serving
as linear coefficients that construct the proof from CRS elements, then the kernel5 of V (C) is as presented in
Figure 1.

Corollary 3.2.2. The only transformation on Groth16 proofs that an algebraic adversary A can perform is the
randomization procedure described in the Equation (2).

Corollary 3.2.3. Groth16 NIZK is derivation-private6 with respect to the randomization transformation presented
in Equation (2).

References

[AB19] Shahla Atapoor and Karim Baghery. “Simulation Extractability in Groth’s zk-SNARK”. In: Data
Privacy Management, Cryptocurrencies and Blockchain Technology. Springer, 2019, pp. 336–354.

[ARS20] Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. “Lift-and-Shift: Obtaining Simu-
lation Extractable Subversion and Updatable SNARKs Generically”. In: ACM SIGSAC Conference
on Computer and Communications Security, CCS. 2020.

[Bag19] Karim Baghery. “On the efficiency of privacy-preserving smart contract systems”. In: International
Conference on Cryptology in Africa. Springer. 2019, pp. 118–136.

4This technique was applied in a similar manner for strong SE in [GM17]
5That is, X ⊂ Z9+5n+2m

p such that ∀c ∈ X.V (c) = 0
6This property has been observed before, for example in [LCKO19] in a similar context.

10

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In: 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Com-
puter Society, 2014, pp. 459–474. doi: 10.1109/SP.2014.36. url: https://doi.org/10.1109/
SP.2014.36.

[BCG+18] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
“Zexe: Enabling Decentralized Private Computation”. In: IACR Cryptol. ePrint Arch. 2018 (2018),
p. 962. url: https://eprint.iacr.org/2018/962.

[BG18] Sean Bowe and Ariel Gabizon. “Making Groth’s zk-SNARK Simulation Extractable in the Random
Oracle Model.” In: IACR Cryptology ePrint Archive 2018 (2018), p. 187.

[BS20] Karim Baghery and Mahdi Sedaghat. “Tiramisu: Black-Box Simulation Extractable NIZKs in the
Updatable CRS Model”. In: (2020).

[BV98] Dan Boneh and Ramarathnam Venkatesan. “Breaking RSA May Not Be Equivalent to Factoring”.
In: Advances in Cryptology - EUROCRYPT ’98, International Conference on the Theory and
Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding. Ed.
by Kaisa Nyberg. Vol. 1403. Lecture Notes in Computer Science. Springer, 1998, pp. 59–71. doi:
10.1007/BFb0054117. url: https://doi.org/10.1007/BFb0054117.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic Protocols”.
In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA. IEEE Computer Society, 2001, pp. 136–145. doi: 10.1109/SFCS.
2001.959888. url: https://doi.org/10.1109/SFCS.2001.959888.

[CDD17] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. “Practical UC-Secure Delegatable Cre-
dentials with Attributes and Their Application to Blockchain”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu. ACM, 2017, pp. 683–699. doi: 10 . 1145 / 3133956 . 3134025. url: https :

//doi.org/10.1145/3133956.3134025.

[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. “Malleable proof
systems and applications”. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer. 2012, pp. 281–300.

[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. “Succinct Malleable
NIZKs and an Application to Compact Shuffles”. In: Theory of Cryptography - 10th Theory of
Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings. Ed. by Amit
Sahai. Vol. 7785. Lecture Notes in Computer Science. Springer, 2013, pp. 100–119. doi: 10.1007/
978-3-642-36594-2_6. url: https://doi.org/10.1007/978-3-642-36594-2_6.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. “Universally composable two-
party and multi-party secure computation”. In: Proceedings of the thiry-fourth annual ACM sym-
posium on Theory of computing. 2002, pp. 494–503.

[DFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. “Cinderella:
Turning Shabby X.509 Certificates into Elegant Anonymous Credentials with the Magic of Verifi-
able Computation”. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA,
May 22-26, 2016. IEEE Computer Society, 2016, pp. 235–254. doi: 10.1109/SP.2016.22. url:
https://doi.org/10.1109/SP.2016.22.

[DSDCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sa-
hai. “Robust non-interactive zero knowledge”. In: Annual International Cryptology Conference.
Springer. 2001, pp. 566–598.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. “The algebraic group model and its applications”.
In: Annual International Cryptology Conference. Springer. 2018, pp. 33–62.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. “On the Non-
malleability of the Fiat-Shamir Transform”. In: Progress in Cryptology - INDOCRYPT 2012, 13th
International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceed-
ings. Ed. by Steven D. Galbraith and Mridul Nandi. Vol. 7668. Lecture Notes in Computer Science.
Springer, 2012, pp. 60–79. doi: 10.1007/978-3-642-34931-7_5. url: https://doi.org/10.
1007/978-3-642-34931-7_5.

11

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://eprint.iacr.org/2018/962
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1109/SP.2016.22
https://doi.org/10.1109/SP.2016.22
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5

[Gam85] Taher El Gamal. “A public key cryptosystem and a signature scheme based on discrete logarithms”.
In: IEEE Trans. Inf. Theory 31.4 (1985), pp. 469–472. doi: 10.1109/TIT.1985.1057074. url:
https://doi.org/10.1109/TIT.1985.1057074.

[GM17] Jens Groth and Mary Maller. “Snarky signatures: Minimal signatures of knowledge from simulation-
extractable SNARKs”. In: Annual International Cryptology Conference. Springer. 2017, pp. 581–
612.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Perfect non-interactive zero knowledge for NP”.
In: Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2006, pp. 339–358.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. “Pairings for cryptographers”.
In: Discret. Appl. Math. 156.16 (2008), pp. 3113–3121. doi: 10.1016/j.dam.2007.12.010. url:
https://doi.org/10.1016/j.dam.2007.12.010.

[Gro06] Jens Groth. “Simulation-sound NIZK proofs for a practical language and constant size group signa-
tures”. In: International Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2006, pp. 444–459.

[Gro16] Jens Groth. “On the size of pairing-based non-interactive arguments”. In: Annual international
conference on the theory and applications of cryptographic techniques. Springer. 2016, pp. 305–326.

[GS08] Jens Groth and Amit Sahai. “Efficient non-interactive proof systems for bilinear groups”. In:
Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2008, pp. 415–432.

[KKK20] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. “Kachina - Foundations of Private Smart
Contracts”. In: IACR Cryptol. ePrint Arch. 2020 (2020), p. 543. url: https://eprint.iacr.
org/2020/543.

[KLO19] Jihye Kim, Jiwon Lee, and Hyunok Oh. Qap-based simulation-extractable snark with a single veri-
fication. Tech. rep. Cryptology ePrint Archive, Report 2019/586, 2019. https://eprint. iacr. org . . .,
2019.

[KMS+16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. “Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts”. In: 2016 IEEE
symposium on security and privacy (SP). IEEE. 2016, pp. 839–858.

[KZM+15a] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Charalampos Papamanthou,
Rafael Pass, Shelat Abhi, and Elaine Shi. “C0C0: a framework for building composable zero-
knowledge proofs”. In: Cryptology ePrint Archive, Report 2015/1093 (2015).

[KZM+15b] Ahmed E Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T-H Hubert Chan, Charalampos Papa-
manthou, Rafael Pass, Abhi Shelat, and Elaine Shi. “How to Use SNARKs in Universally Com-
posable Protocols.” In: IACR Cryptology ePrint Archive 2015 (2015), p. 1093.

[LCKO19] Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh. “SAVER: Snark-friendly, Additively-
homomorphic, and Verifiable Encryption and decryption with Rerandomization”. In: IACR Cryp-
tol. ePrint Arch. 2019 (2019), p. 1270. url: https://eprint.iacr.org/2019/1270.

[Lip19] Helger Lipmaa. Simulation-extractable SNARKs revisited. Tech. rep. Cryptology ePrint Archive,
Report 2019/612, 2019. http://eprint. iacr. org . . ., 2019.

