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Abstract

A standard requirement for a signature scheme is that it is existentially unforgeable under chosen
message attacks (EUF-CMA), alongside other properties of interest such as strong unforgeability
(SUF-CMA), and resilience against key substitution attacks.

Remarkably, no detailed proofs have ever been given for these security properties for EdDSA,
and in particular its Ed25519 instantiations. Ed25519 is one of the most efficient and widely used
signature schemes, and different instantiations of Ed25519 are used in protocols such as TLS 1.3, SSH,
Tor, ZCash, and WhatsApp/Signal. The differences between these instantiations are subtle, and only
supported by informal arguments, with many works assuming results can be directly transferred from
Schnorr signatures. Similarly, several proofs of protocol security simply assume that Ed25519 satisfies
properties such as EUF-CMA or SUF-CMA.

In this work we provide the first detailed analysis and security proofs of Ed25519 signature schemes.
While the design of the schemes follows the well-established Fiat-Shamir paradigm, which should
guarantee existential unforgeability, there are many side cases and encoding details that complicate
the proofs, and all other security properties needed to be proven independently.

Our work provides scientific rationale for choosing among several Ed25519 variants and under-
standing their properties, fills a much needed proof gap in modern protocol proofs that use these
signatures, and supports further standardisation efforts.

1 Introduction

The Ed25519 signature scheme was introduced in 2011 by Bernstein, Duif, Lange, Schwabe, and Yang
in the paper “High-speed high-security signatures” [1]. The efficiency of the scheme has led to a global
uptake in modern applications, and it is now used in TLS 1.3, SSH, Tor, ZCash, and messaging protocols
based on the Signal protocol such as WhatsApp.

For modern digital signature schemes the quintessential property is existential unforgeability under
chosen message attacks (EUF-CMA) [2]. This property essentially requires that an adversary cannot
construct a signature for a message that the key owner did not sign previously.

A stronger property that can be met by signature schemes, is that of strong unforgeability under chosen
message attacks (SUF-CMA). This property additionally requires that the adversary cannot construct an
alternative signature for a given signed message. A high-profile example exploiting the absence of this
property is the Mt. Gox attack on Bitcoin [3]. In this attack, signatures on transactions were mauled
by an adversarial recipient before being stored on the blockchain. The recipient would then claim that
the transaction failed. The sender would check the blockchain, and would indeed not find their exact
signature (due to mauling), conclude that it indeed failed, and start a new transfer. Yet both signatures
would be valid and the recipient would thus receive the double amount. This attack would not have been
possible with a strongly unforgeable (SUF-CMA) signature scheme as this notion prohibits malleability.

Additionally, in many practical systems, it is highly desirable that signature schemes resist key
substitution attacks [4], [5]. In such attacks the adversary computes specific public keys, e.g., based on
observed signatures of honest signers, such that these honest signatures can also be verified under the
adversary’s new public keys. This has been shown to lead to attacks on protocols such as Let’s Encrypt
Certificate Issuance and SOAP’s WS-Security [4].

Surprisingly, full proofs of any these security properties have never been given for Ed25519. The original
publications [1], [6] focussed on efficiency of computation, and do not contain a precise statement on the
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security property that is offered by the scheme, which in the following we will refer to as Ed25519-Original.
Because the scheme is said to be constructed via the Fiat-Shamir transform, it should follow that
Ed25519-Original at least provides EUF-CMA security, but full details were never provided. The papers
do refer to malleability and argue that is not relevant for the standard definitions of signature scheme
security, but their definition of malleability does not agree with the common usage of the term. It also
transpires that, whilst the source code presented alongside the paper accepts mangled signatures (hence
is not SUF-CMA), the additional check included in the paper’s description but not the source code, is
actually sufficient to prove SUF-CMA, as we will show. This further adds to the confusion around the
security properties enjoyed by Ed25519.

While the original papers came with a full implementation of Ed25519-Original, later implementations
made various modifications. Notably, the Ed25519-IETF version that was standardized by the Internet
Engineering Task Force (IETF) in [7] includes a check that is claimed to prevent malleability, thereby
implicitly suggesting that Ed25519-IETF is strongly unforgeable (SUF-CMA). Later versions, such as the
ones used by LibSodium [8] and ZCash [9] included additional group element checks. We return to the
details of these differences in Section 4.1. This leads to the obvious question: which exact properties
are actually provided by the various Ed25519 schemes? This question is especially timely as Ed25519 is
currently proposed for inclusion in the USA’s National Institute of Standards and Technology (NIST)
standard for Digital Signature Schemes [10]–[12] and was recently included in the TLS 1.3 standard [13].

Over the last years, several published works reported security proofs of systems that use Ed25519, but
require specific cryptographic security notions from their signature schemes, such as computational proofs
of TLS 1.3’s properties [14]–[17]. These proofs assume that Ed25519-IETF satisfies EUF-CMA, leaving
a proof gap. A claimed computational proof of SSH [18] requires that all supported signature schemes
provide SUF-CMA. However, SSH implementations also allow the use of the malleable Ed25519-Original,
which leads to a counterexample to the security statement. The Signal protocol library implements yet
another variant of the Ed25519 signature scheme. Adding to the confusion, a recent work [19] claims that
the results on Schnorr signatures in prime order groups implies Ed25519-Original enjoys SUF-CMA and
resistance to key substitution attacks. We will see in Section 5.4 that this is not the case.

In this work we remedy these proof gaps, and establish further properties of Ed25519 signature schemes.
As we will see, the devil is in the detail: the specific details of Ed25519 (e.g., small subgroup elements,
scalar clamping) require subtle tailoring of the proof details, and lead to mismatches such as the lack
of SUF-CMA security for Ed25519-Original despite its similarities to Fiat-Shamir applied to the Schnorr
identification scheme, which ‘should’ imply the SUF-CMA security holds. These subtleties also manifest
themselves in the needs of various checks. Thus, our work not only fills these highly-needed proof gaps,
but also provides additional insight into the subtle differences between Ed25519 schemes.

Our main contributions are the following.

• We provide the first detailed proof that Ed25519-Original [1] is indeed EUF-CMA secure.

• We provide the first proof that Ed25519-IETF [7] is actually SUF-CMA secure.

• We prove that all Ed25519 schemes are resilient against key substitution attacks, and that if small
subgroup keys are rejected as in LibSodium, a signature uniquely identifies a message, even for
malicious keys.

• In a wider sense, our results retroactively support the standardisation of Ed25519-IETF, and support
the ongoing standardisation by NIST.

Overview: The remainder of this section presents related work, and Section 3 recalls background knowledge.
Section 4 presents Ed25519 signature schemes and their subtle differences from Schnorr identification
schemes. We prove several security properties in Section 5 and conclude in Section 6.

2 Related Work

2.1 History of EdDSA and Ed25519

Ed25519-Original is just one instantiation of the more general EdDSA [1], [6] signature scheme, which was
introduced in the same paper. EdDSA is itself a variant of the well-known Schnorr signature scheme [20],
[21]. Ed25519 is EdDSA instantiated over curve Edwards25519 [1] and remains by far the most popular
instantiation of EdDSA, despite its later extension to support alternative curves [7], [22].
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EdDSA instantiations such as Ed25519-Original can sign and verify signatures substantially faster
than almost all other signatures schemes at similar security levels. For schemes that have comparable
speeds, Ed25519-Original further provides considerably smaller signatures, producing 64-byte signatures
and 32-byte public keys. Additionally, EdDSA is widely considered to provide better resistance to
side-channel attacks than alternative schemes. However, the original papers [1], [6] contain no formal
statements (and subsequently, no actual proofs) of its security properties.

By virtue of its outstanding performance with respect to efficiency and bandwidth, EdDSA was
standardised by the IETF between 2015 and 2017 [7]. In 2019, EdDSA was proposed to also be adopted
as part of NIST’s Digital Signature Standard (DSS) [10], [11]. Early 2020, the public call for comments
was closed [12], but as of writing, no new version has yet appeared.

2.2 Related proofs

The Fiat-Shamir paradigm was proposed by Fiat and Shamir [23] as a generic approach to derive a secure
signature scheme from a canonical identification schemes (CID). A vast body of work followed this seminal
result and the aforementioned Schnorr signatures [20], [21], on which EdDSA was built, is probably one
of the most famous examples of the transform’s power to build efficient and provably-secure signatures.
Here we merely present some of the many milestones related to Fiat-Shamir that are most relevant for our
work. While the original presentation [23] lacked security proofs, Pointcheval and Stern [24], [25] closed
this gap by providing proofs in the (then) relatively new random oracle model [26], also introducing the
Forking Lemma. Abdalla et al. [27] indicated the minimal conditions for the underlying identification
scheme to prove Fiat-Shamir transformed signatures to be EUF-CMA secure. In 2016, Kiltz et al. [28],
[29] provided a concrete and modular security analysis of Fiat-Shamir signatures in both the single-user
and multi-user setting, closing the tightness gap of the reduction.

The treatment of the multi-user setting is especially interesting as in practical applications there exist
many different public keys for an adversary to attack. In 2002, Galbraith, Malone-Lee, and Smart [30]
considered security of signatures in this multi-user setting. They showed that if an adversary were to
attack N keys at once, its advantage can increase only at most by factor of N (this is that is often referred
to as the generic bound). Their second result claimed that for Schnorr-like signatures one can do even
better and achieve a tight reduction between single-user and multi-user security. Much later, Bernstein [31]
exposed a flaw in this tight proof that to this date could not be resolved. However, Bernstein [31] was
able to show that one can achieve a tight reduction between single-user security of Schnorr signatures
and multi-user security of Schnorr signatures with key prefixing. Key prefixing had been introduced
earlier by [32] in the context of key-substitution attacks, and also (controversially) claimed that it is not
necessary to actively mitigate key-substitution attacks for Schnorr signatures. In contrast, the designs of
Ed25519 signatures [1], [7] nevertheless employ key-prefixing. The paper by Kiltz et al. [28] shows that if
the underlying CID achieves random self-reducibility in the random oracle model, then a tight reduction
between multi-user and single-user security can be achieved without key prefixing. In Section 5.3, we
briefly discuss their multi-user security in light of the aforementioned results.

