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Abstract. In this paper we make an extensive analysis of SAKE+ and
SAKE+-AM, two key exchange protocols. We show that several attacks
are practicable against these protocols. This invalidates several claims
made by the authors regarding the (security) properties of their proto-
cols. Our results question also the correctness of the corresponding se-
curity proofs, made in the computational model (using the game-based
methodology), and with the ProVerif verification tool.
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1 Introduction

In their seminal work on authenticated key exchange protocols [7], Bellare and
Rogaway observe that the proliferation of incorrect and inefficient protocols is
due to the lack of a meaningful definition of what such protocols aim at guar-
anteeing. Rather than designing a protocol by trial and error, they propose a
formal framework in order to devise and analyse such kind of protocols. Follow-
ing Bellare and Rogaway’s work, different security models and methodologies
have been proposed in order to analyse key exchange protocols intended to dif-
ferent settings: internet protocols [3, 9–11, 15–17, 22], mobile telephony [2, 21],
RFID [4, 6, 24, 28] to name a few. These security models aim at capturing se-
curity properties adapted to the specific context the considered protocols aim
at being deployed in. They constitute also useful tools to devise functional and
secure key exchange protocols.

In [1], Aghili, Jolfaei, Abidin propose two authenticated key exchange proto-
cols with forward secrecy dedicated to Internet of Things (IoT). These protocols
build upon a previous work by Avoine, Canard, Ferreira [5]. In the latter, Avoine
et al. propose two protocols (SAKE, SAKE-AM) solely based on the symmetric-
key functions, and yet which provide forward secrecy. Aghili et al. propose a
variant of these protocols, called SAKE+ and SAKE+-AM. They aim at improv-
ing Avoine et al.’s work by several aspects. First, SAKE+ and SAKE+-AM aim
at keeping the same security properties as Avoine et al.’s protocols: entity au-
thentication, key indistinguishability, and forward secrecy. In addition, SAKE+

and SAKE+-AM aim at being resistant to several attacks: “replay attacks”,



“time-based attack”, and “tracking” (cf. [1], Sections 6.1 and 9). In support of
these claims, security proofs made in the computational model (using the game-
based methodology [8, 27]), and with the ProVerif verification tool [12] are also
provided in [1].

1.1 Contributions

In this paper, we show that several claims made in [1] are not valid. Aghili et al.
mention several (security) properties the protocols SAKE+ and SAKE+-AM aim
at providing. We respect the same (informal) attack settings that are considered
in [1] (in particular the powers allowed to the adversary), and we show that
several of these properties can be broken. More specifically, we show that:

– the entity authentication property can be broken in SAKE+ and SAKE+-
AM;

– a replay attack is feasible against SAKE+-AM;
– time-based, and tracking attacks are doable against SAKE+, and SAKE+-

AM;
– in addition, a disconnection attack is possible against SAKE+, and SAKE+-

AM.

Table 1: List of attacks against the SAKE+ and SAKE+-AM protocols
SAKE+ SAKE+-AM

Breakage of entity authentication (Section 4.1) 3 3

Replay attack (Section 4.2) 71 3

Time-based attack (Section 4.3) 3 3

Tracking (Section 4.4) 3 3

Disconnection (Section 4.5) 3 3

1.2 Outline of the Paper

In Section 2 we describe the protocols SAKE+ and SAKE+-AM. In Section 3
we (informally) define the attacks that will be considered next. We explain how
to apply these attacks against SAKE+ and SAKE+-AM in Section 4. Finally,
we conclude in Section 5.

2 Description of the SAKE+ and SAKE+-AM Protocols

2.1 SAKE+

Overview. The protocol SAKE+ [1] is a two-party key exchange protocol based
on a previous proposal called SAKE [5]. SAKE is an authenticated key exchange

1 See Remark 7 in Section 4.2.
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protocol solely built on symmetric-key functions, which provides forward secrecy.
The latter property is achieved by using a key evolving scheme associated to a
(re)synchronisation technique. Each party uses two types of keys: an authenti-
cation master key K ′, and a derivation master key K. The derivation master
key K is used to compute session keys. K is updated with a one-way function
in order to guarantee forward secrecy. Since desynchronisation may happen be-
tween the two parties A an B involved in a protocol run with respect to K,
the authentication key K ′ is used to authenticate the parties but also to track
the evolution of the internal state, and to resynchronise if necessary. In SAKE,
the gap δAB between A and B is bounded (δAB ∈ {−1, 0, 1}). That is, party A
can only be in sync with B, or one step behind, or one step ahead. This allows
both parties to resynchronise in the continuity of the protocol. Whatever the
gap δAB between A and B when a new session starts, after a correct session,
the two parties have updated their master keys, share the same session key, and
are synchronised. In SAKE, the initiator A keeps the authentication master key
corresponding to three consecutive epochs (K ′j−1, K ′j , K

′
j+1) in order to be able

to detect which epoch the responder belongs to (i.e., to compute δAB and to
act accordingly). Yet, party A keeps only one value for the derivation master
key K. The responder B keeps one pair of authentication and derivation master
keys (K ′, K). If A and B are synchronised, K ′j = K ′. If A is one step behind,
K ′j+1 = K ′. If A is one step ahead, K ′j−1 = K ′.

Starting from SAKE, Aghili et al. make several changes and additions in
order to achieve their goals. The master keys are updated in the same way as in
SAKE using the one-way function update: K ← update(K), K ′ ← update(K ′).
In addition, in SAKE+, the responder B uses also evolving identities: idB ←
update(idB‖K ′).

We describe below the protocol flow in SAKE+ mainly based on the expla-
nation given in [1], Section 6.2 and Figure 2 (see Figure 3).

First message. The initiator A sends idA‖rA where idA is the (fixed) identity of
A, and rA a pseudo-random value.

Second message. Upon reception of A‖rA, B computes either mB = idB‖rB‖τB
(if φ = 0) or mB = rα‖rB‖τB (if φ = 1). The parameter idB is the (ephemeral)
identity of B, rB and rα are pseudo-random values, and τB = Mac(K ′, idB‖idA‖
rB‖rA) (in either case: φ = 0 and φ = 1).

The purpose of the ephemeral identity idB is to forbid an adversary from
being able to correlate several session related to B, and to track the latter. The
flag φ indicates if idB has been updated during the previous session. If φ = 0,
idB has been renewed, hence it can be used to compute mB (and then φ is set
to 1). If φ = 1, idB is the same as in the previous session. In such a case, B
computes mB = rα‖rB‖τB .

Third message. As in SAKE, a party in SAKE+ is able to establish at the
same time a session with different party partners. Hence, party A may store
different sets of parameters (in particular master keys and identity parameters),
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each corresponding to a different partner. When A receives mB , it looks in its
database.

If a match is found (case idB), it retrieves the corresponding parameters:
(idB,j ,K

′
j), (idB,j−1,K

′
j−1), (idB,j+1,K

′
j+1), K, rtemp.

