
Post-Quantum Adaptor Signatures
and Payment Channel Networks?

Muhammed F. Esgin1,2, Oğuzhan Ersoy3, and Zekeriya Erkin3

1 Faculty of Information Technology, Monash University, Australia
2 Data61, CSIRO, Australia
muhammed.esgin@monash.edu

3 Cyber Security Group, Delft University of Technology, Netherlands
{o.ersoy,z.erkin}@tudelft.nl

Abstract. Adaptor signatures, also known as scriptless scripts, have
recently become an important tool in addressing the scalability and in-
teroperability issues of blockchain applications such as cryptocurrencies.
An adaptor signature extends a digital signature in a way that a complete
signature reveals a secret based on a cryptographic condition. It brings
about various advantages such as (i) low on-chain cost, (ii) improved
fungibility of transactions, and (iii) advanced functionality beyond the
limitation of the blockchain’s scripting language.
In this work, we introduce the first post-quantum adaptor signature,
named LAS. Our construction relies on the standard lattice assumptions,
namely Module-SIS and Module-LWE. There are certain challenges spe-
cific to the lattice setting, arising mainly from the so-called knowledge gap
in lattice-based proof systems, that makes the realization of an adaptor
signature and its applications difficult. We show how to overcome these
technical difficulties without introducing additional on-chain costs.
Our evaluation demonstrates that LAS is essentially as efficient as an or-
dinary lattice-based signature in terms of both communication and com-
putation. We further show how to achieve post-quantum atomic swaps
and payment channel networks using LAS.

Keywords: Post-Quantum · Blockchain · Lattice · Adaptor Signa-
ture · Scriptless Script · Payment Channel Network.

1 Introduction

Blockchains are decentralized platforms run by miners, where each transaction
on the blockchain can be seen as an application formed of some script(s). The
scripting language of a blockchain defines potential functionalities that can be
implemented on blockchain. Bitcoin, for example, consists of very few scripts,
which restricts its use mainly into coin transactions. Ethereum, on the other
hand, has a Turing-complete scripting language that enables users to run more
advanced and complicated applications.
? This is the authors’ copy of an article accepted to ESORICS 2020. The final authen-
ticated version will be published in the conference proceedings.



A user who wants to deploy and execute a transaction needs to pay a fee
to the miners. The fee is determined by the storage and computational costs
of running each script of the transaction. Thus, it is beneficial to handle some
operations off-chain to reduce the on-chain fee paid to the miners. In this manner,
Poelstra introduced the notion of scriptless scripts [25], which is later named as
adaptor signatures [3,15].

Adaptor signatures can be seen as an extension over a digital signature, where
first a “pre-signature” is generated and its completion to a (full) signature reveals
a secret based on a cryptographic condition. The conditions are defined over a
hard relation such as the discrete log problem, and the complete signature reveals
a witness matching with the statement embedded into the pre-signature. The
verification of the signature is done in the same way as the original signature
scheme. Thus, while the miners verify only the signature, parties involved in the
signature generation can embed an additional condition.

The main advantages of adaptor signatures can be summarized as follows:
(i) A significant reduction in on-chain costs, (ii) improved fungibility of transac-
tions, and (iii) ability to incorporate complex conditions, which may otherwise
be impossible to execute due to the limitation of the blockchain’s scripting lan-
guage. More specifically, if the condition is published on-chain separately, then
it would incur additional storage and verification costs. At the same time, since
the condition is embedded inside a signature, for the outsiders and miners the
signature with a condition is indistinguishable from a regular one. This fungibil-
ity property is especially useful to hide payment channel network transactions
among any other transactions [21]. Moreover, adaptor signatures enhance the
functionality of blockchains with a limited scripting language. Since the condi-
tion embedded within the signature is not verified by miners, it is not limited by
the blockchain’s scripting language. These advantages have been utilized in pay-
ment channel networks [3,21], atomic swaps [24], and discrete log contracts [8].

None of these works, however, provide security against powerful quantum
computers as they rely on discrete-log-related assumptions. As evident, e.g.,
from NIST’s efforts for standardization of post-quantum (i.e., quantum-resistant)
algorithms [22], there is a major need for designing quantum-secure alternatives
of currently deployed schemes. In fact, in the blockchain community, there are
already significant efforts and considerations towards migrating to post-quantum
cryptography. For example, Ethereum 2.0 Serenity upgrade [5] is planned to have
an option for a post-quantum signature, Zcash developers plan to update their
protocol with post-quantum alternatives when they are mature enough [31], and
Hcash is building a post-quantum privacy-preserving blockchain [17].

Lattice-based cryptography, studied extensively in the last decades, is a
promising candidate for post-quantum security. For example, Dilithium [9], which
is based on standard lattice assumptions, is among the 2nd round signature can-
didates in NIST’s post-quantum standardization process. Beyond basic crypto-
graphic schemes such as encryption and signature, lattice-based cryptography
also supports advanced schemes such as zero-knowledge proofs (ZKP), which
play a crucial role in blockchain applications. For example, advanced ZKPs have

2



recently been studied in [12,13] and there are even recent efforts in constructing
blockchain-specific applications based on lattice assumptions [14,30].
Our contributions. In this work, we introduce the first post-quantum adap-
tor signature, LAS, in support of the efforts towards migration to post-quantum
cryptography. Our construction relies on standard lattice assumptions, namely
Module-LWE and Module-SIS, and is essentially as efficient as an ordinary
lattice-based signature scheme based on the same assumptions. In particular,
the signature scheme underlying LAS is a simplified version of Dilithium [9].

We further show how to realize post-quantum payment channel networks and
atomic swaps using LAS. Our results show that these applications can be realized
in the post-quantum setting without incurring an additional on-chain cost. The
on-chain cost is effectively the cost of an ordinary lattice-based signature.

The main technical difficulties in constructing lattice-based adaptor signa-
tures, as well as atomic swaps and payment channel networks, stem from the fol-
lowing two related facts. First, hard-to-find pre-images of lattice-based one-way
functions, and in general user’s secret keys, are required to have small coeffi-
cients in comparison to the system modulus q. In this case, a common technique
used to hide user’s secrets is rejection sampling, which is applied depending on
the secret. As a result, in the setting of a payment channel network where a
multi-party interaction is required with each user having his/her own secret, the
realization of a secure construction demands a more careful analysis.

Secondly, efficient lattice-based zero-knowledge proofs underlying the (ordi-
nary) signature scheme we employ have an inherent knowledge (soundness) gap
(see, for example, [12,19,20]). That is, a witness extracted from a protocol inter-
action satisfies an extended relation R′ whereas an honest user’s secret satisfies a
stronger relation R such that R ⊆ R′. Therefore, we need to adjust the security
model carefully and also show that the extended guarantees are still meaningful
and sufficient for practical applications. To this end, we extend the formal model
of adaptor signatures introduced recently in [3], and show how to overcome the
technical difficulties in our applications.
Organization of the paper. In Section 2, we present our security assump-
tions, lattice-based signatures and the rejection sampling technique as well as
our extended formal definition for adaptor signatures. We introduce LAS, our
adaptor signature, in Section 3, where the security and performance analyses
and the effect of the knowledge gap are also given. We discuss the application
of LAS to atomic swaps and payment channel networks in Section 4.