2.3 Computational proofs of systems that use Ed25519

Because of its performance and conjectured security, EdDSA’s Ed25519 instantiation over Edwards25519
has become one of the most popular digital signature schemes, appearing in innumerable applications and
protocols including TLS 1.3 [13], SSH [33], Tor, ZCash, and the Signal protocol [34].

Regarding such systems, there exists numerous security proofs which hold only when the deployed
digital signatures satisfy certain conditions. For example, Bhargavan et al. [14] developed the first
machine-checked cryptographic proof for TLS 1.3 draft-18 using the verification tool CryptoVerif, thereby
assuming that Ed25519-IETF meets EUF-CMA. Similarly, [15] proved the security of session resumption
in TLS 1.3 draft-05 for full handshakes and [16] proved the security of (a slightly modified version of)
the ephemeral Diffie-Hellman handshake of TLS 1.3 with unilateral authentication. Kobeissi, Bhargavan,
and Blanchet [35] analyzed a model of the Signal protocol in CryptoVerif assuming EUF-CMA security
of Signal’s X-Ed25519 scheme. However, none of these signature schemes have actually been proven to
achieve EUF-CMA security.

In 2014, SSH was proven to be secure even when the same signing key is used across multiple ciphersuites,
assuming that the underlying signature is strongly unforgeable [18]1. However, SSH implementations may

1The full version of the paper [36] explicitly uses the definition for strong unforgeability, even though both versions use a
“euf-cma” shorthand.
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use the originally-proposed version Ed25519-Original (e.g., [37]), which does not satisfy SUF-CMA. This
yields a counterexample in their security model: mauling a signature in an otherwise honest session allows
a session-key reveal on the peer, as the sessions no longer match. Thus, their proof does not apply as-is to
SSH implementations that use Ed25519-Original. Adding to the confusion, a recent work [19] claims that
the results on Schnorr signatures in prime order groups implies Ed25519 enjoys SUF-CMA and resistance
to key substitution attacks. We will see in Section 5.4 that this is not the case.

3 Preliminaries

In this section we will introduce the necessary notation and definitions for the remainder of the paper.
In particular, we review the Fiat-Shamir transform [23] which allows the transforms of passively-secure
(interactive) identification protocols into (non-interactive) signature schemes which are secure against
active adversaries. First, we start by fixing the notation used throughout this paper.

Notation

For an integer q, we denote by Zq the set {0, 1, . . . , q − 1}. For a bit string h and an integer i, we let
h[i] denote the i-th bit of h. For a point A on a curve and a bit string a, let A and a denote their
respective encoding. The algorithms in this paper run in probabilistic polynomial time (PPT), unless
stated otherwise, and we write y $←− A(x) for the probabilistic execution of algorithm A on input x with
output y. If A is a deterministic algorithm we write y ← A(x). Furthermore, AO(x) denotes that A has
access to the oracle O during its execution on input x. By pp we denote the public parameters of the
scheme and system. We assume that they are always known to the adversary A and thus omit pp from its
explicit input. For variables x, y, we denote by y ← x, the assignment of value x to y and by s $←− D we
denote the sampling of an element x from the probability distribution D; for simplicity, we denote the
uniform sampling of an element x from a set X by x $←− X. Security games Gsec-prop

Π,A (pp) describe the run
of an adversary A against the security property sec-prop of a cryptographic scheme Π parametrized by pp.
We write Gsec-prop

Π,A (pp) = 1 to mark the event in which A has won the game. We use 1 to represent the
Boolean value True, and 0 to represent False. Lastly, by JstatementK, we denote the Boolean evaluation of
statement.

3.1 Cryptographic Building Blocks

Our presentation of definitions follows the style of the textbook by Katz Lindell [38] with security defined
in the concrete setting which explicitly specifies the amount of time and resources needed (cf. [38, Sec. 3.1]).
We first introduce the notion of secure signatures schemes before introducing canonical identification
protocols.

Definition 1 (Signature scheme). A signature scheme S = (KGen,Sign,Vfy) is a triple of algorithms,
where KGen is called a key generation algorithm, Sign is called a signing algorithm, and Vfy is called a
verification algorithm.

Key generation KGen takes as input the public parameters pp and outputs a public key pk and a secret
key sk, i.e., (pk, sk) $←− KGen(pp).

Signing Sign takes as input a secret key sk as well as the message m ∈M to be signed and outputs a
signature σ, i.e., σ $←− Sign(sk,m).

Verification Vfy takes as input a public key pk, a signature σ and message m ∈M. It deterministically
outputs 1, i.e., 1← Vfy(pk, σ,m) if σ is a valid signature over m wrt. pk, else it outputs 0.

We call a signature scheme S = (KGen,Sign,Vfy) correct if for all (pk, sk) $←− KGen(pp) and all messages
m ∈M: 1← Vfy(pk,Sign(sk,m),m).

The standard notion for security of signature schemes is that of (single-user) existential unforgeability
under chosen message attacks. Intuitively, this guarantees that for a fixed public key, an adversary A
cannot generate a valid signature on a new message, for which the adversary has not seen a valid signature
before. A stronger definition of security is that of (single-user) strong unforgeability, which will also play a
role later in the paper. Here, the adversary is not restricted to forging signatures on new messages for a
fixed public key but may also generate a signature on a message on which he has seen (other) signatures.
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Both of these notions can then be transferred to the multi-user setting, where there is not just a single
public key generated by the challenger but multiple honestly generated keys. The adversary’s goal is then
to (existentially or strongly) forge a signature under any of these keys.

Definition 2 (EUF-CMA and SUF-CMA security). Let S = (KGen,Sign,Vfy) be a signature scheme and
let A be an algorithm. Consider the security games Geuf-cma

S,A and Gsuf-cma
S,A as defined in Fig. 1. We say

that a signature scheme S is (t, ε,QS)-EUF-CMA-secure or existentially unforgeable under chosen message
attacks, if for any adversary A running in time at most t, making at most QS queries to the signing
oracle, the probability Pr

[
Geuf-cma
S,A (pp) = 1

]
≤ ε.

Analogously, we say that S is (t, ε,QS)-SUF-CMA-secure or strongly unforgeable under chosen message
attacks.

Geuf-cma
S,A (pp):

1 LSign ← ∅
2 (pk, sk) $←− KGen(pp)

3 (m?, σ?) $←− AOSign (pk)

4 return JVfy(pk, σ?,m?) ∧m? 6∈ LSignK

OSign(m):

5 σ $←− Sign(sk,m)

6 LSign ← LSign ∪ {m}
7 return σ

Gsuf-cma
S,A (pp):

1 LSign ← ∅
2 (pk, sk) $←− KGen(pp)

3 (m?, σ?) $←− AOSign (pk)

4 return JVfy(pk, σ?,m?) ∧ (m?, σ?) 6∈ LSign K

OSign(m):

5 σ $←− Sign(sk,m)

6 LSign ← LSign ∪ {(m,σ)}

7 return σ

Figure 1: EUF-CMA-security (left) and SUF-CMA-security (right) of signature scheme S = (KGen,Sign,Vfy)
with differences highlighted in gray.

As mentioned before, secure signature schemes can be built from identification protocols. Identification
protocols allow a so-called prover that holds a secret key sk to authenticate to a verifier who holds the
corresponding public key pk. Here we only consider so-called canonical identification protocols, which
consist of three moves: The prover P sends a commitment com to the verifier V, V then samples a random
challenge ch and sends it to P. Finally, P sends a response rsp to V, whose decision is then a deterministic
function of their conversation (com, ch, rsp) and P’s public key.

Definition 3 (Canonical identification protocol). A canonical identification protocol CID = (KGen,P =
(P1,P2),V = (V1,V2)) is a triple of algorithms:

Key generation KGen takes as input the public parameters pp and outputs a public key pk and a secret
key sk, i.e., (pk, sk) $←− KGen(pp).

The prover P = (P1,P2) is a two-stage algorithm that takes as input a secret key sk. P1 takes as input
sk and outputs a commitment com as well as some state st. P2 takes as input the challenge ch (sent
by the verifier V1) as well as state st and outputs a response rsp.

The verifier V = (V1,V2) is a two-stage algorithm that is initialized with a public key pk. V1 selects a
random challenge ch and sends it to the prover. V2 takes as input the public key, the com, ch and
rsp and outputs 1 if it accepts the conversation (com, ch, rsp) for pk or 0 if it rejects.

For all (pk, sk) $←− KGen(pp), we require that if P(sk) and V(pk) interact honestly within an instance of
the protocol, then the verifier accepts. I.e., for (com, st) $←− P1(sk), ch $←− V1, and rsp $←− P2(com, ch, st),
we have verifier Pr[1← V2(pk, com, ch, rsp)] = 1.

We sometimes denote the interactive run of the identification protocol between the prover and the verifier
by P � V, or, where appropriate, by P(sk) � V(pk). We write Trans [P(sk) � V(pk)] = (com, ch, rsp) to
denote a conversation resulting from the interaction between P and V and identify V2(pk, com, ch, rsp)
with the final decision ∈ {0, 1} of the verifier. If 1← V2(pk, com, ch, rsp), we say that (com, ch, rsp) is an
accepting conversation for pk or simply a valid conversation.

Intuitively, the basic security of identification protocols is defined in terms of the inability of an
adversary A to impersonate the prover towards an honest verifier without knowledge of the prover’s secret
key. This can be in the setting where A only has access to the public key of the prover (called IMP-KOA
security), or in the stronger setting, where A can observe honest conversations between the prover and
the verifier (IMP-PA security):
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Definition 4 (IMP-KOA and IMP-PA security). Let CID = (KGen,P,V) be a canonical identification
protocol and let A be an algorithm. Consider the security game GIMP-KOA

CID,A as defined on the left in Fig. 2. We
say that CID is (t,ε)-secure against impersonation under key-only attacks, or simply (t,ε)-IMP-KOA-secure,
if for any algorithm A running in time at most t the probability Pr

[
GIMP-KOA
CID,A (pp) = 1

]
≤ ε.