[NT16] Assa Naveh and Eran Tromer. “PhotoProof: Cryptographic Image Authentication for Any Set of
Permissible Transformations”. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 22-26, 2016. IEEE Computer Society, 2016, pp. 255–271. doi: 10.1109/SP.2016.
23. url: https://doi.org/10.1109/SP.2016.23.

[PUB93] NIST FIPS PUB. Digital signature standard. 1993.

[PV05] Pascal Paillier and Damien Vergnaud. “Discrete-Log-Based Signatures May Not Be Equivalent to
Discrete Log”. In: Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on
the Theory and Application of Cryptology and Information Security, Chennai, India, December 4-8,
2005, Proceedings. Ed. by Bimal K. Roy. Vol. 3788. Lecture Notes in Computer Science. Springer,
2005, pp. 1–20. doi: 10.1007/11593447_1. url: https://doi.org/10.1007/11593447_1.

[Sah99] Amit Sahai. “Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity”. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039).
IEEE. 1999, pp. 543–553.

12

https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://eprint.iacr.org/2020/543
https://eprint.iacr.org/2020/543
https://eprint.iacr.org/2019/1270
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/11593447_1

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptology 4.3
(1991), pp. 161–174. doi: 10.1007/BF00196725. url: https://doi.org/10.1007/BF00196725.

[Sho04] Victor Shoup. “Sequences of games: a tool for taming complexity in security proofs”. In: IACR
Cryptol. ePrint Arch. 2004 (2004), p. 332. url: http://eprint.iacr.org/2004/332.

[ZKPce] ZKProof. ZKProof community reference, version 0.2. https : / / docs . zkproof . org / pages /

reference / reference . pdf/. [Online; accessed 26/06/2020; Updated versions at https : / /

zkproof.org]. December 2019.

A Weak-SE is Achievable Generically

Proof of Lemma 2.1 (Sketch). Groth-Sahai scheme allows to prove statements about satisfiability of (a set of)
pairing equations. In this example considering a single equation will be sufficient. We will show that we can
embed SNARK verification equation into a GS proof, and SE-transform it, so that the resulting argument is still
succinct, randomizable, and derivation-private.

A pairing equation has a form
∏
i e(xi, (Γy)i) = 1 ∧ x ∼ a ∧ y ∼ b, where x = {xi}ni=1,y = {yi}ni=1,

xi ∈ G1, yi ∈ G2, a ∈ {⊥,G1}n, b ∈ {⊥,G2}n, Γ ∈ G2
n×n and ∼ indicates partial matching (equality on non-⊥

elements only). Vectors x and y form the witness, and (Γ,a, b) represent the instance. This allows us to express
verification equation of Groth16 (although any other pairing-based KS SNARK can be used instead). Groth16
proof contains three elements π = (πA, πB , πC) ∈ G1×G2×G1, and the verification equation is: e(πA, πB) =

e([α]G, [β]H)e(f(φ), [δ]H)e(C, [δ]H) where f(φ) =
∑l
i=0[ai]([(βui(x) + αvi(x) + wi(x))/δ]G). To embed π into

GS we set x = (πA, [α]G, f(φ),−πC), y = (πB , [β]H, [γ]H, [δ]H), Γ = Id, a = (⊥, [α]G, f(φ),⊥), and b =
(⊥, [β]H, [γ]H, [δ]H). Now the SNARK instance is contained inside the GS instance, and all the three SNARK
proof elements are hidden as part of the GS witness.

In order to create a GS proof for a SNARK proof, we need to commit to the vectors x and y first. GS
commitments are randomizable and derivation-private, meaning that randomized commitments for the particular
instance are indistinguishable from fresh commitments to any other corresponding witness. The GS proof itself
enjoys the same randomization properties.