2 For instance, if A and
B are synchronised, then idB,j = idB and K ′j = K ′. The parameter rtemp =
(r′′, r′) is used to detect replay of previous messages mB . The parameters r′′

and r′ correspond respectively to the two last values rB received in a (valid)
message mB . To that point, if rB ∈ rtemp, mB is rejected. Otherwise, A uses the
authentication master keys it has retrieved to verify the MAC tag τB .

Remark 1. Aghili et al. indicate that, when A is able to recognise the responder
B with idB (i.e., φ = 0), it still tries the (at most) three authentication master
keys K ′j , K

′
j−1, and possibly K ′j+1, in order to verify the MAC tag τB . We

observe that this is unnecessary if idB closely follows the evolution of K ′ (idB ←
update(idB‖K ′)). Therefore, idB can be used as (ephemeral) identity for B, but
also as key identifier.

If A does not find a match in its database (case rα), then for each existing en-
tries, it tries all authentication keys until it finds the correct one. Then it retrieves
the corresponding parameters (idB,j ,K

′
j), (idB,j−1,K

′
j−1), (idB,j+1,K

′
j+1), K,

rtemp. If rB ∈ rtemp, A aborts.

Eventually, if A did not abort so far, it updates rtemp with the new value rB :
first r′′ ← r′, and then r′ ← rB .

If A is one step behind, it updates the parameters related to B a first time:

K ← update(K)
idB,j−1 ← idB,j
idB,j ← idB,j+1

idB,j+1 ← update(idB,j+1‖K ′j+1)
K ′j−1 ← K ′j
K ′j ← K ′j+1

K ′j+1 ← update(K ′j+1)

Then it computes the session key: sk ← KDF(K, rA, rB), and it updates the
parameters a second time. If A is in sync, it computes the session key, and
updates the parameters once only. If A is one step ahead, the updates and the
session key computation are delayed to a next step.

Finally, A computes the message mA = ε‖τA. The parameter ε indicates if
B is in sync (ε = 0) or late (ε = 1), and τA = Mac(K ′i, idB,i‖idA‖rA‖rB). The
parameter K ′i corresponds to the key used by A to verify correctly mB , and idB,i
is the associated identity parameter.

2 The key K′j+1, corresponding to the next epoch for A, is not always used during any
session. Therefore, it can be computed from K′j on the fly, and does not need to be
stored. For the sake of explanation, we will make K′j+1 (and idB,j+1) explicit in this
paper.
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Fourth message. When B receives mA it verifies the MAC tag with K ′. If it is
not correct, B aborts. Then, if ε = 1 (this indicates that B is late, and must
catch up), B updates its parameters:

K ← update(K)
idB ← update(idB‖K ′)
K ′ ← update(K ′)

Next, B computes the session key: sk ← KDF(K, rA, rB), updates its parameters
(which means two updates if ε = 1), and sets φ to 0.

Finally, B computes m′B = idB‖τ ′B with τ ′B = Mac(K ′, rB‖rA).

Fifth message. If ε = 0 (A is in sync now), A verifies m′B with K ′j . If ε = 1 (A
was one step ahead at the beginning of the session, but now B must be ahead),
A verifies m′B with K ′j+1. If the MAC tag is not valid, A aborts. In addition,
if ε = 1, A computes the session key sk, and updates the master keys (but not
the identity parameters, cf. [1], Section 6.2 and Figure 2). Finally, A computes
m′A = idB,j‖τ ′A with τ ′A = Mac(K ′j , rA‖rB).3

Party B verifies m′A with K ′, and aborts if the result is false.

Remark 2. We observe that the message m′A carries an identity parameter re-
lated to B. But no identity parameter is carried in message mA. Therefore the
usefulness of the identity parameter in these messages (or its absence) is ques-
tionable.

Notations. The following notations are used in Figure 3.
The predicate “x ∈ db.id” means that x is equal to one of the identity pa-

rameters idB,t stored in database db.
The value idB,i in mA is the identity parameter corresponding to the au-

thentication master key which verifies correctly τB in mB (operation done by
A). The value idB,∗ in m′A is an identity parameter related to B. Yet, it is not
explained in [1] how this value is chosen (e.g., in A’s database, or from message
m′B).

The parameter entry, and each entry of the database db are of the form:
(K, (idB,j ,K

′
j), (idB,j−1,K

′
j−1), (idB,j+1,K

′
j+1), rtemp).

The parameters ε, and K ′ are set in the function verif-entry (which is also
called by the function find-entry).

The notation updr corresponds to the update of rtemp = (r′′, r′) with rB ,
and is defined as follows:

1. r′′ ← r′

2. r′ ← rB

3 The message m′A is computed as indicated at least when ε = 0. That is, when A was
not one step ahead at the beginning of the session. When A was one step ahead at
the beginning of the session, it is not clear (at least to us) which identity parameter
is used to compute m′A (see also Section 4.5 and Section A).
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The notations kdf, updA, upd′A, and upd′B are defined as follows:

– kdf corresponds to: sk ← KDF(K, f(rA, rB))

– updA corresponds to

1. K ← update(K)

2. K ′j−1 ← K ′j
3. K ′j ← K ′j+1

4. K ′j+1 ← update(K ′j+1)

– upd′A corresponds to

1. K ← update(K)

2. idB,j−1 ← idB,j
3. idB,j ← idB,j+1

4. idB,j+1 ← update(idB,j+1‖K ′j+1)

5. K ′j−1 ← K ′j
6. K ′j ← K ′j+1

7. K ′j+1 ← update(K ′j+1)

– upd′B corresponds to

1. K ← update(K)

2. idB ← update(idB‖K ′)
3. K ′ ← update(K ′)

Moreover, Mac(k,m) denotes the MAC computation function that takes as
input a secret key k, a message m, and outputs a tag τ . In turn, Vrf(k,m, τ)
denotes the MAC verification function that takes as input a secret key k, a
message m, and a tag τ . It outputs true if τ is a valid tag on message m with
respect to k. Otherwise, it returns false.

The function find-entry takes as input a message mB = x‖rB‖τB , and outputs
either an entry entry ∈ db or ∅. The function find-entry is described with the
pseudo-code given in Figure 1.

