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Abstract

We study adaptive security of delayed-input Sigma protocols and non-interactive zero-
knowledge (NIZK) proof systems in the common reference string (CRS) model. Our contri-
butions are threefold:

- We exhibit a generic compiler taking any delayed-input Sigma protocol and returning
a delayed-input Sigma protocol satisfying adaptive-input special honest-verifier zero-
knowledge (SHVZK). In case the initial Sigma protocol also satisfies adaptive-input
special soundness, our compiler preserves this property.

- We revisit the recent paradigm by Canetti et al. (STOC 2019) for obtaining NIZK
proof systems in the CRS model via the Fiat-Shamir transform applied to so-called
trapdoor Sigma protocols, in the context of adaptive security. In particular, assum-
ing correlation-intractable hash functions for all sparse relations, we prove that Fiat-
Shamir NIZKs satisfy either:
(i) Adaptive soundness (and non-adaptive zero-knowledge), so long as the challenge

is obtained by hashing both the prover’s first round and the instance being proven;
(ii) Adaptive zero-knowledge (and non-adaptive soundness), so long as the challenge

is obtained by hashing only the prover’s first round, and further assuming that
the initial trapdoor Sigma protocol satisfies adaptive-input SHVZK.

- We exhibit a generic compiler taking any Sigma protocol and returning a trapdoor
Sigma protocol. Unfortunately, this transform does not preserve the delayed-input
property of the initial Sigma protocol (if any). To complement this result, we also give
yet another compiler taking any delayed-input trapdoor Sigma protocol and returning
a delayed-input trapdoor Sigma protocol with adaptive-input SHVZK.

An attractive feature of our first two compilers is that they allow obtaining efficient delayed-
input Sigma protocols with adaptive security, and efficient Fiat-Shamir NIZKs with adaptive
soundness (and non-adaptive zero knowledge) in the CRS model. Prior to our work, the
latter was only possible using generic NP reductions.
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1 Introduction

Sigma protocols are a special class of three-round public-coin interactive proofs between a prover
P and a verifier V, where P’s goal is to convince V that a common statement x belongs to a
given NP language L. The prover knows a witness w (corresponding to x) as auxiliary input, and
starts the interaction by sending a first message a (possibly depending on both x,w); the verifier
then sends a uniformly random `-bit challenge c, to which the prover replies with a last message
z. Finally, the verifier decides whether x ∈ L based on x and the transcript (a, c, z). Despite
completeness (i.e., the honest prover always convinces the honest verifier about true statements),
Sigma protocols satisfy two additional properties known as special soundness (SS) and special
honest-verifier zero knowledge (SHVZK). The former is a strong form of soundness (i.e., no mali-
cious prover can convince the verifier about the veracity of false statements x 6∈ L), which in fact
implies that Sigma protocols are proofs of knowledge [GMR85, BG93]; the latter requires the
existence of an efficient simulator S that, given any true statement x ∈ L and any possible chal-
lenge c, is able to simulate an honest transcript (a, c, z) between the prover and the verifier, which
in particular implies that honest transcripts do not reveal anything about the witness to the eyes
of an honest-but-curious verifier. While Sigma protocols exist for all of NP (as Blum’s proto-
col [Blu86] for Hamiltonian Graphs is a Sigma protocol), the latter comes at the price of expensive
NP reductions. Luckily, Sigma protocols also exist for many concrete languages based on num-
ber theory and lattices (such as Quadratic Residuosity [GMR85], Discrete Log [Sch90, Oka93],
Factoring [FF02], and Learning with Errors [Ste94, Lyu09, AJL+12]), and these protocols are
very efficient, thus opening the way to a plethora of cryptographic applications, e.g. to con-
structing different kinds of commitment schemes [DN02, CV05, HL10, Dam10, Lin15, CPSV16]
and trapdoor hash functions [BR14], and for obtaining non-interactive zero-knowledge (NIZK)
proofs and digital signatures via the celebrated Fiat-Shamir transform [FS87, BR93, PS96]. In
this paper we study adaptive security for both Sigma protocols and Fiat-Shamir NIZKs.

Delayed-input Sigma protocols. The classical Sigma protocol by Feige, Lapidot and Shamir
[FLS90, LS91] for Graph Hamiltonicity (henceforth denoted by FLS) has the special property
that the prover can compute the first round of the proof without knowing the graph, so long
as it knows the number of vertices ahead of time. In particular, the graph and the correspond-
ing Hamiltonian cycle are only needed to compute the prover’s last round. More generally, a
Sigma protocol is called delayed-input if the prover’s first round can be computed given only
n = |x| (and without knowing x,w). For such Sigma protocols, the standard definitions of
SS and SHVZK may not be sufficient as they do not take into account attackers choosing the
statement x adaptively based on a partial transcript (a, c). This limitation may have a negative
impact1 on the applications of delayed-input Sigma protocols, particularly in settings where
adaptive security is required. While, the FLS protocol already satisfies both adaptive-input SS
and adaptive-input SHVZK,2 the latter is only of theoretical interest. Partially motivated by
this shortcoming, Ciampi et al. [CPS+16] proposed a general transformation for turning any
delayed-input Sigma protocol into one satisfying adaptive-input SS. This leaves the following
open problem.

Q1: “Do there exist efficient delayed-input Sigma protocols with adaptive security
(i.e., satisfying both adaptive-input SS and adaptive-input SHVZK)?”

1We discuss practical applications where adaptive security is of concern in Section 1.3.
2Intuitively, adaptive-input SS guarantees extraction even for transcripts (a, c, z) and (a, c′, z′) for different

(possibly adaptively chosen) statements. Similarly, adaptive-input SHVZK requires the simulator to fake the
prover’s first message given only n = |x|.

1



Fiat-Shamir NIZKs. The Fiat-Shamir transform [FS87] allows to turn a Sigma protocol into
a non-interactive proof system by means of a hash functions h with `-bit output. The idea is for
the prover to compute a and z as prescribed by the Sigma protocol, where the challenge c is set
to c := h(a||x). One can show that this yields a secure NIZK starting from any Sigma protocol,
so long as the hash function h is modelled as a random oracle [BR93, FKMV12]. Whether
security of the Fiat-Shamir transform can be proven without resorting to random oracles has
been a question subject of intensive study. Here, the goal is to instantiate the random oracle
with a set of efficiently computable hash functions H = {hk}, where the hash key k is made
available to all parties in the form of a common reference string (CRS). Unfortunately, several
negative results are known in this respect [DNRS99, Bar01, GK03, BDG+13], which, however,
only exclude the possibility of instantiating the Fiat-Shamir transform starting with any Sigma
protocol or via black-box reductions to falsifiable assumptions. Indeed, a recent line of research3

established the above negative results can be circumvented:
• Assuming the initial interactive protocol is a trapdoor Sigma protocols [CCH+19]. Infor-

mally, a trapdoor Sigma protocol is a special Sigma protocol in the CRS model satisfying
the following two properties: (i) If the statement x is false, then for every first message a,
there is a unique challenge c for which there is an accepting third message z that results
in an accepting transcript (a, c, z); (ii) There is a trapdoor associated with the CRS that
allows us to efficiently compute this “bad challenge” c from the first message a and the
statement x being proven.
• Assuming that H is a family of correlation-intractable (CI) hash functions [CGH98]. In-

formally, a family H satisfies CI w.r.t. some relation R if no efficient attacker given the
hash key k can produce an input x such that (x, hk(x)) ∈ R. CI hash functions w.r.t.
broad-enough4 relations have recently been constructed from a variety of assumptions in-
cluding program obfuscation [CCR16, MV16, KRR17], strong one-way functions [HL18],
key-dependent message secure encryption [CCRR18], circularly-secure fully-homomorphic
encryption [CCH+19], LWE [PS19], and LPN along with DDH/QR/DCR/LWE [BKM20].

A natural question is whether Fiat-Shamir NIZKs obtained via CI hash functions are adaptively
secure, i.e. whether the non-interactive proof resulting from applying the Fiat-Shamir transform
to a trapdoor Sigma protocol satisfies both adaptive soundness and adaptive zero-knowledge in
the CRS model.5 Canetti et al. [CCH+19] proved that a slight variant of the FLS protocol
directly achieves adaptive security, however, in order to be used in applications, the latter
requires expensive NP reductions, and thus results in very inefficient NIZKs. They also provide
an efficient instantiation using the classical Sigma protocol for Quadratic Residuosity [GMR85],
and more in general starting with any instance-dependent trapdoor Sigma protocol (in which
the trapdoor is allowed to depend on the statement being proven). Unfortunately, instance-
dependent trapdoor Sigma protocols are not sufficient to prove adaptive security of Fiat-Shamir
NIZKs, thus leaving the following intriguing open question.

Q2: “Do there exist efficient trapdoor Sigma protocols allowing to obtain
Fiat-Shamir NIZKs with adaptive security (i.e., satisfying both adaptive soundness

and adaptive zero knowledge in the CRS model)?”
3This research extends previous results showing that CI is sufficient for proving soundness of the Fiat-Shamir

transform [DNRS99, BLV03, HMR08].
4In particular, sufficient for proving security of Fiat-Shamir NIZKs without random oracles.
5The former means that no malicious prover, given the CRS, can produce a false statement along with an

accepting non-interactive proof. The latter means that no malicious verifier, given the CRS, can produce a
true statement, along with the corresponding witness, for which a non-interactive proof cannot be simulated in
polynomial time given the statement alone.
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1.1 Our Contributions

In this work, we make progress towards answering the above two open questions in the affirma-
tive. Our first contribution is a general compiler taking any delayed-input Sigma protocol and
outputting another delayed-input Sigma protocol (for the same language) with adaptive-input
SHVZK. Furthermore, assuming the initial Sigma protocol already satisfies adaptive-input SS, so
does the Sigma protocol produced by our compiler. Hence, using the transformation by Ciampi
et al. [CPS+16], we obtain a general compiler which allows to turn any delayed-input Sigma
protocol into one with adaptive security, which is a positive answer to Q1. Next, we revisit the
framework for obtaining adaptively-secure NIZKs via the Fiat-Shamir transform using CI hash
functions. In particular, we show the following two results:
• In case the challenge c is obtained by hashing both the prover’s first round a and the state-

ment x (i.e., c = hk(a||x)), trapdoor Sigma protocols are sufficient for proving adaptive
soundness and non-adaptive zero knowledge of Fiat-Shamir NIZKs in the CRS model.
• In case the challenge c is obtained by hashing only the prover’s first round a (i.e., c =
hk(a)), trapdoor Sigma protocols satisfying soundness (which in turn follows by SS) and
adaptive-input SHVZK are sufficient for proving non-adaptive soundness and adaptive zero
knowledge of Fiat-Shamir NIZKs in the CRS model.

The fact that hashing both the prover’s first message and the statement is essential for obtaining
adaptive soundness was already known for the random oracle model [BPW12]. In this vein,
our paper confirms this to be sufficient in the plain model as well. Our second contribution
is a compiler taking any Sigma protocol and outputting a trapdoor Sigma protocol (for the
same language). Unfortunately, this compiler does not preserve the delayed-input property
of the initial Sigma protocol (if any), and thus, by our result from above, only implies Fiat-
Shamir NIZKs with adaptive soundness (but not adaptive zero knowledge). This result can
still be interpreted as a partial (positive) answer to Q2, as it allows to obtain efficient Fiat-
Shamir NIZKs with adaptive soundness (and non-adaptive zero knowledge) in the CRS model
for any language admitting a Sigma protocol. Previously to our work, the latter was possible
only using expensive NP reductions. Finally, we also show that any delayed-input trapdoor
Sigma protocol can be turned into a delayed-input trapdoor Sigma protocol with adaptive-input
SHVZK, which (again by our generalization of [CCH+19]) would be sufficient for obtaining Fiat-
Shamir NIZKs with adaptive zero knowledge (and non-adaptive soundness) in the CRS model.
Unfortunately, the only example we know of a delayed-input trapdoor Sigma protocol is FLS (for
which [CCH+19] directly proved adaptive security of the corresponding Fiat-Shamir NIZK), and
thus we view this more as a conceptual contribution providing a possible path towards obtaining
efficient Fiat-Shamir NIZKs with adaptive zero knowledge in the future.