2 Preliminaries

We define Rq = Zq[X]/(Xd + 1) to be a cyclotomic ring of power-of-2 degree
d for an odd modulus q. We denote by Sc the set of polynomials in Rq whose
maximum absolute coefficient is at most c ∈ Z+. Similarly, R = Z[X]/(Xd + 1).

We denote by In the n-dimensional identity matrix. Vectors and matrices
over R are denoted by lower-case and capital bold letters such a and A, respec-
tively. For a polynomial f = f0 +f1X+· · ·+fd−1X

d−1 ∈ R, we define the norms

3



in the typical way: ‖f‖ =
√∑d−1

i=0 f
2
i , ‖f‖∞ = maxi |fi| and ‖f‖1 =

∑d−1
i=0 |fi|.

For a vector v = (v0, . . . , vs−1) ∈ Rs of polynomials with s ≥ 1, we further
define ‖v‖ =

√∑s−1
i=0 ‖vi‖

2, ‖v‖1 =
∑s−1
i=0 ‖vi‖1 , ‖v‖∞ = maxi ‖vi‖∞ .

2.1 Security Assumptions: Module-SIS and Module-LWE
The security assumptions on which our constructions rely are the two well-known
lattice problems, namely Module-SIS (M-SIS) and Module-LWE (M-LWE) [18].
They are generalizations of SIS [2] and LWE [28] problems, respectively. These
problems are widely believed to resist attacks against powerful quantum adver-
saries. As in [9,12,13], we define below M-SIS in “Hermite normal form”, which
is as hard as M-SIS with a completely random matrix A.

Definition 1 (M-SISn,m,q,βSIS). Let A′
$← Rn×(m−n)

q and A = [ In ‖A′ ].
Given A, M-SIS problem with parameters m > n > 0 and 0 < βSIS < q asks to
find a short non-zero v ∈ Rmq such that Av = 0 over Rq and ‖v‖ ≤ βSIS.

We use a standard variant of M-LWE where both the error and secret coeffi-
cients are sampled uniformly from {−1, 0, 1}. This variant is commonly used in
many recent proposals such as [12,13,14].
Definition 2 (M-LWE`,m,q). M-LWE problem with parameters `,m > 0 asks
to distinguish between the following two cases: 1) (A, b) $← Rm×`q ×Rmq , and 2)
(A,As+e) for A

$← Rm×`q , a secret vector s
$← S`1 and an error vector e

$← Sm1 .
It is well-known that if the error and the secret coefficients are sampled from

Sγ for γ > 1, then M-LWE problem gets harder. Therefore, M-LWE`,m,q hardness
assumption implies that t = As + e is (computationally) indistinguishable from
a uniformly random element of Rmq when s

$← S`γ and e
$← Smγ for any γ ≥ 1.

2.2 Lattice-Based Signature and Rejection Sampling
The (ordinary) signature part of our construction can be seen as a simplified
version of Dilithium [9], which is a 2nd round signature candidate in NIST’s
post-quantum standardization process. This signature scheme itself is based on
Lyubashevsky’s signatures [19,20]. In our construction, we do not employ the
optimizations in Dilithium in order to simplify the presentation.

To make sure that the signature does not leak information about the se-
cret key, we employ the rejection sampling technique from [19] as also done in
Dilithium. The idea for this works as follows. Let s ∈ Rkq be a secret-dependant
vector with ‖s‖∞ ≤ p ∈ Z+. In order to tie the security to M-SIS, we require
the masked vector z = y + s to be short relative to q. Therefore, y cannot be
sampled uniformly at random from Rkq . Instead, we sample y

$← Skγ for γ ≈ kd·p.
Then, we restart signing (i.e., reject z = y + s) if ‖z‖∞ > γ − p. It is easy to
see that conditioned on z being accepted, the distribution of z is identical to
the uniform distribution on Skγ−p. That is, the distribution of z is forced to be
uniform in a box, and thus is (perfectly) simulatable using public information.

4



2.3 Adaptor Signatures

In [3], an adaptor signature ΠR,Σ is defined with respect to a hard relation R
and a signature scheme Σ = (KeyGen,Sign,Verify). A relation R with a language
LR := {Y | ∃y : (Y, y) ∈ R} is said to be hard [6] if: (i) there exists a probabilistic
polynomial time (PPT) generator Gen(1n) that outputs (Y, y) ∈ R, (ii) for every
PPT algorithm A, given Y ∈ LR, the probability of A outputting y is negligible.
A signature scheme Σ is defined by three algorithms: (i) KeyGen generates a
public-secret key pair (pk, sk), (ii) Sign produces a signature σ using the key
(pk, sk) and message M , (iii) Verify verifies the correctness of a signature σ on
a message M using a public key pk. Our underlying signature, Dilithium [9], is
SUF-CMA (Strong existential unforgeability under chosen message attacks) secure.

In the lattice setting, we need to define two relations R,R′ with R ⊆ R′.
Here, R constitutes the relation for the statement-witness pairs output by Gen
(i.e., those used by honest users) whereas R′ is an extended relation that defines
the relation for extracted witnesses. The reason for this extension is detailed
in Section 3, and stems from the knowledge/soundness gap inherent in efficient
lattice-based zero-knowledge proofs (see, e.g., the soundness definition in [13,
Section 2.3]). We denote an adaptor signature scheme in this setting by ΠR,R′,Σ ,
which extends the definition given in [3], and elaborate further below the reason
why this extension is necessary.

Definition 3 (Adaptor Signature Scheme). An adaptor signature scheme
ΠR,R′,Σ consists of four algorithms (PreSign,PreVerify,Adapt,Ext) defined below.

PreSign((pk, sk), Y,M): on input a key pair (pk, sk), a statement Y ∈ LR and a
message M ∈ {0, 1}∗, outputs a pre-signature σ̂.

PreVerify(Y, pk, σ̂,M): on input a statement Y ∈ LR, a pre-signature σ̂, a public
key pk and a message M ∈ {0, 1}∗, outputs a bit b.

Adapt((Y, y), pk, σ̂,M): on input a statement-witness pair (σ̂, y), a public key pk,
a pre-signature σ̂ and a message M ∈ {0, 1}∗, outputs a signature σ.

Ext(Y, σ, σ̂): on input a statement Y ∈ LR, a signature σ and a pre-signature σ̂,
outputs a witness y such that (Y, y) ∈ R′, or ⊥.

Note that an adaptor signature ΠR,R′,Σ also inherits KeyGen, Sign and Verify
algorithms from the signature scheme Σ. The authors in [3] define the security
properties for an adaptor signature: aEUF-CMA security, pre-signature adapt-
ability and witness extractability. In addition, they extend the standard cor-
rectness definition of signature algorithms with pre-signature correctness, which
states that an honestly generated pre-signature of a statement Y ∈ LR passes
PreVerify and can be completed into a signature where the witness y can be
extracted. We extend further the formal definitions of the security properties
in [3], where R = R′ yields the setting in [3].

