
Fooling primality tests on smartcards

Vladimir Sedlacek12, Jan Jancar3, and Petr Svenda4

1 Masaryk University, vlada.sedlacek@mail.muni.cz
2 Ca’ Foscari University of Venice,

3 Masaryk University, j08ny@mail.muni.cz
4 Masaryk University, svenda@fi.muni.cz

Abstract. We analyse whether the smartcards of the JavaCard platform correctly
validate primality of domain parameters. The work is inspired by Albrecht et
al. [1], where the authors analysed many open-source libraries and constructed
pseudoprimes fooling the primality testing functions. However, in the case of
smartcards, often there is no way to invoke the primality test directly, so we trigger
it by replacing (EC)DSA and (EC)DH prime domain parameters by adversarial
composites. Such a replacement results in vulnerability to Pohlig-Hellman [30]
style attacks, leading to private key recovery.
Out of nine smartcards (produced by five major manufacturers) we tested5, all
but one have no primality test in parameter validation. As the JavaCard platform
provides no public primality testing API, the problem cannot be fixed by an extra
parameter check, making it difficult to mitigate in already deployed smartcards.

Keywords: pseudoprimes · primality testing · JavaCard · (EC)DSA · (EC)DH

1 Introduction

Many public key cryptosystems crucially rely on prime numbers for their security.
Yet for performance reasons (especially on constrained devices such as smartcards),
most widely used primality tests, such as the Miller-Rabin (MR) test [23, 32], are only
probabilistic [9, 1]. Thus there exist pseudoprimes, i.e., composite numbers passing these
tests. When implemented correctly, probabilistic tests still provide a sufficient assurance
of primality. However, carefully crafted pseudoprimes [4] can fool an implementation
that is not utilizing enough randomness [1]. In (EC)DH and (EC)DSA, this can lead to
private key recovery, using Pohlig-Hellman [30] style attacks.

JavaCard [29] is a popular platform for building systems based on programmable
smart cards. It offers a Java-like environment on which multiple applications, applets,
can be installed. Thanks to Javacard’s rich cryptographic API (supporting (EC)DSA,
(EC)DH and much more [33]), these applets include electronic passports and IDs, EMV
applets for credit-cards, key managers, cryptocurrency wallets or applets for two-factor
authentication. While the API is defined by an open standard, the implementation of
the platform itself is almost always proprietary, with manufacturers releasing very little
information about the code used in a particular family of cards. This black-box nature

5 See https://crocs.fi.muni.cz/papers/primality_esorics20 for more information.

https://crocs.fi.muni.cz/papers/primality_esorics20

2 Vladimir Sedlacek, Jan Jancar, and Petr Svenda

makes the public assessment of implementation security more difficult, but nevertheless,
security problems have been discovered in the past [25].

In this paper, we test the robustness of present primality tests in JavaCards by
replacing (EC)DSA and (EC)DH prime parameters with MR pseudoprimes and other
composites. In contrast to [1], we do not have access to the code inside the smartcard
and are not able to call a primality testing function on its own. Instead, we resort to
performing standard operations (such as signature generation) usingmodified parameters
(which still need to have specific properties), and observe any deviations from the
expected behaviour. This is further complicated by the fact that the smartcards do not
act deterministically, do not have debugging functionality, and are prone to many errors.

The main contributions of this paper are:

– We open the topic of fooling primality tests on black-box devices and propose a
method for a systematic review of primality tests (and the relevant domain parameter
validation) in black-box devices that use (EC)DSA/(EC)DH.

– We develop new ways in which parameters can be replaced with pseudoprimes
in (EC)DH and (EC)DSA, along with practical attacks against these parameters.
In particular, the attack against composite p in ECDSA is new to the best of our
knowledge.

– We examine the implementation security of ECDH and ECDSA in nine smartcards
from five major manufacturers, showing that all cards but one are vulnerable due to
insufficient primality testing of domain parameters. Issues found were responsibly
disclosed to affected vendors.

– We systematically survey the relevant attacker scenarios and types of attacks with
possible real-world impact and propose defence mechanisms.

We review the previous work on attacking primality tests in Section 2. Section 3
analyses the attack scenarios and briefly presents possible attacks. The methodology for
testing the cards is given in Section 4, along with a basic explanation of the used domain
parameters. Readers interested only in practical security should feel free to skip this
section, while still grasping most of the contents of Section 5 that analyses the testing
results, and Section 7 that follows up with a discussion of proposed defences. Section 6
provides technical details about the full parameter generation and possible attacks and
Section 8 concludes our paper. Finally, the appendices contain an overview of the MR
test (Appendix 1), the pseudoprime construction (Appendix 2), datasets of generated
domain parameters (Appendix 2.1) and example implementations of concrete attacks
(Appendix 3).

2 Previous work

The idea of breaking a cryptographic protocol by fooling primality tests was first men-
tioned in [9]. In [1], the authors analysed primality tests in open-source libraries, and
fooled many of themwith carefully crafted pseudoprimes. Their construction (extending
the one in [4] and briefly described in Appendix 2) relies on the assumption that the
implementation of the MR test uses only a small number of bases that are either fixed
or chosen from a relatively small set. This was indeed the case for many libraries.

Fooling primality tests on smartcards 3

Note that all the inspected libraries had a dedicated function for primality testing
whose source code was accessible. In contrast, the situation for black-box devices where
the code is not known, and the primality test (if present) cannot be separated from the
rest of the program, has not been studied before to the best of our knowledge.

Furthermore, somewhat practical examples of attacks against various (EC)DH im-
plementations with insufficient primality tests, including the case when pseudoprimes
are included in elliptic curve domain parameters, were described in [16].

3 Attack scenarios

As in [1], we assume a setting where the attacker can control or affect the cryptosystem
domain parameters used by the applet – so that primes can be replaced by composites
– and wants to break the confidentiality of (EC)DH or unforgeability in (EC)DSA. We
also assume that the attacker knows the factorization of the injected parameters, as he
most likely crafted them himself.

However, with the exception of primality testing, we still expect that all of parameter
validation is implemented properly (with the exception of a cofactor check of an elliptic
curve, as the cards lack the performance to do it).

In our scenario an applet developed by an applet developer uses the functions of
the JavaCard API on a card supplied by a manufacturer to perform some cryptographic
operations while allowing untrusted parameters provided by the attacker to be used.

3.1 Rationale for the attack scenarios

To explain the rationale behind such a scenario, we consider the specifics of the JavaCard
environment aswell as existing cryptographic protocols and standards. Note that physical
access (as is commonly relevant for the smartcard usage domain) is often not required.

A JavaCard applet developer might use untrusted domain parameters, because:

– The API functions that set parameter values, like ECPrivateKey.setFieldFP(),
place no limitation (except bit-sizes) on the parameters, which are provided as
sequences of bytes and are interpreted as unsigned integers.

– The API documentation contains no security notice that the set parameters should
be trusted or a warning of what are the consequences of setting domain parameters
that are untrusted or otherwise invalid [29].

– The API contains no functionality for direct primality testing or domain parameter
validation for (EC)DSA or (EC)DH and no way to implement it efficiently. Thus the
developermight (understandably) assume that the validation is performed implicitly.

Multiple protocols allow to transmit the domain parameters and thus force a party
to either authenticate or validate them:

– TLS, up to version 1.2 [8] and prior to RFC8422 [26], allowed explicit (EC)DH
parameters to be sent from the server to the client, although authenticated by the
server public key.