The function verif-entry takes as input an entry entry ∈ db, and a message
mB = x‖rB‖τB (we assume that the other values used in verif-entry are “global”
parameters). It outputs true if entry allows verifying correctly mB . The function
entry is described with the pseudo-code given in Figure 2.

foreach entry ∈ db
if (verif-entry(entry,mB) = true)

return entry
return ∅

Fig. 1: Pseudo-code of function find-entry
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if (Vrf(K′j , idB,j‖idA‖rB‖rA, τB) = true)
δAB ← 0
K′ ← K′j ; kdf; upd

′
A; ε← 0

return true

else if (Vrf(K′j−1, idB,j−1‖idA‖rB‖rA, τB) = true)
δAB ← 1
K′ ← K′j−1; ε← 1
return true

else if (Vrf(K′j+1, idB,j+1‖idA‖rB‖rA, τB) = true)
δAB ← −1
K′ ← K′j+1; upd′A; kdf; upd′A; ε← 0
return true

else

return false

Fig. 2: Pseudo-code of function verif-entry

2.2 SAKE+-AM

The protocol SAKE+-AM is very close to SAKE+. Compared to the latter, the
first message (A‖rA) is removed, and the roles (initiator and responder) are
reversed. Moreover, what becomes then the first message is computed as mB =
x‖rB‖τB with x ∈ {idB , rα} depending on φ, and τB = Mac(K ′, idB‖idA‖rB).
Besides these differences, the calculations and messages are essentially the same
as in SAKE+.

2.3 Properties of SAKE+ and SAKE+-AM

Besides the properties that an authenticated key exchange protocol is supposed
to guarantee (in particular entity authentication and key secrecy), SAKE+ and
SAKE+-AM aim at providing the following properties.

Forward secrecy. This property aims at forbidding an adversary which cor-
rupts a party from being able to compute a past session key. This property is
ensured with two mechanisms. First, the key evolving scheme used to renew the
master keys with the one-way function update (in particular the derivation mas-
ter key K). Second, the (re)synchronisation mechanism which allows the two
party A and B to be in sync after a correct session, whatever their gap at the
beginning of the session.

Remark 3. We observe that in the security model presented by Aghili et al.,
each party is given “its own unique master keys K, K ′” (cf. [1], Section 3). If
each party uses unique master keys, either it can communicate with at most one
party, which questions the practicality of such a setting, or the same master keys
are shared by several parties, which trivially breaks forward secrecy.
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A B
(Database db) (K,K′)

rA
$←− {0, 1}λ

idA‖rA−−−−−−−−−−→

rB
$←− {0, 1}λ

τB ← Mac(K′, idB‖idA‖rB‖rA)

if (φ = 0)
mB ← idB‖rB‖τB
φ← 1

else if (φ = 1)

rα
$←− {0, 1}λ

mB ← rα‖rB‖τB
mB←−−−−−−−−−−

// mB = x‖rB‖τB
if (x ∈ db.id)

entry ← get corresponding entry
if (rB ∈ rtemp)

abort
if (verif-entry(entry,mB) = false)

abort
else

entry ← find-entry(mB)
if (entry = ∅)

abort
if (rB ∈ rtemp)

abort

updr

τA ← Mac(K′, ε‖idA‖idB,i‖rA‖rB)
mA ← ε‖τA

mA−−−−−−−−−−→
if (Vrf(K′, ε‖idA‖idB‖rA‖rB , τA) = false)

abort
if (ε = 1)

upd′B

kdf; upd′B
φ← 0
τ ′B ← Mac(K′, rB‖rA)
m′B ← idB‖τ ′B

m′B←−−−−−−−−−−
if (ε = 0)

K′ ← K′j
if (Vrf(K′, rB‖rA, τ ′B) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (Vrf(K′, rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← Mac(K′, rA‖rB)
m′A ← idB,∗‖τ ′A

m′A−−−−−−−−−−→
if (Vrf(K′, rA‖rB , τ ′A) = false)

abort

Fig. 3: The SAKE+ and SAKE+-AM protocols (based on our understanding
of [1], Section 6.2 and Figure 2)
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Resistance to tracking. The message mB computed by the responder (resp.
initiator) B in SAKE+ (resp. SAKE+-AM) carries B’s ephemeral identity idB or
a pseudo-random parameter rα (which replaces idB if φ = 1).4 These parameters
aim at forbidding an adversary from correlating several sessions corresponding
to the same party, and tracking the latter.

Resistance to replay. In SAKE+-AM, the parameter rtemp = (r′′, r′), kept by
the responder A, stores the two last values rB received in a (valid) message mB

sent by the initiator B. The purpose is to forbid an adversary from replaying a
message mB (which contains rB).

Remark 4. The same parameter rtemp is also used in SAKE+ by the initiator
A. We observe that A can detect anyway a replay of message mB because the
computation of its MAC tag involves the pseudo-random value rA chosen by A
(among other parameters). Therefore, rtemp seems useless in SAKE+.

Concurrent executions. Concurrent executions means that two same par-
ties are able to establish simultaneously multiple sessions. Since the protocols
are based on evolving symmetric master keys, concurrent executions established
with the same keys may cause some sessions to abort.

In order to allow concurrent executions, Aghili et al. apply the naive tech-
nique suggested in [5, 23]. That is, a party uses as many sets of master keys as
parallel sessions it may be willing to establish. The drawback is that, for each
party, the number of keys sets grows linearly with the number of concurrent
sessions.

Remark 5. Using several sets of master keys contradicts also the uniqueness of
the master keys presented in the security model. In addition, if a party owns
many sets of master keys, Aghili et al. do not explain how its party partner
may distinguish which set of master keys to use in order to process an incoming
message. A solution is to attribute to each party as many (virtual) identities
(and associated master keys) as concurrent sessions. Yet, this is not made clear
in [1].

3 Description of the Attacks

In [1] Aghili et al. present several attacks that the protocols SAKE+ and SAKE+

aim at resisting to. These attacks, although not formally defined in [1], are
informally described and backed with example scenarios. Aghili et al. refer also
to security models proposed by other authors when considering some of the
properties at stake. Below we recall these attacks.

4 The parameter idB is also included in other messages of the protocols.
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3.1 Breakage of Entity Authentication

The security model used by Aghili et al. defines two main security properties:
entity authentication and key indistinguishability (cf. [1], Section 3). They refer
to the security model presented by Avoine et al. [5], which in turn is based on
the security model proposed by Brzuska, Jacobsen, and Stebila [14]. We refer
the reader to [1] for a detailed description of the security model.

Informally, entity authentication means that an instance π (i.e., an execution
of the protocol handled by a given party A) is partnered with a unique instance
π′ (handled by the intended party partner B). Partnership is based on the notion
of matching conversations [22]. This means that the instance π shares the same
transcript of messages sent and received (but, possibly, the last message) as its
instance partner π′.

Breaking the entity authentication property means that when an instance π
“accepts” (i.e., deems that the protocol run is successful), there exists no other
instance π′ which is partnered with π, or there exist at least two other instances
π′ and π′′ which are partnered with π.

3.2 Replay Attack

Although resistance to a replay attack is not formally defined in [1], a scenario
illustrating what such an attack means is described (cf. [1], Section 5.3): “the
attacker first captures the valid message mB related to the last session between
the initiator and the responder A. Then, the adversary resends the captured
message mB to A, repeatedly. [...] After the verification of [mB ] A will compute
[mA.] Now, A sends the created message to the initiator B. Hence, the adversary
succeeded in forcing the party A to perform unnecessary calculations.”