GS proof system can be converted to a simulation-extractable one, this conversion uses EUF-CMA signatures
in the simulator, and is described in [CKLM12], Theorem 3.3. What this theorem gives is more than we require,
since it achieves controlled-malleable SE, which is a strict generalisation of SE. This definition is strong in the sense
that it is not possible to randomize a proof avoiding transformations altogether, although applying an identity
transformation has the very same randomization effect, from the definition perspective. Hence we only include the
identity transformation Tid into the transformation set T , effectively reducing the language L′ of the transformed
NIZK to “(x,w) ∈ L∨Verifysig(vk, σ, x) = 1”, where vk is a verification key of the signature scheme sig, embedded
into the CRS. This also collapses cm-SE to weak-SE, while setting T = ∅ collapses cm-SE to strong-SE. The idea
of the transformation is simple — honest proofs still need to follow the first clause of the disjunction, but the
simulator now having access to the trapdoor signing key sk corresponding to vk, can prove simulated statements
for the latter clause, producing the valid signatures. The extractor is just a KS extractor: by KS we know that
either (x,w) ∈ L or the signature in the witness is correct. For honestly generated proofs we reduce to KS, and
otherwise for simulated proofs by unforgeability of sig we conclude that A could not avoid querying the simulator.

After the transformation, the GS extractor can be combined with the KS extractor from the original SNARK
to obtain a base NIZK witness for every verifying GS proof, even in the presense of (GS) simulator. At the
same time the proof is now randomizable in the derivation-private sense, which is a GS proofs property that the
transformation does not affect. Before the transformation the proof size is 8 elements, 4 in each group (which is
constant), and commitments are also constant size of 4 group elements each. Modifying the language by adding
a structure-preserving signature into the set of pairing equations of incurs a constant size overhead for a chosen
security parameter, so the resulting proof, together with the commitments, is still succinct.

We note that this section only motivates the seach for weak-SE SNARKs, and thus is not trying to achieve
any optimality. We conjecture that it is possible to obtain slightly simpler generic transformation using Groth16
randomization directly, without embedding it into GS proofs, using recursive controlled malleability techniques
from [CKLM13].

B Algebraic Verification Satisfiability

This section elaborates on the lemmas of Section 2.3.

13

https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
http://eprint.iacr.org/2004/332
https://docs.zkproof.org/pages/reference/reference.pdf/
https://docs.zkproof.org/pages/reference/reference.pdf/
https://zkproof.org
https://zkproof.org

Lemma B.1 (Schwartz-Zippel). Let f ∈ F[X1, . . . , Xn] be a non-zero polynomial of degree d ≥ 0 over a field F.
Let S ⊂ F finite, and let x = (x1, . . . , xn). Then Prx←Sn [f(x) = 0] ≤ d/|S|.

Proof. By recursion on number of variables.

Proof of Lemma 2.2 (Sketch). The intuition for the lemma is that since CRS trapdoors are chosen uniformly,
and are “hidden” in the group exponents (hence the discrete log assumption), A combines e as if it has no
knowledge of the internal structure of the CRS, and thus this is equivalent to choosing the V ′, and then evaluating
it on random T (reversed order), which is negligible by S-Z. For the detailed proof of a similar statement tailored
specifically for Groth16 in AGM, see [FKL18]. Here we present a sketch of the proof that is slightly more general,
and can also be applied to other NILP based SNARKs, e.g. to Groth and Maller SNARK.

The original generic algebraic verification game has the step [e]1,2
$←− A(σ);K ← X alg

A (transA), where K is a
matrix of algebraic coefficients. We modify the game, launching A also on another independently generated CRS
and ξ – we can do that since we know K, essentially “how e was constructed from τ”, so we just replace the
trapdoors and emulate the execution of A. If verification passes on both CRSs, it means that A constructed its
proof π = [e]1,2 indepedently of the concrete CRS structure, and otherwise he has used it in proof construction.

We split the game in two scenarios according to the result of this test: either (i) A does not use the concrete
CRS and returns coefficients blindly (then we arrive at the main positive lemma statement), or (ii) it uses the
CRS, thus we break the (d1, d2)-dlog assumption.