4 Vladimir Sedlacek, Jan Jancar, and Petr Svenda

– The certificate format specified in the X.509 standard allows public keys to hold full
domain parameters for (EC)DH or (EC)DSA [31]. Using this format in a JavaCard
applet (e.g., for interoperability reasons) might lead to untrusted parameters being
used.

– The ICAO document 9303 [18] specifying the security requirements for machine-
readable travel documents allows transmitting the (EC)DH domain parameters in
the Chip Authentication and PACE protocols. The specification warns that insecure
domain parameters will cause leaks of secret data and that parameters should not be
used unless explicitly known to be secure (without further elaboration). As the card
transmits the parameters to the reader, it is the one responsible for the validation.

All relevant (EC)DH and (EC)DSA standards specify procedures for validating the
domain parameters and allow the use of untrusted domain parameters provided the
validation succeeds. For (EC)DSA, two standards specify the validation requirements:

– FIPS 186-4 [14] refers to the NIST Special publication 800-89 [27] that in turn
requires the primes used in the domain parameters to be accompanied by a seed and
verifies they were generated using the specified verifiably random method.

– ANSI X9.62 [2] requires a primality test of the prime domain parameters, using the
MR test with the number of rounds equal or larger than 50, using random bases.
The IEEE P1363 [19] standard for (EC)DH has exactly the same requirement.

The strong requirements for primality testing and domain parameter validation in
the above standards might lead the applet developer to believe that an appropriate
validation is performed by the card and that the use of given parameters is secure.
As the detailed implementation guidance is not provided by JavaCard specifications
and recommendations from standards like IEEE P1363 and x9.62 are not explicitly
mentioned, the platform vendor is left with decision what level of checks to implement.

We also consider another scenario where primality testing and domain parameter
validation make a significant difference in security. TLS is an open system where com-
municating parties are likely to be realised by different software vendors. In the case
of closed systems like dedicated network line encryption boxes, the same entity con-
figures both communicating endpoints, which may be based on the commodity cards.
A platform integrator (not the same as the card manufacturer) supplies the software
responsible for setting the domain parameters on both ends. These two endpoints are de-
signed to communicate with each other and to establish a secure channel using (EC)DH
(and potentially (EC)DSA for authentication). Without robust primality testing and do-
main parameter validation on the card, the domain parameters supplied to cards at both
ends can contain pseudoprimes or composites and be weak to a passive eavesdropping
attacker. These parameters can even be authenticated by the platform integrator, yet
without proper validation and primality testing, the card will accept them. The platform
integrator could then also claim some plausible deniability, by blaming the weak param-
eters on a bug in the customised curve generation codebase or arguing the pseudoprime
in the parameters passed their primality tests. A similar case happened in the Juniper
Dual EC incident [11], where the exploitable weakness was a result of a series of small
coding errors, seemingly unintentional.

Fooling primality tests on smartcards 5

One example of a vulnerability, where attacker-controlled domain parameters were
used,was theMicrosoft CryptoAPI ECDSAverification vulnerability (CVE-2020-0601)
[28]. It was due to a faulty certificate verification mechanism, whichmatched certificates
provided to the trusted ones by comparing the public key. This allowed an attacker to
supply a certificate with modified domain parameters, which would be trusted.

Even when not directly using untrusted parameters, the adversarial setting makes
sense when we account for the physical nature of cards and, thus, for fault injection
attacks. These could be mounted to manipulate any trusted parameters [7, 34] that the
applet will use (e.g., in (EC)DH).

3.2 Attacks overview

We focus on attacks theoretically applicable to all implementations accepting composite
parameters, instead of those stemming from specific behaviour of any one implemen-
tation. We present four different attacks, based on the cryptosystem and the injected
parameter. In all four cases, it is possible to efficiently recover the private key for
suitable injected parameters. The details will be given in Section 6.

When the group order n is composite in ECDSA/ECDH or DSA/DH, it is well
known that the discrete logarithm problem (DLP) in the group can be decomposed into
DLPs in its quotient groups of prime-power order, which are much easier [30]. Thus for
sufficiently smooth injected group orders, the discrete logarithm can be computed.

A similar decomposition and DLP difficulty reduction occurs when injecting a
composite in place of the prime defining the full multiplicative group in DH/DSA [12].

We use yet another decomposition when injecting a composite in place of the prime
defining the finite field for ECDSA/ECDH. As far as we know, this is a new result.

4 Methodology for assessing primality tests

In this section, we describe the method we used to analyse primality testing in cards
of the JavaCard platform. Throughout the remaining text, the term pseudoprime will
always mean a composite number that passes the MR test with respect to several small
bases (the first t primes in our case).

In [1], the library functions for testing primality are ready to be called directly, and
the source code can be analysed to see for what purpose and with what parameters
they are invoked. In contrast, we cannot even be sure if such functions exist in the
closed-source implementation of the JavaCard platform. Hence we need to guess where
they could be likely present and invoked (e.g., during domain parameter validation or
key generation) and what parts of the algorithm could behave problematically if a prime
input was replaced with a composite one. Also, unlike in [1], we only have a very limited
amount of pseudoprime bit lengths to choose from.

JavaCard specifies five main cryptographic algorithms involving prime numbers or
domain parameters: RSA, DSA, ECDSA, DH and ECDH (though not all cards support
all of them). We analysed all the relevant functions from the JavaCard specification and
found noway to invoke primality testing in the RSAAPIwith user-provided inputs. Also,
the primes used there constitute the private key, and a scenario with them being replaced

6 Vladimir Sedlacek, Jan Jancar, and Petr Svenda

with pseudoprimes does not trigger a primality test. As a result, only the methods of the
(EC)DH and (EC)DSA algorithms are applicable. Additionally, we restricted the testing
focus on the ECDSA and ECDH algorithms only, as none of the tested cards support
DH and only one supports DSA. However, we still analyse the theoretical aspects of
using DSA/DH parameters.

The practical analysis of primality testing consists of three steps:

1. Constructing pseudoprimes and other composites (Section 4.2 and Section 4.3).
2. Generating (EC)DSA and (EC)DH parameters with primes replaced with the num-

bers crafted in the previous step (Section 6).
3. Triggering the card’s primality test with the modified parameters as input, e.g., key

generation, signing, verification in case of (EC)DSA or key agreement in case of
(EC)DH. (The rest of this section.)

In the last step, for any operation we perform on the card, the card only returns a
response (output or error value) and the duration of the computation, which is often
insufficient to understand exactly what happened due to implementations being closed-
source. By the behaviour of the card under test, we mean such a response to our calls
of API functions. To gain more information, we could also observe the card’s power
consumption or EM emissions during computation, but we do not consider these here.
We use three types of basic operations in sequence to observe the behaviour:

3a) Parameter setting. Individual (EC)DSA or (EC)DH parameters are set on a Key
object as byte arrays, interpreted as unsigned integers.

3b) Key generation.After setting all parameters, a Keypair can be generated. Note that
the JavaCard does not differentiate between an ECDSA and ECDH keypair. In our
tests, we skip this operation if it fails and continue with a manually generated private
key, to also test the scenario where a keypair to be used is imported to the card.

3c) Signing and verification or Key agreement. After a Keypair object is successfully
generated, it can be used to initialise a Signature or a KeyAgreement object
and perform the operation. We supplied random data for signing and performed
the key agreement between two keypairs generated on the card if possible. If the
key generation failed, we instead substituted the private key and performed key
agreement between it and the generator point on the curve.