1.2 Technical Overview

1.2.1 Adaptive-input SHVZK

Our first compiler exploits so-called instance-dependent trapdoor commitment (IDTC) schemes.
Intuitively, this primitive is parameterized by an NP language L and allows a sender to create a
commitment com (with opening dec) to a message m using a statement x as a label. The main
idea is that: (i) In case x 6∈ L is a false statement, the commitment satisfies the standard binding
property. (ii) In case x ∈ L is a true statement, the commitment satisfies the standard hiding
property and additionally, given a valid witness w for x, one can generate a fake commitment
com that is distributed like an honest commitment but that can later be opened to any message
(the so-called trapdoorness property). It is well known that IDTCs for any language L can be
constructed in a black-box way given any Sigma protocol for L [DG03, Dam10, Lin15, CPSV16].
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We now explain how to compile any delayed-input Sigma protocol Σ for a language L into a
delayed-input Sigma protocol Σ′′ for L that satisfies adaptive-input SHVZK. The transformation
relies on an IDTC Π for the language LDH of Diffie-Hellman (DH) tuples, and on a Sigma protocol
Σ′ for the complement language LDH of non-DH tuples.
• The prover, given only x ∈ L, starts by sampling a random non-DH tuple T ∈ LDH , along

with the corresponding witness, and then computes a commitment com (with decommit-
ment dec) to the first round a of Σ using T as label. Next, it computes the first round a′

of Σ′ and forwards (com, a′, T ) to the verifier.
• The verifier sends a random `-bit challenge c to the prover.
• Upon receiving a valid witness w for x, the prover computes the third round z and z′

of both Σ and Σ′, and forwards them to the verifier along with the opening (a, dec) of
commitment com.

The proof of (adaptive-input) SS of Σ′′ follows readily from the (adaptive-input) SS of Σ and
the binding property of Π. Hence, we here focus on the proof of adaptive-input SHVZK. The
simulator proceeds as follows:
• Upon receiving challenge c ∈ {0, 1}`, the simulator first samples a random DH tuple
T ∈ LDH and generates a fake commitment com using T and its corresponding witness.
Next, it runs the SHVZK simulator of Σ′ upon input T and c obtaining (a′, z′) and returns
a simulated first round a′′ = (com, a′, T ).
• Upon receiving statement x ∈ L, the simulator runs the SHVZK simulator of Σ upon

input x and c obtaining (a, z). Hence, it opens the commitment com to a obtaining
decommitment dec, and returns a simulated third round z′′ = (z, z′, (a, dec)).

In the proof, we first move to a mental experiment with a modified simulator that generates
(a, z) using the real prover of Σ; this is possible thanks to the SHVZK property of Σ. Next, we
replace T ∈ LDH with T ∈ LDH and (com, dec) with an honestly computed commitment to a.
The DDH assumption and the trapdoorness property of Π imply that no efficient distinguisher
can notice such a change. Finally, we use the SHVZK property of Σ′ to compute (a′, z′) as the
real prover of Σ′ would do, which yields exactly the same distribution of proofs as generated by
our compiler, and thus concludes the proof. Note that, besides running Σ, our transformation
requires to run an IDTC in parallel with Σ′ (to prove that a tuple is DH). The cost of running
the IDTC corresponds to running a Sigma protocol for DH tuples. The cost of running a
Sigma protocol that proves that a tuple is DH is of 2 exponentiations for the prover and 4
exponentiations for the verifier. Therefore, our compiler adds an overhead of 4 exponentiations
for the prover and 8 exponentiations for the verifier.

1.2.2 Adaptive Security of Fiat-Shamir NIZKs

We start by recalling the notion of trapdoor Sigma protocols in more details. Intuitively, a
trapdoor Sigma protocol is a special kind of three-round public-coin proof system in the CRS
model6 with the guarantee that, for every valid CRS ω, every false statement x /∈ L, and every
first round a, there is at most one challenge c := f(ω, a, x) such that, for some z, the transcript
(a, c, z) is accepting w.r.t. (ω, x). The function f is called the bad-challenge function. Moreover,
it is possible to generate an honest-looking CRS ω along with a trapdoor τ which allows to
efficiently compute the bad challenge c given the first round a and the statement x.

Let Σ be a trapdoor Sigma protocol for language L, and Π be the non-interactive proof
derived from Σ via the Fiat-Shamir transform using a CI hash family H for all “efficiently
searchable” sparse relations. The proof of adaptive security of Π follows closely the approached
used in [CCH+19], with a few crucial differences. In particular:

6The latter means that, at setup, a CRS ω is generated and distributed to both the prover and the verifier.
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• To show adaptive soundness, one first argues that any prover which, given an honestly-
computed CRS (ω, k), is able to produce a statement x 6∈ L and a non-interactive proof
π = (a, z) such that (a, c, z) is accepting w.r.t. (ω, x) for c = hk(a||x) with non-negligible
probability, must do so even in case the CRS ω of Σ is generated along with the trapdoor τ .
The latter, however, contradicts the CI property of the hash family H w.r.t. the (efficiently
searchable) relation Rω,τ := {(a||x, c) : x 6∈ L ∧ c = f(τ, ω, a, x)}, which is easily seen
to be sparse thanks to the soundness property of Σ. The key observation that allows to
prove adaptive security here is the fact that the hash function takes also x as input, which
allows the reduction to CI to go through without knowing x in advance.
• The simulator for adaptive zero knowledge picks a random challenge c and then obtains
a invoking the adaptive-input SHVZK simulator of Σ. Hence, it samples a fresh CRS ω
and a random hash key k from the conditional distribution hk(a) = c, yielding a simulated
CRS (ω, k). Finally, upon receiving x ∈ L from the adversary, it obtains z from the
adaptive-input SHVZK simulator and outputs a simulated proof π = (a, z). We note that
for this to work it is essential that the challenge c is obtained by hashing only the prover’s
first message a, as otherwise the simulator would not be able to sample k uniformly from
the conditional distribution c = hk(a||x) without being given x in advance.

From Sigma protocols to trapdoor Sigma protocols. Let us now explain our compiler for
turning any Sigma protocol Σ into a trapdoor Sigma protocol Σ′. The CRS ω′ of Σ′ consists of the
CRS ω of Σ (if any), along with the public key pk of a (committing) public-key encryption (PKE)
scheme. For simplicity, let us assume that the challenge space of Σ is {0, 1}; it is immediate to
extend the challenge space arbitrarily using parallel repetition. The prover of Σ′ simply obtains
a by running the prover of Σ. Hence, it computes both answers z0 and z1 corresponding to
the two possible challenges c = 0 and c = 1, and it encrypts z0 and z1 under pk obtaining two
ciphertexts e0, e1. The prover’s first message consists of a′ = (a, e0, e1). Finally, upon receiving
a challenge c, the prover’s last message z′ consists of the response zc along with the random
coins rc used to obtain ec. The verifier accepts if and only if (a, c, zc) is a valid transcript w.r.t.
(ω, x), and additionally (zc, rc) is consistent with ec. It is not hard to show that the above
transformation preserves both SS and SHVZK of the underlying protocol Σ, so long as the PKE
scheme is semantically secure. To prove that Σ′ is a trapdoor Sigma protocol it remains to show
how to efficiently compute the bad-challenge function. The main idea here is to let the secret
key sk corresponding to pk be the trapdoor τ . This way, given a′ and x, we can decrypt e0, e1

obtaining7 the responses z0, z1. Note that in case both transcripts (a, 0, z0) and (a, 1, z1) are
accepting w.r.t. (ω, x), the SS property of Σ implies that x ∈ L. On the other hand, if x 6∈ L,
there exists at most one challenge c such that (a, c, zc) is accepting, and we can determine c
efficiently by simply running the verifier algorithm upon input both transcripts (a, 0, z0) and
(a,1 , z1). Note that, besides running Σ, our transformation requires to encrypt two values using
a public-key encryption scheme. Moreover, if we want a trapdoor Sigma protocol with challenge
space {0, 1}` for some ` ∈ N, and consequently better soundness, we need to repeat our protocol
in parallel ` times. If the cost of running Σ is CP for the prover and CV for the verifier, and the
cost of computing an encryption is CE , then the cost of running our protocol for the prover is
(CP + 2CE)` and for the verifier is (CV + CE)`.

Adding adaptive-input SHVZK. Note that Σ′ as defined above is inherently not delayed-
input, even assuming Σ is delayed-input. This is because the prover needs the witness in order to
compute the two possible responses z0, z1 already in the first round. Our last compiler overcomes

7Due to the committing property of the PKE scheme.
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this problem by extending our very first transform (for obtaining delayed-input Sigma protocols
with adaptive-input SHVZK) to trapdoor Sigma protocols. The main idea is to work in the
CRS model and replace the IDTC with an extractable IDTC (a new notion that we introduce).
Intuitively, the difference between IDTCs and extractable IDTCs is that the latter are defined
in the CRS model, and the CRS can be generated together with a trapdoor in such a way
that, given a commitment of the extractable IDTC scheme with respect to a false instance, it
is possible to extract the committed value (which is unique) using the trapdoor. Moreover, the
commitment procedure now outputs a message com and an instance T such that the verifier can
check if the first two components of T are consistent with the CRS. As we show, the latter allows
to preserve the trapdoorness property of Σ when applying the transformation described before,
while at the same time boosting SHVZK to adaptive-input SHVZK. Finally, we give a simple
construction of an extractable IDTC Π for the language LDH of DH tuples. This construction is
based on the observation that the classical Sigma protocol for DH tuples has a special extractor
which, on input the first round a = (gr, hr

′
) and γ such that h = gγ , outputs the only possible

challenge c that would make the transcript (a, c, z) accepting w.r.t. a non-DH tuple (for some
z). Given a Sigma protocol Σ for LDH , we then show how to obtain an extractable IDTC. The
main idea is to set the CRS to (g, h = gγ) and the trapdoor to τ = γ. Each commitment com is
then equipped with a value T = (gα, hβ) with α 6= β. Note that in this case (ω, T ) corresponds
to a non-DH tuple, hence the extractor can be run on com, which corresponds to the first round
of Σ.

1.3 Applications

Our results directly allow to achieve adaptive security of delayed-input Sigma protocols and
Fiat-Shamir NIZKs. Since applications of the latter are well known, below we elaborate on
the impact of our results on applications of the former. The delayed-input property directly
improves the round complexity of any cryptographic protocol consisting of the following two
steps: (1) an NP-statement x and a witness w is defined via an interactive process; and (2) one
of the parties involved in the protocol provides a proof that x is a true statement. Indeed, using
a delayed-input Sigma protocol that allows proving the validity of x, it is possible to parallelize
the above two steps, thus decreasing the round complexity of the overall process. Furthermore,
the delayed-input property of FLS has proven to be particularly powerful for providing round-
efficient constructions from general assumptions, such as: 4-round (optimal) secure 2PC where
only one player gets the output (5 rounds when both players get the output) [KO04], 4-round
2PC in the simultaneous message exchange model where both parties get the output [COSV17b],
4-round MPC for any functionality [CCG+19, BGJ+18, ACJ17, BHP17], 3-round non-malleable
commitments [COSV16, GR19] and 4-round non-malleable commitments [COSV17a, GRRV14].
In many cryptographic applications, one party needs to prove an OR statement of the form
“either x is true or I know a trapdoor”, where neither x nor the trapdoor might be known at the
beginning of the protocol. Our adaptive-input SHVZK Sigma protocols can be used to prove
exactly this kind of statements, as we can combine adaptive-input (and non-adaptive-input)
SHVZK Sigma protocols using the well-known OR composition technique of [CDS94], which
yields an adaptive witness-indistinguishable (WI) Sigma protocol (i.e., a Sigma protocol that
retains the WI property even when the statement is adaptively chosen after the first round).
The notion of adaptive WI was formalized in [CPS+16], where the authors proposed a general
compiler to obtain this property. The advantage of our approach is that we obtain a more
efficient compiler. Indeed, the compiler of [CPS+16] requires computing at least one additional
commitment for each statement that composes the OR theorem.
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2 Preliminaries

We start the section by introducing our notation. For a string x, we denote its length by |x|;
if S is a set, |S| represents the number of elements in S. When x is chosen randomly in S,
we write x←$ S. When A is a randomized algorithm, we write y←$A(x) to denote a run of
A on input x (and implicit random coins r) and output y; the value y is a random variable,
and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in a polynomial number of steps (in the size of the input). A polynomial-time
relation R is a relation for which membership of (x,w) w.r.t. R can be decided in time polynomial
in |x|. If (x,w) ∈ R then we say that w is a witness for instance x. A polynomial-time relation
R is naturally associated with the NP language LR defined as LR = {x : ∃w s.t. (x,w) ∈ R}.
(When R is clear from the context, we simply write L.) Similarly, an NP language is naturally
associated with a polynomial-time relation. We denote by L̂R the language such that LR ⊆ L̂R

and membership in L̂R may be tested in polynomial time.