Similarly, consider the game GIMP-PA
A as defined on the right in Fig. 2. We say that CID is (t, ε,QT )-

secure against impersonation under passive attcks, or simply (t,ε,QT )-IMP-PA-secure, if for any algo-
rithm A running in time at most t and with at most QT queries to the oracle OTrans, the probability
Pr
[
GIMP-PA
CID,A(pp) = 1

]
≤ ε.

GIMP-KOA
CID,A (pp):

1 (pk, sk) $←− KGen(pp)

2 ch $←− V1

3 (com, st) $←− A(pk)

4 rsp $←− A(ch, st)

5 return JV2(pk, com, ch, rsp)K

GIMP-PA
CID,A(pp):

1 (pk, sk) $←− KGen(pp)

2 ch $←− V1

3 (com, st) $←− A(pk)

4 rsp $←− A OTrans (ch, st)

5 return JV2(pk, com, ch, rsp)K

OTrans:

6 return Trans [P(sk) � V(pk)]

Figure 2: IMP-KOA and IMP-PA security of CID = (KGen,P,V) against impersonating adversaries A with
differences highlighted in gray.

To argue about the security of canonical identification protocols, it is useful to talk about the min-
entropy of an identification scheme as well as the notion of honest-verifier zero-knowledge or HVZK, for
short. The former notion captures the unpredictability of commitments in the protocol, whereas HVZK
formalizes the property that an adversary A gains no additional knowledge from honest conversations
P � V, since A could generate such transcripts on its own.

Definition 5 (Min-entropy of identification scheme). We say that a canonical identification protocol
CID = (KGen,P,V) has α bits min-entropy if the probability over the choice (pk, sk) $←− KGen(pp), that
the commitment generated by P1(sk) is from a distribution with at least α bits of min-entropy, is at least
1− 2α. Recall that a discrete random variable X has α bits of min-entropy, denoted by H∞(X) := α, if
max
x

(Pr[X = x]) = 2−α.

Definition 6 (Honest-verifier zero-knowledge). Let CID = (KGen,P,V) be a canonical identification
protocol. We say that CID is εzk-honest-verifier zero-knowledge, or εzk-HVZK for short, if there exists a
PPT algorithm Sim, called the simulator, such that for all (pk, sk) $←− KGen(pp), the outputs of Sim(pk)
can only be distinguished from real conversations P(sk) � V(pk) with probability at most εzk.

The schemes discussed in this paper will have two important properties. They are commitment
recoverable, which means that commitments can be efficiently and publicly computed from the public key,
the challenge, and the response. Furthermore, they have (computationally) unique responses, meaning that
for a fixed instance of the protocol and commitments and challenges, there exists at most one response
such that the verifier will accept the conversation (or a second response is computationally infeasible to
find). More formally:

Definition 7 ((Computationally) unique responses CUR). Let CID = (KGen,P,V) be a canonical
identification protocol. We say that CID has εcur-computationally unique responses or CUR, if for any
(pk, sk) $←− KGen(pp), com $←− P1(sk) and ch $←− V1 the probability of finding two responses rsp and rsp′

such that V2(pk, com, ch, rsp) = 1 and V2(pk, com, ch, rsp′) = 1 is at most εcur. If εcur = 0 we say that CID
has unique responses.

3.2 The Fiat-Shamir Transform

Finally, we are ready to show introduce the transform from secure identification protocols to secure
signature schemes. In this work, we follow the approach by Abdalla et al. [27] when applying the Fiat-
Shamir transform, i.e., we start from a canonical identification protocol that is secure against impersonation
under passive attack and model the hash function as a random oracle (cf. Section 3.3) to show the
existential unforgeability of the resulting signature scheme.
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Let CID = (CID.KGen,P,V) be an IMP-PA-secure canonical identification protocol and let H :
{0, 1}? → {0, 1}λ be a cryptographic hash function with output length λ modeled as a random oracle.
Then the signature scheme FS [CID,H] = (FS.KGen,Sign,Vfy) constructed as described in Fig. 3 is
existentially unforgeable under chosen message attacks.

FS.KGen(pp):

1 (pk, sk) $←− CID.KGen(pp)

2 return (pk, sk)

Vfy(pk,m, σ):

8

return JV2(pk, com, ch, rsp)K

Sign(sk,m):

3 (com, st) $←− P1(sk)

4 ch $←− H(com,m)

5 rsp $←− P2(ch, st)

6 σ ← (com, ch, rsp)

7 return σ

Figure 3: Signature scheme FS [CID,H] = (FS.KGen,Sign,Vfy) resulting from the (transcript variant of)
Fiat-Shamir transform applied to the canonical identification protocol CID = (CID.KGen,P,V).

Note that there are different variants of the Fiat-Shamir transform in terms of how the signatures are
constructed. The transform shown in Fig. 3 is of the transcript variant as used, e.g., by Pointcheval and
Stern [25], where the signature consists of the entire conversation of the ID scheme.

Schnorr signatures as described in Appendix A are of the challenge variant where, the signature consists
only of the challenge and the response, i.e., σ ← (ch, rsp). This requires that there exists an algorithm
that can reconstruct the commitment com from the public key, the challenge, and the response. Further
signatures that are of the challenge variant are the original work by Fiat and Shamir, GQ signatures [39]
and Okamoto signatures [40]. An in-depth treatment of these variants, including a third variant, the
commitment variant, can be found in Backendal et al. [41]. As we will later see, Ed25519 signatures are a
deterministic variant of Schnorr signatures but in the commitment-variant of the Fiat-Shamir transform.
In order to make Fiat-Shamir signatures as described in Fig. 3 deterministic, P1 is derandomized by using
H(sk,m) as randomness during commitment generation.

3.3 The Random Oracle Methodology

When applying the Fiat-Shamir transform, we do this in an idealized model called the random oracle
model. This model was first introduced by Bellare and Rogaway [26] and enabled security proofs for many
efficient schemes that previously had eluded the provable security paradigm. It does so by representing a
hash function in a cryptographic scheme as an idealized random function (the random oracle). With this
idealization in place, an adversary can only evaluate the hash function H on input x, if it queries this
random oracle on x. It is no longer able to simply evaluate the hash function locally. In particular, this
allows us in proofs to “peek” at the adversary’s inputs to the hash function, a property of the model that
is often referred to as extractability. When queried on input x, the random oracle then returns uniformly
random answers from the range of H for each input. For each new query a fresh uniformly random output
is sampled, but just like for real hash functions, repeated queries are answered consistently, i.e., the same
inputs yield the same outputs. In the Fiat-Shamir transform another (optional) property of the random
oracle is used, namely its programmability : if the adversary queries some input x for the first time, we can
set the value H(x) to a specific output value y of our choosing as long as it is correctly distributed and
does not collide with previously set output values.

Note that when our proofs are in the random oracle for hash function H, the security notions introduced
previously get the extra query parameter QH of the maximal number of queries the adversary makes to
the random oracle. For example, for a signature scheme in the random oracle model we will speak of
(t, ε,Qs, QH)-EUF-CMA security instead of (t, ε,Qs)-EUF-CMA security.

3.4 Elliptic Curves

Lastly we briefly recap the main theory of elliptic curves relevant for this paper. For a more in-depth
treatment of specific concepts and constructions, we refer the interested reader to, e.g., [42], [43]. We
begin by defining elliptic curves over a finite field Fq, which are the most common types of elliptic curves
in cryptography:

Definition 8 (Elliptic curve). Let q ≥ 5 be a prime. An elliptic curve E defined over the finite field Fq
is an equation of the form y2 = x3 + ax+ b. with a, b ∈ Fq such that 4a3 + 27b2 6= 0.
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Most of today’s cryptography is based on the mathematical concept of a group. In elliptic-curve
cryptography, the group in question is the set of points on the elliptic curve E together with an appropriately
defined group operation.

Definition 9 (Points on E). Let E(Fq) be the set of pairs (x, y) ∈ Fq × Fq satisfying the elliptic curve
equation. Let O denote a special point, the so-called point at infinity. Then the set E(Fq) := {(x, y)|x, y ∈
Fq ∧ y2 = x3 + ax+ b} ∪ {O} denotes the points on the elliptic curve E.

With an adequately defined addition operation “+” E(Fq) forms a group with neutral element (0, 1).
The multiplication of a curve point P with an integer n is defined as adding P n-times to itself, i.e.,
nP := P + P + · · ·+ P︸ ︷︷ ︸

n times

where 0P := O.

For simplicity, we often write E instead of E(Fq) if the underlying field is clear from context.

Further definitions

The number of points on an elliptic curve E over Fq is called the order of the curve and is commonly
denoted by either |E(Fq)| or #E(Fq). Note that if q is prime, then (E(Fq),+) is a finite group. We call
an element B that generates a cyclic subgroup the base point and write P ∈ 〈B〉 to indicate that P is
an element of the subgroup generated by B. For an element B, we write #B to denote its order, i.e.,
the smallest integer n such that nB = O. If B is the base point of a subgroup of E(Fq), we define the

cofactor to be the integer
|E(Fq)|

#B .

3.4.1 Different Forms of Curves

There exist multiple different forms of elliptic curve equations, which may be in Weierstraß, Montgomery or
Edwards form. We will not go into too much detail here but note that different formalizations offer differing
advantages and there exist transformations between some of the forms. For example, every Montgomery
curve can be written in Weierstraß form, whereas the opposite is not true and while Montgomery curves
offer very efficient scalar multiplication via Montgomery ladder, Edwards curves achieve more efficient
point addition.

Most relevant for this paper are twisted Edwards curves [44] which are defined over a the finite field Fq
with q > 3 prime with additional parameter a (the twist) via the curve equation ETEd : ax2+y2 = 1+dx2y2,
where a, d ∈ Fq with a, d 6= 0 and a 6= d.