Definition 4 (aEUF-CMA security). An adaptor signature scheme ΠR,R′,Σ

is aEUF-CMA secure if for every PPT adversary A there exists a negligible func-
tion negl(λ) such that Pr[aSignForgeA,ΠR,R′,Σ

(λ) = 1] ≤ negl(λ) , where the
experiment aSignForgeA,ΠR,R′,Σ

is defined as follows:

5



aSignForgeA,ΠR,R′,Σ
(λ)

1 : Q := ∅

2 : (pk, sk)← KeyGen(1λ)

3 : M∗ ← AOS(·),OpS(·,·)(pk)

4 : (Y, y)← Gen(1λ)
5 : σ̂ ← PreSign((pk, sk), Y,M∗)

6 : σ ← AOS(·),OpS(·,·)(σ̂, Y )
7 : return (M∗ 6∈ Q ∧ Verify(pk, σ,M∗))

OS(M)

1 : σ ← Sign((pk, sk),M)
2 : Q := Q∪ {M}
3 : return σ

OpS(M,Y )

1 : σ̂ ← PreSign((pk, sk), Y,M)
2 : Q := Q∪ {M}
3 : return σ̂

Definition 5 (Weak pre-signature adaptability). An adaptor signature
scheme ΠR,R′,Σ is weak pre-signature adaptable if for any messageM ∈ {0, 1}∗,
any statement/witness pair (Y, y) ∈ R, any key pair (pk, sk) ← KeyGen(1λ)
and any pre-signature σ̂ ← {0, 1}∗ with PreVerify(Y, pk, σ̂,M) = 1, we have
Pr[Verify(pk,Adapt((Y, y), pk, σ̂,M),M) = 1] = 1.

We call our pre-signature adaptability definition weak because only statement-
witness pairs satisfying R are guaranteed to be adaptable, and not those satis-
fying R′. This is similar to the knowledge gap of the ZKP underlying Dilithium,
where the soundness only guarantees extraction of a witness from an extended
relation. Therefore, pre-signature adaptability does not guarantee, for exam-
ple, that an extracted witness can be used to adapt a pre-signature successfully
(see Remark 1). This issue becomes effective in the applications of our adap-
tor signature, and we show how to overcome it in Section 4. Note that still the
pre-signature σ̂ in the above definition can be adversarially generated as in [3].

Definition 6 (Witness extractability). An adaptor signature scheme ΠR,R′,Σ

is witness extractable if for every PPT adversary A, there exists a negligible
function negl(λ) such that the following holds: Pr[aWitExtA,ΠR,R′,Σ (λ) = 1] ≤
negl(λ) , where the experiment aWitExtA,ΠR,R′,Σ is defined as follows

aWitExtA,ΠR,R′,Σ (λ)

1 : Q := ∅

2 : (pk, sk)← KeyGen(1λ)

3 : (M∗, Y )← AOS(·),OpS(·,·)(pk)
4 : σ̂ ← PreSign((pk, sk), Y,M∗)

5 : σ ← AOS(·),OpS(·,·)(σ̂)
6 : y′ := Ext(Y, σ, σ̂)
7 : return (M∗ 6∈ Q ∧ (Y, y′) 6∈ R′

8 : ∧ Verify(pk, σ,M∗))

OS(M)

1 : σ ← Sign((pk, sk),M)
2 : Q := Q∪ {M}
3 : return σ

OpS(M,Y )

1 : σ̂ ← PreSign((pk, sk), Y,M)
2 : Q := Q∪ {M}
3 : return σ̂

Note that, in the above witness extractability definition, the adversary’s
winning condition is restricted to the extracted witness not being in R′. Since

6



R ⊆ R′, (Y, y′) /∈ R′ implies that (Y, y′) /∈ R. Therefore, it is sufficient to ensure
that R′ is a hard relation, which itself implies that R is also a hard relation. As
a result, in our security assumptions, we make sure that R′ is a hard relation.

3 LAS: An Efficient Adaptor Signature from Lattices

In this section, we describe our lattice-based adaptor signature, LAS. Let A =
[ In ‖A′ ] ∈ Rn×(n+`)

q for A′
$← Rn×`q and H : {0, 1}∗ → C be a hash function

(modelled as a random oracle). We assume that the public parameters pp =
(A,H) are publicly available and can be used by any algorithm. In practice,
A′ can be generated from a small seed using an extendable output function
(modelled as a random oracle) as done in Dilithium [9]. The function fA(x) =
Ax over Rq is Ajtai’s hash function [2] defined over module lattices where the
matrix A is in Hermite normal form (HNF). It is clear that the function is
additively homomorphic, and Ajtai [2] showed that it is one-way in the setting of
SIS. In our case, the security is based on M-SIS (in HNF). Collision-resistance is
also clear as a collision (x,x′) yields an immediate M-SIS solution: A(x−x′) = 0.

In Table 1, we first summarize the identifiers used for LAS, where the hard
relations R,R′ are given by RA,R

′
A with RA ⊆ R′A. The statement-witness

generation Gen for RA runs exactly as KeyGen. It is easy to see that if M-
SISn,n+`+1,q,β for β = 2γd(n+ `) is hard, then RA and R′A are hard relations.
This is because if one can find r such that (t, r) ∈ R′A for a random t, then

[ A ‖ t ] ·
(

r

−1

)
= 0. Hence,

(
r

−1

)
is a solution to M-SISn,n+`+1,q,β for β =

2γd(n+ `) since ‖r‖ ≤ β.

Table 1: Identifiers for LAS.
Notation Explanation Value

d a power-of-2 ring dimension 256
Rq cyclotomic ring of degree d: Rq = Zq[X]/(Xd + 1) log q ≈ 24
Sc the set of polynomials f ∈ Rq with ‖f‖∞ ≤ c for c ∈ Z+

n M-SIS rank 4
` M-LWE rank 4

C the challenge set and range of H:
{c ∈ R : ‖c‖1 = κ ∧ ‖c‖∞ = 1}

κ = 60

γ maximum absolute coefficient of a masking randomness κd(n+ `)

(Y, y) ∈ RA
the base relation with [ In ‖A′ ] = A ∈ Rn×(n+`)

q :
(Y, y) = (t, r) ∈ RA if t = Ar and ‖r‖∞ ≤ 1

(Y, y) ∈ R′A
the extended relation with [ In ‖A′ ] = A ∈ Rn×(n+`)

q :
(Y, y) = (t, r) ∈ RA if t = Ar and ‖r‖∞ ≤ 2(γ − κ)

γ > κ

7



Algorithm 1 Lattice-Based Signature

1: procedure KeyGen(): . same as Gen
2: r

$← Sn+`
1

3: t = Ar
4: return (pk, sk) = (t, r)
5: end procedure

6: procedure Sign((pk, sk),M):
7: y

$← Sn+`
γ

8: w = Ay
9: c = H(pk,w,M)
10: z = y + cr where r := sk

11: if ‖z‖∞ > γ − κ, then Restart
12: return σ = (c, z)
13: end procedure

14: procedure Verify(pk, σ,M):
15: Parse (c, z) := σ
16: if ‖z‖∞ > γ − κ, then return 0
17: w′ = Az − ct where t := pk
18: if c 6= H(pk,w′,M), then return 0
19: return 1
20: end procedure

We present the ordinary signature procedures in Algorithm 1, and then the
procedures for the adaptor signature in Algorithm 2. The idea for the signature
is similar to the Schnorr signature [29] with the main difference being the use of
rejection sampling at Step 11. This is the so-called “Fiat-Shamir with Aborts”
technique [19,20].