The first option is that A succeeded without using the concrete CRS σ – meaning that it guessed cι,i as if it only
knew the structure of the CRS (Setupλ and all Pι,i, but not the concrete σi themselves). Then the probability for A
to win is low and bounded by S-Z lemma, since the unknown τ for A is equivalent to the randomly chosen one – we
can generate the concrete CRS after the call to A. By S-Z we know that Pre←A(...)[V (e) = 0 | V ′(T) 6= 0] < negl(λ)

where V ′(T) = V
(
K(Setupλ(T))

)
, and we also assume that Pr[V (e) = 0] = p(λ) is non-negligible, which means

that V can be satisfied by an prover. Then:

Pr[V ′(T) 6= 0 | V (e) = 0] =
Pr[V (e) = 0 | V ′(T) 6= 0] Pr[V ′(T) 6= 0]

Pr[V (e) = 0]
=

negl(λ) · Pr[V ′(T) 6= 0]

p(λ)
= negl(λ)

So in the end we arrive at the conclusion that V ′(T) = 0 in case V (e) = 0 with high probability.
The other option is that A has used the CRS nontrivally, possibly extracting knowledge about the trapdoor,

which allowed it to satilfy the verification equation. Formally, A constructed e such that V ′(T) 6= 0, but V ′(τ) =
V (e) = 0 for τ being a concrete trapdoor. Then we can embed (d1, d2)-dlog instance ([z]ι, [z

2]ι, . . . , [z
dι]ι) into

the CRS before generation (by using the challenge to generate trapdoors) and solve it. We embed by transforming
the challenge into CRS trapdoors τ = {τi}ni=1 in the following way: [τi]ι = [αiz + βi]ι for random (αi, βi), and

then [τ ji]ι = [(αiz+βi)
j]ι is a polynomial in z will all known coefficients, so it can be constructed from the q-dlog

challenge higher powers. Then, after A returns e that depends on this particular CRS σ with z embedded inside,
and satisfies V (e) = 0, we factor V ′(T), reconstructed using K, and reinterpreted as a single variable polynomial
over z (since in fact it is parametrised only by one unknown z, and we know all of the other coefficient of this
equation except for z), and then one of the roots of this V ′(z) will be a solution to the discrete log challenge.

C Randomizability of Groth16

Proof of Corollary 3.2.1. We start by taking the KS version of the proof elements parametrisation (A,B,C
expressed as a linear combination of CRS elements with coefficients containing Ai, Bi and Ci), and applying the
constraints we obtained in the KS proof. The malleability constraints we will show are the same for both simulated
and real proofs because of indistinguishability of simulated proofs. We apply the reductions from the KS proof,
and immediately cancel A2, B2, A6,i and A5,i related sums, and the sum with A7,i. We also substitute ai instead
of C6,i and h(x) instead of C7,i. Since A1B1 = 1, we set B1 = 1/A1.

A = A1α+A3δ +

n−1∑
i=0

A4,ix
i B =

1

A1
β +B3δ +

n−1∑
i=0

B4,ix
i

C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,i
βui(x) + αvi(x) + wi(x)

γ
+

+

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

14

In order to restrain C5,i we need to investigate another set of coefficients:

βδ/γ :
(l∑
i=0

A5,iui(x)
)
B3 +

l∑
i=0

C5,iui(x) = 0 αδ/γ :
(l∑
i=0

A5,ivi(x)
)
B3 +

l∑
i=0

C5,ivi(x) = 0

δ/γ :
(l∑
i=0

A5,iwi(x)
)
B3 +

l∑
i=0

C5,iwi(x) = 0

And as sums with A5,i are zero, we conclude that the relevant sums with C5,i are also zero, so we can exclude
them from C. We once again investigate critical equations’ coefficients:

β :
(n−1∑
i=0

A4,ix
i
)

= A1

(l∑
i=0

aiui(x) +

m∑
i=l+1

C6,iui(x)
)

α :
(n−1∑
i=0

B4,ix
i
)