In this scenario, the adversary eavesdrops on a valid message sent by one
party B (the initiator in the described scenario) to its party partner A. The
adversary replays this message to A. Then the responder A accepts the message
as valid, computes a valid response, and sends it. The victim A does the same
as long as the adversary replays this same message. Therefore such a replay
attack may be informally defined as the ability for an adversary to compel a
legitimate party to do useless computations and sendings of messages (useless in
the sense that these operations do not lead to the completion of a session with a
legitimate party, even if the latter receives the messages sent by the victim upon
the adversary’s action).

3.3 Time-based Attack

Aghili et al. describe a time-based scenario where an adversary uses the time
spent in calculations by some party A upon reception of a message sent by a
party B, in order to recognise the latter (cf. [1], Section 5.2): “Timeful attack is
an attack where an adversary identifies which responder has just been authenti-
cated by an initiator by observing the amount of time required to authenticate the
responder [...]. This attack can be performed against an AKE protocol in which
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the initiator must perform exhaustive search to find the responder’s identity. The
adversary then exploits the fact that it takes the same amount of time for the ini-
tiator to authenticate and accordingly respond to a particular responder in every
execution of the protocol. This allows the adversary to detect which responder
has been authenticated by the initiator.”

We stress that this scenario allows recognising a legitimate party, not neces-
sarily identifying it. More precisely, in this scenario, party A tries all keys stored
in a database until it finds the one corresponding to B (i.e., the key which cor-
rectly verifies the message sent by B). Therefore, the adversary can use the time
spent by A as an index to recognise B in subsequent sessions, and to discrimi-
nate B from other legitimate parties.

In addition, Aghili et al. refer to the security model defined by Avoine, Coisel,
and Martin [6], which captures active adversaries. We refer the reader to [6] for
a detailed description of the security model.

3.4 Tracking

Aghili et al. presents the tracking attack as the ability for an adversary to corre-
late two different sessions to the same party (cf. [1], Section 5.4): “an adversary
can easily relate all the messages mB that has been captured from valid sessions
between B and A. This is because the initiator B attaches its fixed identity, B,
to mB in plaintext; hence, the adversary is able to eavesdrop this identity and
track B.”

The above scenario involves a passive adversary. But another one (cf. [1], Sec-
tion 6.1) which illustrates a different tracking attack involves an active adversary
(it sends messages to the victim): “An adversary creates a message A‖rA, sends
it continually to B, and receives a response containing the responder’s identity
(B) for each message. By linking the identities in the responses, the adversary
can successfully trace the target responder.”

In addition, Aghili et al. refers to the security model defined by Ouafi and
Phan [25] when describing the tracking attack. This model captures active ad-
versaries. We refer the reader to [25] for a detailed description of the security
model.

3.5 Disconnection

In addition to the different attacks mentioned in [1], we introduce yet another
attack that we call “disconnection”. The purpose of this scenario is to forbid
everlastingly two parties A and B from being able to successfully complete a
session. Of course, such a scenario is always possible if the adversary is constantly
active, and forbids one of the two parties from receiving one of the messages
needed to complete the protocol run. Therefore, by disconnection attack, we
mean that the adversary does not need to be constantly active. It intervenes at
most a few times: it can only forward, alter, and drop any message exchanged
between honest parties, then it stops being active. Afterwards, the two targeted
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parties are not able to communicate together anymore. That is, they become
“disconnected” forever.

4 Attacks against SAKE+ and SAKE+-AM

In this section, we describe attacks against SAKE+ and SAKE+-AM that are in
compliance with the scenarios mentioned by Aghili et al. (see Section 3), and the
(formal or informal) security experiments and adversarial models they consider
in [1].

4.1 Breakage of Entity Authentication

As recalled in Section 3.1, the model used by Aghili et al. to prove the security
of SAKE+ and SAKE+-AM incorporates the entity authentication property.
In addition, Aghili et al. claim that these protocols inherit from the SAKE and
SAKE-AM protocols [5], and, as such, do guarantee the same security properties
(cf. [1], Sections 1 and 6.1). This includes entity authentication. We show below
that this claim is invalid, and that the entity authentication property can be
broken in SAKE+ and SAKE+-AM.5

Scenario. In SAKE+, upon reception of an initial message idA‖rA from the
initiator A, the responder B computes a message mB as idB‖rB‖τB (if φ = 0)
or rα‖rB‖τB (if φ = 1). The parameter idB is the (ephemeral) identity of
B, rα and rB are pseudo-random values. In either case (φ = 0 and φ = 1),
τB = Mac(K ′, idB‖idA‖rB‖rA). That is, rα is not included in the computation
of the MAC tag τB .

Upon reception of mB , A retrieves from its database the correct authenti-
cation key in order to verify τB . If mB = idB‖rB‖τB , A uses idB to find the
key, otherwise (mB = rα‖rB‖τB) no match is found with any idB value stored
in the database, and A exhaustively tries all authentication keys existing in the
database.

Since rα is not included in the computation of the MAC tag τB , an adversary
can alter idB (if φ = 0) and rα (if φ = 1) without A being able to notice the
modification. Yet, A is able to find the authentication master key which verifies
correctly the MAC tag (since the latter is valid). Therefore, A can send a valid
response, and eventually the session is successful. In such a case, A and B do not
share the same transcript of messages sent and received. That is, the instance
executed by A (resp. B) has no partner.

The same holds for SAKE+-AM. The initial message sent by B to A is ei-
ther mB = idB‖rB‖τB (if φ = 0) or mB = rα‖rB‖τB (if φ = 1). In either case,
τB = Mac(K ′, idB‖idA‖rB). The message mB is processed by A in the same way
as in SAKE+.

5 But not in SAKE and SAKE-AM.
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Since the instances executed by the two parties A and B “accept” with-
out having a partner, this scenario breaks the entity authentication property in
SAKE+ and SAKE+-AM.

We will see in Sections 4.2 and 4.3 that this flaw results in other consequences.

Remark 6. In SAKE+ and SAKE+-AM, the two last messages are m′B = idB‖τ ′B
with τ ′B = Mac(K ′, rB‖rA), and m′A = idB,∗‖τ ′A with τ ′A = Mac(K ′j , rA‖rB).
Since idB (resp. idB,∗) is not included in the computation of τ ′B (resp. τ ′A), the
adversary can also alter this parameter. Nonetheless, it is not clear (at least to
us) how the identity parameters idB and idB,∗ are used by A and B to process
the messages m′B and m′A. That is, it is not clear if the session is successful or
aborts, when this identity parameter is modified.6

Mitigation. In order for A to be able to detect that mB is modified, rα must
be included in the computation of the MAC tag τB . That is, if φ = 1, τB =
Mac(K ′, rα‖idA‖rB‖rA) (or τB = Mac(K ′, rα‖idB‖idA‖rB‖rA)) in SAKE+, and
τB = Mac(K ′, rα‖idA‖rB) (or τB = Mac(K ′, rα‖idB‖idA‖rB)) in SAKE+-AM.