In the adaptor signature part in Algorithm 2, PreSign and PreVerify operate
very similar to Sign and Verify, respectively. The main issue is that the signer
may not know (at the time of running PreSign) the witness y to the statement Y ,
and yet for many applications in practice (such as payment channel networks),
one would want to make sure that having access only to the signature (but not
the pre-signature) does not reveal any information on the witness y.

To this end, we need to modify the rejection sampling step. Even though
the signer does not know the witness y, he does know how it is supposed to be
generated in an honest run. Therefore, he knows that the maximum absolute
coefficient of any honestly-generated witness is at most 1 (recall that Gen runs
exactly as KeyGen). Since we have z = y + cr + r′ for r′ := y in an honestly-
generated full signature, we know that the secret-dependant part cr + r′ has
infinity norm at most κ+1. Therefore, the signer artificially performs a stronger
rejection sampling step in PreSign, where ‖ẑ‖∞ ≤ γ − κ − 1 is required. This
ensures that even when the witness is added to the response in Adapt, the re-
sponse z still satisfies the rejection sampling condition in Sign, and thus remains
publicly simulatable, i.e., no secret information including the witness is revealed.

In fact, there are further reasons for this important modification. One is in
regards to adaptability. If the rejection sampling in PreSign is done exactly as
in Sign, then verification of an adapted pre-signature (i.e., output of Adapt) via
Verify may not succeed as the infinity norm condition may be violated due to
the addition of r′ := y. Another reason comes from the security analysis. In
order to be able to simulate the outputs of both Sign and PreSign, this change
to rejection sampling plays a crucial role.

8



Algorithm 2 LAS: Lattice-Based Adaptor Signature

1: procedure PreSign((pk, sk), Y,M):
2: y

$← Sn+`
γ

3: w = Ay
4: c = H(pk,w + t′,M) for t′ := Y
5: ẑ = y + cr where r := sk
6: if ‖ẑ‖∞>γ − κ− 1, then Restart
7: return σ̂ = (c, ẑ)
8: end procedure

9: procedure PreVerify(Y, pk, σ̂,M):
10: Parse (c, ẑ) := σ̂ and t′ := Y
11: if ‖ẑ‖∞ > γ − κ− 1 then
12: return 0
13: end if
14: w′ = Aẑ − ct where t := pk
15: if c 6= H(pk,w′ + t′,M) then
16: return 0
17: end if

18: return 1
19: end procedure

20: procedure Adapt((Y, y), pk, σ̂,M):
21: if PreVerify(Y, pk, σ̂,M) = 0 then
22: return ⊥
23: end if
24: Parse (c, ẑ) := σ̂ and r′ := y
25: return σ = (c, ẑ + r′)
26: end procedure

27: procedure Ext(Y, σ, σ̂):
28: Parse (c, z) := σ and (ĉ, ẑ) := σ̂
29: Parse t′ := Y
30: s = z − ẑ
31: if t′ 6= As, then return ⊥
32: return s
33: end procedure

Let us summarize the following two facts as we will make use of them re-
peatedly in the security proofs.

Fact 1. We can see that ‖cr‖∞ ≤ κ since ‖c‖1 ≤ κ and ‖r‖∞ ≤ 1. Therefore,
both ẑ in PreSign and z in Sign can be simulated publicly as they follow uniform
distributions on Sn+`

γ−κ−1 and Sn+`
γ−κ, respectively, due to the rejection sampling.

Fact 2. Assuming the hardness of M-LWE`,n,q, the result of Ax is (compu-
tationally) indistinguishable from a uniformly random element in Rnq when-
ever x

$← Sn+`
c for some c ≥ 1. We can see this by realizing that Ax =

[ In ‖A′ ] ·
(

x0

x1

)
= x0 + A′x1. This is an M-LWE instance with the secret

vector x1 ∈ S`c and the error vector x0 ∈ Snc .

Note that there is a knowledge gap between a witness used by an honest user
and a witness extracted by Ext for a statement Y . In particular, an honest user’s
witness y = r satisfies ‖r‖∞ ≤ 1 (i.e., (Y, y) ∈ RA), whereas an extracted witness
y′ = r′ is only guaranteed to satisfy ‖r′‖∞ ≤ 2(γ−κ) (i.e., (Y, y′) ∈ R′A). Such a
knowledge gap is inherent in the existing efficient lattice-based zero-knowledge
proofs such as the one underlying Dilithium. However, we emphasize that this
knowledge gap does not raise a security concern as our hardness assumptions
require that finding even a witness as big as an extracted witness is still hard,
which itself implies that finding an honest user’s witness is also hard. In the next
section, we study the security aspects more rigorously.

9



3.1 Security Analysis

Pre-signature correctness follows via a straightforward investigation. In the fol-
lowing sequence of lemmas, we prove the security properties.

Lemma 1 (Weak pre-signature adaptability). LAS satisfies weak pre-
signature adaptability with respect to the relation RA given in Table 1.

Proof. Let σ̂ = (c, ẑ) be a valid pre-signature with PreVerify(Y, pk, σ̂,M) = 1
and y = r′ ∈ Sn+`

1 be a witness corresponding to Y . Note that ‖ẑ‖∞ ≤ γ−κ−1
since σ̂ is valid. Then, Adapt((Y, y), pk, σ̂,M) = (c, ẑ + r′) =: (c, z) = σ. Now,
we have

‖z‖∞ = ‖ẑ + r′‖∞ ≤ ‖ẑ‖∞ + ‖r′‖∞ = (γ − κ− 1) + 1 = γ − κ. (1)

We further have

H(pk,Az − ct,M) = H(pk,A(ẑ + r′)− ct,M) = H(pk,Aẑ − ct + Ar′,M)
= H(pk,Aẑ − ct + t′,M) = c. (2)

From (1) and (2), it follows that σ is valid, i.e., Verify(pk, σ,M) = 1.

Remark 1. Observe in the proof of Lemma 1 that we crucially rely on the fact
that for a witness y = r′ in RA, we have ‖r′‖∞ ≤ 1. An extracted witness s does
not necessarily obey this rule as the relation R′A only requires ‖s‖∞ ≤ 2(γ−κ).
Therefore, extra care needs to be taken when dealing with the cases where an
extracted witness is used to adapt a pre-signature.