2.1 Standard Definitions

Negligible functions. We denote with λ ∈ N the security parameter. A function p is a
polynomial if p(λ) ∈ O(λc) for some constant c > 0. A function ν : N→ [0, 1] is negligible in the
security parameter (or simply negligible) if it vanishes faster than the inverse of any polynomial
in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ).

Throughout the paper, we often implicitly assume that the security parameter is given as
input (in unary) to all algorithms.

Random variables. For a random variable X, we write P [X = x] for the probability that
X takes on a particular value x ∈ X (with X being the set where X is defined). The statis-
tical distance between two random variables X and X′ with the same domain X is defined as
∆(X;X′) = 1

2

∑
x∈X |P [X = x]− P [X′ = x] |.

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that they
are identically distributed, X ≈s Y to denote that they are statistically close, i.e. ∆(Xλ;X′λ) ≤
ν(λ) for a negligible function ν(λ), andX ≈c Y to denote that they are computationally indistin-
guishable, i.e. for all PPT distinguishers D it holds that |P [D(Xλ) = 1]−P [D(Yλ) = 1]| ≤ ν(λ)
for a negligible function ν(λ).

2.2 Public-Key Encryption

Definition 1 (Public-key encryption scheme). A triple of PPT algorithms Π := (KGen,Enc,Dec)
is called a public-key encryption (PKE) scheme if it satisfies the following properties.
Correctness: For every λ ∈ N, every (sk , pk) ∈ KGen(1λ), and every m ∈ {0, 1}λ, we have that

P [Dec(sk ,Enc(pk ,m)) = m] = 1.
Semantic security: Let A be PPT adversary. Consider the following experiments:

Experiment Expind-0
Π,A (λ) : Experiment Expind-1

Π,A (λ) :
(pk , sk)←$ KGen(1λ) (pk , sk)←$ KGen(1λ)
(m0,m1, st)←$A(pk) (m0,m1, st)←$A(pk)
b′←$A(st ,Enc(pk ,m0)) b′←$A(st ,Enc(pk ,m1))
return b′ return b′

7



We say that Π is secure if for every PPT A there exists a negligible function ν : N→ [0, 1]
such that: ∣∣∣P [Expind-1

Π,A (λ) = 1
]
− P

[
Expind-0

Π,A (λ) = 1
] ∣∣∣ ≤ ν(λ).

2.3 Sigma Protocols

Let L be an NP language, with corresponding relation R. A Sigma protocol Σ = (P,V) for R is
a 3-round public-coin protocol. In particular, an execution of Σ proceeds as follows:
• The prover P computes the first message using as input the instance to be proved x ∈ L

with the corresponding witness w, and outputs the first message a with an auxiliary
information st ; we denote this action with (a, st)←$ P(x,w).
• The verifier V, upon receiving a, sends a random string c←$ {0, 1}` with ` ∈ N.
• The prover P, upon input c and st , computes and sends z to V; we denote this action with
z←$ P(st , c).
• The verifier V, upon input (x, a, c, z), outputs 1 to accept and 0 to reject; we denote this

action with V(x, a, c, z) = d where d ∈ {0, 1} denotes whether V accepts or not.

Definition 2 (Sigma protocol [CDS94]). A 3-move protocol Σ with challenge length ` ∈ N is a
Sigma protocol for a relation R if it enjoys the following properties:
• Completeness. If (x,w) ∈ R, then all honest 3-move transcripts for (x,w) are accepting.
• Special soundness. There exists an efficient algorithm K that, on input two accepting

transcripts (a, c, z) and (a, c′, z′) for x with c′ 6= c (we refer to such two accepting transcripts
as a collision) outputs a witness w such that (x,w) ∈ R.
• Special honest-verifier zero knowledge (SHVZK). There exists a PPT simulator

algorithm S that takes as input security parameter 1λ, x ∈ L and c ∈ {0, 1}`, and out-
puts an accepting transcript for x where c is the challenge (we denote this action with
(a, z)←$ S(x, c)). Moreover, for all `-bit strings c, the distribution of the output of the
simulator on input (x, c) is computationally indistinguishable from the distribution of the
3-move honest transcript obtained when V sends c as challenge and P runs on common
input x and any private input w such that (x,w) ∈ R.

2.4 The DDH Assumption

Let G be a cyclic group with generator g, and let A,B and X be elements of G. We say that
(g,A,B,X) is a Diffie-Hellman tuple (a DH tuple, in short) if A = gα, B = gβ for some integers
0 ≤ α, β ≤ |G| − 1 and X = gαβ . If this is not the case, the tuple is called non-DH. To verify
that a tuple is DH, it is sufficient to have the discrete log α of A to the base g, and then to
check that X = Bα. We thus define the polynomial-time relation RDH = {((g,A,B,X), α) :
A = gα and X = Bα} of all DH tuples.

The Decisional Diffie-Hellman assumption (the DDH assumption) posits the hardness of
distinguishing a randomly selected DH tuple from a randomly selected non-DH tuple with respect
to a group generator algorithm. For sake of concreteness, we consider the specific group generator
GG that, on input 1λ, randomly selects a λ-bit prime p such that q = (p − 1)/2 is also prime
and outputs the (description of the) order q group G of the quadratic residues modulo p along
with a random generator g of G.
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Assumption 1 (DDH Assumption). For every PPT algorithm A there exists a negligible func-
tion ν : N→ [0, 1] s.t.∣∣∣P [A((G, q, g), gα, gβ, gγ) = 1 : (G, q, g)←$ GG(1λ);α, β, γ←$ Zq

]
−

P
[
A((G, q, g), gα, gβ, gαβ) = 1 : (G, q, g)←$ GG(1λ);α, β, γ←$ Zq

] ∣∣∣ ≤ ν(λ).

1-non-DDH. We define polynomial-time relation R1nDH as R1nDH = {((g,A,B,X), α) : A =
gα and X = g · Bα}. Thus a 1-non-DH tuple is a tuple T = (g,A,B,X) such that A = gα,
B = gβ and X = g · Bα = gα·β+1. Under the DDH assumption random 1-non-DH tuples are
indistinguishable from random non-DH tuple. Indeed, let T = (g,A,B,X) be any tuple and
consider tuple T ′ = (g,A,B, g ·X). Then we have that if T is a randomly selected DH tuple, then
T ′ is a randomly selected 1-non-DH tuple; on the other hand, if T is a randomly selected non-DH
tuple then T ′ is statistically close to a randomly selected non-DH tuple. By transitivity, we have
that, under the DDH assumption, randomly selected 1-non-DH tuples are indistinguishable from
randomly selected DH tuples We can thus state the following lemma (first proved as Lemma 3.1
in [HKR+14]).

Lemma 1 ([HKR+14]). Under the DDH assumption, for every PPT algorithm A there exists a
negligible function ν : N→ [0, 1] s.t.∣∣∣P [A((G, q, g), gα, gβ, gαβ+1) = 1 : (G, q, g)←$ GG(1λ);α, β←$ Zq

]
−

P
[
A((G, q, g), gα, gβ, gαβ) = 1 : (G, q, g)←$ GG(1λ);α, β←$ Zq

] ∣∣∣ ≤ ν(λ).

As showed in [CPS+16], a Sigma protocol Σ1nDH for the relation R1nDH can be constructed
based on the Sigma protocol ΣDH of [CDS94] to prove that a given tuple is DH. The compiler
proposed in [CPS+16] is almost as efficient as ΣDH and works as follows. On input tuples
(g,A,B,X), the prover and the verifier construct tuples (g,A,B, Y ) by setting Y = X/g. Then,
they simply run Sigma protocol ΣDH upon input the theorem (g,A,B, Y ).

Theorem 1 ([CPS+16]). Protocol Σ1nDH is a Sigma protocol for the relation R1nDH .

2.5 Instance-dependent Trapdoor Commitment

An instance-dependent trapdoor commitment scheme for polynomial-time relation R with mes-
sage space M is a quadruple of PPT algorithms (Com,Dec,Fake1,Fake2) specified as follows:
• Com is the randomized commitment algorithm that takes as input an instance x ∈ L̂ and

a message m ∈M , and outputs commitment com and decommitment dec;
• Dec is the verification algorithm that takes as input x ∈ L̂, com, dec and m ∈ M , and

decides whether m is the decommitment of com;
• Fake1 takes as input (x,w) ∈ R and outputs commitment com, and equivocation information
rand;
• Fake2 takes as input (x,w) ∈ R, message m ∈M , and (com, rand), and outputs dec;

Definition 3 (Instance-dependent trapdoor commitment scheme). Let R be a polynomial-time
relation. We call Π = (Com,Dec,Fake1,Fake2) an instance-dependent trapdoor commitment
scheme (an IDTC, in short) for R if it enjoys the following properties:
• Correctness. For all x ∈ L̂, and all m ∈M , it holds that

P [Dec(x, com, dec,m) = 1 : (com, dec)←$ Com(x,m)] = 1.
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• Binding. For all x /∈ L, and for every commitment com, there exists at most one message
m ∈M for which there is a valid decommitment dec (i.e. Dec(x, com, dec,m) = 1).
• Hiding. For every x ∈ L, and every m0,m1 ∈ M , the ensembles {com : (com, dec)←$

Com(1λ, x,m0)}λ∈N and {com : (com, dec)←$ Com(1λ, x,m1)}λ∈N are identically distributed.
• Trapdoorness. For all (x,w) ∈ R and m ∈M the following two distributions coincide:

{(com, dec) : (com, rand)←$ Fake1(x,w); dec←$ Fake2(x,w,m, com, rand)}
{(com, dec) : (com, dec)← Com(x,m)} .

An IDTC can be easily constructed from any Sigma protocol as shown in [Dam10, HL10,
DN02, CPS+16]. For the sake of completeness we now recall the construction of [CPS+16].

IDTCs from Sigma protocols. Let Σ = (P,V) be a Sigma protocol for the polynomial-
time relation R, with challenge length `, and SHVZK simulator S. We define an IDTC Π =
(ComΣ,DecΣ,FakeΣ

1 ,Fake
Σ
2 ) with message space M = {0, 1}` as follows.

• ComΣ takes as input x and m ∈ {0, 1}` and computes (com, dec) by running S on input
(x,m).
• DecΣ takes as input x, com, dec,m, runs V on instance x and transcript (com,m, dec) and

outputs V’s output.
• FakeΣ

1 takes as input (x,w) ∈ R, samples a random string ρ and runs P on input (x,w)
and randomness ρ to get the 1st message a of Σ. Then, it sets com = a and rand = ρ and
outputs (com, rand).
• FakeΣ

2 takes as input (x,w) ∈ R, message m ∈ {0, 1}`, and commitment com and equivoca-
tion information rand and runs P to get 3rd message z of Σ corresponding to first message
a = com, randomness ρ = rand and challenge c = m. Then, it sets dec = z and outputs
dec.

Theorem 2 ([CPS+16]). Assuming Σ is a Sigma protocol for the relation R, the above con-
struction ΠΣ defines an IDTC for R.

Proof sketch. The security proof relies only on the properties of Σ. Correctness follows from the
completeness of Σ. Binding follows from the special soundness of Σ. Hiding and Trapdoorness
follow from the SHVZK and the completeness of Σ.

2.6 Correlation Intractable Hash Families

Here, we recall the definition of correlation-intractable hash families for all sparse relations.

Definition 4 (Hash family). For a pair of efficiently computable functions (n(·),m(·)), a hash
family with input length n and output length m is a collection H = {hk : {0, 1}n(λ) →
{0, 1}m(λ)}λ∈N,k∈{0,1}s(λ) of keyed hash functions, along with a pair of PPT algorithms speci-
fied as follows: (i) H.Gen(1λ) outputs a hash key k ∈ {0, 1}s(λ); (ii) H.Hash(k, x) computes the
function hk(x).

Definition 5 (Correlation intractability). For a given relation ensemble R := {Rλ ⊆ {0, 1}n(λ)×
{0, 1}m(λ)}, a hash family H = {hk : {0, 1}n(λ) → {0, 1}m(λ)}λ∈N,k∈{0,1}s(λ) is said to be R-
correlation intractable with security (σ, δ) if for every σ-size attacker A := {Aλ}:

P
[
(x, hk(x)) ∈ Rλ : k←$H.Gen(1λ);x←$A(k)

]
= O(δ(λ)).