In addition, the identity parameter must be involved in the computation of
the two MAC tags of the messages m′A and m′B , in SAKE+ and SAKE+-AM.

4.2 Replay Attack

In [1], Sections 1.1, 5.3, 6.3 and 9, Aghili et al. claim that SAKE+-AM resists to
the same kind of scenario as described in Section 3.2. Below, we show that this
claim is invalid.

Scenario. In order to thwart a replay attack, the responder A in SAKE+-AM
stores the two last pseudo-random values rB sent by the initiator B (they are
stored in the list rtemp = (r′′B , r

′
B)). If the same initial message is received once

again by A, such a replay is supposed to be detected by comparing the received
value rB with the values stored in rtemp. This countermeasure can be bypassed
if the adversary uses three different initial messages corresponding to the (same)
previous epoch. That is, three initial messages computed under the same au-
thentication key K ′ = K ′j−1 corresponding to the previous epoch with respect
to the receiver A.

The adversary does the following: it eavesdrops three times consecutively an
initial message mB sent by the initiator B, and not received by A (dropped by
the adversary). The first message is computed by B in state φ = 0 or φ = 1 with
some key K ′, and the second and third messages are computed in state φ = 1
with the same key K ′. These three initial messages are computed with the same
authentication key because B has not received any response from A. Hence, it
has not updated its master keys.

Then, B sends once again a new initial message (computed in state φ = 1).

6 In this regard, see also Section 4.5 and Section A.
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The adversary does not intervene, and this message is received by A. Upon re-
ception of this (fourth) initial message, A acts accordingly with the protocol,
and the session is eventually completed by the two parties. To that point, the
three messages obtained by the adversary belong to the previous epoch on A’s
perspective (because A has updated its master keys once).

With high probability the pseudo-random value rB carried in the three mes-
sages eavesdropped by the adversary are pairwise distinct, and are all different
from any element in rtemp (which includes now the last rB value sent by B in the
fourth initial message). Therefore, the adversary can alternately send to A its
three messages. Since they are computed with a valid authentication key (K ′j−1),
the MAC tag is correctly verified. Since the three rB values are pairwise distinct,
and do not belong to rtemp, they are not rejected as replayed messages. There-
fore, A makes all the corresponding computations, and eventually sends a valid
response (message mA) as long as the adversary keeps sending the three mes-
sages alternately. Moreover, since at least two among the three messages used by
the adversary are computed by B under the state φ = 1, A makes the maximum
amount of computations when it receives these messages. Indeed, in such a case
B’s (ephemeral) identity idB is replaced in message mB with a pseudo-random
value rα. Hence, upon reception of mB , A must try (at most) the three possible
authentication keys K ′j , K

′
j−1, K ′j+1, for each entry stored in its database until

a correct key is found.7

If the adversary wants to be sure that the three initial messages correspond
to φ = 1 in order to compel A to make as most computations as possible, it can
eavesdrop and block the fourth message sent by B, and use the second, third, and
fourth initial messages. Or the adversary can merely replace the first parameter
(idB or rα) in the first eavesdropped message mB with a pseudo-random value
r∗α. As explained in Section 4.1, this change remains undetected by A.

The alternate use of the three initial messages allows the adversary to “flush”
the list rtemp on A’s side. More generally, if A stores n ≥ 1 previous values rB ,
the same scenario can be done with n + 1 initial messages mB (each of them
corresponding to the (same) previous epoch).

If B does never send a third or a fourth initial message8 mB , then this sce-
nario is an easy way to “kill” B once and for all. That is, B becomes unavailable
forever.

This scenario is interrupted when the two legitimate parties B and A succeed
in completing a new session. Then, the master keys are updated (in particular
the authentication master key corresponding to the previous epoch), and this
obsoletes the messages mB currently used by the adversary. Yet, the latter can
reload its “ammunition”.

Remark 7. In SAKE+, the first message corresponds to A‖rA where rA is a
pseudo-random value. If an adversary replays (or compute) such a message, the
responder replies with a valid message.

7 If K′j+1 is not stored in the database but computed on the fly, this adds a supple-
mentary computation for each tested entry not corresponding to B.

8 Or a fifth initial message.
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Although such a scenario complies with Aghili et al.’s description of a replay
attack, they do not seem to consider it as a valid attack. We do not either. Indeed
such an initial message must be accepted by the receiver. Likewise, in many other
protocols, the responder must reply to an initial message (e.g., TLS 1.2 [18]).
But sending such an initial message is not enough for the responder to “accept”,
and for the session to end successfully. In SAKE-AM [5] also the initial message
can be replayed if it belongs to the previous epoch, but this is not sufficient to
authenticate the initiator, and eventually the session aborts.

In contrast, in TLS 1.3 with 0-RTT mode [26] the server must deem the initial
message (Client Hello) as authentic, and execute the request herein included [20].
Consequently, mitigations are necessary (cf. [26], Section 8).

Mitigation. The scenario described above is possible because, in SAKE+-AM,
only the last two received values rB are stored by A.

In order to thwart such a scenario, A can keep track of all previously received
values. For instance, this can be done with a Bloom filter [13] or a Cuckoo
filter [19]. Such mechanisms allow detecting all replays (no false negative) with
a constant storage in memory. The rate of false positives depends on the size
of the filter. Besides storing an additional parameter, such a technique implies
implementing and executing hash functions. Party A may store one such filter
per party it may communicate with, or one global filter for all possible party
partners.

4.3 Time-based Attack

In [1], Sections 1, 5.2 and 9, Aghili et al. claim that the SAKE+ protocols resist
to the same kind of scenario as described in Section 3.3. We show below that this
statement is not valid. We also show that this scenario applies to SAKE+-AM.

Scenario. In SAKE+, upon reception of an initial message idA‖rA from the
initiator A, the responder B sends either mB = idB‖rB‖τB (if φ = 0) or
mB = rα‖rB‖τB (if φ = 1). The parameter idB is the (ephemeral) identity used
by B, rα and rB are pseudo-random values, and τB = Mac(K ′, idB‖idA‖rB‖rA)
(whatever the value of φ). The value φ depends on what happened during the
previous session. If, during the previous session, B has received a valid third
message (mA), then idB and K ′ are updated, and φ is set to 0. Otherwise, idB
and K ′ remain the same, and φ = 1. Therefore, φ indicates if idB has been
changed or not. If not (φ = 1), then B replaces idB (which remains equal to
the ephemeral identity used during the previous session) with a pseudo-random
value rα. The purpose is to forbid an adversary from correlating the previous
and current sessions (the same value idB is not used twice consecutively).