Lemma 2 (Witness extractability). If M-LWE`,n,q and M-SISn,n+`+1,q,β
for β = 2γ

√
d(n+ `) are hard, then LAS is witness extractable in the random

oracle model.

Proof. Here, we only investigate the case that the signature output by the ad-
versary shares the same challenge with the pre-signature. The other case (where
the two challenges are distinct) can be proven exactly as in Case 2 of the proof
of Lemma 3 because how Y is generated is irrelevant for that case.

For a given pair of public key and statement (pk, Y ) = (t, t′) and a message
M , let σ̂ = (c, ẑ) and σ = (c, z) be a valid pre-signature and a valid signature,
respectively. Then, from the corresponding verification algorithms (i.e., Verify
and PreVerify), we have H(pk,Az − ct,M) = H(pk,Aẑ − ct + t′,M). Since H is
modelled as a random oracle, this holds only when Az−ct = Aẑ−ct+t′, which
implies that Az−Aẑ = A(z−ẑ) = t′. It is easy to see that ‖z−ẑ‖∞ ≤ 2(γ−κ).
Therefore, for the output s = z − ẑ of Ext(Y, σ, σ̂), we have (t′, s) ∈ R′A. Note
also that s is non-zero since t′ is non-zero except for a negligible probability.

Lemma 3 (Unforgeability). If M-SISn,n+`+1,q,β for β = 2γ
√
d(n+ `) and

M-LWE`,n,q are hard, then LAS is aEUF-CMA secure in the random oracle model.

Proof. First, from the assumptions in the statement, we know that

10



1. both RA and R′A are hard relations,
2. any public key output by KeyGen and any statement output by Gen is indis-

tinguishable from a uniformly random element in Rnq due to Fact 2.

Let F be a PPT adversary who wins the aEUF-CMA security game with non-
negligible probability. We will build an adversary S that solves M-SISn,n+`+1,q,β .
Let β = 2γ

√
d(n+ `) and B = [ In ‖A′ ‖a ] ∈ Rn×(n+`+1)

q for A′
$← Rn×`q and

a
$← Rnq . Assume that S wants to solve M-SIS w.r.t. B. Let A denote [ In ‖A′ ].

Setup. S sets A together with some hash function H as the public parameters. It
is clear that A has the correct distribution. Then, it sets pk = t = Br where r =(

r′

1

)
for r′

$← Sn+`
1 . S sends pk to F . By M-LWE`,n,q, pk is indistinguishable

from a public key output by KeyGen since Br = Ar′+a looks uniformly random
as Ar′ does. Note also that t = pk is non-zero with overwhelming probability.
Oracle simulation. For OS(M), S picks z

$← Sn+`
γ−κ and c $← C, and programs

the random oracle such that c = H(pk,Az − ct,M). If the input of H has been
queried before, S aborts. Otherwise, S returns σ = (c, z). The simulated output
is indistinguishable from a real one due to Fact 1.

For OpS(M,Y ), the simulator picks ẑ
$← Sn+`

γ−κ−1 and c $← C, and programs
the random oracle such that c = H(pk,Aẑ−ct+t′,M) for t′ := Y . If the input of
H has been queried before, S aborts. Otherwise, the simulator returns σ̂ = (c, ẑ).
The simulated output is indistinguishable from a real one due to Fact 1.

In both cases, the probability of an abort is negligible as F can make at most
polynomially many queries to H.
Forgery. F returns the target message M∗ to S. S sets Y = −a and computes
a pre-signature σ̂∗ = (c∗, ẑ∗) using the simulation method above. S sends (Y, σ̂∗)
to F . Again, note that Y is indistinguishable from a real output by Gen, and σ̂∗
is indistinguishable from a real output of PreSign. Finally, F returns a forged
signature σ = (c, z) on M∗.
Case 1 (c∗ = c): If this is the case, then as shown in the proof of Lemma 2, S
can extract a witness to R′A. That is, S gets (Y, y) ∈ R′A with s′ := y, which
implies that As′ = −a (since Y = −a) and ‖s′‖∞ ≤ 2(γ−κ). This is equivalent

to Bs = 0 for s =
(

s′

1

)
. Note that ‖s‖ ≤ β. Hence, S finds a solution to

M-SISn,n+`+1,q,β .
Case 2 (c∗ 6= c): In this case, we know that the forged signature’s challenge
comes from a random oracle query output (with overwhelming probability).
Therefore, we can use a standard rewinding argument as in [26], where S rewinds
F to get another forgery σ′ = (c′, z′) such that c′ 6= c and H(pk,Az′−c′t,M∗) =
H(pk,Az − ct,M∗). Therefore, we have

Az′ − c′t = Az − ct ⇐⇒ A (z′ − z) = (c′ − c)t. (3)

11



Since c′ 6= c, we have z′ − z 6= 0. The above equation (3) can be equivalently
written as

B

(
z′ − z

0

)
= (c′ − c)t. (4)

Now recalling that t = Br, we also have

(c′ − c)t = B · (c′ − c)r. (5)

Subtracting (3) from (5), we get

B

[
(c′ − c)r −

(
z′ − z

0

)]
= 0. (6)

Recalling that the last coordinate of r is 1, i.e., non-zero, the above gives
a non-trivial solution to M-SISn,n+`+1,q,β . Here note that ‖z′ − z‖ ≤ 2(γ −
κ)
√
d(n+ `) < β and ‖(c′ − c)r‖ ≤ 2κ

√
d(n+ `+ 1). Since γ � κ, the total

norm of the M-SIS solution remains below β = 2γ
√
d(n+ `).

3.2 Parameter Setting and Performance Analysis

First, we set γ = κd(n + `) so that the average number of restarts in Sign and
PreSign is about e < 3. Then, we set d = 256 and κ = 60, which ensures that
the challenge set C has more than 2256 elements. Finally, in order to meet the
M-SISn,n+`+1,q,β and M-LWE`,n,q security requirements for β = 2γ

√
d(n+ `),

we set n = ` = 4 and q ≈ 224. Only the size of the modulus q is important,
and therefore the concrete value can be chosen to allow fast computation such
as Number Theoretic Transformation (NTT).

In estimating the practical security of M-SIS and M-LWE, we follow the
methodology outlined in [10, Section 3.2.4] and measure the practical hardness
in terms of “root Hermite factor” δ. This parameter setting yields δ < 1.0045
for both M-SIS and M-LWE. δ ≈ 1.0045 has been used in recent works, e.g.,
[12,13,14] for targeting 128-bit post-quantum security. From here, we can com-
pute the concrete signature length as

|σ| = d(n+ `) log(2γ)/8 + 32 bytes ≈ 3210 bytes. (7)

This length is slightly larger than the size of Dilithium (2701 bytes) [9] with
recommended parameters. The main reason is because we do not employ the
optimizations for ease of presentation.