To perform these operations, we developed and released our ECTester tool [21],
which accesses the public JavaCard API and is generic to all cards.

4.1 Domain parameters

In this section, we examine the requirements on domain parameters used in (EC)DSA
and (EC)DH, specifically primality requirements and show what requirements need to
be fulfilled while replacing a prime with a composite. Since the parameters and the
corresponding implementation checks for the finite field case and for the elliptic curve
case differ significantly, we study them separately.

Fooling primality tests on smartcards 7

The DSA/DH case In DSA/DH, there are three domain parameters [14]:

– p is the prime defining the multiplicative group Z∗p in which we compute,
– g is an element of Z∗p ,
– q is the order of g in Z∗p .

Note that the above already implies gq ≡ 1 (mod p), q | p − 1 and g , 1 (unless
q = 1) and we can expect that these conditions could be checked by the implementation.

The supported sizes include {(1024,160), (2048,224), (2048,256)} bits for p,q
respectively. Classically, q is required to be prime, as the running time of the Pohlig-
Hellman algorithm [30] depends on the size of the largest factor of q. Also, the random
nonce k, which is generated during signing, needs to be invertible mod q. Thus for
testing, we could replace either p or q with a pseudoprime. However, this replacement
is non-trivial, as the conditions above are quite easy to satisfy when computing p and
g from q, but somewhat hard if given p, as one needs to factor p − 1 and hope it has a
prime factor q of the correct size. We discuss this in Section 4.7.

In DH on the JavaCard platform, the domain parameters are the same as in DSA,
but the q parameter is optional [29]. This means that either no checks related to q are
performed, or that p is assumed to be a safe-prime, i.e. p = 2q + 1. We do not consider
the case when the safe prime condition is assumed in the remainder of this paper and
instead refer the reader to [16]. Similarly, we do not consider the case where there are
no checks related to q present, as it is straightforward to subvert the parameters in such
a system (for example, q can be very small).

Note that we did not test actual DSA/DH parameter sets, as mentioned earlier in
Section 4, due to lack of support in the tested cards.

The ECDSA/ECDH case This case is a little more complicated. The JavaCard API
supports curves in the short Weierstrass form either over prime fields Fp or binary fields
F2m . We do not work with the binary field case, as most cards at our disposal do not
support it. The prime field case then requires the inputs p,a, b,Gx,Gy,n, h, where:

– p is the prime defining the field Fp over which we will work,
– a, b are the coefficients of the elliptic curve E in short Weierstrass form over Fp ,
– Gx , Gy are the affine coordinates of the generator point G ∈ E(Fp),
– n is the order of G,
– h is the cofactor, equal to the order of E(Fp) divided by n.

As for supported sizes, p should have either 160,192,224,256,384,512 or 521 bits.
Computing the group order or n is prohibitively expensive for the card, so it is reasonable
to assume that only the condition [n]G = ∞ will be checked, possibly together with
the size of n (by Hasse’s theorem, n · h should be roughly the same size as p). Again,
for ECDSA/ECDH, n should be prime for the same reasons as q in DSA/DH. Thus
for testing, we could replace either p or n with a pseudoprime and tested (the case of
pseudoprime n was discussed in [16]). For the replacement, we need to either construct
an elliptic curve with a prescribed number of points (we used our tool ecgen [20] that
supports the complex multiplication method [10]) when n is replaced, or to construct an
“elliptic curve” over Zp (with composite p) and correctly compute its order.

8 Vladimir Sedlacek, Jan Jancar, and Petr Svenda

For each card and each bit-size in {160,192,224,256,384,512,521}, we test the
card’s behaviour for ECDSA and ECDH with parameter sets described in Table 2. The
rest of this section shows how we generated p and n, while Section 6 explains how we
constructed the malicious parameters from them. The full parameters used for testing in
this paper are included in Appendix 2.1.

4.2 Generating pseudoprimes

bit-size t k2 k3

160 11 73 101
192 13 61 101
224 14 197 257
256 16 233 101
384 23 137 157
512 30 137 157
521 30 137 157
1024 52 241 281

Table 1: Parameters for constructing
pseudoprimes by tweaked Ar-
nault’s method [3, 1].

As we are considering only the MR primal-
ity test, we use a slightly tweaked version of
Arnault’s methodwith three pseudoprime fac-
tors, described in Appendix 2. We construct
numbers that are pseudoprime to t smallest
primes taken as bases, assuming the resource
constrained smartcard will choose its bases
from a set of small primes. The only limitation
is that the bit-size of the pseudoprime must be
one of the supported ones, as discussed in
Section 4. To achieve this, we must try many
combinations of t, k2, k3 to arrive precisely at
the supported bit-sizes, while also trying to
maximise t (Table 1). For each bit-size, the
pseudoprime generation process took at most a few minutes on an ordinary laptop
(using the precomputed values of t, k2 and k3).

4.3 Generating special composites

To systematically compare the card behaviour, we also used random composites with
controlled numbers of factors or varying levels of smoothness, to get finer granularity.
In this way, we can detect if the primality test is present at all (though possibly faulty).

Composites with a given number of factors. To generate a composite number of a
given bit-size with a given number of factors, we use a greedy approach. In each step,
we generate a random prime number of size b/r , where b is the number of remaining
bits, and r is the number of remaining factors to be generated.

Composites with a given smoothness level. For the smooth case, we employ a similar
greedy algorithm that randomly chooses prime factors up to the smoothness bound and
retries until a number with the right bit-size is constructed.

4.4 Generating complete domain parameters

In this section, we explain how to generate complete parameters for ECDSA/ECDH and
DSA/DH, based on the pseudoprime and other composite inputs generated in Section 4.2

Fooling primality tests on smartcards 9

and Section 4.3. In the ECDSA/ECDH case, these are exactly the parameters we used
for testing the cards.

The challenge in embedding composites into the domain parameters lies in the fact
that the card might check many properties of the parameters, while the only thing we are
currently interested in is the compositeness of some of them. Thus the parameters should
be as close to correct parameters as possible. The properties of the parameters that the
card might verify are listed in the standards specifying domain parameter validation
algorithms [2, 19] and we listed them in Section 4.1. For each scenario, we also list the
corresponding attack.

4.5 ECDSA/ECDH: prime p, composite n.

The approach, in this case, is almost the same as the one described in [16]. We use the
complex multiplication method (described in [10], realised by our tool ecgen [20]),
which is able to construct a curve over a prime field in short Weierstrass form with a
given number of points. We need to take into account that the structure of E(Fp) is
either cyclic or a product of two cyclic groups. This poses an issue because the JavaCard
platform limits the size of the cofactor to an unsigned short integer, so just 16 bits. In
the curves generated by two points, often the cofactor does not fit into 16 bits, even if we
pick a large subgroup. Thankfully, the cards do not perform validation of the cofactor,
as it is an optional input, so we just pick the generator with the largest order and set the
cofactor to 1. Given the composite n, generating a suitable 256-bit curve took just a few
minutes on an ordinary laptop.

One of the forms of composite nwe tried to generatewas that of an appropriately sized
primorial (i.e., the product of all the primes up to some bound). However, the complex
multiplication method, as implemented in the ecgen tool, was unable to generate them,
even after a significant time spent on the task (e.g., a week on a single curve). The
method searches for the curves by enumerating values of their complex multiplication
discriminant, starting from 1, until a suitable curve and prime field is found. This
points to an absence of prime field curves with primorial order and a small complex
multiplication discriminant, which is an interesting observation.