We say that H is R-correlation intractable if it is R-correlation intractable with security
(λc, λ−c) for all constants c > 1.
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Correlation intractability is a useful and versatile property of random oracles that we would
like to guarantee in the standard model. However, even a random oracle is only R-correlation
intractable for so-called sparse relations.

Definition 6 (Sparsity). For any relation ensemble R := {Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ)}λ, we
say that R is ρ(·)-sparse if for all λ ∈ N and for any x ∈ {0, 1}n(λ) it holds that (x, y) ∈ Rλ with
probability at most ρ(λ) over the choice of y←$ {0, 1}m(λ). When ρ is a negligible function, we
say that R is sparse.

Efficiently searchable relations. In this work, we will need hash families achieving corre-
lation intractability for relations R with a unique output y = f(x) associated to each input x,
and such that y = f(x) is an efficiently computable function of x.

Definition 7 (Unique output relation). We say that a relation R is a unique output relation if
for every input x, there exists at most one output y such that (x, y) ∈ R.

Definition 8 (Efficiently searchable relation). We say that a (necessarily unique-output) relation
ensemble R is searchable in (non-uniform) time t if there exists a function f = fR : {0, 1}∗ →
{0, 1}∗ computable in (non-uniform) time t such that for any input x, if (x, y) ∈ R then y = f(x);
that is, f(x) is the unique y such that (x, y) ∈ R, provided that such a y exists. We say that R
is efficiently searchable if it is searchable in time poly(n).

Programmability. The following property turns out to be very useful in order to prove the
zero-knowledge property of non-interactive proofs derived using correlation intractable hash
families.

Definition 9 (1-universality). We say that a hash family H is 1-universal if for any λ ∈ N, input
x ∈ {0, 1}n(λ), and output y ∈ {0, 1}m(λ), we have P

[
hk(x) = y : k←$H.Gen(1λ)

]
= 2−m(λ).

We say that a hash family H is programmable if it is 1-universal, and if there exists an
efficient sampling algorithm Sample(1λ, x, y) that samples from the conditional distribution
k←$H.Gen(1λ)|hk(x) = y.

2.7 Non-Interactive Argument Systems

Finally, we recall the definitions related to non-interactive argument systems.

Definition 10 (NIZK argument systems). A non-interactive zero-knowledge argument system
(NIZK) for an NP-language L consists of three PPT machines Π := (Gen,P,V), that have the
following properties:
• Completeness. For all λ ∈ N, and all (x,w) ∈ R, it holds that:

P
[
V(ω, x,P(ω, x,w)) = 1 : ω←$ Gen(1λ, 1|x|)

]
= 1.

• Soundness. For all PPT provers P∗, there exists a negligible function ν : N→ [0, 1], such
that for all λ ∈ N and for all x /∈ L:

P
[
V(ω, x, π) = 1 : ω←$ Gen(1λ, 1|x|);π←$ P∗(ω)

]
≤ ν(λ).

• Zero knowledge. There exists a PPT simulator S such that for every (x,w) ∈ R, the
distribution ensembles {(ω, π) : ω←$ Gen(1λ, 1|x|);π←$ P(ω, x,w)}λ∈N and {S(1λ, x)}λ∈N
are computationally indistinguishable.

A NIZK argument system can also satisfy various stronger properties. We list them below.
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• Adaptive zero knowledge. For all PPT verifiers V∗ there exists a PPT simulator
S := (S0,S1) such that the following distribution ensembles are computationally indistin-
guishable:

{(ω, π) : ω←$ Gen(1λ, 1|x|); (x,w)←$ V∗(ω);π←$ P(ω, x, w); (x,w) ∈ R}λ∈N
{(ω, π) : (ω, τ)←$ S0(1λ, 1|x|); (x,w)←$ V∗(ω);π←$ S1(ω, τ, x); (x,w) ∈ R}λ∈N

• Adaptive soundness. For all PPT prover P∗, there exists a negligible function ν : N→
[0, 1], such that for all λ ∈ N:

P
[
V(ω, x, π) = 1 : ω←$ Gen(1λ, 1|x|); (x, π)←$ P∗(ω);x /∈ L

]
≤ ν(λ).

3 A Compiler for Adaptive-input HVZK

3.1 Delayed-input Sigma Protocols

In this section, we recall the notion of a delayed-input three-round public-coin protocols and give
security notions both for the prover and the verifier.

Definition 11 (Delayed-input protocols [CPS+16]). A delayed-input three-move protocol for
polynomial-time relation R is a three-move protocol (P,V) in which the first message of P can
be computed on input the length n of the common theorem in unary notation.8

Since in a delayed-input protocol the input might not be fixed at the onset of the protocol, it
could be adversarially chosen by the prover or by the verifier based on the exchanged messages.
For example, the special soundness of a Sigma protocol guarantees extraction from collisions only
if the transcripts are accepting for the same input. However when the statement to be proved is
chosen adaptively by the prover depending on the challenge received, special soundness does not
guarantee extraction. We thus introduce a stronger notion that we call adaptive-input special
soundness. Roughly speaking, we require that it is possible to extract witnesses from a collision
even if the two accepting transcripts are for different statements.

Definition 12 (Adaptive-input special soundness). A delayed-input 3-round protocol Σ =
(P,V) for relation R enjoys adaptive-input special soundness if there exists a polynomial-time
algorithm K such that, for any x1, x2 ∈ L, and for any pair of accepting transcripts (a, c1, z1)
for input x1 and (a, c2, z2) for input x2 with c1 6= c2, outputs witnesses w1 and w2 such that
(x1, w1) ∈ R and (x2, w2) ∈ R.

Similarly, the definition below captures an adaptive flavour of SHVZK where the distinguisher
can choose the theorem being proven adaptively based on the honest prover’s first message and
on the verifier’s challenge.

Definition 13 (Adaptive-input SHVZK). A delayed-input 3-round protocol Σ = (P,V) for
relation R satisfies adaptive-input special honest-verifier zero-knowledge (adaptive-input SHVZK)
if there exists a PPT simulator algorithm S = (S0,S1) such that for all PPT adversariesA and for
all challenges c ∈ {0, 1}` there is a negligible function ν : N→ [0, 1] for which

∣∣P [b′ = b]− 1
2

∣∣ ≤
ν(λ) in the following game:

1. The challenger sends (a, c) to A, where the value a is either computed using (a, st)←$

P(1λ, 1n) (in case b = 0) or (a, st)←$ S0(1λ, 1n, c) (in case b = 1).
8For simplicity, in what follows, we sometimes drop input 1n when describing the prover of a delayed-input

Sigma protocol.
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2. The adversary A sends a pair (x,w) to the challenger, where |x| = n. Hence:
• If (x,w) ∈ R, the challenger sends z to A, where the value z is either computed using
z←$ P(x,w, st , c) (in case b = 0) or z←$ S1(x, st) (in case b = 1);
• Else, the challenger sends z = ⊥ to A.

3. The adversary A outputs a bit b′.

3.2 The Transformation

It turns out that the celebrated Sigma protocol by Lapidot and Shamir [LS91] is already delayed-
input, and moreover it satisfies both adaptive-input special soundness9 and adaptive-input
SHVZK. While this protocol works for any NP relation, it is very inefficient as it requires generic
NP reductions. Hence, it is a natural question whether there are efficient Sigma protocols that
are delayed-input and satisfy both adaptive-input special soundness and SHVZK.

A partial answer to this question was given in [CPS+16], which shows how to transform a
large class of delayed-input Sigma protocols into ones with adaptive-input special soundness. In
this section, we give yet another transform that allows to turn any delayed-input Sigma proto-
col into one satisfying adaptive-input SHVZK. Moreover, assuming the initial Sigma protocol
already satisfies adaptive-input special soundness, our transformation preserves this property.

Let Σ be a delayed-input Sigma protocol for a polynomial-time relation R. We construct a
Sigma protocol Σ′′ for R based on the following additional building blocks: (i) An IDTC Π =
(Com,Dec,Fake1,Fake2) for the relation RDH (see §2.4); and (ii) A Sigma protocol Σ′ = (P ′,V ′)
for the relation R1nDH (see §2.4). The formal construction is showed in Fig. 1.

Intuitively, the prover starts by computing the first round a of the Sigma protocol Σ. Hence,
it commits to message a using the IDTC with a random 1-non-DH tuple T ∈ L1nDH as instance
(i.e., A = gα, B = gβ and C = g ·Bα = gα·β+1 for random α, β ∈ Zq)), obtaining a commitment
com and decommitment dec. Next, the prover computes the first round a′ of the Sigma protocol
Σ′ for showing that T is indeed a 1-non-DH tuple, and sends (com, a′, T ) to the verifier, which
replies with a random challenge c ∈ {0, 1}`. Finally, the prover completes the transcripts of both
Σ and Σ′ using c as challenge, obtaining values z, z′ that are forwarded to the verifier together
with the decommitment information (dec, a) corresponding to commitment com. We now state
and prove our formal theorem.

Theorem 3. Let R be a polynomial-time relation. Assume that Σ is a delayed-input Sigma
protocol for R with adaptive-input special soundness and standard SHVZK, that Π is an IDTC
for RDH , and that Σ′ is a Sigma protocol for the relation R1nDH . Then, the Sigma protocol Σ′′

of Fig. 1 is a delayed-input Sigma protocol for R satisfying both adaptive-input special soundness
and adaptive-input SHVZK under the DDH assumption.

Proof. The completeness of Σ′′ follows readily by completeness of Σ and Σ′, and by correctness
of Π. Below, we thus focus on the proofs of adaptive-input special soundness and adaptive-input
SHVZK. Intuitively, our protocol works because the first message of Π is committed using an
IDTC that is perfectly binding (since the instance used for the IDTC is non-DH). To enforce a
cheating prover to not use a DH tuple (instead of a 1-non-DH one) to compute the commitment,
P ′′ proves that T is a 1-non-DH tuple using the Sigma protocol Σ′. We recall that Σ′ can be
easily constructed following the approach described in §2.4.

It is important to observe that even though the Sigma protocol Π has a perfect SHVZK sim-
ulator, the Sigma protocol Σ′′ that our compiler outputs is only (adaptive-input) computational
SHVZK, and in fact Theorem 3 relies on the hardness of the DDH assumption.

9Strictly speaking, [LS91] only achieves a weaker flavor of adaptive-input special soundness that allows to
extract the witness for only one of the two theorems.
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Common input: Security parameter λ, instance x ∈ L (available only in the third round).
Prover’s private input: Witness w s.t. (x,w) ∈ R (available only in the third round).
P ′′(1λ): The first prover’s message is generated as follows:

• Pick a random 1-non-DH tuple T = (g,A,B,C) with corresponding witness α ∈ Zq.
• Run P on input (1λ, 1n) thus obtaining (a, st).
• Run Com on input T and a, thus obtaining (com, dec).
• Run P ′ on input (T, α) thus obtaining (a′, st ′).
• Send a′′ = (com, a′, T ) to V ′′ and set st ′′ = (st , st ′, dec, a).

V ′′(1λ): Pick c←$ {0, 1}` and send it to P ′′.
P ′′(x,w, st ′′, c): The last prover’s message is generated as follows:

• Run P on input (x,w, st , c) thus obtaining z
• Run P ′ on input (c, st ′) thus obtaining z′.
• Send z′′ = (z, z′, (dec, a)) to V ′.

Verifier’s verdict: Upon input a transcript (a′′, c, z′′) such that a′′ = (com, a′, T ) and z′′ = (z, z′,
(dec, a)) the verifier accepts if and only if the following checks go through: (i) V(x, a, c, z) = 1; (ii)
V ′(T, a′, c, z′) = 1; (iii) Dec(T, com, dec, a) = 1.

Figure 1: Construction of a delayed-input Sigma protocol with adaptive-input SHVZK.

Proof of adaptive-input special soundness. We start by showing that Σ′′ satisfies adaptive-
input special soundness.

Lemma 2. Assuming that Π satisfies binding, and that Σ (resp. Σ′) satisfies special soundness
(resp. adaptive-input special soundness), then the delayed-input protocol Σ′′ of Fig. 1 satisfies
adaptive-input special soundness.

Proof. Fix any x1, x2 ∈ L. Let (a′′, c1, z
′′
1 ) and (a′′, c2, z

′′
2 ) be, respectively, two accepting tran-

scripts for x1 and x2, with c1 6= c2, and let us write a′′ = (com, a′, T ), z′′1 = (z1, z
′
1, (dec1, a1))

and z′′2 = (z2, z
′
2, (dec2, a2)) as described in Fig. 1.