Addition “+” on ETEd(Fq) is defined as follows. Let P = (x1, y1), Q = (x2, y2) ∈ ETEd(Fq), then
P +Q = (x3, y3) is defined as

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
, y3 =

y1y2 − ax1x2

1− dx1x2y1y2
.

Note that if a is a square in Fq and d is non-square in Fq, then the addition operation is complete and
(ETEd(Fq),+) is a group with neutral element (0, 1). The inverse −P of a point P = (x, y) ∈ ETEd(Fq) is
(−x, y).

The twisted Edwards curve E underlying the Ed25519 constructions, which we discuss in more detail
in the next section, is birationally equivalent to curve25519 introduced by Bernstein [45], which is of the
Montgomery form and due to its efficient arithmetic implementation yields very performant constructions.
curve25519 is defined over the finite field Zq with q = 2255−19 prime via the curve equation curve25519:
y2 = x3 + 486662x2 + x.

3.4.2 The Elliptic Curve Discrete Logarithm Problem

The security of Ed25519 signatures will ultimately be reduced to a common complexity-theoretic hardness
assumption in cryptography: the discrete logarithm problem.

Definition 10 (ECDLP). Let E be an elliptic curve defined over a finite field Fq and let B ∈ E(Fq) be a
point of order n. Let P ∈ 〈B〉. Then the elliptic curve discrete-log problem is to find an integer 0 ≤ k < n
such that P = kB. We say that E is (t, ε)-hard on E if for any algorithm A running in time at most t
the probability of solving ECDLP is at most ε.
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4 Ed25519 Signatures

In this section we describe how the Ed25519 [1], [7] signature scheme operates in detail, unravel its
relationship with Schnorr signatures and why proofs for Schnorr are not directly applicable to Ed25519.
We also describe several of the proposed variants of Ed25519, which target stronger security properties
than provided by the original formulation.

We define the generic signature scheme Ed25519 in Fig. 4. Several aspects of the generic scheme
description, highlighted with colour in Fig. 4, are replaced in alternative specifications. We summarise
these variants in Table 2 and discuss them further below. The various parameters common to all variants
are listed in Table 1. These parameters include those necessary to define the elliptic curve E over which
the signature scheme operates, the hash function used, and the encodings of curve points. We note an
oft-omitted property of the encoding scheme, field elements (used to represent the y coordinate of each
elliptic curve point) are encoded as 255-bit integers but the size of the field is q = 2255 − 19, yielding
a larger space of encodings than actual elements. Similarly, S is expected to be a 255-bit integer, but
is necessarily reduced mod L prior to use in the signature verification. These details turn out to have
substantial consequences when showing security of the scheme and we will highlight this in the respective
proofs. In places, the original presentation [1] and its accompanying source code disagree on the necessary
tests, e.g. the range of L. As the source code is the basis of the most popular Ed25519 implementations,
we treat it as authoritative.

4.1 Variants of Ed25519

Recall that we refer to the original, and currently most widely deployed formulation of Ed25519 as
Ed25519-Original. Several alternative specifications have also been published which largely maintain wire
compatibility with Ed25519-Original, but substantially alter the security properties of the scheme. In
particular, variants have been published by the IETF [7], NIST [46], and the ZCash Foundation [9].
Furthermore, LibSodium [8], one of the most popular cryptographic libraries, uses a set of additional
checks that render it a de-facto standard.

Another variant is the use of Ristretto encodings [47] for Ed25519. Whilst this appears promising, the
draft RFC [48] and implementations [49] are still under active development and we do not analyse them
in this document.

We note that the Signal Foundation [34] have also proposed a variant with enhanced resistance to
side-channel attacks and fault resistance. However, in all other aspects this variant operates similarly to
Ed25519-Original and consequently we do not treat it separately. The variants in Table 2 are divided up
into the following categories:

4.1.1 Pre-Hashing Variants

The IETF-standardised RFC 8032 [7] and the NIST draft standard [46] support a pre-hashing mode for
their variants. This mode allows implementations to sign large messages whilst only needing to perform a
single pass over the message. The signed message value m is replaced with the pre-hash PH(m), where PH

Parameter Description Instantiation for Ed25519

q The finite field size q 2255 − 19

n Secret scalars are n + 1-bits 254

b The public key bit-length 2b−1 > q 256

Enc/Dec A (b− 1)-bit encoding of field elements Zq, little-endian

a, d Curve parameters in Zq −1,−121665/121666

B An generator of the prime order subgroup E (x, 4/5), x > 0

c The log2 of curve cofactor c = 3

L The generator order LB = 0 and 2cL = #E 2252 + 27742 . . . 8493

H Secure hash function producing 2b-bit output SHA-512

E Curve equation in Twisted Edwards form x2 + y2 = 1 + dx2y2

Table 1: Parameters for Ed25519 signatures as described in Fig. 4 on the following page.
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KGen(pp):

1 k $←− {0, 1}b

2 h← H(k)

3 s← 2n +
∑n−1

i=c 2ih[i]

4 A← sB

5 return (A, k)

Sign(k,m):

6 h← H(k)

7 s← 2n +
∑n−1

i=c 2ih[i]

8 r ← H(h[b], . . . , h[2b− 1],m)

9 R← rB

10 S ← (r + H(R,A,m)s) mod L

11 return σ = (R,S)

Vfy(A, σ = (R,S),m):

12 Check A,R ∈ E

13 Check S ∈ {0, ..., 2b − 1}

14 return Checks succeed ∧ J2cSB = 2cR+2cH(R,A,m)AK

Figure 4: Generic description of the Ed25519 signature scheme algorithms KGen, Sign, and Vfy. Note
that highlighted lines are only present in some variants, yielding the different schemes Ed25519-Original,
Ed25519-IETF, and Ed25519-LibS listed in Table 2.

Ref. Name Variations CMA Key-
Subst.

MBS Notes

[50] Ed25519-Original None EUF-
CMA
(Thm 3)

S-UEO
(Thm 5)

- The original definition and source code
implementation

[7] Ed25519-IETF S ∈ {1, . . . , L− 1} SUF-CMA
(Thm 4)

S-UEO
(Thm 5)

- Standardised by IETF and
proposed for NIST standard

[8] Ed25519-LibS S ∈ {0, . . . , L− 1} and

A,R ∈ E ∧#R = L ∧#pk = L

SUF-CMA
(Thm 4)

M-S-UEO
(Thm 7)

MBS
(Thm 6)

Used by LibSodium and related libraries

Table 2: Ed25519 Schemes. To form each variant, replace the appropriate coloured section in Fig. 4 with
the text presented here. EUF-CMA: Existential Unforgeability; SUF-CMA: Strong Unforgeability; S-UEO
and M-S-UEO denote resilience against key substitution attacks; MBS: Message Bound Security, ensuring
a signature verifies a unique message, even for malicious keys.

is a hash function. The IETF specification explicitly recommends against the use of this mode, stressing
it is included only to support legacy signing interfaces. Consequently, we do not discuss it further.

4.1.2 Bounds Checking Variants

Some variants of Ed25519 require an additional check on the received alleged signatures during verification.
In particular, this is enforced by the IETF standard [7] and proposed in the NIST draft standard [46].
In these variants, implementers are required to reject signatures whose S parameter is larger than L,
where L is the order of the prime-order subgroup. Contrastingly, Ed25519-Original implementations merely
check S is a 255-bit integer. We refer to such implementations as Ed25519-IETF. This is claimed to
have a substantial impact and achieve strong unforgeability. We investigate this further in Section 5
but note that, contrastingly to Ed25519-IETF variants, Ed25519-Original implementations simply reduce
the received signature element S mod L during signature verification, thereby immediately ruling out
SUF-CMA security.

4.1.3 Point and Bound Checking Variants

Some popular implementations of Ed25519, such as Ed25519-LibS LibSodium [8], perform the bounds
check on S values in addition to point validation. Specifically, Ed25519-LibS ensures that received elements
are canonically encoded and have order L. This check means that certain R values, which are low order
points on the curve, are rejected during signature verification as well as low order public keys. Additionally,
R values and public keys which have y-coordinates above q are also rejected, ensuring the encoding of
each element is unique. We refer to such schemes as Ed25519-LibS and see the impact of this decision in
Section 5.4.
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4.2 Differences from Schnorr Signatures

Ed25519 has several notable features which differentiate it from traditional Schnorr signatures. The original
Schnorr signatures scheme and its underlying identification protocol can be recalled in Appendix A.
In particular, private keys in Ed25519 are clamped to a specific format, signature nonces are chosen
deterministically, and signed messages are prefixed with public keys. As indicated before, these differences
impact the security of the overall signature scheme and our analysis. We next discuss these alterations in
more detail.

4.2.1 Group Structure

Ed25519’s curve is of order 8L for L a large prime defined in Table 1. Contrastingly, Schnorr signatures
are typically constructed over prime order groups and implementations are assumed to reject the identity
element.

Non-prime order groups contain more complex group structure than prime order groups. In particular,
non-prime order groups entail the presence of additional subgroups, whose elements lie outside the intended
prime order subgroup. Performing group operations on these elements can lead to surprising results,
including confinement under exponentiation, where they map to a small range of elements and leakage,
where performing exponentiation with a private scalar leaks information about that scalar.

Proofs about systems defined over prime order groups do not necessarily hold if the system is
implemented with non-prime order groups, even when the proof does not explicitly rely on the prime
order structure. For example, proofs typically assume that any group element can be written as the
exponentiation of a fixed generator, or that exponentiation of an element is uniformly distributed over the
group. In the non-prime order case, neither assumption is true in general.

4.2.2 Group Element Checks

The question of how values should be decoded and parsed is often omitted from academic papers.
Ed25519-Original and Ed25519-IETF are of particular interest in this regard as it is explicitly argued that
elements do not need to be checked to ensure they belong to the prime order subgroup. This means any
group element, including small order elements, the identity element and elements of 8L order will be
accepted. We later discuss variants that mandate this check in Section 4.1.3.

