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Abstract

We explore global verifiability; discovering that voting systems vulnerable to
attack can be proven to satisfy that security notion, whereas many secure
systems cannot. We conclude that current definitions are unsuitable for the
analysis of voting systems, fuelling the exploration for a suitable definition.
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1. Introduction

Electronic voting systems for large-scale public elections place extensive
trust in software and hardware. Unfortunately, instead of being trustwor-
thy, many are vulnerable to attacks that could unduly influence election out-
comes [2, 3, 4]: Trusting voting systems is unwise; proving systems can detect
undue influence is essential. Küsters et al. propose global verifiability to de-
termine whether a voting system is vulnerable to undue influence [5, 6, 7, 8].
Global verifiability must be instantiated with a goal, which is a property re-
quired to hold in system executions. For instance, goals γ` [6, §5.2] and γ [7,
§6.2] are introduced as follows:

γ` contains all runs for which there exist choices of the dishonest
voters (where a choice is either to abstain or to vote for one
of the candidates) such that the result obtained together with
the choices made by the honest voters in this run differs only
by ` votes from the published result (i.e. the result that can be
computed from the...ballots on the bulletin board)

A preliminary version of this manuscript appeared in work with Frink & Clarkson [1].



A brief introduction to elections and voting systems

Elections are decision-making procedures to select representatives in accor-
dance with voter choices. Voters traditionally mark choices on paper ballots
and deposit them in ballot boxes, which are subsequently opened to reveal
choice distributions, from which selected representatives can be determined,
e.g., representatives with the highest frequency (for first-past-the-post elec-
tions). Electronic voting systems are similar: Voters encapsulate choices in
digital ballots and record those ballots on bulletin boards, which are subse-
quently tallied to reveal choice distributions. Traditional paper-based voting
systems are reliant on observers to ensure no undue influence. No such ob-
servation is possible for electronic voting systems. Instead, tallying should
provide sufficient evidence for auditors to check that no undue influence has
occurred.

Hence, with respect to goal γ`, global verifiability should enable the determi-
nation of whether voting systems can guarantee that honest voters’ choices
will be included in announced results. Goal γ should enable a similar deter-
mination.

γ is satisfied in a run if the published result exactly reflects the
actual votes of the honest voters in this run and votes of dishonest
voters are distributed in some way on the candidates, possibly in
a different way than how the dishonest voters actually voted

These informally stated goals are appealing, but they do not constitute rig-
orous mathematical definitions. As Kiayias et al. note, “[global verifiability]
has the disadvantage that the set γ remains undetermined and thus the level
of verifiability that is offered by the definition hinges on the proper definition
of γ which may not be simple” [9, p. 476]. Küsters et al. have since updated
their technical report to propose a formal goal [8, §5.2].

Contribution and structure. We explore global verifiability when instantiated
with the formal goal proposed by Küsters et al. (Section 2) and discover
that voting systems vulnerable to attacks can be proven secure (Section 3),
whereas many secure systems cannot (Section 4). More precisely, we show
that incorrect tallying cannot be detected when coins used to construct some
ballots are leaked, permitting tallies that exclude or replace some choices to
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go unnoticed. Moreover, we identify a class of secure voting systems that
cannot be proven secure. Finally, we present a brief conclusion (Section 5).

2. Global Verifiability

Küsters et al. [5] propose a definition, called Protocols, to describe any
kind of protocol, not just electronic voting protocols. Their definition is
independent of any particular computational model, assuming the model
provides a notion of processes. These processes must be able to perform
internal computation and communicate with each other, and must define a
family of probability distributions over runs, indexed by a security parameter.

2.1. Protocols

We consider the following simplified definition of Protocols.

Definition 1 (Protocol). A Protocol is a tuple of sets of processes Π1, . . . ,
Πn and processes π̂1, . . . , π̂n, such that each process in π̂1, . . . , π̂n has a special
output channel which no process can input on, and Πi = {π̂1} or Πi = Π(π̂i)
for all 1 ≤ i ≤ n, where Π(π) denotes the set of all processes with input
and output channels that coincide with those used by process π, excluding π’s
special output channel.

Processes π̂1, . . . , π̂n capture protocol participants, and sets of processes Π1,
. . . ,Πn capture adversarial behavior, in particular, if Πi = {π̂i}, then an
adversary following the protocol is captured. Otherwise, an adversary con-
trolling the channels in process π̂i is captured.

An instance of Protocol (Π1, . . . ,Πn, π̂1, . . . , π̂n) is the composition of pro-
cesses π1, . . . , πn, where πi ∈ Πi. Process πi is honest in such an instance, if
π̂i = πi. Each instance of a Protocol defines a set of runs. We say an instance
of a Protocol produces a run, if the run belongs to that set. A process is
honest in a run produced by an instance of a Protocol, if the process is honest
in the instance.