=
1

A1
(

l∑
i=0

aivi(x) +

m∑
i=l+1

C6,ivi(x)
)

We substitute A4,i and B4,i sums into the equation, given that C6,i = ai. What we get is:

A = A1α+A3δ +A1

m∑
i=0

aiui(x) B =
1

A1
β +B3δ +

1

A1

m∑
i=0

aivi(x)

C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+
n−2∑
i=0

hi
xit(x)

δ

We now restrain A3, B3 (A2 = 0):

δ2 : A3B3 = C3

βδ : A3B1 +A2B3 = C2

αδ : A1B3 = C1

And express C4,i related sum using A4,i and B4,i:

δ :
(n−1∑
i=0

B4,ix
i
)
A3 +

(n−1∑
i=0

A4,ix
i
)
B3 =

n−1∑
i=0

C4,ix
i

The fully reduced system that we obtain now has three free variables (A1, A3, B3), and has the following form:

A = A1α+A3δ +A1

m∑
i=0

aiui(x) B =
1

A1
β +B3δ +

1

A1

m∑
i=0

aivi(x)

C = A1B3α+
A3

A1
β +A3B3δ +B3A1

m∑
i=0

aiui(x) +
A3

A1

m∑
i=0

aivi(x) +

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

= B3A+A3B −A3B3δ +

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

n−2∑
i=0

hi
xit(x)

δ

Since this general form of proof generation satisfies the verification equation (this is easy to verify), no further
reductions are possible. Indeed, two out of three free variables are used in the honest generation procedure, and
the third one is modified in the randomization transformation.

Proof of Corollary 3.2.2. Now, in order to obtain the explicit form randomization transformation, we would
need to trasform each proof element so that they still fit the bounds we have just presented. Although, this is
easier to show if we repeat the process over again, but with the weak-SE proof, now assuming that A uses one
simulated query (weak-SE has shown that no combination of two proofs can be a valid proof). This makes things
simpler, because simulated variables µi and νi stand exactly for already-composed proof elements a and b.

Assume that A8,k 6= 0. In the SE proof we already show almost all the coefficient reductions (all Ai except for
A8,k, all Bi except for B3 and B5,k, C7,i, C9,i for i 6= k, and C9,k = 1). This gives us the following set of equations:

A = A8,kµk B = B3δ +B5,kνk

15

C = C1α+ C2β + C3δ +

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,i
βui(x) + αvi(x) + wi(x)

γ

+

m∑
i=l+1

C6,i
βui(x) + αvi(x) + wi(x)

δ
+

q∑
i=1

C8,iµi +
µkνk − αβ −

∑l
j=0 ak,j(βuj(x) + αvj(x) + wj(x))

δ

Further reductions are also easy to discover. From Equation (µiδ), B3 = C8,k/A8,k, and all other C8,i = 0. From
Equation (δ2), C3 = A3B3 = 0. From Equation (αδ), C1 = A1B3 = 0. From Equation (βδ), C2 = A3B1 +A2B3 =
0. We also substitute already obtained B5,k = 1/A8,k from the SE proof:

A = A8,kµk

B =
1

A8,k
νk +

C8,k

A8,k
δ

C =

n−1∑
i=0

C4,ix
i +

l∑
i=0

C5,i
βui(x) + αvi(x) + wi(x)

γ
+

m∑
i=l+1

C6,i
βui(x) + αvi(x) + wi(x)

δ
+

+ C8,kµk +
µkνk − αβ −

∑l
j=0 ak,j(βuj(x) + αvj(x) + wj(x))

δ

We now need to remove the C4,i, C5,i, C6,i related sums. Nothing can compensate
∑n−1
i=0 C4,ix

i if we take a look at
δ, so it cancels out. Same for C5,i related sum, and monomials βδ/γ, αβ/γ, δ/γ. C6,i also can not be compensated,
because of span disjointness of QAP sets for instance and witness, and since verification equation only includes the
instance-related sum (the end of the SE proof explains the linear independence technique). What we left with is
precisely the well-known randomization transformation, shown in Equation (2), where r1 = 1/A8,k, and r2 = C8,k:

A = A8,kµk

B =
1

A8,k
νk +

C8,k

A8,k
δ

C = C8,kµk +
µkνk − αβ −

∑l
j=0 ak,j(βuj(x) + αvj(x) + wj(x))

δ

Proof of Corollary 3.2.3. In order to prove the statement, we need to show that the distribution of honestly
generated proofs {π}λ = {(A,B,C)}λ is the same as the distribution of re-randomized proofs {Rand(π)}λ =
{(A′, B′, C ′)}λ. In honestly generated proofs, first two values a, b are independently uniform, and the third
element of the tuple is defined from them. Indeed, c does not have any other free variables, according to the
result of Corollary 3.2.1 (not only the honest generation procedure, but in principle for any algebraic A, which is
a property of the verification equation), so fixing a and b fixes c as well.

By examining the randomization equation Equation (2), where we denote randomization values as r1, r2, we
immediately see that r1 makes a′ = ar1 uniform, and that the same is true for b′ = r1b + r1r2δ, since r1r2δ is
uniform. Thus in both distributions the first two tuple elements are uniform, and the third depends on them in
the same way.

D Monomial Extraction with SageMath

One of the hard parts of the KS and SE proofs is extracting monomial coefficients from the verification equation.
Since we are parametrising proof elements of the equation with linear combination of CRS elements (and simulation
variables), which consists of many sets of elements known to A, doing extraction manually is quite time-consuming
and error-prone. However, the procedure can be partially simplified, or at least verified, by using SageMath. We
present a short and simple snippet that defines Groth16 CRS elements and allows then to extract monomial
coefficients for any verification equation.

We note that the script fixes QAP sizes and the number of simulation queries, since modelling sums with
variable number of elements, to our best knowledge, is much more complicated. We also note that solving KS or
SE symbolically using SageMath is a tempting target, but, even though possible for fixed parameters, we found it
hard to achieve reasonable performance, thus leaving the idea as an interesting future work direction.

Helper functions

def defvars(label, n):

16

return list(var(label + ’_%d’ % i) for i in range(n))

def defpoly_from_basis(label, basis):

coeffs = defvars(label,len(basis))

poly = sum(c*x for c,x in zip(coeffs,basis))

return (coeffs,poly)

def defpoly(label, d):

return defpoly_from_basis(label, list(x**i for i in range(d+1)))

The concrete QAP parameters. q denotes the number of simulated queries.

n = 4

m = 3

l = 1

q = 2

Defining Gro16 CRS and the verification equation

var(’a_r, b_r, c_r’)

trapdoors = var(’alpha,beta,gamma,delta,x’)

honest_rand = var(’r,s’)

as_phi = list(var(’a_%d’ % i) for i in range(l+1))

as_wit = list(var(’a_%d’ % i) for i in range(l+1, m+1))

as_all = as_phi + as_wit

mu = list(var(’mu_%d’ % i) for i in range(q))

nu = list(var(’nu_%d’ % i) for i in range(q))

simphi = list(list(var(’sa_%d_%d’ % (i,j)) for j in range(l+1)) for i in range(q))

flatsimphi = [item for sublist in simphi for item in sublist]

ringvars = [alpha,beta,gamma,delta,r,s] + mu + nu + [a_r, b_r, c_r] + flatsimphi

R = LaurentPolynomialRing(SR, ringvars)