Interestingly, the Diffie-Hellman function X25519 also omits checks that ensure elements belong to the
prime order subgroup, which has lead to attacks on protocols [51]. X25519 does not reject elements on
the twist, but produces a well defined result for any bit-string of the correct size.

However, Ed25519-Original explicitly mandates that points are checked to ensure they do belong to E,
meaning that points on the twist are rejected. This is checked during the decompression of received points
prior to signature verification. We assume all implementations uphold this requirement as otherwise point
addition during signature verification is not necessarily defined.

4.2.3 Private Key Clamping

In part due to the non-prime order nature of the curve and the lack of group element validation, Ed25519
mandates the use of key clamping which involves the bitwise manipulation of private keys prior to use
in signing. The rationale behind this requirement has been the subject of much debate [52], [53]. The
original Ed25519 paper defines private keys, without discussion, such that a high bit is always set and
three low bits are cleared. All subsequent variations have kept the same requirement.

There are two rationales offered for the use of clamping:

• Setting the high bit ensures that some deficient point multiplication implementations, which have
variable execution time with respect to the position of the highest set bit in the scalar, become
constant time [54].

• Setting the lows bits ensures that the scalar is a multiple of the cofactor. This ensures that the
result of applying the scalar to any group element results in an element in the prime order subgroup.
This avoids key leakage attacks, although these attacks are not relevant for signature schemes as
private key are never applied to adversary provided group elements. However, as implementers may
wish to re-use keys in both X25519 and Ed25519, this choice provides defence in depth.

As we will see later, the use of clamping somewhat complicates our security proofs. This is because not
every element in the prime order subgroup is also a valid public key as produced by the key generation
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algorithm. Consequently, when providing reductions which must manipulate public keys, e.g. blinding
them, there is a small chance an invalid public key is produced and the reduction must abort.

4.2.4 Key Prefixing

Unlike traditional Schnorr signatures, Ed25519 uses key prefixing, where the signature scheme, prior to
signing or verification, prepends the public key to the message. This choice has also been the subject of
much debate [28], [31], [55], [56] as to whether it provides a substantial improvement in security. Much
of the discussion has revolved around multi-user security and whether key prefixing improves security
in the presence of an adversary who is satisfied to break some subset of witnessed multiple keys, rather
than one key in particular. We discuss the multi user security of Ed25519 in more detail in Section 5.3.
It transpires that key prefixing also has benefits when considering less well known multi user security
properties such as message key substitution attacks, as we show in Section 5.4.

4.2.5 Deterministic Nonce Generation

Signature schemes require the use of a nonce with each signed message. This has historically an area
prone to subtle implementation mistakes leading to critical real world vulnerabilities [57]. Ed25519 uses
deterministic signing which removes the need for fresh random numbers during the signing process. This
choice does not lead to any particular consequences for our security analysis since we model the key
derivation function as a random oracle. However, it is well known not to reduce security [58].

5 The Security of Ed25519

We now present our security results for Ed25519-Original and Ed25519-IETF signatures. As suggested by
earlier works that informally discuss the security of these schemes, we use the Fiat-Shamir approach.
However, as elaborated in Section 4.2, there exist marked differences between Schnorr signatures and
Ed25519 signatures such that the established security results for Schnorr do not hold without careful
adjustment to the Ed25519 setting. We close this gap by proving both the existential unforgeability
of Ed25519-Original and show that due to the additional check on the value S, Ed25519-IETF (and
Ed25519-ZCash,Ed25519-LibS) achieve strong unforgeability.

We recall that in the following, E refers to the twisted Edwards curve underlying Ed25519 (cf. Table 1)
and analogously E(Zq) denotes the set of elements on the curve which forms a group with point addition,
as defined in Section 3.

5.1 Existential Unforgeability of Original Ed25519

We start by showing EUF-CMA security of Ed25519-Original specifically by means of the Fiat-Shamir
transform. We first define an appropriate canonical identification protocol CID in Fig. 5 to which the
transform can be applied, then show that CID satisfies the necessary prerequisites in Theorem 1 and 2 and
finally apply the transform in Theorem 3 to establish existential unforgeability of the resulting signature
scheme. We note that with the additional check in Line 16 of CID, the proof of EUF-CMA security directly
carries over to Ed25519-IETF and with the further check described in Table 2 also to Ed25519-LibS.

To get from CID in Fig. 5 to the Ed25519-Original in Fig. 4, we apply a variant of Fiat-Shamir, denoted
by FSkpdet, that captures deterministic signing and key-prefixing.

Deterministic signing is achieved by deterministically deriving the randomness r of P1 in the signing
algorithm via r ← H(h[b], ..., h[2b − 1],m), where m is the message to be signed, and, as before, h[i]
denotes the i-th bit of h. The de-randomization of signing by computing the randomness deterministically
as some H(sk,m) is common and in our case does not impact the security of the resulting signatures
assuming H is at least a pseudorandom function (cf., e.g., [58]).

Recall that key-prefixing, on the other hand, describes the derivation of the challenge ch by the prover
during signature generation as H(R,A,m) instead of H(R,m), i.e., by also including the public key into
the hash function. It will become clear from the proof that this additional input to the random oracle H
does not impact security, since this solely relies on R being sufficiently unpredictable in honest signature
generations.
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KGen(pp):

1 k $←− {0, 1}b

2 h← H(k)

3 s ← 2b−2 +∑b−3
i=3 2ih[i]

4 A← sB

5 return (A, k)

P1(k):

6 h← H(k)

7 s ← 2b−2 +∑b−3
i=3 2ih[i]

8 st← s

9 r $←− {0, 1}2b

10 R← rB

11 return (R, st)

V1:

12 ch $←− {0, 1}2b

13 return ch

P2(ch, st):

14 S ← (r + ch · st) mod L

15 return S

V2(A,R, S, ch):

16 Check S ∈ {1, . . . , L− 1}

17 return J8SB = 8R+ 8chAK

Figure 5: Canonical identification protocol CID = (KGen,P = (P1,P2),V = (V1,V2)) underlying
Ed25519-Original in Fig. 4. The check in Line 16 is only present in other versions, such as Ed25519-IETF.

5.1.1 Security of the underlying identification protocol

We show that the underlying CID is secure against impersonation attacks by passive adversaries (IMP-PA
security, cf. Definition 4). We do this in a two-step process by first showing in Theorem 1 that CID is
secure against impersonating adversaries that only have access to the public key (IMP-KOA security). To
lift this result to the setting of passive impersonating adversaries, we then only need to be able to simulate
queries to the oracle OTrans, which can be achieved by the HVZK property of CID. Thus, in Lemma 1 we
show that CID is HVZK and, combined with the IMP-KOA security, we achieve IMP-PA security.

Theorem 1 (CID is IMP-KOA secure). Let CID = (KGen,P,V) be the identification protocol as de-
fined in Fig. 5. If ECDLP is (t, εecdlp)-hard on E(Zq), then CID is (t′, ε′)-IMP-KOA secure, where
t ≈ 2t′ and 1

8ε
′ (ε′ − 1

L

)
≤ εecdlp.

Proof Sketch. The full proof can be found in the Appendix B.1 We notice the first marked difference to
proofs of Schnorr signatures. While in the latter, we have a straightforward reduction to ECDLP using the
rewinding technique [24], we now need to account for the secret key clamping in Ed25519. The clamping
causes that an element A ∈ E(Zq) is not necessarily a valid public key output of KGen and thus cannot
be relayed by the reduction to the IMP-KOA adversary A without further modification, resulting in the
loss of a factor of 8. As in the Schnorr setting, the reduction exploits the property that from two valid
conversations (R?, ch1, S1) and (R?, ch2, S2) for some public key A′ with ch1 6= ch2 (mod L), we can
extract the value s′ = S1−S2

ch1−ch2 mod L such that A′ = s′B. The Forking Lemma [24] ensures that two such

conversations can be found with probability at least ε′(ε′ − 1
L ), where ε′ is the success probability of A.

We note the hardness of ECDLP on E(Zq) as used in Ed25519 carries over from the respective hardness
on curve25519 due to their birational equivalence [6], [7].

As mentioned before, we now lift this result to show that an adversary cannot impersonate the prover,
even when given access to an oracle OTrans, that outputs valid accepting conversations Trans [P � V]. This
is due to the fact, that the underlying canonical identification protocol CID is εzk-HVZK, i.e., there exists
a simulator Sim which takes as input only the public key pk outputs conversations (com, ch, rsp) which are
εzk-indistinguishable from real conversations P(sk) � V(pk). The simulator Sim(pk) for CID is defined
in Fig. 6 and exploits the fact commitments can be recovered from the public key, the response and the
challenge.

Lemma 1. Let CID = (KGen,P,V) be as defined in Fig. 5. Then CID is HVZK with εzk = 0.

The proof can be found in Appendix B.2

Theorem 2 (CID is IMP-PA secure). Let CID = (KGen,P,V) be the εzk-HVZK and (t, ε)-IMP-KOA-secure
identification protocol as defined in Fig. 5. Then CID is (t′, ε′, QT )-IMP-PA-secure with t ≈ t′and ε′ ≤ ε.
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Sim(A):

1 ch $←− {0, 1}2b

2 s̃ $←− {0, 1}2b

3 S ← s̃ mod L

4 R← (SB − chA) mod L

5 return (R, ch, S)

Figure 6: Simulator Sim for CID.

Proof. We have shown in Lemma 1 that CID is εzk-HVZK with εzk = 0. Since Sim(pk) uses public
information only, any resulting conversations could also have been computed by A itself. A therefore
learns nothing from the interaction of P � V via OTrans (replaced by Sim). Thus, for canonical identification
protocols that are HVZK, IMP-PA security is equivalent to IMP-KOA security and we have ave ε′ ≤ ε and
t ≈ t′ plus the running time of the Sim at most QT times. Since t is dominated by t′, we simply write
t ≈ t′.