Comparison with the original definition. Definition 1 simplifies the original
definition [5, §2] as follows. First, we omit agents, since they are only used
to refer to a process’s owner. Secondly, we omit the finite set of channels
used by agents and we omit functions to compute the channels of a partic-
ular agent, because these sets can be derived from processes. Thirdly, we
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restrict Protocols to some processes π̂1, . . . , π̂n, whereas the original defini-
tion considers sets of processes Π̂1, . . . , Π̂n. Finally, we require a stronger
assumption on the sets of processes: we require Πi = {π̂1} or Πi = Π(π̂i),
whereas the original definition requires Πi ⊆ Π(π̂i). These simplifications
narrow the original definition.

Beyond simplifications, our definition modifies the original in two ways.
First, we forbid the sets of processes from using special channels. This re-
striction does not appear in the original, but it is necessary to ensure that
global verifiability is satisfiable by interesting protocols: A Protocol is not
globally verifiable (with respect to a goal), if the Protocol produces a run
that does not achieve the goal, but is nevertheless accepted. Given that
acceptance is captured by outputting on special channels and the original
definition permits the adversary to output on such channels, global verifia-
bility is unsatisfiable for interesting protocols. Insisting that Π(π) excludes
π’s special output channel suffices to overcome this problem.

The second modification permits channels to be shared between processes.
That is, we drop the implicit assumption that communication is authenti-
cated, and we permit broadcast channels, which is necessary to ensure a
realistic adversary model. By comparison, the original definition prohibits
communication between a process in Πi and a process in Πj, when process
π̂i cannot input (respectively output) on a public channel that process π̂j
can output (respectively input) on. Consequently, the original definition of
global verifiability cannot detect some attacks. For instance, given a Proto-
col P = (..., π̂), let Accept(P ) = (..., π̂′) such that process π̂′ awaits input on
a channel that is not used by any other process in P and if such an input
is received, then the process outputs on π̂’s special channel, otherwise, the
process executes π̂. Hence, Accept(P ) accepts all runs that input on the
public channel introduced by Accept. Thus, Accept(P ) should not satisfy
any definition of verifiability. Yet, the adversary model prohibits input on
the channel introduced by Accept, therefore, Protocols P and Accept(P ) are
identical from the adversary’s perspective. It follows that: given a Protocol
P = (..., π̂) and goal γ of P , such that γ is globally verifiable by π̂, it holds
that γ is globally verifiable by Accept(P ). This problem can be overcome by
assuming a single, shared broadcast channel between all processes.

Our simplifications narrow the original definition to ease understanding
and our two modifications ensure that global verifiability is satisfiable by
interesting protocols and that a realistic adversary model is captured.
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2.2. Security definition

A goal of a Protocol is a subset of the sets of runs produced by instances
of the Protocol. Processes can accept runs by outputting on their special
channels. Global verifiability is intended to ensure that processes only accept
runs when the goal has been achieved in those runs. We consider the following
simplified definition of global verifiability.

Definition 2 (Global verifiability). Given a Protocol P , goal γ of P , and
process π̂ of P , we say γ is globally verifiable by π̂, if for all instances Λ of
P parameterized by k, there exists a negligible function µ such that for all
security parameters k and (efficient, i.e., polynomial time) runs r of Λ that
include an output on π̂’s special channel, we have r 6∈ γ, with probability less
than or equal to µ(k).

Our simplified definition refines the original definition by incorporating our
simplified syntax and considering a tighter security bound. Moreover, we
require that runs are efficient. (This is necessary to ensure that global verifi-
ability is satisfiable by interesting protocols.) Finally, we omit the definition’s
notion of Completeness for brevity.

2.3. Goal γGV by Küsters et al.

We consider a simplified case of a goal proposed by Küsters et al. [8, §5.2].

Definition 3. Suppose r is a run of some instance of a Protocol. Let nh

be the number of honest voters in r and β1, . . . , βnh
be the choices of honest

voters in r. Let nd be the number of dishonest voters in r. We say that we
are satisfied with r, if a tally is published in r and that tally contains nd +nh

choices including β1, . . . , βnh
.

Given a Protocol, we define γGV as the following set of runs: for all
instances Λ of the Protocol and for each run r produced by Λ, we include r
in γGV , if we are satisfied with r.