When mB carries idB , A can look for this value in its database, and retrieve
the corresponding derivation and authentication master keys. If mB carries rα,
with high probability, A does not find a match in its database. Therefore the
only way in order to process the message mB is to try, for all existing entries in
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the database, the different authentication keys, and check if one key correctly
verifies the MAC tag τB . Hence, when mB = rα‖rB‖τB , the time spent by A to
find the correct authentication key allows an adversary to recognise which party
B communicates with A (the time measurement done by the adversary is used
as an index that designates to B).

The same holds with respect to SAKE+-AM. In this case, the message mB

is the initial message sent by the initiator B to the responder A. This mes-
sage is equal to idB‖rB‖τB (if φ = 0) or rα‖rB‖τB (if φ = 1), with τB =
Mac(K ′, idB‖idA‖rB) whatever the value of φ. Upon reception of mB by A, the
message is processed in the same way as in SAKE+.

This can be used in any case (i.e., whatever the value of φ) by an adver-
sary in order to recognise a responder (resp. an initiator) B in SAKE+ (resp.
SAKE+-AM).

First flavour. In SAKE+, the adversary poses as a person-in-the-middle be-
tween A and B. When mB = idB‖rB‖τB (i.e., φ = 0), the adversary replaces
idB with a pseudo-random value r∗α, and sends m∗B = r∗α‖rB‖τB to A. As ex-
plained in Section 4.1, A is not able to detect the change because the com-
putation of the MAC tag τB does not involve rα. With high probability, A
does not find a match to r∗α in its database. Therefore, it tries all existing en-
tries until it finds the correct one. More precisely, for each entry, A retrieves
(idB,j ,K

′
j , idB,j−1,K

′
j−1, idB,j+1,K

′
j+1), and verifies the MAC tag τB with idB,i

and K ′i, i ∈ {j − 1, j, j + 1}. Hence, A eventually finds an entry such that a pair
(idB,i,K

′
i), i ∈ {j − 1, j, j + 1}, allows verifying correctly τB . Indeed A updates

idB,j and K ′j the same way as B does. Therefore, whatever if A is in sync with

B, or one step behind (but not necessarily if A is one step ahead9), it will find
a consistent pair (idB,i,K

′
i) that allows verifying the MAC tag τB computed by

B.10

The value idB is output by the update function, and rα is a λ-bit pseudo-
random binary string. Although it is not explicitly stated in [1], we may assume
that both values are indistinguishable (at least their size is the same) since they
correspond to the same parameter in mB . Therefore, even when mB = rα‖rB‖τB
(i.e., if φ = 1), the adversary has to replace rα with a pseudo-random λ-bit value
r∗α. If the adversary is able to distinguish either case, then it does not need to
intervene when φ = 1.

The same holds with respect to SAKE+-AM. The adversary acts as a person-
in-the-middle between B and A. It replaces idB in mB = idB‖rB‖τB (if φ = 0)
or rα in mB = rα‖rB‖τB (if φ = 1), with a pseudo-random value r∗α, and sends
m∗B = r∗α‖rB‖τB to A. The message m∗B is processed by A in a similar way as
in SAKE+.

Second flavour. The specific scenario presented above is possible (against SAKE+

and SAKE+-AM) because the adversary can alter mB without A being able to

9 See Section 4.5.
10 We recall that, when A is in sync or one step behind, it updates idB,j , K

′
j as follows:

idB,j ← update(idB,j‖K′j), K′j ← update(K′j).
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notice the change. However, even if A is able to verify if mB has been modified,
the same kind of attack can be done.

Indeed, in SAKE+, A does an exhaustive search in its database when it re-
ceives a genuine message mB = rα‖rB‖τB (i.e., when φ = 1) – not modified by
the adversary. The adversary can trigger the computation of such a message. It
merely waits for B to send mB in response to A’s initial message, and forbids
A from receiving mB . Then φ is set to 1. Very likely, A sends anew an initial
message, which B responds to with mB = rα‖rB‖τB . Next, A and B proceed
according to the protocol, and, eventually, the session is successfully completed.

Likewise, in SAKE+-AM, if the adversary forbids A from receiving an initial
message mB sent by B, φ is set to 1. Then, very likely, B sends a new initial
message of the form mB = rα‖rB‖τB .

Time estimate. In SAKE+ and SAKE+-AM, when A tries all authentication
keys existing in its database in order to verify the MAC tag τB , it makes three
MAC computations. Despite the fact that three computations are done for each
entry, it may happen that the time spent by A to try two entries that are close
(e.g., consecutive) in its database be similar. Hence, the adversary may not be
able to discriminate the two corresponding parties [6]. Indeed, being able to
recognise any party depends on how tight is the time measurement made by
the adversary. We observe that against SAKE+-AM, the adversary can still be
winner.

Indeed, in SAKE+-AM, the adversary can replay messages mB (see Sec-
tion 4.2), and replace the first parameter of the message (idB or rα) with a
pseudo-random value r∗α without the receiver A being able to detect the change
(see Section 4.1). Therefore, based on these multiple measurements, the adver-
sary can get a more accurate estimate of the time spent by A to process mB ,
and eventually discriminate two such “close” parties.

Mitigation. A first mitigation in SAKE+ consists in including rα in the compu-
tation of the MAC tag τB .11 That is, when φ = 1, B computes τB = Mac(K ′, rα
‖idA‖rB‖rA) (or τB = Mac(K ′, rα‖idB‖idA‖rB‖rA)). Upon reception of mB , if
A does not find a match to rα in its database, it recovers the correct entry by
comparing Mac(K ′i, rα‖idA‖rB‖rA) (or Mac(K ′i, rα‖idB,i‖idA‖rB‖rA)) with τB
for all authentication keys K ′i existing in its database (and the corresponding
identity parameter idB,i).

The same holds for SAKE+-AM. If φ = 1,B computes τB = Mac(K ′, rα‖idA‖
rB) (or τB = Mac(K ′, rα‖idB‖idA‖rB)), and A verifies the MAC tag accordingly.

As an additional mitigation for SAKE+ and SAKE+-AM, A can try to
equalise the time spent to process the message mB . That is, A tries always
all authentication keys it owns, even when it finds the correct one. Therefore,
the time spent by A to process mB corresponds always to the time needed to
explore the whole database. The drawback is that it compels A to make the
maximum amount of computations anytime.

11 This is also used to mitigate the attack described in Section 4.1.
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Another possibility is to search the database randomly each time [6]. One
option is to randomly choose the starting index. Another option is for A to ran-
domly generate a permutation to reorder the indexes of the database, and ex-
plores the database accordingly. Party A stops when the correct entry is found.12

In either case, the time spent to find the correct key (i.e., B’s identity) is no
more related to its “real” index in the database.

4.4 Tracking

In [1], Sections 1.1, 6.1 and 9, Aghili et al. claim that SAKE+ and SAKE+-AM
resist to the same kind of scenario as described in Section 3.4. We show below
that this claim is not true.