5.1.2 Applying the Fiat-Shamir transform

Now that we have shown that the identification protocol satisfies the prerequisites for the Fiat-Shamir
transform, we can apply the transform to show that Ed25519 is existentially unforgeable. We state the
theorem in terms of the most basic version Ed25519-Original. For Ed25519-IETF (and thus, Ed25519-LibS
and Ed25519-ZCash) the proof below only needs to account for the difference in the verification algorithm.

Theorem 3 (Ed25519-Original is EUF-CMA secure.). Let CID = (KGen,P,V) be the (t, ε,QT , (QH +Qκ +
Qβ))-IMP-PA-secure identification protocol as defined in Fig. 5 with H : {0, 1}? → {0, 1}2b modeled as a

programmable random oracle and α bits min-entropy. Then Ed25519-Original = FSkpdet[CID,H] as defined
in Fig. 4 is (t′, ε′, QS , (Q

′
H +Qκ +Qβ))-EUF-CMA secure, where

t ≈ t′ and ε′ ≤ Q′H · (ε+QSQ
′
H2−α +Qκ2−b)

for QS = QT and Q′H = QH + 1.

Proof. In the following we assume without loss of generality, that the adversary A never queries the same
message twice to the oracle OSign, since Ed25519-Original is deterministic and thus A does not gain any
advantage in doing so.

Assume there exists a (t′, ε′, QS , (Q
′
H+Qκ+Qβ))-adversary A against the unforgeability of the signature

scheme Ed25519-Original. We show that this immediately implies a successful (t, ε,QT , (QH +Qκ +Qβ))
adversary B against the IMP-PA security of the underlying identification scheme CID. The reduction B
receives as input a public key A. B then runs A on input A as follows:

Random oracle queries of the form κ: Let κ be a b-bit string. Let Qκ be the maximum number of
queries of the form κ that A makes to H. The reduction B simply forwards these queries to H and
returns the answer to A.

Random oracle queries of the form (β,m): Let β be a bit string of length b and let Qβ be the
number of queries of the form (β,m) that A makes to H. Again, B simply relays these queries
between H and A.

Random oracle queries of the form (com, A,m): Let Q′H be the (maximal) number of queries of this
form that A makes to the random oracle H. B guesses the query i ∈ {1, 2, . . . , Q′H} for which A will
eventually output the signature forgery, resulting in a loss of a factor Q′H.

For every of the other QH = Q′H − 1 queries j ∈ {1, 2, . . . Q′H} with j 6= i to H, B simply relays the
queries between A and H.

When the adversary A asks the i-th query, say on (com′, A,m′), B forwards com′ as its commitment
to its own challenger. The challenger will then send a challenge ch? $←− {0, 1}2b to B, which B returns
as response to A.

Signing queries: For every of the QS signing queries of A, B runs its own OTrans oracle to obtain an
accepting conversation (R, ch, S). In order for (R,S) to be a valid signature on m, B must ensure
that ch = H(R,A,m), i.e., the reduction programs the random oracle on these values to return ch.
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Note that for each commitment value R that was output by OTrans, the probability that the value
H(R,A,m) had been set by a previous query of A to the random oracle H, and thus that A could
detect the inconsistency in the patched random oracle, is upper bounded by Q′H2−α, where α is the
min-entropy of the identification scheme. The distribution of commitments has α bits of min-entropy

for α = − log2

(
d 22b−1

L e · 2−2b
)

.

If this happens, the reduction B aborts, the probability of which is thus upper bounded by QSQ
′
H ·2−α.

Furthermore, note that this also implies that the value R provided by the simulation via OTrans

is with high probability different from the deterministic value R′ with R′ = r′B that would be
generated in the real signing process of the message m with secret key k belonging to the public key
A. However, A is not able to compute the deterministic commitment value R′ by itself unless it can
guess the correct value k to determine h[b], ...h[2b− 1] of h← H(k) and thus r′, the probability of
which is bounded by Qκ2−b.

Note that it does not help A in detecting the simulation to guess the values h[b], ...h[2b−1], as A has
no way of checking that these are the correct values leading to the “real” r′ without also guessing k.

Existential Forgery: At some point A terminates with a forgery output (m?, σ? = (R?, S?)) with
R? = com′ and m? = m′. If this is not the case, B aborts with probability 1

Q′
H

since it has wrongly

guessed the index i for which the forgery will take place. Assuming this is a valid forgery in the
EUF-CMA game, it holds that m′ has not been queried to OSign. In particular this means that the
output of H(com′, A,m′) has not been re-programmed in A’s view by B to a value other than ch?.
Furthermore, V2(A, com′, ch?, S?) = 1 holds such that when B forwards S? to its own challenger as
final output of its game, B will also be successful.

The running time t of B is that of A plus the time it takes to query the random oracle H (Q′H+Qκ+Qβ)
times, the time it takes to query its challenger, and to query OTrans QT = QS times. As before, we
write t ≈ t′ since the running time of the reduction is dominated by the running time t′ of A. If A
outputs a forgery with probability ε′, then B will be able to impersonate the prover with probability
ε′

Q′
H
−QSQ′H · 2−α −Qκ2−b.

5.2 Strong Unforgeability of Standardized Ed25519

Our previous results confirm that for a target public key, the adversary is not able to forge a signature on a
message m for which it has not seen valid signatures beforehand. In a real-world scenario, this assumption
may not always be true and the security provided by existential unforgeability insufficient, as we have
mentioned before, e.g., regarding Bitcoin transaction security or SSH multi-ciphersuite security. Another
commonly named example is that of blacklisting public-key certificates. This could be achieved by storing
the hash of the certificate in a list and comparing incoming certificates with this list. Here, a certificate
can simply be viewed as a signature over a message, i.e., the contents of the certificate. An adversary
wanting to bypass this blacklisting mechanism may create a new valid signature on the certificate, thereby
altering its hash value that made the certificate efficiently recognizable by the filter. This is not prevented
by existential unforgeability.

The security notion that bars adversaries from forging new signatures on known (message,signature)-
pairs is that of strong unforgeability, or SUF-CMA security, which is closely related to the concept of
malleability. Malleable signatures retain their validity even if they are slightly changed, for example, by
some bits being flipped. Obviously such signature schemes cannot hope to achieve strong unforgeability.

As mentioned earlier, Ed25519-Original without the check of S ∈ {1, . . . , L− 1} or S ∈ {0, . . . , L− 1}
during signature verification is not strongly unforgeable as any S′ ← S +mL with integer m also satisfies
the verification equation.

For Ed25519-IETF, Ed25519-ZCash, and Ed25519-LibS, this is avoided by additionally requiring that
the decoded S already be reduced modulo L, leading to the rejection of values S′ ← S + mL during
signature verification. The property that results from this additional check on the CID level, is that of
(computationally) unique responses of the identification protocol. Recall that this property guarantees
that for a given commitment com and ch in the interaction P � V, there exists (at most) one response rsp
such that (com, ch, rsp) is an accepting conversation (or a second response is only possible to find with
probability at most εcur).

For the identification protocol underlying Ed25519-IETF, we in fact even have εcur = 0, i.e., for all
(A, k) $←− CID.KGen, (R = rB, s) ← P1(k; r) and ch $←− {0, 1}2b, there exists only at (most) one valid
response S. This confirms the RFC’s argumentation that “Ed25519 [. . . ] signatures are not malleable due
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to the verification check that decoded S is smaller than L” [7]. On an Ed25519-IETF signature level this
then means that given a message-signature pair (m, (R,S)) there exists no second signature (R,S′) with
S′ 6= S as we will show in the next theorem. Furthermore, we will argue that there also cannot exist a
second valid signature (R′, S′) with R′ 6= R with S′ different or equal to S.

Theorem 4 (Ed25519-IETF is SUF-CMA secure). Let Ed25519-IETF be the (t, ε,QS , QH)-EUF-CMA secure
signature scheme derived by applying the Fiat-Shamir transform to the identification protocol CID given
in Fig. 5 with the check in Line 16. Then Ed25519-IETF is (t′, ε′, Q′S , Q

′
H)-SUF-CMA secure with t ≈ t′

and ε′ ≤ ε.

Proof. We recall that the games of EUF-CMA and SUF-CMA only differ in the winning condition for the
adversary A: EUF-CMA forbids that the adversary has queried the signing oracle OSign on the message
m? for which it outputs the forgery, whereas SUF-CMA allows this and only requests that the signature
forgery σ? differs from the signature σ that was output by OSign(m

?).
We therefore focus on the case that the adversary A on input an Ed25519-IETF public key A outputs

a valid strong forgery (m?, σ? = (R?, S?)) with probability ε′ such that there exists an entry (m?, σ′ =
(R′, S′)) ∈ LSign of recorded OSign queries of A, such that σ? 6= σ′. Since encodings are deterministic
and unique 2, we omit them in the following discussion. Naturally, there are two ways in which
σ? = (R?, S?) 6= σ′ = (R′, S′) for the same message m?:

Case 1 R? 6= R′: In this case, we can immediately build a reduction B against the EUF-CMA security of
Ed25519-IETF. The reduction B gets as input a public key A and invokes the SUF-CMA adversary
A(A). For any of the maximal Q′S signing queries of A on message m, B simply uses the strategy of
the simulator Sim (cf. Fig. 6) to obtain valid conversations (R, ch, S) and patches the random oracle
H to return ch on input (R,A,m). As before, this programming ensures that the response (R,S)
to A is a valid signature from A’s point of view. The at most Q′H random oracle queries of A are
simulated by B relaying queries to the “real” random oracle H on any inputs that had not been
patched by a signature query, the latter are answered consistently with the patching. Note that to
run the simulation of A, B has made no signing query to its own OSign. Thus, once A outputs its
strong forgery (m?, σ?), B can immediately output the same pair as its existential forgery. Note
that since R? 6= R′, H has not been patched by B on (R?, A,m?).