The fact that both (a′′, c1, z
′′
1 ) and (a′′, c2, z

′′
2 ) are accepting implies that both (a′, c1, z

′
1) and

(a′, c2, z
′
2) are accepting w.r.t. statement T under Σ′. Hence, by special soundness of Σ′, there

exists an efficient algorithm that given the above transcripts returns a valid witness α such that
(T, α) ∈ R1nDH .

Since the above is equivalent to saying that T 6∈ LDH , the perfect binding property of Π
now implies that a1 = a2 = a. The latter, in turn, implies that (a, c1, z1) and (a, c2, z2) are
accepting transcripts w.r.t. statements x1 and x2 under Σ, with c1 6= c2, and thus by adaptive-
input special soundness of Σ there exists an efficient algorithm that given the above transcripts
returns witnesses w1, w2 such that (x1, w1) ∈ R and (x2, w2) ∈ R. The statement follows.

Proof of adaptive-input SHVZK. Next, we show that Σ′′ satisfies adaptive-input SHVZK.

Lemma 3. Assuming that Π satisfies trapdoorness, and that Σ and Σ′ satisfy SHVZK, then the
protocol Σ′′ of Fig. 1 satisfies adaptive-input SHVZK under the DDH assumption.

Proof. We start by describing the adaptive-input SHVZK simulator S = (S0,S1), in Fig. 2.
Intuitively, in the first phase, simulator S0 generates a random DH tuple T ∈ LDH (i.e., A = gα,
B = gβ and C = Bα = gα·β for random α, β ∈ Zq) along with the corresponding witness
α, and lets com be an equivocal commitment w.r.t. (T, α), with equivocation information rand.
Furthermore, S0 simulates a transcript (a′, c, z′) using the SHVZK simulator S ′ of Σ′ upon input
statement T and challenge c. This yields a simulated first message a′′ = (com, a′, T ). In the
second phase, when the statement x ∈ L is available, simulator S1 uses the SHVZK simulator S
of Σ upon input statement x and challenge c to obtain a simulated transcript (a, c, z). Finally,
S1 opens the commitment to a using rand, which yields a simulated response (z, z′, (dec, a)).

14



Let S and S ′ be, respectively, the SHVZK simulators of Σ and Σ′. The simulator S ′′ = (S ′′0 ,S ′′1 )
for Σ′′ proceeds as follows. Recall that S ′′0 only gets as input (1λ, c), whereas S ′′1 additionally
receives the statement x ∈ L.
S ′′0 (1λ, c): Upon input security parameter 1λ and the challenge c:

• Pick a random DH tuple T = (g,A,B,C) with corresponding witness α ∈ Zq.
• Run (com, rand)←$ Fake1(T, α).
• Run (a′, z′)←$ S ′(T, c).
• Output a′′ = (com, a′, T ) and st ′′ = (T, α, com, rand, c, z′).

S ′′1 (x, st ′′): Upon input statement x ∈ L and state st ′′ = (T, α, com, rand, c, z′):
• Run (a, z)←$ S(x, c).
• Run dec←$ Fake2((T, α), a, (com, rand)).
• Output z′′ = (z, z′, (dec, a)).

Figure 2: The adaptive-input SHVZK simulator of Σ′′.

Let us denote with G(λ, c, 0) (resp. G(λ, c, 1)) the game of Definition 13 when the challenger
uses challenge c ∈ {0, 1}` and hidden bit b = 0 (resp. b = 1). Recall that inG(λ, c, 0) the attacker
A receives a real transcript (a′′, c, z′′) as computed by the prover P ′′, whereas in G(λ, c, 1), the
attacker A receives a simulated transcript (a′′, c, z′′) as computed by the above simulator S ′′;
in both games, the attacker chooses (x,w) ∈ R adaptively, after obtaining the messages (a′′, c).
Our goal is to show that {G(λ, c, 0)}λ∈N ≈c {G(λ, c, 1)}λ∈N, for all c ∈ {0, 1}`. To this end,
we introduce a sequence of hybrids as informally described below and depicted in Fig. 6 on
page 34.10

Hybrid H1(λ, c): This experiment is identical to G(λ, c, 1) except that the transcript (a, c, z)
is computed using the prover and verifier of Σ instead of running the SHVZK simulator
S. Note that the latter is indeed possible as Σ is delayed-input.

Hybrid H2(λ, c): This experiment is identical to the previous hybrid except that the challenger
now picks T from L1nDH (along with the corresponding witness α), and lets com be a
binding commitment to a w.r.t. T (with corresponding decommitment dec).

The claims below conclude the proof of the lemma.

Claim 1. For all c ∈ {0, 1}`, it holds that {G(λ, c, 1)}λ∈N ≈c {H1(λ, c)}λ∈N.

Proof. The proof is down to the (computational) SHVZK property of Σ. By contradiction,
assume that there exists c ∈ {0, 1}`, a PPT attacker A′′, and a polynomial p(λ) such that

|P [G(λ, c, 1) = 1]− P [H1(λ, c) = 1]| ≥ 1/p(λ).

We are going to construct a PPT attacker A breaking the SHVZK property of Σ w.r.t. challenge
c. A description of A follows:
• At the outset pick (T, α)←$ RDH , run (com, rand)←$ Fake1(T, α) and (a′, z′)←$ S ′(T, c),

and forward a′′ = (a′, com, T ) and c to A′′.
• Upon receiving (x,w) from A:

– In case (x,w) ∈ R, forward x to the challenger obtaining (a, z). Hence, let dec

←$ Fake2((T, α), a, (com, rand)) and forward z′′ = (z, z′, (dec, a)) to A′′.
– In case (x,w) 6∈ R, forward z′′ = ⊥ to A′′.

• Output whatever A′′ outputs.
10All games are further parameterized by an attacker and the protocol Σ′′ of Fig. 1, but we avoid to write this

explicitly to simplify notation.
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For the analysis, note that the distribution of a′′ as sampled by the reduction is identical to that
of those values in both experiments G(λ, c, 1) and H1(λ, c). The same holds for the distribution
of z′′ whenever (x,w) 6∈ R. As for the value z′′, in case (a, z) are sampled using the prover
in Σ (i.e., (a, st)←$ P(1λ) and z←$ P(x,w, a, c)) the distribution of z′′ is identical to that in
experiment H1(λ, c), whereas in case (a, z) are sampled using the SHVZK simulator in Σ (i.e.,
(a, z)←$ S(x, c)) the distribution of z′′is identical to that in experiment G(λ, c, 1). Hence, the
distinguishing advantage of A is identical to that of A′′. The statement follows.

Claim 2. For all c ∈ {0, 1}`, it holds that {H1(λ, c)}λ∈N ≈c {H2(λ, c)}λ∈N.

Proof. The proof is down to the DDH assumption. By contradiction, assume that there exists
c ∈ {0, 1}`, a PPT attacker A′′, and a polynomial p(λ) such that

|P [H1(λ, c) = 1]− P [H2(λ, c) = 1]| ≥ 1/p(λ).

We are going to construct a PPT attacker A breaking the DDH assumption. A description of
A follows:
• At the outset, receive a tuple T = (g,A,B,C) from the challenger.
• Run (a, st)←$ P(1λ), (com, dec)←$ Com(T, a), and (a′, z′)←$ S ′(T, c), and forward a′′ =

(com, a′, T ) and c to A′′.
• Upon receiving (x,w) from A:

– In case (x,w) ∈ R, let z←$ P(x,w, c, st) and forward z′′ = (z, z′, (dec, a)) to A′′.
– In case (x,w) 6∈ R, forward z′′ = ⊥ to A′′.

• Output whatever A′′ outputs.
For the analysis, note that the reduction runs exactly the same code as in H2(λ, c) after embed-
ding the tuple T from the challenger. In particular, assuming that T is a 1-non-DH tuple, the
reduction perfectly emulates the view of A′′ in H2(λ, c).

On the other hand, assuming that T is a DH tuple, we claim that the reduction perfectly
emulates the view of A′′ in H1(λ, c). The latter follows by the perfect trapdoorness prop-
erty of Π, as for all (T, α) ∈ RDH , and for every message a, the distribution of (com, dec) in
(com, dec)←$ Com(T, a) is identical to the distribution of (com, dec) in (com, rand)←$ Fake1(T, α)
and dec←$ Fake2((T, α), a, (com, rand)). Hence, the distinguishing advantage of A is identical
to that of A′′. The statement follows.

Claim 3. For all c ∈ {0, 1}`, it holds that {H2(λ, c)}λ∈N ≈c {G(λ, c, 0)}λ∈N.

Proof. The proof is down to the (computational) SHVZK property of Σ′. By contradiction,
assume that there exists c ∈ {0, 1}`, a PPT attacker A′′, and a polynomial p(λ) such that

|P [H2(λ, c) = 1]− P [G(λ, c, 0) = 1]| ≥ 1/p(λ).

We are going to construct a PPT attacker A′ breaking the SHVZK property of Σ′ w.r.t. challenge
c. A description of A′ follows:
• At the outset pick (T, α)←$ R1nDH , and forward (T, α) to the challenger obtaining a

transcript (a′, c, z′).
• Compute (a, st)←$ P(1λ), let (com, dec)←$ Com(T, a) and forward a′′ = (a′, com, T ) and
c to A′′.
• Upon receiving (x,w) from A:

– In case (x,w) ∈ R, let z←$ P(x,w, a, c) and forward z′′ = (z, z′, (dec, a)) to A′′.
– In case (x,w) 6∈ R, forward z′′ = ⊥ to A′′.

• Output whatever A′′ outputs.

16



For the analysis, note that in case (a′, z′) are sampled using the SHVZK simulator in Σ′

(i.e., (a′, z′)←$ S ′(T, c)) the reduction perfectly emulates the view of A′′ in H2(λ, c). On the
other hand, in case (a′, z′) are sampled using the prover in Σ′ (i.e., (a′, st ′)←$ P ′(T, α) and
z′←$ P ′(st ′, c)) the reduction perfectly emulates the view of A′′ in G(λ, c, 0). Hence, the dis-
tinguishing advantage of A′ is identical to that of A′′. The statement follows.

Lemma 3 follows by combining the above claims.

The theorem follows by combining Lemma 2 and Lemma 3.

4 Adaptive Security of the Fiat-Shamir Transform

4.1 Trapdoor Sigma Protocols and the Fiat-Shamir Transform

Informally, a trapdoor Sigma protocol is a special Sigma protocol in the CRS model satisfying
the following two properties: (i) If the statement x is false, then for every first message a, there is
a unique challenge c for which there is an accepting third message z that results in an accepting
transcript (a, c, z); (ii) There is a trapdoor associated with the CRS that allows us to efficiently
compute this “bad challenge” c from the first message a and the statement x being proven. We
now slightly revisit the definition of trapdoor Sigma protocols from [CCH+19], and show that
the Fiat-Shamir transform applied to a trapdoor Sigma protocol (where the hash function takes
as input both the statement and the first round of the prover) yields a NIZK with adaptive
soundness. The only difference between the definition in [CCH+19] and ours is that we require
the honestly generated CRS to be identically distributed to the CRS generated together with the
trapdoor.11 We also show that, assuming the trapdoor Sigma protocol admits an adaptive-input
SHVZK simulator, then the NIZK resulting from the FS transform (where the hash function
now takes as input only the first round of the prover) satisfies adaptive zero knowledge.

Definition 14 (CRSigma protocols). We say that a three-round public-coin SHVZK proof
system Σ = (Gen,P,V)12 in the CRS model is a CRSigma protocol if for every valid CRS ω,
every instance x /∈ L, and every first round a, there is at most one challenge c := f(ω, x, a) such
that (ω, x, a, c, z) is an accepting transcript for some z. We informally call f the “bad-challenge
function” associated to Σ, and note that f may not be efficiently computable.13

Following [CCH+19], we now define trapdoor Sigma protocol to be a CRSigma protocol that
has a trapdoor making the bad-challenge function f efficiently computable.

Definition 15 (Trapdoor Sigma protocol). We say that a CRSigma protocol Σ = (Gen,P,V)
with bad-challenge function f is a trapdoor Sigma protocol if there are PPT algorithms TrapGen,
BadChallenge with the following syntax:
• TrapGen takes as input the unary representation of the security parameter and outputs a

common reference string ω with a trapdoor τ .
• BadChallenge takes as input a trapdoor τ , common reference string ω, an instance x and

the first message a and outputs a challenge c.
We additionally require the following properties.
• CRS indistinguishability. An honestly generated common reference string ω is identi-

cally distributed to a common reference string output by TrapGen(1λ).
• Correctness. For every instance x /∈ L and for all (ω, τ)←$ TrapGen(1λ) we have that
BadChallenge(τ, ω, x, a) = f(ω, x, a).