4.6 ECDSA/ECDH: composite p, arbitrary n.

Here we assume for simplicity that p is square-free and has no small factors (up to
some bound, we chose 50). We want to find a curve whose order has no small divisors;
otherwise, the card might reject the curve for a wrong reason, as we have observed
before.

For each prime factor pi of p, we iterate over all possible curves overZpi until we find
one whose order is prime (this will minimise the number of prime factors of the resulting
curve over Zp). We also prefer if the order of the curve is never repeated for different
pi’s, but this is easily satisfied in practice. When such a curve is found for each pi , we
create the desired curve modulo p just by using the CRT on the Weierstrass coefficients
a, b of the individual curves. Since p has no small prime divisors, we can expect the
same to be true for the order of the final curve as well, thanks to the construction, as the
resulting order is the product of the individual orders.

10 Vladimir Sedlacek, Jan Jancar, and Petr Svenda

To obtain a generator point of the resulting curve, we simply pick a generator point
of each curve, and we use the CRT again on their coordinates. Since each curve over
Zpi was cyclic and their orders were distinct, the final curve is cyclic as well, so we can
set the cofactor to be 1. This whole process takes just seconds for the 3- and 10-factor
256-bit composites used in this paper.

4.7 DSA/DH: prime p, composite q.

This is the easiest scenario, as it almost completely follows the way ordinary DSA
parameters are generated. We first pick a composite or pseudoprime q, then choose
random properly sized integers k until p = kq+1 becomes a prime. Then we repeatedly
pick a random r ∈ Z∗p until we get a generator of Z∗p and compute g = r (p−1)/q . In this
way, we ensure that g has order q modulo p. This generation process is very fast, and
takes just seconds to generate 1024-bit parameters.

4.8 DSA/DH: composite p, prime q.

This case is more problematic to construct than the above one. First, let us assume that
p is a Carmichael number (as is the case for the pseudoprimes we are constructing
(Appendix 2). We assume that either of the conditions

q | p − 1, gq ≡ 1 (mod p) and g , 1

could be checked, so we will want to satisfy all of them.
These conditions imply that gq ≡ 1 (mod pi) for all prime factors pi of p, hence

ggcd(q,pi−1) ≡ 1 (mod pi). Since q is a prime and g , 1 (mod pi) for some i (otherwise
g = 1), this implies q | pi − 1 for some i.

Thus we need p − 1 to have a prime factor q of a size corresponding to the size of p
(e.g., if p has 1024 bits, then we need q to have 160 bits). Given a specially constructed
p, this means factoring p − 1 and hoping for a factor of the correct size. This is exactly
what we did for generating the DSA parameters, even though it was only practical for
the 1024-bit parameters, given that factoring larger than 1024-bit random integers and
hoping for a factor of a correct bit-size is computationally hard for our computation
cluster. Finding an appropriate 1024-bit pseudoprime p such that p − 1 has a 160-bit
factor took a few days on an equivalent of an ordinary laptop.

Once we have p and q, we can again loop through random r from Z∗p and compute
g as g = r (p−1)/q until g , 1. This will imply that g . 1 (mod pi) for at least one i, so
that the primality of q together with the congruence gq ≡ rp−1 ≡ 1 (mod p) (as p is a
Carmichael number) will imply that the order of g modulo pi is q, hence q | pi − 1.

Note that it is possible that no such g exists, even if p is a pseudoprime - for example
for the Carmichael number p = 7 ·19 ·67 and q = 5, we have that q | p−1, but q - pi −1
for any i, so there is no element of order q modulo p. However, it can be empirically
seen that is unlikely to happen when p and q are large enough.

It seems hard to adapt this strategy of generating parameters for a fixed composite
non-Carmichael p (which instead has a given number of factors or is smooth). One
would have to simultaneously force q | p − 1 and q | pi − 1 for some prime factor pi of

Fooling primality tests on smartcards 11

p, which is equivalent to q | gcd(p−1, pi −1). But unlike in the Carmichael case (where
gcd(p − 1, pi − 1) = pi − 1), heuristics show that we cannot expect gcd(p − 1, pi − 1) to
have a large prime factor for most composite p, let alone a factor of an exactly given size.
Thus we do not consider this case further, but we stress that its significance is mostly
limited to testing of black-box devices. A motivated attacker would use pseudoprime (or
just Carmichael) p, as it has a much better chance to bypass potential primality tests,
while making the generation of the other parameters easier.

5 Practical results

The analysis was performed on cards with ECC support that we were able to obtain in
small quantities and covers most major vendors (except for Gemalto and Idemia). The
cardswere fabricated in the period between 2012 and 2018. Note that due to lengthily and
costly certification processes, the pace of software changes in the smartcard environment
is significantly slower than for standard software development. As a result, the products
by the same vendor tend to reuse the same existing codebase (as visible from results for
the NXP cards), and our findings are likely valid for the newer product versions as well.
The results are summarized in Tables 2a and 2b.

The main result of our testing is that most manufacturers, apart from Athena and
Infineon, seem to lack primality tests of the p and n parameters for ECDSA and ECDH.
This follows from the same observed card behaviour for the tests with pseudoprime
parameters (Section 4.2) as for the tests with general composite parameters (Section 4.3).
Missing primality testing invites Pohlig-Hellman style attacks mentioned in Section 3.
Due to the non-deterministic nature of ECDSA key and nonce generation, we had to run
the tests many times to get representative results. The different bit-sizes of the curves
used, ranging from 160 bits to 521, do not impact the results in an unexpected way.

Wemay have passed the primality test using a pseudoprime curve order in the case of
the Infineon CJTOP 80k card, as the key generation and ECDSA signing and verification
worked in a few rare cases, even though the card rejected the parameters most of the
time. We observed this in roughly 3 out of 1000 tries on a 192-bit pseudoprime order
curve. Our hypothesis is that the implementation is choosing small MR bases, which
occasionally lie in the set of liars for our provided pseudoprime.

We were not able to pass the primality test present on the Athena IDProtect card,
perhaps because it uses random MR bases or some other primality test.

We also observed that cards occasionally went mute and did not respond to the
command, often upon invoking key generation. This behaviour is outside of the PCSC
specification6 and results in a PCSC error being raised by the reader’s driver. It could
also mean that the cards perform some kind of a self-test during the operation and stop
responding as a security measure if the test fails. The presence of such self-tests is well
documented in cards. In ECDSA, this error might stem from the card generating a nonce
k that is non-invertible modulo n, which the system might not expect.

In the ECDSA case, several cards occasionally produced invalid signatures. This is
possibly due to the modular inversion algorithm assuming a prime modulus. We did not

6 The PCSC specification specifies the general communication protocol between the card and
the reader device.

12 Vladimir Sedlacek, Jan Jancar, and Petr Svenda

Card p n

prime pseudo 3f pseudo 3f 10f 11s odd 11s even
Athena IDProtect OK IL IL IL IL IL CYC EXC
G&D SmartCafe 6.0 OK OK OK OK OK OK CYC EXC
G&D SmartCafe 7.0 OK OK/MUT OK/MUT OK OK OK MUT EXC
Infineon CJTOP 80k OK IL IL IL/OK IL IL EXC EXC
NXP JCOP v2.4.1 OK OK/VRF OK/VRF OK OK OK IL IL
NXP JCOP CJ2A081 OK OK OK OK OK OK IL IL
NXP JCOP v2.4.2 J2E145G OK OK/VRF OK/VRF OK OK OK IL IL
NXP JCOP J3H145 OK OK/MUT OK/VRF/MUT OK OK OK EXC EXC
TaiSYS SIMoME VAULT OK OK/MUT IL/MUT* OK OK OK EXC EXC

(a) ECDSA results.