In terms of the computational efficiency, the operations performed in LAS
are almost identical to those in Dilithium. Thus, hundreds of signing (and even
more verification) can be done per second on a standard PC as shown in [9,
Table 2].

12



4 Applications

In this section, we present two blockchain applications of our adaptor signature,
namely atomic swaps and payment channel networks. To match with the exist-
ing adaptor signature applications, we assume an Unspent Transaction Output
(UTXO)-based blockchain like Bitcoin where the signature algorithm is replaced
with a lattice-based signature scheme given in Algorithm 1 . In the UTXO model,
coins are kept in addresses where each address consists of the amount and the
spending condition. The spending condition is defined by the scripting language
and the most common ones are signature and hash preimage verifications, and
timing conditions. For our applications, we also assume that the underlying
blockchain supports these scripts.

4.1 Atomic Swaps

An atomic swap can be defined between two users u1 and u2 who want to ex-
change two different cryptocurrencies c1 and c2. The crucial point of the exchange
is ensuring fairness, i.e., either both parties receive their expected output or none
do. In [23], an atomic swap protocol is presented with the following steps.
Setup. First, u1 shares a hash value h1 := H(r1) of a secret r1 to u2. Then, u1
creates a transaction on the coins c1 such that it can be spendable by u2 only
if the preimage of h1 is presented. Similarly, u2 also creates a transaction on
the coins c2 with the same preimage condition for u1. Here, both transactions
have timeouts ti such that, once ti elapses, ui can redeem ci if the counterparty
does not continue to the exchange. Also, the timelock, t2, on u2’s transaction is
shorter (i.e., t2 < t1) to ensure that u2 would have enough time to react. First,
u1 publishes her transaction on-chain, then u2 does the same.
Swap. Once both transactions are on-chain, u1 can obtain c2 by revealing r1,
which yields to u2 obtaining c1. Note that this protocol requires both scripting
languages of the cryptocurrencies to have preimage conditioned scripts. Later
on, in [24], the scriptless version of the protocol is presented where the hash
condition is embedded into the signature algorithm.

Let us explain how to achieve atomic swaps using LAS, which requires careful
analysis because of the aforementioned knowledge gap. In the scenario below,
an extracted witness, which satisfies an extended relation (i.e., R′A, but not
necessarily RA), will constitute the opening condition to receive coins.

Let (pki, ski) be the public-secret key pair for user ui for i = 1, 2. First,
u1 generates a statement-witness pair (Y, y) = (t, r) ∈ RA as in Section 3,
and sends Y to u2 along with a proof π of knowledge of a witness r such that
t = Ar and ‖r‖∞ ≤ 1. Such a proof can be realized using the recent Esgin-
Nguyen-Seiler proof system [11]. Then, u1 also creates a pre-signature σ̂1 ←
PreSign((pk1, sk1), Y, tx1) for tx1 spending the coins c1 to u2. After verifying the
proof π, u2 similarly creates a pre-signature σ̂2 ← PreSign((pk2, sk2), Y, tx2) for
tx2 spending the coins c2 to u1. Then, the two pre-signatures are exchanged be-
tween the parties. Now u1 adapts the pre-signature σ̂2 as σ2 ← Adapt((Y, y), pk2,
σ̂2, tx2), and aborts if σ2 =⊥. Otherwise, he publishes the full signature σ2 on

13



the second cryptocurrency’s blockchain in order to receive the coins c2. Then,
seeing σ2, u2 runs y′ = s ← Ext(Y, σ2, σ̂2) and σ1 ← Adapt((Y, y′), pk1, σ̂1, tx1).
If any of them returns ⊥, u2 aborts. Otherwise, u2 publishes σ1 on the first
cryptocurrency’s blockchain to receive the coins c1. This interaction is depicted
in Figure 1.

Let us now analyze whether u1 receives c2 if and only if u2 receives c1. If
u1 does not receive c2, i.e., u1 aborts, then u2 clearly cannot receive c1 due
to the aEUF-CMA security of LAS as u2 only has the pre-signature σ̂1 and the
statement Y (without a witness to Y ). On the other hand, if u1 does receive c2,
this means that σ2 is valid signature published on a blockchain, i.e., accessible
by u2. Therefore, by the witness extractability of LAS, u2 can extract a witness
s to Y = t such that t = As. Recall that u1 proved knowledge of a witness
r to Y = t such that ‖r‖∞ ≤ 1. By the hardness of M-SIS, it must be the
case that s = r as otherwise A(s − r) = 0 gives a solution to M-SISn,n+l,q,β
for β = 2γ

√
d(n+ `). As a result, we have that ‖s‖∞ = ‖r‖∞ ≤ 1. Therefore,

s ∈ RA and the pre-signature adaptability works, and hence the signature σ1
adapted by u2 passes the verification. Note that without the proof of knowledge

u1((pk1, sk1), pk2, c1) u2((pk2, sk2), pk1, c2)
(Y, y) = (t, r)← Gen()
π ← P ((t; r), {∃r : Ar = t ∧ ‖r‖∞ ≤ 1})
Generate tx1 for spending c1 to u2

σ̂1 ← PreSign((pk1, sk1), Y, tx1)

Y, π, σ̂1, tx1

If verif. of π or σ̂1 fails, Abort
Generate tx2 for spending c2 to u1

σ̂2 ← PreSign((pk2, sk2), Y, tx2)

σ̂2, tx2

σ2 ← Adapt((Y, y), pk2, σ̂2, tx2)
If σ2 =⊥, Abort
Publish σ2 on blockchain

σ2

y′ ← Ext(Y, σ2, σ̂2)
σ1 ← Adapt((Y, y′), pk1, σ̂1, tx1)
Publish σ1 on blockchain if σ1 6=⊥

Fig. 1: Atomic swap protocol using LAS.

14



π, we cannot guarantee that the extracted witness s will satisfy ‖s‖∞ ≤ 1, and
hence pre-signature adaptability would not have been guaranteed without π. In
other words, π is essential to make sure that u2 receives the coins c1.

We also note that even though a lattice-based proof of knowledge, π, is rel-
atively costly in terms of communication in practice (but very efficient in com-
putation), this proof is only exchanged between the parties, and not published
on blockchain. Therefore, it does not incur additional on-chain storage costs.

4.2 Payment Channel Networks

Payment channel networks (PCNs) [7,16,21,27] are one of the promising solutions
to the scalability issues of blockchains. More specifically, many blockchains have
poor transaction throughput compared to alternatives like credit card networks
because of their consensus mechanisms, where every party (miner) approves and
stores every transaction. PCNs improve the throughput by moving some trans-
actions off-chain while relying on the security of the blockchain. In a PCN, two
parties can lock coins into a channel where they can make instant and arbitrarily
many transactions between each other so long as they have enough balances. One
of the most popular PCNs built on Bitcoin is the Lightning network [27]. The
overall structure of our post-quantum PCN resembles the Lightning network.