11This modification is related to the fact that we want to prove adaptive soundness (more on this later).
12In this case the SHVZK simulator computes also the CRS.
13We observe that this notion implies that a trapdoor Sigma protocol is sound with soundness error 2−|c|.
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The Fiat-Shamir transform. Let H be a hash family and Σ = (Gen,P,V) be a (delayed-
input) CRSigma protocol for some relation R. Consider the following non-interactive argument
systems Π′ = (Gen′,P ′,V ′) and Π′′ = (Gen′,P ′′,V ′) for R:
• The common reference string ω′ := (ω, k) consists of the common reference string of Σ

(i.e., ω←$ Gen(1λ)) along with a hash key k←$H.Gen(1λ).
• Upon input (x,w) ∈ R, the prover P ′ (resp. P ′′) computes (a, st)←$ P(1λ, ω, x, w) (resp.

(a, st)←$ P(1λ, ω)), c := hk(a||x) (resp. c := hk(a)) and z←$ P(st , c) (resp. z←$ P(st , x,
w, c)), and outputs14 (a, c, z).
• The verifier V ′ (resp. V ′′) accepts the transcript (a, c, z) w.r.t. CRS ω′ = (ω, k) and state-

ment x if V(ω, x, a, c, z) = 1 and hk(a||x) = c (resp. hk(a) = c).

Theorem 4. Suppose that H is a hash family that is correlation intractable for all sub-exponentially
sparse relations that are searchable in time t, and that H enjoys programmability. Moreover, as-
sume that Σ = (Gen,P,V,TrapGen,BadChallenge) is a trapdoor Sigma protocol with SHVZK and
challenge (second message) space {0, 1}λε for some ε > 0, such that BadChallenge(τ, ω, x, a) is
computable in time t. Then, the non-interactive argument system Π′ described above satisfies
zero-knowledge and adaptive soundness in the CRS model.

Proof. We prove adaptive soundness and (non-adaptive) zero knowledge of Π′ separately.

Adaptive soundness. By construction, and by the definition of trapdoor Sigma protocol,
we know that for every x /∈ L and every ω, an accepting transcript for Π′ must satisfy the
condition that hk(a||x) = c = f(ω, x, a). Suppose now that some PPT prover P ∗(ω, k) outputs,
with non-negligible probability, a false statement x /∈ L and an accepting proof (a, c, z). Then,
by (perfect) CRS indistinguishability, the same would be true for ω sampled by the algorithm
TrapGen(1λ) which also outputs the trapdoor τ . In this case, P ∗ would still output (with
non-negligible probability) some x, a such that hk(a||x) = f(ω, x, a) = BadChallenge(τ, ω, x, a).
This contradicts the correlation intractability of H for the relation Rω,τ := {((a||x), c) : c =
BadChallenge(τ, ω, x, a) and x /∈ L}.

In more details, an adversary A could break correlation intractability of H by sampling
(ω, τ) itself, declaring the relation Rω,τ to be broken, and then running P∗(ω, k) after being
given k←$H.Gen(1λ). Since Σ has challenge space {0, 1}λε , the relation Rω,τ indeed has sub-
exponential sparsity. Moreover, if ((a||x), c) is in Rω,τ then c is efficiently computable given τ ,
and thus Rω,τ is efficiently searchable, which contradicts our assumption on H. This concludes
the proof of adaptive soundness.

Zero knowledge. The simulator S, upon input the instance x ∈ L, works as follows.
• Pick a random challenge c for Σ.
• Run the SHVZK simulator of Σ upon input (x, c), thus obtaining ω, a, z.
• Sample a hash key k from the conditional distribution k←$H.Gen(1λ) s.t. h(k, a||x) = c.
• Output (ω, k, a, c, z)

Indistinguishability of the simulation follows from the programmability of the hash function,
and by the SHVZK property of Σ. This concludes the proof of (non-adaptive) zero knowledge.

Theorem 5. Suppose that H is a hash family that is correlation intractable for all sub-exponentially
sparse relations that are searchable in time t, and that H enjoys programmability. Moreover,

14Equivalently, the prover can just output (a, z) as c can be re-computed by the verifier.
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assume that Σ = (Gen,P,V,TrapGen,BadChallenge) is a trapdoor Sigma protocol with adaptive-
input SHVZK15 and challenge space {0, 1}λε for some ε > 0, such that BadChallenge(τ, ω, x, a)
is computable in time t. Then, the non-interactive argument system Π′′ described above satisfies
soundness and adaptive zero knowledge in the CRS model.

Proof. We show (non-adaptive) soundness16 and adaptive zero knowledge of Π′′ separately.

Soundness. By construction, and by the definition of trapdoor Sigma protocols, we know
that for every x /∈ L and every ω, an accepting transcript for Π′′ must satisfy the condition
that hk(a) = c = f(ω, x, a). Suppose that there exists a theorem x /∈ L and some PPT prover
P∗ such that P ∗(ω, k) outputs, with non-negligible probability, an accepting proof (a, c, z).
Then, by (perfect) CRS indistinguishability, the same would be true for ω sampled by the
algorithm TrapGen(1λ) which also outputs the trapdoor τ . In this case, P ∗ would still output
(with non-negligible probability) an a such that hk(a) = f(ω, x, a) = BadChallenge(τ, ω, x, a).
This contradicts the correlation intractability of H for the relation Rω,τ,x := {(a, c) : c =
BadChallenge(τ, ω, x, a) and x /∈ L}.

In more details, an adversary A could break correlation intractability of H by sampling
(ω, τ) itself, declaring the relation Rω,τ,x to be broken, and then running P∗((ω, k), x) after
being given k←$H.Gen(1λ). Since Σ has challenge space {0, 1}λε , the relation Rω,τ,x indeed has
sub-exponential sparsity, which contradicts our assumption on H. This concludes the proof of
(non-adaptive) soundness.

Adaptive zero knowledge. Recall that we assume that Σ has an adaptive-input SHVZK
simulator (S0,S1). The simulator S := (S ′′0 ,S ′′1 ) for Π′′ works as follows.
• S ′′0 (1λ, 1|x|):

– Pick a random challenge c for Σ.
– Run S ′1 on input 1λ,1|x| and c, thus obtaining st , ω, a.
– Sample a hash key k from the conditional distribution k←$H.Gen(1λ) s.t. hk(a) = c.
– Output ω′′ := (ω, k) and st ′′ := (st , a).

• S ′′1 (st ′′, x):
– Run S1 upon input st , x, thus obtaining z.
– Output (a, c, z).

Indistinguishability of the simulation follows from the programmability of the hash func-
tion and the adaptive-input SHVZK property of Σ. This concludes the proof of adaptive zero
knowledge.

4.2 From CRSigma Protocols to Trapdoor Sigma Protocols

In [CCH+19], the authors show that a modified version of the protocol for Hamiltonian graphs
[FLS90, LS91] is a trapdoor Sigma protocol. This allows to obtain a trapdoor Sigma protocol for
any NP relation R by just making an NP reduction. In this section we show that any CRSigma
protocol can be turned into a trapdoor Sigma protocol without making use of expensive NP
reductions. Let Σ = (Gen,P,V) be a CRSigma protocol for a polynomial-time relation R.
Without loss of generality, we assume that the challenge space of Σ is {0, 1}. We construct a
trapdoor Sigma protocol Σ′ := (Gen′,P ′,V ′) for R based on Σ and on a public-key encryption

15As in the definition of adaptive-input SHVZK, the simulator is defined by two algorithms (S0,S1). The
difference is that S0 outputs the CRS in addition.

16The proof of soundness is almost identical to that of [CCH+19, Theorem 6.4]. For the sake of completeness,
we repeat it here.

19



Common input: Security parameter λ, instance x ∈ L.
Prover’s private input: Witness w s.t. (x,w) ∈ R.
CRS generation: Run (pk , sk)←$ KGen(1λ) and ω←$ Gen(1λ), and set ω′ := (pk , ω).
P ′(x,w): The first prover’s message is generated as follows.

• Compute (a, st)←$ P(x,w), z0←$ P(st , 0), z1←$ P(st , 1).
• Pick r0←$ {0, 1}λ and run Enc with randomness r0 on input pk and z0, thus obtaining e0.
• Pick r1←$ {0, 1}λ and run Enc with randomness r1 on input pk and z1, thus obtaining e1.
• Send a′ := (e0, e1, a) to V ′ and let st ′ = (r0, r1, z0, z1).

V ′(1λ): Pick c←$ {0, 1} and send it to P ′.
P ′(st ′, c): Send z := (zc, rc) to V ′.
Verifier’s verdict: Accept if and only if (i) V(ω, x, a, c, zc) = 1; and (ii) Enc(pk , zc; rc) = ec.

Figure 3: Our compiler: from the CRSigma protocol Σ to the trapdoor Sigma protocol Σ′.

(PKE) scheme (KGen,Enc,Dec) with perfect correctness. The PKE scheme is essentially used
as a commitment, similarly to what is done in [CCH+19]. At a high level our transform works
as follows. The CRS consists of a public key for the PKE scheme and of a CRS for Σ. To
compute a proof, the prover generates the first message of Σ and the replies to the challenge 0
and 1 that we denote respectively with z0 and z1. Then, the prover encrypts z0 and z1 and sends
these encrypted values together with the first round of Σ to the verifier. The verifier sends a
random bit c, and the prover replies with zc and the randomness used to compute the encryption
of zc. Finally, the verifier accepts if the randomness and the value zc are consistent with the
commitment received in the first round and if the transcript for Σ is accepting. The formal
description appears in Fig. 3. We note that given the secret key of the encryption scheme it is
possible to extract the bad challenge (if any). And this is the intuitive reason why the protocol
of Fig. 3 is a trapdoor Sigma protocol. More formally, we can prove the following theorem.

Theorem 6. If Σ := (Gen,P,V) is a CRSigma protocol for the NP relation R and (KGen,Enc,
Dec) is a secure PKE scheme with perfect correctness, then the protocol Σ′ := (Gen′,P ′,V ′) of
Fig. 3 is a trapdoor Sigma protocol.

Proof. We start by describing the algorithms TrapGen and BadChallenge, and then we show that
Σ enjoys the properties of CRS indistinguishability and correctness.
• Algorithm TrapGen acts exactly as the CRS generation procedure of Σ. That is, TrapGen(1λ)

runs ω←$ Gen(1λ) and (pk , sk)←$ KGen(1λ), and sets ω′ := (pk , ω) and τ := sk . This
immediately gives perfect CRS indistinguishability.
• Algorithm BadChallenge works as follows. Upon input (τ := sk , ω′ := (pk , ω), x, a′ :=

(e0, e1, a)), it computes z0 = Dec(sk , e0) and z1 = Dec(sk , e1). Finally, if there exists c
such that V(ω, x, a, c, zc) = 1 it outputs c, and otherwise it outputs ⊥.

We now argue that, if x /∈ L, then the output of BadChallenge is identical to that of the
bad-challenge function f(ω′, x, a′). We can consider the following cases:
(i) V(ω, x, a, 0, z0) = 1 and V(ω, x, a, 1, z1) = 1; or
(ii) ∃!c ∈ {0, 1} such that V(ω, x, a, c, z) = 1; or
(iii) none of the above occurs.

Case (i) cannot happen, as this would contradict the fact that Σ is a CRSigma protocol.
Indeed, for any x /∈ L and first round a of a CRSigma protocol there exists only one challenge
that would make the verifier to accept. Case (iii) is not interesting, as in this case there is no
bad challenge to extract (this is guaranteed by perfect correctness of the PKE scheme). Case
(ii) implies the correctness property.