Card p n

prime pseudo 3f pseudo 3f 10f 11s odd 11s even
Athena IDProtect OK IL IL IL IL IL CYC EXC
G&D SmartCafe 6.0 OK MUT MUT MUT MUT MUT CYC EXC
G&D SmartCafe 7.0 OK OK OK OK OK OK MUT EXC
Infineon CJTOP 80k OK IL IL IL IL IL EXC EXC
NXP JCOP v2.4.1 OK OK OK OK OK OK IL IL
NXP JCOP CJ2A081 OK OK OK OK OK OK IL IL
NXP JCOP v2.4.2 J2E145G OK OK OK OK OK OK IL IL
NXP JCOP J3H145 OK OK/MUT OK/MUT OK OK OK EXC EXC
TaiSYS SIMoME VAULT OK OK OK OK OK OK EXC EXC

(b) ECDH results.

Table 2: Results of domain parameters validation using on-card primality testing by nine
different cards from five major manufacturers. Multiple values separated with
a slash indicate that multiple results are present with decreasing occurrence
from left to right. *IL (see below) happens on verification, key generation and
signing works.

Result types
OK Operation without error
IL ILLEGAL_VALUE exception

VRF Failed to verify signature
EXC Unexpected exception
CYC Card cycles indefinitely
MUT Card does not respond

Parameter names
prime standard parameters

pseudo p pseudoprime p
3f p 3-factor composite p

pseudo n pseudoprime n
3f n 3-factor composite n
10f n 10-factor composite n

11s odd n 11-smooth odd n
11s even n 11-smooth even n

Green background signifies tests
with the expected result, i.e. the
card correctly computed with the
parameters or the card correctly re-
jected them.
Yellow background marks tests
where the card exhibits unexpected
behaviour, but are not vulnerabili-
ties, and are not exploitable by the
attacks from Section 3.
Red background marks tests where
the card accepted parameters it
should have rejected, and is thus
vulnerable to attacks from Sec-
tion 3.

Fooling primality tests on smartcards 13

investigate this matter further, but these invalid signatures might leak information about
the private key or the used nonce, which might be abused by a lattice attack.

The behaviour of the cards also differs for smooth n and for 10-factor n. We think
this is due to some unknown checks failing when such a smooth order is given, not due
to a primality test. Furthermore, two cards (Athena IDProtect, G&D SmartCafe 6.0)
cycle indefinitely on key generation on a curve with smooth odd order, we do not have
any explanation for this behaviour.

Algorithms used during the operations, such as the modular multiplicative inverse
or the modular square root, may be implemented to rely on the modulus being prime.
Thus we were surprised to see the cards mostly working for composite p.

6 The attacks in detail
In this section, we discuss the attack details in each of the four scenarios we consider.

6.1 Attack on ECDSA/ECDH with prime p and composite n
Using the classical Pohlig-Hellman algorithm [30], the DLP asymptotically becomes
only as hard as the DLP in a subgroup of order l, where l is the largest prime factor
of the group order n. There it can be solved by the Pollard ρ algorithm, which costs
roughly

√
π
4 l ≈ 0.886

√
l point additions [5]. Thus for example, when using a 256-bit

curve and n has three factors of roughly the same size, the total computation cost of
the DLP is approximately 3 × 0.886 ×

√
286 ≈ 244, which is already practical (and can

be much cheaper for a larger number of factors). Compare this with a case of using the
Pollard ρ algorithm to solve DLP on a standard 256-bit curve, where one gets the cost
of 0.886 ×

√
2256 ≈ 2128. An example of this attack is given in Appendix 3.

6.2 Attack on ECDSA/ECDH with composite p, and arbitrary n

When a composite p is a product of distinct primes p1, . . . , pe in ECDSA or ECDH,
we are working with an “elliptic curve” over Zp (see [37] for a proper definition and
basic properties), whose group can be thought of as a direct sum of groups of the
same elliptic curve regarded over Zpi , i.e., E(Zp) �

⊕e
i=1 E(Zpi). The isomorphism is

essentially realised by the CRT applied to point coordinates. Thus the DLP on E(Zp)
again asymptotically becomes only as hard as the hardest DLP on some E(Zpi) (since
after solving the DLP in all individual groups, we can use the CRT to obtain the desired
discrete logarithm). Since the order of E(Zpi) is roughly pi , the situation is very similar
to the one for composite n in ECDSA/ECDH. An example of this attack is given in
Appendix 3.

6.3 The attack on DSA/DH with prime p and composite q

The Pohlig-Hellman algorithm is applicable in an exact analogy to the composite n case
in ECDSA/ECDH. Note that the sub-exponential index calculus algorithm could also
be used to solve the individual DLPs, but we expect it to perform worse than Pollard ρ
(whose cost is asymptotically the same as for ECDSA/ECDH), as it cannot efficiently
use the extra information about the factorisation of q.

14 Vladimir Sedlacek, Jan Jancar, and Petr Svenda

6.4 The attack on DSA/DH with composite p and prime q

In this case, we know the value gx modulo p, where 0 < x < q and q | pi − 1 for some
prime factor pi of p (this follows from the construction described in Section 4.8). Thus
we also know the value gx modulo pi and finding x modulo pi gives us x directly, since
x < q ≤ pi − 1. Therefore it is sufficient to solve the DLP modulo pi . Note that Pollard
ρ does not have an advantage compared with the case with a real prime p, as the group
order is still q. On the other hand, the complexity of an index calculus algorithm only
depends on pi , which can be much lower than p. Hence the security level will be lower
than it should be and might lead to a private key recovery for small enough pi . The
practicality of this approach is demonstrated in Appendix 3.

7 Proposed defences

Without a robust primality test, a card cannot properly validate domain parameters.
As the public JavaCard API lacks primality testing functionality, we cannot expect the
developers to perform the validation either. Thus applications that allow the setting of
custom domain parameters may result in a vulnerable applet.

Furthermore, the absence of primality testing functionality hinders the development
of more complex cryptographic applications. For example, the vulnerability in the RSA
key generation presented in the ROCA attack [25] could have been mitigated by applets
generating the primes for their RSA keypairs themselves, thus avoiding full firmware
fixes of the affected devices (which are often impossible in the case of cards). The lack
of solid number-theoretic functionality in the JavaCard API prevented this though.

Fortunately, most of the protocols and implementations use standard named curves
such as NIST P-256 or Curve25519. This seems to limit the current real-world impact
of the aforementioned absence of primality testing in domain parameter validation.

We analysed an extensive list of open-source implementations of JavaCard applets
[13] and found none that would use unauthenticated domain parameters in (EC)DSA
or (EC)DH. Most used a fixed standard curve, with a few using domain parameters
supplied in a command, but those were either authenticated or it was apparent from
the context that they were provided by a trusted party, for example during the setup of
the applet. However, one should keep in mind the possibilities of an untrusted setup
described in Section 3, as well as the possibility of fault injection attacks. We also note
that open-source JavaCard development comprises only a very small part of deployed
JavaCards and that most applets are closed-source.

The recent trends in cryptography head towards misuse-resistance, the property
of protocols and APIs that makes it hard for the developers to use and implement
them incorrectly. Protocols and cryptosystems should allow simple implementations,
as those are more likely to be correct and secure. Furthermore, the simple and fast
implementation should always be a secure one. Examples of this include the nonce-
misuse resistant authenticated encryption modes such as the SIV [17] or libraries with a
very simple API such as libsodium or NaCl [6]. With this direction in mind, the missing
domain parameter validation steers the developers to misuse the API and undermine the
security of their applets.