R.inject_variables()

mu = list(R(’mu_%d’ % i) for i in range(q))

nu = list(R(’nu_%d’ % i) for i in range(q))

t_coeffs,t = defpoly(’t’,n)

h_coeffs,h = defpoly(’h’,n-2)

us = []; uscoeffs = []

vs = []; vscoeffs = []

ws = []; wscoeffs = []

for i in range(m+1):

u_coeffs,u = defpoly(’u_%d’%i,n-1)

us.append(u); uscoeffs.append(u_coeffs)

v_coeffs,v = defpoly(’v_%d’%i,n-1)

vs.append(v); vscoeffs.append(v_coeffs)

w_coeffs,w = defpoly(’w_%d’%i,n-1)

ws.append(w); wscoeffs.append(w_coeffs)

sigma_1 = [alpha,beta,delta] + \

list(x**i for i in range(n)) + \

list((beta*us[i] + alpha*vs[i] + ws[i])/gamma for i in range(l+1)) + \

list((beta*us[i] + alpha*vs[i] + ws[i])/delta for i in range(l+1, m+1)) + \

list(x**i * t / delta for i in range(n-1)) + \

list(mu[i] for i in range(q)) + \

list((mu[i] * nu[i] - alpha * beta - sum(simphi[i][j] * (beta * us[j] + alpha * vs[j] + ws[j]) for j

in range(l+1)))/delta for i in range(q))

sigma_2 = [beta,gamma,delta] + list(x**i for i in range(n)) + \

list(nu[i] for i in range(q))

var(’A_1,A_2,A_3’)

A4_vars = defvars(’A_4’, n)

A5_vars = defvars(’A_5’, l+1)

A6_vars = defvars(’A_6’, m-l)

A7_vars = defvars(’A_7’, n-1)

A8_vars = defvars(’A_8’, q)

A9_vars = defvars(’A_9’, q)

var(’B_1,B_2,B_3’)

B4_vars = defvars(’B_4’, n)

B5_vars = defvars(’B_5’, q)

var(’C_1,C_2,C_3’)

C4_vars = defvars(’C_4’, n)

17

C5_vars = defvars(’C_5’, l+1)

C6_vars = defvars(’C_6’, m-l)

C7_vars = defvars(’C_7’, n-1)

C8_vars = defvars(’C_8’, q)

C9_vars = defvars(’C_9’, q)

A_vars = [A_1,A_2,A_3] + A4_vars + A5_vars + A6_vars + A7_vars + A8_vars + A9_vars

B_vars = [B_1,B_2,B_3] + B4_vars + B5_vars

C_vars = [C_1,C_2,C_3] + C4_vars + C5_vars + C6_vars + C7_vars + C8_vars + C9_vars

ABC_vars = A_vars + B_vars + C_vars

A = sum(c*x for c,x in zip(A_vars,sigma_1))

B = sum(c*x for c,x in zip(B_vars,sigma_2))

C = sum(c*x for c,x in zip(C_vars,sigma_1))

f = sum(as_all[i] * (beta * us[i] + alpha * vs[i] + ws[i]) for i in range(0,l+1))

V1 = A * B - alpha*beta - f - C * delta

Printing coefficients

def print_coeff(coeff):

show(coeff)

if coeff == 1:

print(V1.constant_coefficient())

else:

print(V1.monomial_coefficient(coeff))

print("--------------------------")

ks_coeffs = [alpha * beta, beta ** 2, alpha * gamma, \

beta * beta / delta, beta * alpha / delta, beta / delta, 1 / delta, \

beta * beta / gamma, beta * alpha / gamma, beta / gamma, 1 / gamma, \

beta, alpha, 1]

for coeff in ks_coeffs:

print_coeff(coeff)

se_coeffs = [alpha * beta, mu[0] * nu[1], mu[0] * nu[0], \

mu[0] * nu[0] * nu[1] / delta, mu[0] * nu[0] * beta / delta, \

mu[0] * beta, mu[0] * gamma, mu[0] * delta, \

nu[0] * alpha, nu[0] * beta, nu[0] * delta]

for coeff in se_coeffs:

print_coeff(coeff)

18

	Introduction
	Preliminaries
	Notation
	Randomization and Simulation-Extractability
	Algebraic Proof Techniques for NILPs based SNARKs

	Weak-SE of Groth16
	Weak-SE is Achievable Generically
	Algebraic Verification Satisfiability
	Randomizability of Groth16
	Monomial Extraction with SageMath