Finally, it remains17 to show that Σ′ satisfies the SHVZK property. Let S be the SHVZK
simulator of Σ. The simulator S ′ proceeds as follows. Upon input (x, c), simulator S ′ runs S(x, c)

17Recall that the definition of trapdoor Sigma protocols automatically implies that Σ′ has soundness error 1/2.
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thus obtaining (ω, a, z); hence, it sets ω′ := (pk , ω) and a′ := (e0, e1, a) for a freshly generated
pair of keys (pk , sk)←$ KGen(1λ), and where the ciphertext ec is obtained as an encryption
of z (i.e., ec := Enc(pk , z; rc) for rc←$ {0, 1}λ), whereas the ciphertext e1−c is obtained as an
encryption of the all-zero string (i.e., e1−c := Enc(pk , 0|z|; r1−c) for r1−c←$ {0, 1}λ). Finally, S ′
outputs (ω′, a′, z′), where z′ := (zc, rc). Indistinguishability of the simulation follows immediately
by semantic security of the PKE scheme. This finishes the proof.

We remark that it is always possible to extend the challenge space of the above protocol to
{0, 1}κ for any κ ∈ N without compromising its completeness, by just repeating it in parallel κ
times. Then, using Theorem 4, we obtain an adaptively-sound NIZK.

5 Adding Adaptive-Input SHVZK

To transform a delayed-input trapdoor Sigma protocol Σ = (Gen,P,V) into one with adaptive-
input SHVZK we follow the same approach proposed in §3. The prover computes the first round
of Σ and commits to it using an IDTC. Upon receiving a random challenge from the verifier, the
prover opens the commitment and sends the third round of Σ. In addition, a Sigma protocol to
prove that the IDTC is computed using a false instance (i.e., a non-DH tuple) is run in parallel.

Unfortunately, it is not clear whether the output Σ′′ of such a compiler would still be a
trapdoor Sigma protocol. Indeed, an IDTC does not provide any extractability property. Hence,
given the first round of the above protocol (which consists of a commitment to the first round
of Σ), it is not clear how to extract the committed value. We note that if it was possible to
extract the committed value then we would be almost done, as then we can rely on algorithm
BadChallenge of Σ to obtain the bad challenge. To tackle this problem, we introduce a new
primitive which we dub extractable IDTC . An extractable IDTC is similar to an IDTC but it is
equipped with a setup algorithm that generates a CRS and a trapdoor. Given the trapdoor it is
possible to extract the message committed via the extractable IDTC w.r.t. a false instance (i.e.,
in case the commitment is binding). In this section we provide a generic compiler that turns
any delayed-input trapdoor Sigma protocol into one with adaptive-input SHVZK. We first start
by describing formally the tools required by our compiler.

5.1 The Sigma Protocol for DH Tuples

Let us recall the following well-known Sigma protocol ΣDH = (P,V) for relation RDH . On
common input T = (g, h, U, V ), and honest prover’s private input α such that U = gα and
V = hα, the following steps are executed. We denote the size of the group G by q.
• P picks r ∈ Zq at random and computes and sends A := gr, B := hr to V;
• V chooses a random challenge c ∈ {0, 1} and sends it to P;
• P computes and sends z = r + α · c to V;
• V accepts if and only if gz = A · U c and hz = B · V c.
The above protocol has the following interesting property. There exists a PPT algorithm

ChallExt that on input a (potentially maliciously generated) first round a = (A,B) of ΣDH , a
non-DH tuple T and γ such that h = gγ , outputs the only valid second round c ∈ {0, 1} (if
any exists) such that there is some z that would make the verifier to (mistakenly) accept the
transcript (a, c, z) with respect to the instance T .

The algorithm ChallExt works as follows. Let T = (g, h,X,W ) be a non-DH tuple such that
X = gα, W = hβ , α 6= β and h = gγ . Upon input (T = (g, h,X,W ), a, γ), algorithm ChallExt
parses a as (A,B), and if Aγ = B then it outputs 0, else it outputs 1.

Note that when the first round of ΣDH corresponds to a DH tuple, (i.e., Aγ = B) and T is
not a DH tuple, then the only c that would make true the conditions gz = A ·U c and hz = B ·V c
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is c = 0. Instead, if (g, h,A,B) does not represent a DH tuple (i.e., Aγ 6= B) then there exists
z such that gz = A · U c and hz = B · V c if and only if c = 1.

In what follows, we make use of this special property of ΣDH , and we refer to ChallExt as
the bad-challenge extractor. It is easy to see that also the Sigma protocol for the NP relation
R1nDH (see §2.4) admits such an extractor ChallExt. The same holds true for the classical Sigma
protocol for QR [GMR89] (along the lines of the full version of [CCH+19, §6.2]).

5.2 Extractable IDTCs

In this section, we consider a slight generalization of IDTCs (see § 2.5) that we call extractable
IDTCs. An extractable IDTC is still defined with respect to an NP language L, but has the
following differences with respect to an IDTC.

1. It is defined in the CRS model. That is, there is a generation algorithm that outputs a
CRS ω and a trapdoor τ (possibly depending on L).

2. The algorithms used to compute a commitment (either in binding or in trapdoor mode),
do not take the instance as input. Instead, the instance is part of the output of the
commitment procedure.

3. It has an extractor Ext that on input a commitment computed w.r.t. a false instance (i.e.,
using the binding mode), and the trapdoor τ , outputs the committed message.

Formally an extractable IDTC scheme for polynomial-time relation R (and corresponding
NP language L) with message space M is a tuple of PPT algorithms (Gen,Com,Dec,Fake1,
Fake2,Ext) specified as follows:
• Gen is a randomized algorithm that takes as input the security parameter and outputs a

CRS ω and a trapdoor τ .
• Com is the randomized commitment algorithm that takes as input the CRS ω and a message
m ∈M and outputs (com, T, α, dec) such that T ∈ L and (T, α) ∈ RL. We refer to com as
the commitment and to dec as the decommitment information.
• Dec is the verification algorithm that takes as input ω, com, T, dec and m ∈M and decides

whether m is the decommitment of com with respect to the instance T and the CRS ω;
• Fake1 takes as input ω and outputs the commitment com, an instance T such that T ∈ L

and the equivocation information rand;
• Fake2 takes as input a message m ∈M , the tuple (com, T, rand) and outputs dec;
• Ext takes as input ω, the commitment com with respect to the instance T , and the trapdoor
τ and outputs m.

Definition 16 (Extractable IDTC scheme). We call (Gen,Com,Dec,Fake1,Fake2,Ext) an ex-
tractable IDTC scheme for the NP relation R (and corresponding NP language L) if it enjoys
the following properties:
• Correctness. For all m ∈M , it holds that

P [Dec(ω, com, T, dec,m) = 1 : (com, T, dec)←$ Com(ω,m)] = 1.

• Binding. For all T /∈ L, and for every commitment com, there exists at most one message
m ∈M for which there is a valid decommitment dec (i.e., Dec(ω, com, T, dec,m) = 1).
• Trapdoorness. For all m ∈ M and honestly generated ω (i.e., computed running Gen)

the following two distributions coincide:

{(ω, com, T, dec,m) : (com, T, rand)←$ Fake1(ω); dec←$ Fake2(ω, com,m, rand)}
{(ω, com, T, dec,m) : (com, T, dec)←$ Com(ω,m)} .
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• Extractability. For all com ∈ {0, 1}poly(λ) and T with T /∈ L, if there exists (m, dec) such
that Dec(ω, com, T, dec,m) = 1 then it holds that

P [Ext(ω, com, T, τ) = m] = 1.

5.2.1 The Basic Construction

We now show how to obtain an extractable IDTC Π1-bit = (Gen1-bit,Com1-bit,Dec1-bit,Fake1-bit1 ,
Fake1-bit2 ,Ext1-bit) for the NP-relation RDH and with messages space {0, 1} assuming the hardness
of the DDH assumption and using as the main tool the Sigma protocol ΣDH = (P,V) (described
in §5.1) equipped with its SHVZK simulator S.
• Gen1-bit runs the group generator GG (see §2.4), thus obtaining g, q, and outputs (ω, τ)

with ω := (g, h) and h = gτ for a random τ ∈ Zq.
• Com1-bit takes as input ω = (g, h) and the message m ∈ {0, 1}, picks α←$ Zq, computes a

1-non-DH tuple T = (g, h, gα, ghα) and (a, z)←$ S(T,m). The output of Com1-bit corre-
sponds to com := a, T , α and dec := z.
• Dec1-bit takes as input ω := (g, h), com := a, T , dec := z and m, parses T as (g′, h′, X,W )

and accepts if and only if V(T, a,m, z) = 1 and ω = (g′, h′).
• Fake1-bit1 takes as input ω = (g, h), picks α←$ Zq and computes a DH tuple T = (g, h, gα, hα)

and (a, st)←$ P(T, α). The output of Com1-bit corresponds to com := a, T , rand := st .
• Fake1-bit2 takes as input ω, the message m ∈ {0, 1}, com := a, rand := st and computes
z←$ P(st ,m). The output of Fake1-bit2 corresponds to z,m.
• Ext1-bit takes as input (ω, com := a, T, τ) and runs ChallExt(T, com, τ) thus obtaining m.

The output of Ext1-bit corresponds to m.

Theorem 7. Assuming that the DDH assumption holds, then Π1-bit is an extractable IDTC with
message space {0, 1}.

Proof. We proceed to show each of the required properties in turn.
• Correctness. Correctness follows by inspection.
• Binding. This property follows immediately from the special soundness of Π1-bit. Indeed,

the output of Com corresponds always to the first round of Π1-bit computed with respect
to a false statement T (where T is a 1-non-DH tuple). Hence, there exists only one valid
second round m such that V(T, a,m, z) = 1 for some z.
• Trapdoorness. The proof follows via a standard hybrid argument. In the first hy-

brid experiment H1 the commitment and the decommitment is computed using the al-
gorithm Com. The second hybrid experiment H2 differs from H1 in the way the tuple
T is computed. Indeed, in this case T is set to be a DH tuple. The indistinguishabil-
ity between H1 and H2 comes immediately from the hardness of the DDH assumption.
In the hybrid experiment H3, instead of running the SHVZK simulator, algorithm P
is run to compute the commitment and the decommitment information. Note that the
output of H3 corresponds to (com, T, dec,m) where (ω, com, T, rand)←$ Fake1-bit1 (ω) and
dec←$ Fake1-bit2 (ω, com,m, rand). The hybrids H2 and H3 are perfectly indistinguishable
due to the SHVZK property of ΣDH .
• Extractability. If T /∈ L, and (com := a, T ) admits a valid opening for some message m,

then there exists z such that V(ω, T, a,m, z) = 1. As discussed in §5.1, the latter implies
that ChallExt extracts m.
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5.2.2 Extending the Message Space

The extractable IDTC described above works for one-bit messages. It is easy to construct an
extractable IDTC for messages of length k, for any k ∈ N, by repeating an extractable IDTC
for 1-bit messages k times. However, this means that the size of the CRS grows with the size of
the messages. Moreover, for each bit of the message a different theorem would be sent. In this
section, we show that the same CRS can be used by many instantiations of Π1-bit, and that the
same tuple T can also be re-used in the commitment phase.

Fore sake of completeness, we describe the final scheme Πk-bit formally.
• Genk-bit runs the group generator GG (see §2.4) thus obtaining g, q, and outputs (ω, τ) with
ω := (g, h) and h = gτ for a random τ ∈ Zq.
• Comk-bit takes as input ω = (g, h) and the message m ∈ {0, 1}k, picks α←$ Zq, computes

a 1-non-DH tuple T = (g, h, gα, ghα), parses m as a k-bit string m1, . . . ,mk and for each
i ∈ [k] lets (ai, zi)←$ S(T,mi). The output of Comk-bit corresponds to com := (ai)i∈[k], T ,
α and dec := (zi)i∈[k].
• Deck-bit takes as input ω := (g, h), com := (ai)i∈[k], T , dec := (zi)i∈[k] and m, parses m

as a k-bit string m1, . . . ,mk and T as (g′, h′, X,W ) and accepts if and only if ω = (g′, h′)
and V(T, ai,mi, zi) = 1 for each i ∈ [k].
• Fakek-bit1 takes as input ω = (g, h), picks α←$ Zq and computes a DH tuple T = (g, h, gα, hα)

and for each i ← 1, . . . , k computes (ai, st i)←$ P(T, α). The output of Comk-bit corre-
sponds to com := (ai)i∈[k], T := (gα, hα), rand := (st i)i∈[k].

• Fakek-bit2 takes as input ω, the message m ∈ {0, 1}k, com := (ai)i∈[k], rand := (st i)i∈[k],
parses m as a k-bit string m1, . . . ,mk and for each i ∈ [k] lets zi←$ P(st i,mi). The
output of Fakek-bit2 corresponds to (zi)i∈[k].
• Extk-bit takes as input (ω, com := (ai)i∈[k], T, τ), and for each i ∈ [k] runs ChallExt(ω, T, comi,
τ) thus obtaining mi. The output of Extk-bit corresponds to m1|| . . . ||mk.