Our simplified definition is a special case of the original: Set γGV contains
runs in which no choices of honest voters may be excluded from the tally. (We
remark that Küsters et al. only define when to be satisfied with run r and do
not define γGV as a set. Nonetheless, we believe our definition captures their
intent.) Hence, goal γGV is a more formal presentation of goal γl for l = 0.
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3. Proving vulnerable systems secure

We show that incorrect tallying cannot be detected when coins used to
construct some ballots are leaked, permitting tallies that exclude or replace
some choices to go unnoticed. Indeed, from a Protocol with ballots that do
not leak coins, we design two Protocols that cannot detect incorrect tallies
when coins are leaked:

Replace choices. Let Replace be derived from a Protocol by modifying the
auditor’s process as follows: The process checks whether a tally and a bulletin
board appear in a run, and the bulletin board is a set {b1, . . . , bm, (β1, β′

1, r1),
. . . , (β`, β

′
`, r`)} such that b1, . . . , b` are ballots for choices β1, . . . , β`, con-

structed using coins r1, . . . , r`. If so, the process runs the original auditor’s
process after replacing choices β′

1, . . . , β
′
` with β1, . . . , β` in the tally (provided

as input to that original process), otherwise, the process runs the original au-
ditor’s process (without modifying the tally). Finally, the process outputs
on its special channel if the original auditor process outputs on its.

Intuitively, Protocol Replace defines an auditor process that checks whether
coins have been leaked and permits acceptance of invalid tallies if they have.
More precisely, if the underlying auditor process would accept a tally, then
the new auditor process will accept that tally after replacing choices β1, . . . , β`
(cast in ballots b1, . . . , b`) with choices β′

1, . . . , β
′
`.

The following Protocol is a variant of the former, whereby choices are
dropped, rather than replaced.

Drop choices. Let Drop be a variant of Replace that adds choices β1, . . . , β`
to the tally provided as input to the original auditor process (hence, those
choices are dropped from the tally of the modified auditor process).

Global verifiability fails to detect vulnerabilities in the above Protocols
when instantiated with the goal by Küsters et al. (Theorems 1 & 2):

Theorem 1. Suppose a Protocol does not leak coins used to construct ballots
and γGV is globally verifiable by the Protocol’s auditor process, we have γGV is
globally verifiable by the modified auditor process defined by Protocol Replace.

Proof. Suppose (to the contrary) that γGV is not globally verifiable by the
modified auditor process, hence, there exists an instance of Protocol Replace
such that for all negligible functions µ there exists a security parameter k and
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run r 6∈ γGV of the instance that includes an output on the special channel
belonging the modified auditor process, with probability greater than µ(k).
By definition of goal γGV , either no tally is published in run r or the run
publishes a tally that does not contain nd + nh choices including β1, . . . , βnh

,
where nh is the number of honest voters, β1, . . . , βnh

are the choices of honest
voters, and nd is the number of dishonest voters.

Both the original and modified Protocols are equivalent, unless the bul-
letin board is a set {b1, . . . , bm, (α1, α

′
1, r1), . . . , (α`, α

′
`, r`)} such that b1, . . . , b`

are ballots for choices α1, . . . , α`, constructed using coins r1, . . . , r`. We pro-
ceed by consideration of that case. (The other case is uninteresting: The
Protocols are equivalent, which permits an immediate conclusion by contra-
diction.) By definition of the modified auditor process, the original auditor
process must accept a variant of run r wherein the tally is updated by re-
placing choices α′

1, . . . , α
′
` with α1, . . . , α`. Since γGV is globally verifiable by

the original auditor process, that tally contains nd +nh choices including the
choices of honest voters, namely, β1, . . . , βnh

. By comparison, the tally in
run r does not. Since the tallies contain the same number of choices, there
exists an honest choice β ∈ {β1, . . . , βnh

} which is replaced by a distinct
choice α ∈ {α′

1, . . . , α
′
`}. Suppose that honest choice belongs to a process

representing an honest voter. Since the original Protocol does not leak coins
used to construct ballots, it follows that coins by the honest voter cannot
appear on bulletin board, thereby deriving a contradiction and concluding
our proof.

Theorem 2. Suppose a Protocol does not leak coins used to construct ballots
and γGV is globally verifiable by the Protocol’s auditor process, we have γGV

is globally verifiable by the modified auditor process defined by Protocol Drop.

A proof of our theorem can be constructed on the basis that coins used to
construct ballots are not leaked. That idea has already been demonstrated
in our proof of Theorem 1, so we omit a formal proof.

Vulnerabilities are missed because (honest voters’) coins cannot be leaked,
even when the software, hardware, voter, etc. that selected those coins has
the ability to leak them. One could argue that our analysis is at fault. A pro-
ponent can claim that detection requires analysts to explicitly model leaks.
We must object. Disregarding choices encapsulated in well-formed ballots is
never tolerable. A definition that does not detect omissions is unacceptable;
undue influence in election outcomes must always be detectable. Ultimately,
a voting system branded “verifiable,” having satisfied a suitable definition,
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must always enable detection of undue influence, otherwise we invite cheat-
ing.