Case 2 S? 6= S′: This leaves the possibility that R? = R′, but S? 6= S′, i.e., the strongly forged signature
is of the form (R′, S?). We will argue that this also is not possible, as this contradicts the uniqueness
of the underlying identification protocol: For CID it holds that there is only (at most) one valid
response S for all (A, k) $←− CID.KGen, (R = rB, s)← P1(k; r) and ch $←− {0, 1}2b. Assume otherwise,
i.e., there exist S 6= S′ such that both (R, ch, S) and (R, ch, S′) are valid conversations wrt. the
public key A. To pass verification via V2 it must hold that S ∈ ZL and S′ ∈ ZL and furthermore
8SB = 8R + 8chA and 8S′B = 8R + 8chA, or, equivalently, 8SB = 8S′B, contradicting the
assumption that S 6= S′. Since verification of an Ed25519-IETF signature (R,S) on message m for
public key A is just executing the verifier V2 on input (A,R,H(R,A,m?), S) it is clear by the same
argument that there cannot be a strong forgery with S? 6= S′.

To conclude, since the probability of computing non-unique responses in CID is 0 and the signature
scheme does not admit existential forgeries with non-negligible probability, the probability of an adversary
A succeeding against the strong unforgeability is also negligible.

5.3 Multi-User Security

We recall that a flaw in the tight reduction from multi-user security of signatures to the single-user case
in [30] was exposed by Bernstein [31], who then was able to give an an alternative tight reduction from the
multi-user security of key-prefixed Schnorr to the single-user security of standard Schnorr. This result was
taken as a justification for the much-debated employed key prefixing in Ed25519 signatures. Shortly after
the result by Bernstein, Kiltz et al. [28] were able to provide a tight reduction in the random oracle model
for general Fiat-Shamir signatures, assuming the property of random self-reducibility of the underlying

2Note that there is a very small probability that there exist two different encodings R1, R2 such that they decode to the
same element R. This is due to the fact that elements in E(Zq) are encoded as b bit strings with a (b − 1)-bit encoding
for the y coordinate, plus one bit for the sign of x. Thus the entire valid encoding space for the y coordinate encompasses
integers from 0 to 2b−1 − 1 = 2255 − 1, whereas Zq contains only the integers from 0 to 2255 − 20. Nevertheless, Case 1 in
the reduction also captures this.
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identification protocol, further fueling the debate (though at this time the IETF standardisation of
Ed25519-IETF had already been completed.) Interestingly, when trying to apply either of the above results
to Ed25519 signatures specifically, several peculiarities arise. The result by Bernstein [31] is transferable
to Ed25519 signatures, but loses tightness. As explained in [31, Sec. 5.3] this is due to the clamping of
secret keys in Ed25519 which yields an additional failure case in the reduction. The more general result by
Kiltz et al. [28] on the other hand is not applicable at all, although Ed25519 is a Fiat-Shamir transformed
signature scheme. This is precisely due to the key prefixing as this prohibits the achievement of the
necessary random self-reducibility property. Consequently, only the non-tight bounds in [31, Sec. 5.3]
apply to Ed25519.

5.4 Key Substitution Attacks

Key Substitution Attacks (KSA) were first introduced by Blake-Wilson and Menezes [59] and later
formalized by Smart and Menezes [32]. Informally, KSA cover the scenario where an adversary learns one
or more message-signature pairs for a given public key, and wishes to find a different public key and message
such that one of the valid signatures verify for under the adversary’s new public key. Maliciously generated
public keys fall outside the traditional notions for signature security such as existential unforgeability.
However, these attacks have practical consequences in real-world contexts: examples include an attack
on the popular Let’s Encrypt Certificate Issuance protocol that allowed an attacker to impersonate any
website, compromise of confidentiality in the WS-Security Standard, and attacks on the well known Station
to Station key exchange protocol [4].

Comparatively few publications have investigated key-substitution attacks and how they apply to
different signature schemes. Consequently, many signature schemes are vulnerable. For example, [32]
described a KSA on the Gennaro-Halevi-Rabin signature scheme [60] and the standard-model secure
scheme by Boneh and Boyen [61] also proved to be vulnerable [62]. While these schemes are more of an
academic interest, [59], [62] also showed that that under certain conditions the widely-deployed RSA,
DSA, and ECDSA signatures are insecure against KSA adversaries. Menezes and Smart also highlighted
that key-substitution [32] is a relevant attack in the multi-user setting.

In [19], a practical scheme for email authentication is proposed that requires the underlying signature
scheme to be resistant to key substitution attacks. In this paper, it is stated that Schnorr signatures in
prime order groups achieve SUF-CMA and resistance to key substitution attacks. The paper goes on to
claim these results transfer to a variant of Ed25519 without key prefixing. We have already seen that this
is not correct for SUF-CMA and we also point out is also not correct for their modified form of Ed25519.
In particular, absent key prefixing, an attacker can submit a mangled public key lying outside the prime
order group which is a distinct bitstring from the ‘honest’ signature yet passes the verification checks.
Later in this section we consider Ed25519 with key-prefixing and find the opposite result, that this attack
is provably prevented.

In the following, we investigate the resistance of Ed25519 against various exclusive ownership definitions
from [5] which rule out various key substitution attacks. Theorem 5 shows that Ed25519 achieves this
stronger version, cf. Definition 11, where the adversary is allowed to adaptively query the signing oracle
to learn message-signature pairs of its choice and may choose which signature to attack. Furthermore, we
show in Theorem 6 that Ed25519 has so-called message-bound signatures (cf. Definition 12), i.e., that
there exist no two distinct messages for which the same signature would verify with respect to a given
(potentially maliciously generated) public key. Lastly, Theorem 7 shows that if small order elements are
rejected, even malicious strong universal exclusive ownership guarantees are provided. We give the proofs
for Theorems 5, 6, and 7 in Appendix B.

Firstly, we show that an attacker cannot substitute an alternative public key to verify against an
honest party’s signature in any of the Ed25519 variants we have discussed.

Definition 11 (Strong Universal Exclusive Ownership). Let S = (KGen,Sign,Vfy) be a signature scheme.
Consider the security games GS-UEO

S,A as defined in Fig. 7. We say that a signature scheme S is (t, ε,QS)-
S-UEO-secure or achieves strong universal exclusive ownership if for any adversary A making at most
QS queries to the signing oracle, the probability Pr

[
GS-UEO
S,A (pp) = 1

]
≤ ε.

Theorem 5 (Ed25519 achieves S-UEO). Let Ed25519 = (KGen,Sign,Vfy) be as defined in Fig. 4, where
H : {0, 1}? → {0, 1}2b is modelled as a random oracle. Then Ed25519 is (ε,QS , QH)-S-UEO secure,

ε ≤ 2 ·QH · d 22b

L e · 2
−2b, where QS and QH are the maximum numbers of queries to OSign and H.

We also find that, even for dishonest signers, Ed25519 schemes which reject public keys and signatures
with low order elements, ensure that for a particular public key signatures can only verify under a single
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GS-UEO
S,A (pp):

1 (pk, sk) $←− KGen(pp)

2 ((m,σ), pk′,m′) $←− AOSign (pk)

3 return J(m,σ) ∈ LSign∧pk 6= pk′∧Vfy(pk′, σ,m′)K

OSign(m):

4 σ $←− Sign(sk,m)

5 LSign ← LSign ∪ {(m,σ)}
6 return σ

Figure 7: Security game S-UEO

GMBS
S,A(pp):

1 (pk, σ,m,m′) $←− A()

2 return Jm 6= m′ ∧ Vfy(pk, σ,m) ∧ Vfy(pk, σ,m′)K

Figure 8: Security game MBS

message. However, if low order elements are accepted, an attacker can submit a low order element as
their public key and any value for their signature such that SB = R. The resulting signature will verify
under any message. This was pointed out in [1] but argued not to be problematic.

Definition 12 (Message Bound Signatures). Let S = (KGen,Sign,Vfy) be a signature scheme. Consider
the security games GMBS

S,A as defined in Fig. 8. We say that a signature scheme S is (ε)-MBS-secure or

achieves message bound signatures if for any adversary A the probability: Pr
[
GMBS
S,A (pp) = 1

]
≤ ε.

Theorem 6 (Ed25519 with rejection of small subgroup elements achieves Message Bound Signatures).
Let Ed25519 = (KGen,Sign,Vfy) be as defined in Fig. 4 and the hash function H : {0, 1}∗ → {0, 1}2b
is a random oracle. If the small subgroup elements are rejected, then S is (ε′)-MBS-secure with ε′ ≤
d 22b

L e · 2
−2b · (QH + 2)2, where QH is the maximal number of queries to the random oracle.

We now consider a stronger variant of S-UEO where the attacker chooses both public keys. Provided
small subgroup elements are rejected, this property also holds. However, there is an easy attack if they
are accepted where the attacker chooses their public key to be two distinct low order elements.

Definition 13 (Malicious Strong Universal Exclusive Ownership). Let S = (KGen,Sign,Vfy) be a signature
scheme. Consider the security games GM-S-UEO

S,A as defined in Fig. 9. We say that a signature scheme
S is (ε)-M-S-UEO-secure or malicious strong universal exclusive ownership if for any adversary A the
probability: Pr

[
GM-S-UEO
S,A (pp) = 1

]
≤ ε.

Theorem 7 (Ed25519-LibS achieves M-S-UEO). Let S = (KGen,Sign,Vfy) be as defined in Fig. 4, with
the Ed25519-LibS variant and the hash function H : {0, 1}∗ → {0, 1}2b is a random oracle. Then S is

(ε′)-M-S-UEO-secure with ε′ ≤ d2
2b/Le
22b ·Qh2.

6 Conclusion

We proved that Ed25519 achieves its goal of existential unforgeability (EUF-CMA), as is assumed by many
published works. While Ed25519 seems similar to Fiat-Shamir applied to the Schnorr identification scheme,
the devil is in the detail. We took into account the non-prime order group, the clamping of private scalars
and many other details.