The proof of the theorem below follows along the lines of the proof of Theorem 7 and is
therefore omitted.

Theorem 8. Assuming that the DDH assumption holds, then Πk-bit is an extractable IDTC with
message space {0, 1}k.

5.2.3 Sigma Protocols for Extractable IDTCs

In this section we show how to construct a Sigma protocol for extractable IDTCs that allows
proving that a commitment is computed in binding mode. To do that, we just need to provide
a Sigma protocol that proves the instance T that accompanies the commitment com does not
belong to L. Indeed, in this case the binding property of the extractable IDTC guarantees that
com can be opened to only one value.

More formally, let Π = (Gen,Com,Dec,Fake1,Fake2,Ext) be an extractable IDTC and ω be
the output of Gen, we consider the following language:

LΠ =
{

(ω, com, T ) : @dec0,m0, dec1,m1 with m0 6= m1 s.t.
Dec(ω, com, T, dec0,m0) = 1 and Dec(ω, com, T, dec1,m1) = 1

}
.

The binding property of Π implies that in order to construct a Sigma protocol for the language
LΠ associated to an extractable IDTC Π for language L, it suffices to construct a Sigma protocol
for the language L = {T : T /∈ L}. Hence, for the concrete case of Πk-bit, we can just use a
Sigma protocol Σ1nDH for the relation R1nDH (see §2.4).
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Common input: Security parameter λ, and instance x ∈ L (available only in the last round).
Prover’s private input: Witness w (available only in the last round) s.t. (x,w) ∈ R.
CRS generation: Run (ω̃, τ̃)←$ GenIDTC(1λ) and (ω, τ)←$ Gen(1λ). Output ω′′ := (ω, ω̃).
P ′′(1λ, 1n): The first prover’s message is generated as follows.

• Compute (a, st)←$ P(1λ, 1n).
• Run Com on input ω and a, thus obtaining (com, T, α, dec).
• Compute (a′, st ′)←$ P ′(T, α).
• Send a′′ := (com, T, a′) to V ′′ and set st ′′ = (st , st ′, dec, a).

V ′′(1λ): Pick c←$ {0, 1}` and send it to P ′′.
P ′′(x,w, st ′′, c): The last prover’s message is generated as follows.

• Compute z←$ P(x,w, st , c).
• Compute z′←$ P ′(st ′, c).
• Send z′′ := (z, z′, (dec, a)) to V ′′.

Verifier’s verdict: Accept if and only if the following conditions are satisfied: (i) Dec(ω̃, com,
T, dec, a) = 1; (ii) V(ω, x, a, c, z) = 1; (iii) V ′(T, a′, c, z′) = 1;

Figure 4: Adding adaptive-input SHVZK to delayed-input trapdoor Sigma protocols.

5.3 Trapdoor Sigma Protocols with Adaptive SHVZK

We are finally ready to show how our last compiler works. Our transform can be seen as a
modified version of the compiler proposed in §3, with the difference that we now start with
a delayed-input trapdoor Sigma protocol Σ with (not necessarily adaptive-input) SHVZK and
the compiler outputs a delayed-input trapdoor Sigma protocol Σ′′ that enjoys adaptive-input
SHVZK. Then, by using Theorem 5, we can obtain a non-interactive argument system satisfying
adaptive zero knowledge in the CRS model. We make use of the following ingredients:
• A delayed-input trapdoor Sigma protocol Σ = (Gen,P,V,TrapGen,BadChallenge).
• The extractable IDTC Π = (GenIDTC,Com,Dec,Fake1,Fake2,Ext) for the relation RDH

described in §5.2.2.
• The Sigma protocol Σ′ = (P ′,V ′) for the relation R1nDH described in §5.1. We recall that

such a Sigma protocol admits a bad-challenge extractor algorithm ChallExt.
The core idea of our protocol is exactly the one proposed in §3. The main difference is that

we use an extractable IDTC instead of an IDTC. The reason for this change is that we need
to prove that our protocol admits an algorithm BadChallenge′′. We recall that BadChallenge′′

takes as input a false statement x, the first round of the protocol and a trapdoor, and outputs
the bad challenge. The first round of our protocol is represented by a commitment (computed
using the extractable IDTC Π) to the first round of Σ. Hence, we can rely on the extractability
property of Π in order to extract the first round of Σ and finally run the algorithm BadChallenge
associated to Σ (which exists by definition) to complete the extraction of the bad challenge.

This approach works under the assumption that the commitment computed in the first round
is binding. Indeed, the extractor of Π guarantees extraction of the correct value only when the
commitment is computed with respect to a false instance. This is where we rely on Σ′. Indeed,
in this case the statement proved under Σ′ is false, and thus we can extract the bad challenge
from Σ′ by running ChallExt. A formal description of Σ′′ appears in Fig. 4.

Theorem 9. Let R be a polynomial-time relation. Assume that Σ is a delayed-input trapdoor
Sigma protocol for R with standard SHVZK, that Π is the extractable IDTC for RDH described
in §5.2.2, and that Σ′ is the Sigma protocol for the relation R1nDH described in §5.1. Then,
the Sigma protocol Σ′′ of Fig. 4 is a delayed-input trapdoor Sigma protocol for R satisfying
adaptive-input SHVZK under the DDH assumption.
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Simulation of the CRS. Run GenIDTC(1λ) thus obtaining (ω̃, τ̃), and Gen(1λ) thus obtaining
(ω, τ). Set the CRS as ω′′ := (ω, ω̃).

Simulation of the first round: Upon input 1λ, ω′′ and c ∈ {0, 1}λ, do the following.
• Compute (com, T, rand)←$ Fake1(ω̃).
• Compute (a′, z′)←$ S ′(T, c).
• Output a := (com, T, a′).

Simulation of the last round: Upon input ω′′ and x ∈ L, do the following.
• Compute (a, z)←$ S(ω, x, c).
• Compute dec←$ Fake2(ω̃, com, a, rand)
• Output z′′ := (z, z′, (dec, a)).

Figure 5: Adaptive SHVZK simulator.

Proof. We start the proof by showing that Σ′′ is a trapdoor Sigma protocol, and then we show
that it is also adaptive-input SHVZK. The algorithms TrapGen′′ and BadChallenge′′ are described
below.
• Algorithm TrapGen′′ runs TrapGen(1λ) thus obtaining (ω, τ) and GenIDTC(1λ) thus obtain-

ing (ω̃, τ̃), and sets ω′′ := (ω, ω̃) and τ ′′ := (τ, τ̃). The CRS indistinguishability property
follows directly from the CRS indistinguishability of TrapGen.
• Algorithm BadChallenge′′ works as follows. Upon input τ ′′, ω′′, x, a′′, it first parses a′′ as

(com, T, a′), ω′′ as (ω, ω̃) and τ ′′ as (τ, τ̃). Hence:
– If T is a non-DH tuple (note that given τ̃ it is efficient to check whether a tu-

ple T is DH or not), then it runs Ext(ω̃, T, com, τ̃) thus obtaining a and outputs
BadChallenge(τ, ω, x, a).

– Else, it outputs ChallExt(T, a′, τ̃) and stops.18

We now argue that if x /∈ L then the output of BadChallenge′′ is correct in the following cases
(which capture all possible scenarios): (i) T is a non-DH tuple; (ii) T is a DH tuple. Suppose
that we are in case (i). Then the extraction property of the extractable IDTC guarantees that
the messages committed in (com, T ) can be extracted with probability 1 (note that in this case
all the commitments are perfectly binding). Hence, we can rely on BadChallenge to extract the
bad challenge from a, which is the only possible value to which (com, T ) can be opened to.

On the other hand, suppose that we are in case (ii). In this case, we cannot rely on the
extractability property of Π since T /∈ L1nDH . However, we know that the statement proved
under Σ′ is false, and we can thus run ChallExt(T, a′, τ̃) in order to obtain the only challenge c
such that V ′(T, a′, c, z′) = 1. This proves correctness.

It remains to show that Σ′′ satisfies adaptive-input SHVZK. The proof of this fact is very
similar to the proof of Lemma 3, and thus we only give a brief sketch here. Let S be the SHVZK
simulator of Σ, and S ′ be the SHVZK of Σ′. The adaptive-input SHVZK simulator of Σ′′ is
described in Fig. 5. To argue indistinguishability, we use a hybrid argument. The first hybrid
experiment H1 corresponds to the game in which the honest prover procedure is executed to
compute a proof. In H2, upon receiving c from the adversary, the SHVZK simulator of Σ′ is run
in order to compute a′, z′. That is, H2 runs (a′, z′)←$ S ′(T, c) and uses a′, z′ to complete the
transcript of Σ′. In H3, the commitment (com, T ) is computed by running Fake1, whereas the
decommitment information dec is obtained by running Fake2. That is, H3 runs (com, T, rand)
←$ Fake1(ω̃) and dec←$ Fake2(ω̃, com, a, rand). Finally, in H4 the SHVZK of Σ is run in order
to compute (a, z). That is, H4 runs (a, z)←$ S(ω, x, c).

18We recall that, accordingly to what we have described in §5.2.2, ω̃ := (g, gγ) and τ̃ = γ. Given that
T = (g, gγ , A,B) for some A,B, we can indeed run ChallExt on input the tuple T , the first round a′ of Σ′, and γ.
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6 Conclusions

We have studied adaptive security of delayed-input Sigma protocols and Fiat-Shamir NIZKs in
the CRS model derived from trapdoor Sigma protocols using CI hash functions. In particular,
one of our results clarifies that hashing both the prover’s first round and the instance being
proven in the Fiat-Shamir transform yields NIZKs with adaptive soundness (but not necessarily
adaptive zero knowledge), whereas hashing only the prover’s first round yields adaptive19 zero
knowledge (but not necessarily adaptive soundness). This contradicts the seemingly folklore
belief that Fiat-Shamir NIZKs obtained from trapdoor Sigma protocols following the paradigm
of Canetti et al. [CCH+19] achieve adaptive security. (For instance, the latter is stated explicitly
in [BKM20, Theorem 3.4] and erroneously attributed to [CCH+19].)

Interesting open problems include obtaining efficient delayed-input Sigma protocols and trap-
door Sigma protocols without computational assumptions, and understanding which flavor of
the Fiat-Shamir transform for generic Sigma protocols allows to obtain NIZKs satisfying both
adaptive soundness and adaptive zero knowledge in the CRS model (without NP reductions).
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G(λ, c, 1):
(T, α)←$RDH

(com, rand)←$ Fake1(T, α)
(a′, z′)←$ S ′(T, c)
a′′ = (com, a′, T )
(x,w)←$A(a′′, c)
(a, z)←$ S(x, c)
dec←$ Fake2((T, α), a, (com, rand))
If (x,w) ∈ R

z′′ = (z, z′, (dec, a))
Else z′′ = ⊥
b′←$A((x,w), (a′′, c, z′′))

H1(λ, c):
(T, α)←$RDH

(a, st)←$ P(1λ)

(com, rand)←$ Fake1(T, α)
(a′, z′)←$ S ′(T, c)
a′′ = (com, a′, T )
(x,w)←$A(a′′, c)

z←$ P(x,w, a, c)

dec←$ Fake2((T, α), a, (com, rand))
If (x,w) ∈ R

z′′ = (z, z′, (dec, a))
Else z′′ = ⊥
b′←$A(x, (a′′, c, z′′))

H2(λ, c):
(T, α)←$ R1nDH

(a, st)←$ P(1λ)

(com, dec)←$ Com(T, a)

(a′, z′)←$ S ′(T, c)
a′′ = (com, a′, T )
(x,w)←$A(a′′, c)
z←$ P(x,w, c, st)

If (x,w) ∈ R
z′′ = (z, z′, (dec, a))

Else z′′ = ⊥
b′←$A(x, (a′′, c, z′′))

G(λ, c, 0):
(T, α)←$ R1nDH

(a, st)←$ P(1λ)
(com, dec)←$ Com(T, a)

(a′, st ′)←$ P ′(T, α)

a′′ = (com, a′, T )
(x,w)←$A(a′′, c)
z←$ P(x,w, a, c)

z′←$ P ′(st ′, c)
If (x,w) ∈ R

z′′ = (z, z′, (dec, a))
Else z′′ = ⊥
b′←$A(x, (a′′, c, z′′))

Figure 6: Hybrid experiments in the proof of Theorem 3
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