Beyond exclusion and replacement of honest voters’ choices, spurious bul-
letin board entries can also be used to swing tallies.

Swing. Let Swing be a variant of Replace wherein choices are only replaced
in the tally when they will cause a swing in the election outcome.

Intuitively, Protocol Swing defines an auditor process that accepts swung
outcomes, permitting undue influence. More precisely, if the underlying au-
ditor process would accept a tally and the corresponding election outcome
can be swung, then the new auditor process will accept a swing. For in-
stance, the auditor will accept tallies that swing outcomes in the adversary’s
favour. For example, suppose two honest voters favour one choice, the other
favours another, as does the adversary. Further suppose the adversary toler-
ates the two honest voters’ choice. When the adversary represents one voter,
an election should result in a tie. Yet, the auditor will accept tallies favour-
ing the adversary’s tolerated choice, when the adversary includes a spurious
bulletin board entry comprising their primary choice, their tolerated choice,
and the coins used to construct the ballot encapsulating their primary choice.
(The adversary is free to reveal their coins and the attack does not depend
upon honest voters’ coins leaking.) Global verifiability fails to detect such
influence when instantiated with the goal by Küesters et al., because their
definition permits bulletin board entries of dishonest voters to be interpreted
for multiple candidates.

Global verifiability similarly fails to detect exclusions, replacements, and
swings when instantiated with the goal by Cortier et al. [10]. We omit re-
calling further details, because the ideas remain the same.

Our results cast doubt over the security of voting systems proven to satisfy
definitions of global verifiability, and establishing their security is a possible
direction for future research.

4. Unsatisfiable by secure voting systems

In essence, the formal goal by Küsters et al. is satisfied in a run if choices
β1, . . . , βnh

of honest voters are included in the tally and the tally contains
nh + nd choices, where nd is the number of dishonest voters. We found
that many voting systems do not satisfy global verifiability with this goal,
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because the goal requires: 1) participation of all voters, 2) ballot posting to
always succeed, and 3) bulletin boards not to drop, inject, nor modify ballots.
The first and second requirements define availability properties, which an
adversary can disrupt. The third can be disrupted by an adversary that
controls the bulletin board. Thus, there exist runs of many voting systems
that cannot satisfy the goal by Küsters et al., and we formally show that a
non-participating (honest or dishonest) voter violates the goal.

Theorem 3. Suppose an instance of a Protocol produces a run wherein

• an empty bulletin board and an empty tally are announced,

• an auditor accepts the empty tally and bulletin board by outputting on
its special channel, and

• there exists one voter,

we have γGV is not global verifiable by the auditor.

The aforementioned run captures scenarios in which a voter does not partic-
ipate, ballot posting fails, or the bulletin board drops a ballot. Given that
secure voting systems need only detect such scenarios, rather than preclude
them, many well-known, secure voting systems cannot be proven to satisfy
global verifiability, including (patched) Helios [11, 12, 13, 14, 1] and the sys-
tem by Juels, Catalano & Jakobsson [15]. Detection of such scenarios, rather
than preclusion, may seem counter-intuitive, because attacks should surely
be prevented. Yet, prevention is not always possible. For example, an ad-
versary can refuse to announce the result or simply announce an incorrect
result. Such behaviour can be detected, but not prevented.

Proof. The auditor rightly accepts, since the empty tally correctly results
from tallying the empty bulletin board. However, goal γGV teaches us to
expect a tally containing all honest voters’ choices and a choice for each
dishonest voter. Given that the empty tally contains no choices, we have
γGV is unsatisfied in r, hence, r 6∈ γGV , but, nonetheless, the auditor outputs
on its special channel, concluding our proof.

Cortier et al. [10, §10.2] propose a variant of the goal by Küsters et al.
Their goal is informally claimed to permit some honest voters’ choices to be
dropped from the tally, which would intuitively address problems associated
with the requirement that bulletin boards do not drop, inject, nor modify

9



ballots. However, this claim is not supported by their formally stated goal,
because that goal requires the tally to include nh + nd choices, where nh,
respectively nd, is the number of honest, respectively dishonest, voters. Thus,
the goals by Cortier et al. and Küsters et al. have similar drawbacks. We
omit recalling further details, because the ideas remain the same.

5. Conclusion

Global verifiability is proven to be satisfied by voting systems vulnerable
to attack, whereas many secure systems cannot satisfy global verifiability,
including (patched) Helios and the system by Juels, Catalano & Jakobsson.
Global verifiability has not been adequately formalised. Use of current defi-
nitions must cease; the exploration for a suitable definition must begin.
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