GM-S-UEO
S,A (pp):

1 (pk, pk′, σ,m,m′) $←− A()

2 return Jpk 6= pk′ ∧ Vfy(pk, σ,m) ∧ Vfy(pk′, σ,m′)K

Figure 9: Security game M-S-UEO
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Moreover, we also proved that Ed25519-IETF achieves SUF-CMA. We proved that all Ed25519 schemes
resilient against key substitution attacks, however, we also showed that rejecting small order elements does
yield additional properties, enabling Ed25519-LibS to achieve an even stronger form of key substitution
resilience as well as message bound security.

Our results, summarized in Table 2 on page 10, thereby provide not only theoretical foundations, but
also meaningful insights for choosing among the variants.
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A Schnorr Signatures

Schnorr signatures are a prime example of the way secure signatures can be constructed via the Fiat-Shamir
transform from secure identification protocols. [21]. They achieve short, efficient signatures that are
provably secure in the random oracle model, assuming the hardness of the discrete logarithm problem in
the underlying group. The underlying Schnorr identification scheme, as well as the resulting signature
scheme when the Fiat-Shamir transform is applied, are depicted in Fig. 10. Here, pp = (G, q, g) denote
the public parameters of the scheme where G is a cyclic group of prime order q with generator g.

KGen(pp):

1 a $←− Zq

2 A← ga

3 return (A, a)

P1(a):

4 r $←− Zq

5 R← gr

6 return (R, a)

P2(ch, a):

7 S ← (R+ ch · a) mod q

8 return S

V1:

9 ch $←− Zq

10 return ch

V2(A,R, ch, S):

11 R′ ← gS ·A−ch

12 return JR′ = RK

KGen(pp):

1 a $←− Zq

2 A← ga

3 return (A, a)

Sign(a,m):

4 r $←− Zq

5 R← gr

6 ch← H(R,m)

7 S ← (R+ ch · a) mod q

8 return σ ← (ch, S)

Vfy(A,m, σ = (ch, S)):

9 R′ ← gS ·A−ch

10 ch′ ← H(R′,m)

11 return Jch′ = chK

.

Figure 10: Schnorr signature scheme S = FS [CID,H] = (KGen,Sign,Vfy) (right)) resulting from the
Fiat-Shamir transform applied to the Schnorr identification protocol CID = (KGen,P,V) (left).

B Full Proofs

B.1 Proof for Theorem 1

Proof. Assume there exists an adversary A against the (t′, ε′)-IMP-KOA security of CID. From this we
then construct another adversary B, the reduction, that can solve the (t, εecdlp)-ECDLP on E(Zq). Since
we assume ECDLP to be hard to break with non-negligible probability εecdlp in any reasonable amount of
time t, this then leads to a contradiction, yielding IMP-KOA security. B is constructed as follows: B gets
as input the base point B ∈ E(Zq) of order L, as well as a point A ∈ 〈B〉.

Since the public key A in the identification protocol is computed as A← sB with an s ∈ {2b−2, 2b−2 +
8, . . . , 2b−1− 8}, the reduction needs to augment the value A to fall into the subset of correctly distributed
public keys to invoke A. To do this, B samples a value α $←− {0, ..., 7} uniformly at random and computes
A′ = A + αB and runs A on input A′. Note that for A′ to be a valid public key from A’s view, there
must exists s′ ∈ {2b−2, 2b−2 + 8, ..., 2b−1 − 8} such that s′ = s + α mod L, the probability of which is
bounded by 1

8 .

Challenge: At some point A outputs a commitment R? to its challenger. B then chooses a random
challenge ch1

$←− {0, 1}2b and sends ch1 to A. Finally, A terminates with output S1.

Rewinding the adversary: Then, B rewinds A’s internal state back to the point just after which it
generated R? and returns a newly sampled challenge value ch2

$←− {0, 1}2b to A with ch1 6= ch2

mod L.

Finally, again, A will output a response S2. B verifies whether (R?, ch1, S1) and (R?, ch2, S2) both
are accepting conversations with ch1 6= ch2 (mod L), and aborts if this condition is not satisfied.
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By the so-called Forking Lemma [24], we know that if A can find an S1 such that (R?, ch1, S1) is an
accepting conversation with probability ε′, then a replay of A with the same random tape will output
an accepting conversation (R?, ch2, S2) for ch1 6= ch2 (mod L) with probability at least ε′(ε′ − 1

L ).

B then outputs s = S1−S2

ch1−ch2 − α mod L.

Assume that (R?, ch1, S1) and (R?, ch2, S2) are accepting conversations with ch1 6= ch2 (mod L). In
particular, it holds that Si ∈ ZL and 8SiB = 8R? + 8chiA

′ for i ∈ {1, 2}, which implies that

8(S1 − S2)B = 8(ch1 − ch2)A′

⇔ (S1 − S2) · (ch1 − ch2)−1B = A′

⇔
(
(S1 − S2) · (ch1 − ch2)−1 − α

)
B = A.

Therefore, s = S1−S2

ch1−ch2 − α mod L is the desired solution to the ECDLP instance (B,A). Regarding
the time complexity, it holds that t ≈ 2t′, as B rewound A’s internal state once. Finally, we can deduce
that the probability of B successfully extracting the discrete logarithm is at least 1

8ε
′(ε′ − 1

L ).

B.2 Proof for Lemma 1

Proof. We must show that the conversations (R, ch, S) $←− Sim(A) are distributed identically to Trans [P(k) � V(A)]
in honest executions of CID.

In the following let (com, ch, rsp) be a valid honest execution between the prover and the verifier. It
holds that com is the encoding of an element rB in the elliptic curve group with r $←− {0, 1}2b, ch $←− {0, 1}2b
and rsp is the encoding of an element in ZL of the form (r + ch · s) mod L, with s implicitly fixed by the
decoding of A = sB.

Clearly, the challenges are distributed identically in both conversations. The (decoded) simulated
responses S ← s̃ with s̃ $←− {0, 1}2b are also distributed identically to real responses rsp = (r + ch · s)
mod L, with r, ch $←− {0, 1}2b. The same holds for the (decoded) simulated commitments R← (SB− chA)
mod L = (S − ch · s)B mod L and the real commitments com, since the latter are i n the elliptic curve
group of the form com← rB with r $←− {0, 1}2b, which is equivalent to r′B with r′ ← r mod L.

B.3 Proof for Theorem 5

Proof. Assume there exists an adversary A that can break the (t, ε,QS)-S-UEO security of Ed25519. This
means that for an honestly generated key pair (A, k) $←− KGen, given the public key A, A can output(
(m,σ = (R,S)), A′,m′

)
such that:

1. σ ← Sign(k,m) for one of the QS signing queries of A. In particular, we have 8SB = 8R +
8H(R,A,m)A.

2. A′ 6= A, which means that A′ 6= A.

3. Verification Vfy(A′, σ,m′) holds, i.e., 8SB = 8R+ 8H(R,A′,m′)A′.

Let ch ← H(R,A,m) and ch′ ← H(R,A′,m′). Observing property 2, properties 1) and 3) can only
hold simultaneously if and only if one of the following (distinct) cases arises:

Case 1: It holds that SB = R in property 1). Then A can simply output a low order point A′, i.e., with
|A′| ≤ L and m′ = m, which causes property 3) to also collapse to SB = R, irrespective of the value
ch′. This can only happen in property 1) if ch = 0 (mod L) or ch = s−1 (mod L) for A = sB. But

since H is a random oracle, this happens only with probability at most 2 ·QH ·
(
d 22b

L e · 2
−2b
)

. So in

the following we have SB 6= R.

Case 2 A can guess A′ 6= A with |A′| ≥ L and m′ such that ch′A′ = chA. But, again, since H is a
random oracle, the probability of this succeeding, accounting for the adversary’s ability to repeat

the process, is bounded by QH · d 22b

L e · 2
−2b.
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B.4 Proof for Theorem 6

Proof. Let A denote an adversary against (t′, ε′)-MBS security of Ed25519. We then give the concrete
upper bound of ε′ in the random oracle model. Assume that A terminates with (pk = A, σ = (R,S),m,m′)
and wins the MBS experiment in Fig. 8. Then, it holds that m 6= m′, 8SB = 8R + 8H(R,A,m)A, and
8SB = 8R+ 8H(R,A,m′)A, which further implies that 8H(R,A,m)A = 8H(R,A,m′)A. Note that A is
not a small subgroup element, it must hold that

H(R,A,m) = H(R,A,m′) mod L, m 6= m′. (1)

Obviously, we have ε′ ≤ Pr[Eq.(1) holds]. Note that the random oracle in the MBS experiment will
evaluate at most (QH+2) different inputs, where at most QH ones are queried by A and two are queried by
the challenger for final verifications. Moreover, Eq. (1) holds only if there exists two outputs of the random
oracle on different inputs such that the outputs are congruent modulo L, which occurs with probability

from above bounded by d 22b

L e · 2
−2b · (QH + 2)2. Hence, it holds that ε′ ≤ d 22b

L e · 2
−2b · (QH + 2)2.

B.5 Proof for Theorem 7

Proof. It follows from the verification equation that:

8H(R, pk′,m′)pk′ = 8H(R, pk,m)pk

It then follows that from the rejection of small subgroup elements that:

H(R, pk′,m′)a′ = H(R, pk,m)a mod L (2)

As a is in the range 1, . . . , L and thus coprime to L it follows that

H(R, pk′,m′)a′(a)−1 = H(R, pk,m) mod L (3)

We fix a,m′, a′, then for a particular m, H(R, pk,m) is in the range 0, . . . , 22b of which there are at

most d22b/Le values such that the equation holds. Consequently a given guess has probability d2
2b/Le
22b

of fulfilling the equation. However, the adversary can also vary m′ and consequently perform a collision
attack. Notice that the adversary can make up to Qh queries and consequently the overall probability of

success is bounded above by d2
2b/Le
22b ·Qh2
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