We thus propose several changes to the JavaCard specification:

Fooling primality tests on smartcards 15

– Require full domain parameter validation, for example as specified in ANSI X9.62
[2] and IEEE P1363 [19], which includes primality tests of prime parameters.

– Add API that supports using a set of named curves and allow manufacturers to only
support this API. Consider perhaps deprecating or discouraging explicit domain
parameter setting.

– Add a primality test to the public API.

Validating elliptic curve domain parameters consists of more than primality testing
and general sanity checks on the parameters. It contains tests on certain algebraic
properties of the curves that might make the DLP easier (e.g., by allowing transfers into
weaker groups). Luckily, these are all specified in the aforementioned standards.

The modification of JavaCard API to accept only named curves instead of the full
specification of curve parameters limits flexibility for the future inclusion of new curves
as it might not be possible to update the list after card deployment. On the other hand,
strict usage of only named curves prevents attacks similar to the recent attack on the
Microsoft CryptoAPI library (CVE-2020-0601) [28], which cannot be prevented only
by domain parameter validation.

The Miller-Rabin with random bases or Baillie-PSW primality tests should allow
a robust and reasonably efficient (even on limited smartcard chips) implementation of
primality testing. For an example of a performant and misuse-resistant primality test,
see Massimo and Paterson [22].

8 Summary

We have explored the robustness of primality testing in domain parameter validation
by smartcards of the JavaCard platform. Due to unavailability of primality testing
functionality in the public JavaCard API, we tried to trigger the tests indirectly by using
specially crafted composite domain parameters for ECDSA and ECDH operations.

We analysed nine different smartcards from five major manufacturers and found that
all but one failed to properly verify the primality of the provided ECDSA and ECDH
domain parameters, not even requiring pseudoprimes to fool them, just composites. This
results in a vulnerability to Pohlig-Hellman [30] style attacks, allowing the extraction
of the private key. Our approach is generic to all black-box devices performing ECDSA
and ECDH and the tooling can be reused.

Furthermore, the vulnerability is not easily mitigated for the already deployed smart-
cards. The code responsible for the domain parameter validation is often stored in a read-
only memory without the possibility for an update. In addition, the on-card verification
of the provided domain parameters by the developer cannot be efficiently performed due
to a lack of a primality testing functionality in the public JavaCard API.

Acknowledgements. The authors would like to thank K.G. Paterson, M. Sys, V. Matyas
and anonymous reviewers for their helpful comments. J. Jancar was supported by the
grant MUNI/C/1701/2018, V. Sedlacek by the Czech Science Foundation project GA20-
03426S. Some of the tools used and P. Svenda were supported by the CyberSec4Europe
Competence Network. Computational resources were supplied by the project e-INFRA
LM2018140.

https://www.muni.cz/en/research/projects/46834

16

Appendix

1 The Miller-Rabin primality test

The MR test [23, 32] was one of the first practical primality tests and to this day remains
very popular because of its simplicity and efficiency. In particular, we believe that if a
low-resource device such as a smartcard (shortened as card for the rest of text) uses a
primality test,MR is themost probable choice (perhaps followed by the Lucas test, which
does not seem to be that widespread, and a Ballie-PSW test, which is a combination of
these two), as most other tests are too resource-heavy.

However, the MR test cannot be used to prove that a number is prime; only compos-
iteness can be proven. It relies on the fact that there exist no nontrivial roots of unity
modulo a prime. More precisely, let n be the number we want to test for primality and
let n − 1 = 2sd, where d is odd. If n is prime, Fermat’s Little Theorem implies that
for any 1 ≤ a < n, we have either ad ≡ 1 (mod n) or a2id ≡ −1 (mod n) for some
0 ≤ i < s. By taking the contrapositive, if there is some 1 ≤ a < n such that none of
these congruences hold, then n is composite (and a is called a witness of compositeness
for n). However, if at least one of the congruences holds, then we say that n is pseudo-
prime with respect to base a (or that a is a non-witness of compositeness for n, or also
a liar for n). There is the Monier-Rabin bound [24] for the number S(n) of such bases
(that are less than n): S(n) ≤ ϕ(n)

4 , where ϕ is the Euler totient function.
Since ϕ(n) ≈ n for large n, we get a practical upper bound for the number of inputs

that pass the test for a given a. Thus if we repeat the test t times for random a’s, the
probability of fooling the MR test will be at most (14)

t .
The fact that the a’s were picked randomly is crucial for the guarantees above. If the

bases are fixed and known in advance (as in [1]), it is possible to construct a pseudoprime
(see Appendix 2), i.e., a number that passes the test with respect to these bases.

2 Constructing pseudoprimes

We will briefly describe how to generate pseudoprimes having 3 prime factors with
respect to given distinct prime bases a1, . . . ,at according to [1] and [3], where more
details can be found. The whole method can be summarised as follows:

1. Choose t odd prime bases a1 < · · · < at (we always choose the first t smallest
primes) and let A := {a1, . . . ,at }.

2. Let k1 = 1 and choose distinct coprime k2, k3 ∈ Z, k2, k3 > at (see Table 10.
3. For each a ∈ A, compute the set Sa of primes p reduced modulo 4a s.t.

(
a
p

)
= −1.

This can be done constructively by looping over values x ∈ {1,2, . . . ,4a − 1} and
adding x to Sa iff

(
x
a

)
(−1)(x−1)(a−1)/4 = −1 (using quadratic reciprocity).

4. For each a ∈ A, compute the intersection Ra :=
⋂3

j=1 k−1
j (Sa + k j − 1), where

k−1
j (Sa + k j − 1) denotes the set {k−1

j (s + k j − 1) mod 4a | s ∈ Sa} for each a ∈ A.
If any are empty, go back to step 2.

5. For each a ∈ A, randomly pick an element ra ∈ Ra.

17

6. Using the Chinese Remainder Theorem, find p1 such that
p1 ≡ k−1

3 (mod k2), p1 ≡ k−1
2 (mod k3) and p1 ≡ ra (mod 4a) for all a ∈ A.

7. Compute p2 = k2(p1 − 1) + 1 and p3 = k3(p1 − 1) + 1. If all p1, p2, p3 are primes,
then p1p2p3 is pseudoprime with respect to all bases a ∈ A. Otherwise, go back to
step 4 (or even 2 or 1 after a certain amount of time has passed).

If we take a1 = 2 and enforce the condition p1 ≡ 3 (mod 8) (by slightly tweaking
some steps above), the constructed pseudoprimes will meet the Monier-Rabin bound
(maximizing the probability of passing the test for a random base choice) and will also
pass the MR test for any composite base with no prime divisors greater than at [1].

Recall that Carmichael numbers are composite n that divide an−1 − 1 for all a ∈ Z
coprime to n. Equivalently, a composite integer n is a Carmichael number if and only if
n is square-free, and p − 1 | n − 1 for all prime divisors p of n [24]. The pseudoprimes
generated in this way are automatically Carmichael numbers [1] and we are using this
fact in Section 4.8.

2.1 Generated domain parameters

The generated domain parameters and scripts used to generate them and produce our re-
sults are available athttps://crocs.fi.muni.cz/papers/primality_esorics20.