Scenario. The adversary applies the same technique as the one used in the
time-based attack: in SAKE+ (resp. SAKE+-AM), it compels the initiator (resp.
responder) A to try all authentication keys for each entry existing in its database
until it finds the correct one that allows verifying the message mB sent by the
responder (resp. initiator) B. The time spent by A to explore the database is used
by the adversary as an index to recognise which party B, A is communicating
with. The adversary can do this for each session in order to detect which a given
party B is involved in. Hence the adversary can track that party.

Mitigation. The tracking attack is feasible because the adversary is able to
compel A to explore its database. Hence the mitigations are the same as those
proposed for the time-based attack (see Section 4.3).

4.5 Disconnection

In this section, we show that it is possible in SAKE+ and SAKE+-AM to forbid
everlastingly two parties A and B from being able to successfully complete a
session, without an adversary needing to be constantly active. The adversary
intervenes once only (to drop one message), or possibly never (if errors occurs
on the communication channel).

Scenario. The adversary relies almost only on the peculiarities of SAKE+ in
order to achieve its goal.13

12 We observe that A stops the search when the correct entry is found. But still, it
may be necessary that A try all authentication keys corresponding to that entry.
This aims at precluding possible attacks based on the fact that for one party B, the
first tried key is the correct one, whereas for another party C communicating with
A, the second or third key is the correct one. Besides, if A does not store K′j+1 but
computes the key only when necessary, this additional calculation may favour the
adversary since it increases the time discrepancy.

13 See Section A for a detailed description of the scenario.
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The SAKE+ protocol uses the same technique as the SAKE protocol in
order to update the master keys, and to maintain the synchronisation between
A and B [5]. That is, whatever the gap between A and B at the beginning of a
session, once a correct session ends, both parties have updated their keys, and are
synchronised. Moreover, in SAKE+, the computation of the identity parameter
idB depends on the authentication master key: idB ← update(idB‖K ′).

In a correct session, both the master keys and the identity parameter are
updated together on the responder’s side (B). However on the initiator’s side
(A), the master keys and the identity parameters are updated only when A is
either in sync with B or one step behind. When A is one step ahead, it updates
only its master keys, but not the identity parameters.14 Therefore, if A is one
step ahead, and A and B start a new session, once the session ends correctly, B
has updated its master keys and the identity parameter, but A has updated the
master keys only. Hence A and B are synchronised with respect to the master
keys, but desynchronised in regard to the identity parameter.

More precisely, let us assume that the current epoch with respect to A is t,
and B still belongs to epoch t− 1. That is B stores

idB = idB,t−1,K
′ = K ′t−1,K = Kt−1

and A stores

(idB,j ,K
′
j ,Kj), (idB,j−1,K

′
j−1,Kj−1), (idB,j+1,K

′
j+1,Kj+1)

=
(idB,t,K

′
t,Kt), (idB,t−1,K

′
t−1,Kt−1), (idB,t+1,K

′
t+1,Kt+1)

Then A and B complete successfully a session. Party B has updated its master
keys and identity parameter (twice because it must resynchronise). That is, B
computes first

idB ← update(idB‖K ′) = idB,t
K ′ ← update(K ′) = K ′t
K ← update(K ′) = Kt

and then
idB ← update(idB‖K ′) = idB,t+1

K ′ ← update(K ′) = K ′t+1

K ← update(K ′) = Kt+1

In turn, the entry stored by A and related to B is changed from

(idB,t,K
′
t,Kt), (idB,t−1,K

′
t−1,Kt−1), (idB,t+1,K

′
t+1,Kt+1)

into

(idB,t,K
′
t+1,Kt+1), (idB,t−1,K

′
t,Kt), (idB,t+1,K

′
t+2,Kt+2)

14 To be fair, this resembles to an oversight from the authors of [1]. Yet, this is how
it is described in [1], Sections 6.1 and 6.2, and Figure 2. We can do nothing but to
stick to the explanation of the protocol as it is given.

19



because A does not update the identity parameters.
To that point, when A updates the identity parameters corresponding to B

(during a subsequent session), it gets ĩdB,i = update(idB,i−1‖K ′i), i ∈ {t, t +
1, t + 2}. On B’s side, the evolution of idB closely follows that of K ′: idB ←
update(idB‖K ′). Therefore, with high probability, idB 6= ĩdB,i, i ∈ {t, t+1, t+2}.

When A starts a new session, the identity parameter sent by B in mB =
idB‖rB‖τB (with τB = Mac(K ′, idB‖idA‖rB‖rA)) has no match in A’s database.
Therefore, A tries the different authentication master keys, and the correspond-
ing identity parameter found in its database. Since idB 6= ĩdB,i, i ∈ {t, t+1, t+2},
the verification of the MAC tag τB yields always false. The same recurs in the
next sessions. Hence A and B are unable to communicate anymore.

In SAKE+-AM, the responder (resp. initiator) updates the master keys and
the identity parameters in the same way as the initiator (resp. responder) in
SAKE+. The same sequence of operations as in SAKE+ is executed. Therefore,
the same scenario can be applied against SAKE+-AM.

Making party A one step ahead. Party A is one step ahead with respect to B
if A and B are first synchronised, and B does not receive message mA. This
may happen either if the adversary forbids B from receiving mA (the adversary
intervenes once), or if the message is not received or is altered because of errors
in the communication channel (the adversary does not intervene at all).

Mitigation. When the initiator (resp. responder) A in SAKE+ (resp. SAKE+-
AM) receives the fourth (resp. third) message of the protocol flow, and ε = 1, A
must update the identity parameters when it updates the master keys also.

5 Conclusion

In this paper we have made an extensive analysis of SAKE+ and SAKE+-AM,
two key exchange protocols. We have shown that several claims made in [1]
regarding the (security) properties of these protocols are not valid. More specif-
ically, we have described an attack against mutual authentication, as well as
tracking, replay, and time-based attacks. We have also presented an attack which
forbids two parties from being able to communicate anymore (that is, they be-
come “disconnected” everlastingly). Furthermore we have described countermea-
sures that allow thwarting these attacks.

The authors of SAKE+ and SAKE+-AM build their work upon the protocols
proposed in [5]. They make several changes and additions in order to improve
the latter. Our results show that these “enhancements” do not achieve their in-
tended goals, and actually decrease the security of the resulting protocols.

Finally our results question the correctness of the security proofs provided
in [1], made in the computational model (using the game-based methodology
[8, 27]), and with the ProVerif verification tool [12].
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A Detailed Scenario of the Disconnection Attack

In this section, we provide the detailed scenario of the disconnection attack pre-
sented in Section 4.5.

The adversary relies almost only on the peculiarities of SAKE+ in order to
achieve its goal.