A payment channel consists of three steps: create, update, and close. In the
creation phase, parties deposit some coins into the channel and create a funding
transaction that spends the input addresses into a single output of the channel.
The funding transaction is published on the blockchain and afterward, all of
the updates are done off-chain until the closing part. The output condition of
funding is spendable only if both parties sign it, which ensures an agreement by
both parties. The condition can be implemented by a two-party multi-signature.

In realizing a two-party multi-signature, a straightforward option is to simply
combine two individual signatures. Alternatively, there is a lattice-based multi-
signature in [4], which can be used in the two-party setting. The underlying
signature uses the same “Fiat-Shamir with Aborts” technique, and as stated in
[4], the multi-signature can be realized over module lattices as in our work.

When parties want to send/receive coins in the channel, they make off-chain
transactions and update the channel balances. In each update, parties create new
commit transactions that spend the output of the funding transaction into the
two new addresses of the parties with their corresponding balances. Also, parties
revoke the previous commits by sharing the signing keys with each other. The
revocation can be seen as a punishment mechanism to prevent a malicious party
from publishing an old commitment. Once parties are done with the channel,
they can close it and obtain their coins by publishing the latest commitment on-
chain. A payment channel creation, update, and closing can be done in the same
manner as the Lightning network. Now, we investigate how to achieve multi-hop
payments with our adaptor signature scheme.

A network of channels allows parties to make multi-hop payments. More
specifically, parties, who do not have a direct channel, can route a payment
using the channels of some intermediary nodes. In these multi-hop payments,

15



it is crucial to synchronize each channel on the route so that either all of them
update accordingly or no one does. The Lightning network achieves this by
using HTLC (hash-time lock contract). However, in [21], the authors presented
privacy concerns as well as the wormhole attack for the HTLC mechanism. In
this manner, we adopt the AMHL (anonymous multi-hop lock) technique [21]
for the multi-hop payments. Also, it is stated that AMHLs are sufficient to
construct a payment channel network [21, Theorem 4]. In a scenario where sender
S (or I0) wants to send payment through the intermediary nodes I1, . . . , Ik−1
to the receiver R (or Ik), AMHL-based multi-hop payment works as follows (for
simplicity, we omit the fees given to the intermediary nodes).
Setup. S chooses random strings `0, `1, . . . , `k−1, and computes yj :=

∑j
i=0 `i

and Yj := G(yj) for j = 0, . . . , k − 1 where G is an additively homomorphic
one-way function. Then, S shares (Yj−1, Yj , `j) with each intermediary Ij for
i = 1, . . . , k − 1 and (Yk−1, yk−1) with R. Each intermediary party Ij validates
the correctness of values by using the homomorphism, i.e., checking that G(`j)⊕
Yj−1 = G(yj) = Yj , where ⊕ denotes the operation in the range of G.
Payment. S makes a conditional payment to I1 requiring preimage of Y0, while
each intermediary party Ij , for j = 1, . . . , k − 1, makes a payment of the same
amount to Ij+1 with a condition on preimage of Yj after they receive a similar
payment from Ij−1. Once all conditional payments are placed, S reveals the
preimage yk−1 to R = Ik showing that she can redeem the payment. This creates
a chain reaction as follows. When an intermediary party Ij receives yj from Ij+1,
he can compute yj−1 = yj − `j and redeem the payment by revealing yj−1 to
Ij−1. The procedure is completed once all the channels are updated accordingly.

We can realize AMHL in the post-quantum setting using LAS, but again
a special care is required due to the knowledge gap and the use of rejection
sampling. First of all, we assume that the length of the PCN is at most K � q
(i.e., k ≤ K � q) and update the norm check at Steps 6 and 11 in Algorithm 2 by
‖ẑ‖∞ > γ−κ−K. Now, S samples rj

$← Sn+`
1 , and computes sj =

∑j
i=0 ri and

tj = Asj for j = 0, . . . , k − 1. Observe that we have ‖sj‖∞ ≤ k ≤ K for all j =
0, . . . , k − 1. Then, S treats Yj = tj , yj = sj and `j = rj for j = 0, . . . , k − 1.
The additively homomorphic function is fA(x) = Ax (over Rq) mentioned in
Section 3. Then, the Setup phase of AMHL described above is run. Additionally,
for each j = 0, . . . , k − 2, S sends Ij+1 a NIZK proof πj+1 that she knows a
witness yj = sj to Yj = tj such that

‖sj‖∞ ≤ K. (8)

After this setup, payment phase begins. Let (pkj , skj) be Ij ’s public-secret key
pair used in his channel with Ij+1, and txj be the transaction transferring the rel-
evant coins from Ij to Ij+1. S creates a pre-signature σ̂0 ← PreSign((pk0, sk0), Y0,
tx0) and sends it to I1. Then, for j = 1, . . . , k − 1, each user Ij creates a pre-
signature σ̂j ← PreSign((pkj , skj), Yj , txj) after receiving the pre-signature σ̂j−1
from Ij−1. Once all pre-signatures are generated and transferred, S reveals yk−1
to R, which allows R to adapt the pre-signature σ̂k−1 to σk−1 in order to receive
the relevant coins from Ik−1. R sends σk−1 to Ik−1. From here, Ik−1 extracts

16



S(pk0, sk0) [SETUP] Ij(pkj , skj) j = 1, . . . , k
for j = 0, . . . , k − 1

sj =
j∑
i=0

ri for rj
$← Sn+`

1

tj = Asj

Yj := tj , yj := sj , `j := rj

for j = 0, . . . , k − 2
stj = {∃s : As = tj ∧ ‖s‖∞ ≤ K}
πj+1 ← P ((tj ; sj), stj)
Tj+1 := (Yj , `j+1, πj+1)

Tk := (Yk−1, yk−1) Tj

if j 6= k then
Tj =: (Yj−1, `j , πj) =: (tj−1, rj , πj)
if V (tj−1, stj−1, πj) = 0, Abort
Y ′j := t′j = Arj + tj−1

Zj := (Y ′j , Yj−1, `j)
[PAYMENT]

Ij((pkj , skj), pkj−1, Zj) Ij+1((pkj+1, skj+1), pkj , Zj+1)
Parse Zj = (Y ′j , Yj−1, `j)
Obtain σ̂j−1 from Ij−1

Generate txj , spending coins to Ij+1

σ̂j ← PreSign((pkj , skj), Y
′
j , txj) σ̂j

Parse Zj+1 = (Y ′j+1, Yj , `j+1)
Obtain σj+1 from Ij+2

y′j+1 ← Ext(Y ′j+1, σj+1, σ̂j+1)
// Note σ̂j+1 is created by Ij+1

y′′j = y′j+1 − `j+1

σj ← Adapt((Yj , y′′j ), pkj , σ̂j , txj)

σj

y′j ← Ext(Y ′j , σj , σ̂j)
y′′j−1 = y′j − `j
σj−1 ← Adapt((Yj−1, y

′′
j−1), pkj−1, σ̂j−1, txj−1)

Fig. 2: Anonymous multi-hop payments using LAS. We assume that (i) Tj ’s are trans-
mitted confidentially, (ii) pre-signature transmission from Ij to Ij+1 happens only if
that from Ij−1 to Ij already happened, and (iii) signature transmission from Ij+1 to
Ij happens only if that from Ij+2 to Ij+1 already happened.