3 Examples of attacks

3.1 ECDSA/ECDH: Composite n

This case uses the 10-factor n parameters as specified in Appendix 2.1. Such a smooth
order of the curve allows for a direct application of the Pohlig-Hellman algorithm for
computing discrete logarithms to obtain the private key.

The SAGE [36] code () recovered the private key on a 256-bit curve in
just about 7 seconds on an ordinary laptop. Computing such a discrete logarithm on a
standard 256-bit curve is currently computationally infeasible.

3.2 ECDSA/ECDH: Composite p

This case uses the 10-factor p parameters as specified in Appendix 2.1. Such a curve
with composite p can be decomposed into ten much smaller curves modulo the prime
divisors of p. On these curves, it is trivial to compute the discrete logarithm of the public
key. The resulting discrete logarithm (and the private key) is then recovered via the CRT.

The SAGE code () recovered the private key on a 256-bit curve in about
9 seconds on an ordinary laptop.

3.3 DSA/DH: Composite q

In case of composite q inDSA/DH, the Pohlig-Hellman algorithm for computing discrete
logarithms applies again. The SAGE code () computed the private key of a
public key using the 1024 bit DSA/DH parameters given in Appendix 2.1 in 35 minutes
on one Intel Xeon X7560 @ 2.26 GHz processor.

from sage.groups.generic import discrete_log_rho
p = 0x8b7dada7aa2173f4a3ed9139570386fd2b65eb9ed2232e749385df5532e8349d
k = GF(p)
a = k(0x1b27b49f431ab73930736bea17cee09d455a91997a986029807e399713a25ffd)
b = k(0x6a5d9b63f85d937c868241fb54b5a4671556d46fd92aca1e20b312970b4e759f)
gx = 0x39494395fa2fa85ef2e6d441493e70b1adedaaf74360b9a9cc038c9897fbb42e
gy = 0x4b065332f5369883087e3943518b2da10cf9aa5e28a08f74968206bc2cc9b33e
n = 27424609 * 33419179 * 37898257 * 39440263 * 49818481 * 52559371 \
 * 53216161 * 59617639 * 61332769 * 90393689

e = EllipticCurve([a, b]); e.set_order(n)
g = e(gx, gy)

privkey = randrange(0, n); pubkey = privkey * g

dlogs = []; mods = []
for factor, power in factor(n):
	mul = Integer(n/factor)
	dlog = discrete_log_rho(mul * pubkey, mul * g, factor, operation="+")
	dlogs.append(dlog); mods.append(factor)

result = CRT_list(dlogs, mods)
print(result == privkey)

from sage.groups.generic import discrete_log
p = 28260319 * 30235481 * 39172037 * 39191063 * 41237249 * 47624921 \
	 * 51042223 * 71578097 * 77171399 * 107659879
a = 0x84a477c83f88e833a49b562869f1553a4abbf7ffe29893ca272bf85b300cfe43
b = 0x9567df38696eec2e80b4f43d056621c639938361b58260e12df91ac528c1ee2c
gx = 0x8e6da816bc1bd86cc7b9d393c08bcb9cdb44a016f44890419542ae43f34f9041
gy = 0x68e8c1d9e8ad5d256cfcf161c41090b5a7bbd3c7ca83f3cc185e289d8ce6ca0e
n = 0xacc602e17e38aa923887566d83b95ec21b72368cc6a8565bd907f71d4824e67d

e = EllipticCurve(Integers(p), [a, b])
g = e(gx, gy)

privkey = randrange(0, n); pubkey = privkey * g
pub_x, pub_y = pubkey.xy()
pub_x, pub_y = lift(pub_x), lift(pub_y)

dlogs = []; mods = []
for factor, power in factor(p):
	kf = GF(factor)
	ef = EllipticCurve([kf(a), kf(b)])
	gf = ef(kf(gx), kf(gy))
	pf = ef(kf(pub_x), kf(pub_y))
	dlog = discrete_log(pf, gf, n, operation="+")
	dlogs.append(dlog); mods.append(gf.order())

result = CRT_list(dlogs, mods) % n
print(result == privkey)

from sage.groups.generic import discrete_log_rho
p = (0x96c5871fc4eb345f5ce4db9d5411befdd421d26b << (174+42) * 4) | \
	0x782567ad50eb6dbbfe065f015efe2432450af3ad45
k = GF(p)
q = 488740366582603 * 35678046760529947 * 49362777024842803
g = k(int("961f7bc907fd1f03fc1bc37a09098989d0a6c697797791dd59d031c8\
b6f3439cf9cadeafbf9c251bb525c64045984e9bce3fe70cd339b9365\
378adf86d3735e89cff53e76d01edbcff42522d2e26b8147faa0e50bc\
d5bc231a80ee476b24f5207e55fce53e950924f288e22d9d76d319d68\
b57507e7fd811c2e9de5c2aaaebd7", 16))

privkey = randrange(0, q)
pubkey = g^privkey

factors = factor(q)
dlogs = []
mods = []
for factor, power in factors:
	mul = Integer(q/factor)
	dlog = discrete_log_rho(pubkey^mul, g^mul, factor)
	dlogs.append(dlog)
	mods.append(factor)

result = CRT_list(dlogs, mods)
print(result == privkey)

https://crocs.fi.muni.cz/papers/primality_esorics20

18

3.4 DSA/DH: Composite p

We have used the CADO-NFS [35] implementation of the Number Field Sieve, to
demonstrate the ease of computing the discrete logarithm of a public key using the 1024
bit DSA/DH parameters given in Appendix 2.1. We computed the discrete logarithm in
the order q subgroup of Z∗p1

as it defined the smallest group of only 336 bits.
The computation took 70 minutes to recover the private key on three Intel Xeon

X7560 @ 2.26 GHz processors (24 cores total), with total CPU time of 22 hours.
Furthermore, this computation is generic for all public keys using the given domain
parameters. The per-key computation is trivial and takes a few minutes at most.

Only one computation of the discrete logarithm on prime 1024 bit DSA/DH param-
eters is publicly known [15]. It used the fact that the prime was trapdoored and ran much
faster than random parameters. Even then, it took two months on a large computation
cluster, with a total CPU time of 385 CPU years.

References

1. Albrecht, M.R., Massimo, J., Paterson, K.G., and Somorovsky, J.: Prime and Prejudice:
Primality Testing Under Adversarial Conditions. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 281–298. ACM, New York, NY,
USA (2018). doi: 10.1145/3243734.3243787

2. American National Standard X9.62-1998, Public key cryptography for the financial services
industry: the elliptic curve digital signature algorithm (ECDSA). Preliminary draft, Accredited
Standards Committee X9 (1998)

3. Arnault, F.: Constructing Carmichael numbers which are strong pseudoprimes to several
bases. Journal of Symbolic Computation 20(2), 151–161 (1995). doi: 10.1006/jsco.
1995.1042

4. Arnault, F.: Rabin-Miller primality test: composite numbers which pass it. Mathematics of
Computation 64(209), 355–361 (1995). doi: 10.1090/S0025-5718-1995-1260124-2

5. Bernstein, D.J., and Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryptog-
raphy, (2017). https://safecurves.cr.yp.to/

6. Bernstein, D.J., Lange, T., and Schwabe, P.: The Security Impact of a New Cryptographic
Library. In: Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012.
Proceedings, pp. 159–176 (2012). doi: 10.1007/978-3-642-33481-8_9