In SAKE+, it is possible for the initiator A to be in sync, or one step ahead,
or one step behind with respect to the master keys shared with the responder
B. SAKE+ uses the same synchronisation technique as the SAKE protocol with
respect to the master keys [5]. In SAKE, whatever the gap δAB between A and B
when a new protocol run starts, the two parties are always able to resynchronise
their master keys in the continuity of the session, and eventually to successfully
complete the session (because δAB ∈ {−1, 0, 1}). Yet, in SAKE+, when the ini-
tiator A is one step ahead at the beginning of a new session, this desynchronises
the two parties with respect to the identity parameter they share.

Let us assume that the current epoch with respect to A is t, and B still
belongs to epoch t− 1. That is, B stores

idB = idB,t−1,K
′ = K ′t−1,K = Kt−1

and A stores

(idB,j ,K
′
j ,Kj), (idB,j−1,K

′
j−1,Kj−1), (idB,j+1,K

′
j+1,Kj+1)

=
(idB,t,K

′
t,Kt), (idB,t−1,K

′
t−1,Kt−1), (idB,t+1,K

′
t+1,Kt+1)

First session. Upon reception of a fresh initial message sent by A, B computes
the message mB with K ′ = K ′t−1 (and idB = idB,t−1 or some pseudo-random
value rα depending on the value of φ). When A receives mB it can correctly
verify the MAC tag τB with K ′t−1. Therefore, A does not update the parameters
(authentication and derivation master keys, and identity) corresponding to B.
It responds with the message mA (which includes ε = 1). When it receives mA,
B updates its parameters twice with the function defined in SAKE+. That is,
first

idB ← update(idB‖K ′) = idB,t
K ′ ← update(K ′) = K ′t
K ← update(K ′) = Kt

and then
idB ← update(idB‖K ′) = idB,t+1

K ′ ← update(K ′) = K ′t+1

K ← update(K ′) = Kt+1

and B sets φ to 0. Then B computes the fourth message of the protocol run
(idB‖τ ′B) with its current parameters with idB = idB,t+1, and τ ′B = Mac(K ′, rB‖
rA) = Mac(K ′t+1, rB‖rA).

When A receives this message, it can correctly verify its MAC tag with
K ′j+1 = K ′t+1. Therefore, A does the same update operations as in the SAKE
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protocol. That is, A updates the master keys corresponding to B, but not the
identity parameters. The entry stored by A and related to B is changed from

(idB,t,K
′
t,Kt), (idB,t−1,K

′
t−1,Kt−1), (idB,t+1,K

′
t+1,Kt+1)

into

(idB,t,K
′
t+1,Kt+1), (idB,t−1,K

′
t,Kt), (idB,t+1,K

′
t+2,Kt+2).

Party A computes the last message of the protocol with the now current param-
eters (t+ 1): idB,t and K ′t+1. To that point, there are two options:

– if B verifies the identity carried in m′A, the message is rejected (because
idB,t 6= idB = idB,t+1), and the session aborts;

– if B verifies only the MAC tag, the session ends successfully (because K ′ =
K ′t+1).

Nevertheless, this does not change the parameters on A’s and B’s side.

Second session. When A starts a new session with B, the latter responds with a
fresh message mB computed with K ′ = K ′t+1, and φ = 0. Hence mB includes the
current value idB = idB,t+1. With this message, A finds a match in its database.
In this matching entry, idB,t+1 refers to K ′t+2, but the entry includes also to
K ′t+1 (associated to idB,t).

Remark 8. To that point, we recall our observation made in Remark 1, Sec-
tion 2.1. That is, since idB and K ′ evolve the same way (on B’s side), idB
could be used as key identifier in addition to as (ephemeral) party identifier.
Nonetheless, the description given in [1], Section 6.2, explicitly indicates that
the different master authentication keys corresponding to the matching entry in
A’s database are tested by A. Hence, we stick to this processing.

That being said, if A uses K ′t+2 to verify the MAC tag τB , the result is false,
and A aborts. This does not change what happens next in this scenario. This
delays only the conclusion by one additional session. That is, what is described
below happens in a third session instead of this second session.

Indeed, if A aborts prematurely, B does not receive the message mA, hence
φ remains set to 1. Eventually, A starts a new session, and B responds with a
message of the form mB = rα‖rB‖τB computed with K ′ = K ′t+1 (because B has
not updated its master keys). Upon reception of this message, A does not find a
match to rα in its database. Hence it tries all existing authentication keys, and
finds K ′t+1. Then, the same operations as those described below are executed.

The MAC tag is correctly verified with K ′t+1 (i.e., A is in sync with B with
respect to the master keys). Then A computes the message mA with ε = 0 and
K ′t+1 (because K ′t+1 is the authentication master key of the current epoch for
A). Finally, A updates all the parameters corresponding to B:

(idB,t,K
′
t+1,Kt+1), (idB,t−1,K

′
t,Kt), (idB,t+1,K

′
t+2,Kt+2)
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is changed into

(ĩdB,t+1,K
′
t+2,Kt+2), (ĩdB,t,K

′
t+1,Kt+1), (ĩdB,t+2,K

′
t+3,Kt+3)

with ĩdB,i = update(idB,i−1‖K ′i), i ∈ {t, t+ 1, t+ 2}.
When B receives mA, it can correctly verify the message with its authenti-

cation key K ′ = K ′t+1. Hence, it updates its own parameters:

idB ← update(idB‖K ′) = update(idB,t+1‖K ′t+1) = idB,t+2

K ′ ← update(K ′) = update(K ′t+1) = K ′t+2

K ← update(K) = update(Kt+1) = Kt+2

and sets φ to 0. Party B computes message m′B with idB = idB,t+2 and K ′ =
K ′t+2.

Upon reception of m′B by A, there are two options:

– if A verifies the identity parameter carried in m′B , it rejects the message
because, with high probability, it finds no match to idB = idB,t+2 in its

database (in particular idB 6= ĩdB,t+1), and the session aborts;
– if A verifies only the MAC tag, the message is deemed as valid, and A

responds with m′A computed with ĩdB,t+1 and K ′t+2. Then, depending on B’s
behaviour with respect to m′A, either the session aborts or it ends correctly
(see above, first session).

In any case, the parameters remain unchanged respectively on A’s and B’s side.

Third and next sessions. To that point, with high probability, idB 6= ĩdB,i,
i ∈ {t, t + 1, t + 2}. That is, A and B are desynchronised with respect to the
identity parameter.

When A starts a new session, the identity parameter sent by B in mB =
idB‖rB‖τB (with τB = Mac(K ′, idB‖idA‖rB‖rA)) has no match in A’s database.
Therefore, A tries the different authentication master keys, and the correspond-
ing identity parameter found in its database. Since idB 6= ĩdB,i, i ∈ {t, t+1, t+2},
the verification of the MAC tag τB yields always false. The same recurs in the
next sessions. Hence A and B are unable to communicate anymore.

In SAKE+-AM, the responder (resp. initiator) updates the master keys and
the identity parameters in the same way as the initiator (resp. responder) in
SAKE+. The same sequence of operations as in SAKE+ is executed. Therefore,
the same scenario can be applied against SAKE+-AM.
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