17



a witness y′k−1 to Yk−1. Then, she computes y′′k−2 = y′k−1 − `k−1 and uses it
to complete the pre-signature σ̂k−2. Continuing this way, completion of a pre-
signature by Ij enables Ij−1 to obtain a witness to Yj−1 and then compute a
witness to Yj−2 using `j . The process ends with S receiving σ0. This anonymous
multi-hop payment procedure is depicted in Figure 2.

Let us analyze the details now. First of all, each party Ij has a proof that S
knows a witness yj−1 = sj−1 to Yj−1 satisfying (8). Due to the M-SIS hardness
as before, no party Ij can obtain another witness to Yj−1, but yj−1 generated
by S. Therefore, each party Ij is ensured that the witness he extracts will have
infinity norm at most K. As a result, each party Ij will be able to adapt the
pre-signature σ̂j−1 successfully and claim his coins thanks to the aforementioned
change to Steps 6 and 11 in Algorithm 2.

We emphasize again the importance of the proof πj ’s that guarantee pre-
signature adaptability. These proofs are only communicated off-chain and thus do
not incur any additional on-chain cost, and can be realized using the techniques
in [11]. Moreover, the change to Steps 6 and 11 in Algorithm 2 is also important
as, in this setting, even honestly-generated witnesses have potentially absolute
coefficients greater than 1, but still at most K. Note that this change does not
affect the security assumptions as still the original conditions (and even stronger
ones) in Algorithms 1 and 2 hold. The only effect is that PreSign may have
more restarts, but for most practical settings of, say, K ≤ 50 (i.e., the length of
the PCN is at most 50), the effect will be minimal. In practice, for example, in
Lightning Network, the route search algorithm typically stops after K = 20 [1].

5 Conclusion

In this work, we constructed the first post-quantum adaptor signature based
on standard lattice assumptions. We also showed that our construction, LAS,
leads to efficient atomic swaps and payment channel networks in the post-
quantum world. In particular, our applications do not incur additional costs
on the blockchain, other than the cost of an ordinary lattice-based signature.

References

1. Basis of lightning technology, available at: https://github.com/lightningnetwork/
lightning-rfc/blob/master/00-introduction.md

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC. pp. 99–108. ACM (1996)

3. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostakova, K., Maffei, M., Moreno-
Sanchez, P., Riahi, S.: Generalized bitcoin-compatible channels. Cryptology ePrint
Archive, Report 2020/476 (2020), https://eprint.iacr.org/2020/476

4. Bansarkhani, R.E., Sturm, J.: An efficient lattice-based multisignature scheme with
applications to bitcoins. In: CANS. LNCS, vol. 10052, pp. 140–155 (2016)

5. Buterin, V.: Understanding serenity, part i: Abstraction (2015), https://
blog.ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/,
accessed on April 20, 2020

18



6. Damgård, I.: On Σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science (2002), https://www.cs.au.dk/~ivan/Sigma.pdf

7. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin du-
plex micropayment channels. In: Symposium on Self-Stabilizing Systems. Springer
(2015)

8. Dryja, T.: Discreet log contracts, https://adiabat.github.io/dlc.pdf
9. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:

Crystals–Dilithium: Digital signatures from module lattices. In: CHES. vol. 2018-1
(2018), https://eprint.iacr.org/2017/633.pdf

10. Esgin, M.F.: Practice-Oriented Techniques in Lattice-Based Cryptography. Ph.D.
thesis, Monash University (5 2020). https://doi.org/10.26180/5eb8f525b3562,
https://bridges.monash.edu/articles/Practice-Oriented_Techniques_in_
Lattice-Based_Cryptography/12279728

11. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: New
techniques to exploit fully-splitting rings. Cryptology ePrint Archive, Report
2020/518 (2020), https://eprint.iacr.org/2020/518

12. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
New techniques for shorter and faster constructions and applications. In: CRYPTO
(1). LNCS, vol. 11692, pp. 115–146. Springer (2019), (Full version at https://
eprint.iacr.org/2019/445)

13. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: ACNS. LNCS, vol.
11464, pp. 67–88. Springer (2019), (Full version at https://eprint.iacr.org/2018/
773)

14. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: Ef-
ficient, scalable and post-quantum blockchain confidential transactions pro-
tocol. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 567–584. CCS ’19, ACM (2019).
https://doi.org/10.1145/3319535.3354200, (Full version at https://eprint.iacr.
org/2019/1287)

15. Fournier, L.: One-time verifiably encrypted signatures a.k.a. adaptor signatures
(Oct 2019), https://github.com/LLFourn/one-time-VES/blob/master/main.pdf

16. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Off the
chain transactions. IACR Cryptology ePrint Archive 2019, 360 (2019)

17. Hcash: Hcash features, https://h.cash/#section4, accessed on April 20, 2020
18. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.

Designs, Codes and Cryptography 75(3), 565–599 (2015)
19. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-

based signatures. In: ASIACRYPT. pp. 598–616. Springer (2009)
20. Lyubashevsky, V.: Lattice signatures without trapdoors. In: EUROCRYPT. pp.

738–755. Springer (2012), (Full version)
21. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maf-

fei, M.: Anonymous multi-hop locks for blockchain scalability and in-
teroperability. In: 26th Annual Network and Distributed System Se-
curity Symposium, NDSS 2019, San Diego, California, USA, Febru-
ary 24-27, 2019 (2019), https://www.ndss-symposium.org/ndss-paper/
anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/

22. NIST: Post-quantum cryptography – call for proposals (2017),
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization/Call-for-Proposals, accessed
on April 20, 2020

19



23. Nolan, T.: Alt chains and atomic transfers, https://bitcointalk.org/index.php?
topic=193281.msg2224949#msg2224949

24. Poelstra, A.: Adaptor signatures and atomic swaps from scriptless scripts,
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/
atomic-swap.md

25. Poelstra, A.: Scriptless scripts. Presentation Slides, https://download.wpsoftware.
net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf

26. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

27. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain In-
stant Payments (Jan 2016), draft version 0.5.9.2, available at https://lightning.
network/lightning-network-paper.pdf

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009), preliminary version in STOC 2005

29. Schnorr, C.: Efficient identification and signatures for smart cards. In: CRYPTO.
Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer (1989)

30. Torres, W.A.A., Kuchta, V., Steinfeld, R., Sakzad, A., Liu, J.K., Cheng, J.: Lattice
RingCT v2.0 with multiple input and multiple output wallets. In: ACISP. LNCS,
vol. 11547, pp. 156–175. Springer (2019)

31. Zcash: Frequently asked questions, https://z.cash/support/faq/
#quantum-computers, accessed on April 20, 2020

20