7. Biehl, I., Meyer, B., and Müller, V.: Differential Fault Attacks on Elliptic Curve Cryptosys-
tems. In: Proceedings of the 20th Annual International Cryptology Conference. CRYPTO
’00, pp. 131–146. Springer, Berlin, Heidelberg (2000). doi: 10.1007/3-540-44598-6_8

8. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and Moeller, B.: Elliptic Curve Cryptog-
raphy (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492, pp. 1–35. RFC
Editor (2006)

9. Bleichenbacher, D.: Breaking a Cryptographic Protocol with Pseudoprimes. In: Public Key
Cryptography - PKC 2005, 8th International Workshop on Theory and Practice in Public
Key Cryptography, Les Diablerets, Switzerland, January 23-26, 2005, Proceedings, pp. 9–15
(2005). doi: 10.1007/978-3-540-30580-4_2

10. Bröker, R.: Constructing elliptic curves of prescribed order. Thomas Stieltjes Institute for
Mathematics (2006).

https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1006/jsco.1995.1042
https://doi.org/10.1006/jsco.1995.1042
https://doi.org/10.1090/S0025-5718-1995-1260124-2
https://safecurves.cr.yp.to/
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/978-3-540-30580-4_2

19

11. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M., Heninger,
N., Weinmann, R., Rescorla, E., and Shacham, H.: A Systematic Analysis of the Juniper
Dual EC Incident. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pp. 468–479 (2016). doi:
10.1145/2976749.2978395

12. Dorey, K., Chang-Fong, N., and Essex, A.: Indiscreet Logs: Persistent Diffie-Hellman Back-
doors in TLS, https://eprint.iacr.org/2016/999. (2016)

13. EnigmaBridge: Curated list of JavaCard applications, (2019). https://github.com/
EnigmaBridge/javacard-curated-list (visited on 03/17/2020)

14. FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION 186-4 Digital
Signature Standard (DSS). Standard, National Institute for Standards and Technology (2013)

15. Fried, J., Gaudry, P., Heninger,N., andThomé, E.:AKilobitHiddenSNFSDiscrete Logarithm
Computation. In: Advances inCryptology - EUROCRYPT2017, Paris, France, April 30 -May
4, 2017, Proceedings, Part I, pp. 202–231 (2017). doi: 10.1007/978-3-319-56620-7_8

16. Galbraith, S.D., Massimo, J., and Paterson, K.G.: Safety in Numbers: On the Need for Robust
Diffie-Hellman Parameter Validation. In: Public-Key Cryptography - PKC 2019 - 22nd IACR
International Conference on Practice and Theory of Public-KeyCryptography, Beijing, China,
April 14-17, 2019, Proceedings, Part II, pp. 379–407 (2019). doi: 10.1007/978-3-030-
17259-6_13

17. Harkins, D.: Synthetic Initialization Vector (SIV) Authenticated Encryption Using the Ad-
vanced Encryption Standard (AES). RFC 5297, pp. 1–26. RFC Editor (2008)

18. Doc 9303 - Machine Readable Travel Documents. Document, International Civil Aviation
Organization (2015)

19. IEEE Standard - Specifications for Public-Key Cryptography. Standard, IEEE Std 1363-2000
Working Group (2000)

20. Jancar, J.: ecgen, (2019). https://github.com/J08nY/ecgen
21. Jancar, J., and Svenda, P.: ECTester, (2019). https : / / crocs - muni . github . io /
ECTester/

22. Massimo, J., and Paterson, K.G.: A Performant, Misuse-Resistant API for Primality Testing,
(2020). https://eprint.iacr.org/2020/065

23. Miller, G.L.: Riemann’s Hypothesis and Tests for Primality. In: Proceedings of the Sev-
enth Annual ACM Symposium on Theory of Computing. STOC ’75, pp. 234–239. ACM,
Albuquerque, New Mexico, USA (1975). doi: 10.1145/800116.803773

24. Monier, L.: Evaluation and comparison of two efficient probabilistic primality testing al-
gorithms. Theoretical Computer Science 12(1), 97–108 (1980). doi: 10 . 1016 / 0304 -
3975(80)90007-9

25. Nemec, M., Sys, M., Svenda, P., Klinec, D., and Matyas, V.: The Return of Coppersmith’s
Attack: Practical Factorization of Widely Used RSA Moduli. In: 24th ACM Conference on
Computer and Communications Security (CCS’2017), pp. 1631–1648. ACM, NewYork, NY,
USA (2017). doi: 10.1145/3133956.3133969

26. Nir, Y., Josefsson, S., and Pegourie-Gonnard, M.: Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier. RFC 8422, pp. 1–34.
RFC Editor (2018)

27. Special Publication 800-89: Recommendation for Obtaining Assurances for Digital Signature
Applications. Standard, National Institute for Standards and Technology (2006)

28. NSA: Windows CryptoAPI Spoofing Vulnerability (CVE-2020-0601), (2020). https://
nvd.nist.gov/vuln/detail/CVE-2020-0601 (visited on 03/17/2020)

29. Oracle: Java Card API 3.0.5, Classic Edition, (2019). https://docs.oracle.com/
javacard/3.0.5/api/index.html (visited on 03/17/2020)

https://doi.org/10.1145/2976749.2978395
https://eprint.iacr.org/2016/999
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/978-3-030-17259-6_13
https://doi.org/10.1007/978-3-030-17259-6_13
https://github.com/J08nY/ecgen
https://crocs-muni.github.io/ECTester/
https://crocs-muni.github.io/ECTester/
https://eprint.iacr.org/2020/065
https://doi.org/10.1145/800116.803773
https://doi.org/10.1016/0304-3975(80)90007-9
https://doi.org/10.1016/0304-3975(80)90007-9
https://doi.org/10.1145/3133956.3133969
https://nvd.nist.gov/vuln/detail/CVE-2020-0601
https://nvd.nist.gov/vuln/detail/CVE-2020-0601
https://docs.oracle.com/javacard/3.0.5/api/index.html
https://docs.oracle.com/javacard/3.0.5/api/index.html

20

30. Pohlig, S., and Hellman, M.: An Improved Algorithm for Computing Logarithms over GF(p)
and Its Cryptographic Significance. IEEE Transactions on Information Theory 24(1), 106–
110 (1978). doi: 10.1109/TIT.1978.1055817

31. Polk, T., Housley, R., and Bassham, L.: Algorithms and Identifiers for the Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC
3279, pp. 1–27. RFC Editor (2002)

32. Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of Number Theory 12,
128–138 (1980). doi: 10.1016/0022-314X(80)90084-0

33. Svenda, P.: JCAlgTest: Detailed analysis of cryptographic smart cards running with Java-
Card platform, (2019). https://www.fi.muni.cz/~xsvenda/jcalgtest/ (visited on
03/17/2020)

34. Takahashi, A., and Tibouchi, M.: Degenerate Fault Attacks on Elliptic Curve Parameters in
OpenSSL, (2019). https://eprint.iacr.org/2019/400

35. The CADO-NFS Development Team: CADO-NFS, An Implementation of the Number Field
Sieve Algorithm. Release 2.3.0. 2017. http://cado-nfs.gforge.inria.fr/.

36. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.9). 2019.
https://www.sagemath.org.

37. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, Second Edition. Chap-
man & Hall/CRC, Boca Raton, FL, USA (2008)

https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1016/0022-314X(80)90084-0
https://www.fi.muni.cz/~xsvenda/jcalgtest/
https://eprint.iacr.org/2019/400
http://cado-nfs.gforge.inria.fr/
https://www.sagemath.org

	Fooling primality tests on smartcards

