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Abstract. Oblivious Parallel RAM (OPRAM) enables multiple clients to synchronously make read and
write accesses to shared memory (more generally, any data-store) whilst hiding the access patterns from
the owner/provider of that shared memory. Prior work is best suited to the setting of multiple processors
(or cores) within a single client device, and consequently there are shortcomings when applying that
work to the multi-client setting where distinct client devices may not trust each other, or may simply
wish to minimise – for legal reasons or otherwise – the volume of data that is leaked to other client
devices. In prior constructions, obliviousness from the storage provider is achieved by passing accesses
between the clients in one or more sorting networks, both before and after the logical access is made to
the shared memory: this process inherently leaks the contents of the accesses to those other clients.
In this paper we address this issue by introducing the notion of client obliviousness for OPRAM, which
asks that clients should only learn as much as is necessary for the scheme to function correctly. We
provide an instantiation using established tools, with careful analysis to show that our new notion and
regular OPRAM security are met. This introduces several subtleties which were not previously apparent,
and we further discuss the implications of using the OPRAM model in the context of outsourced storage.
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1 Introduction
Oblivious RAM is a cryptographic primitive that enables a client to store and retrieve blocks of data
on an untrusted storage medium. The beauty of this primitive is that a client can do this in such a
way that no information about their access pattern is revealed to the storage server beyond the total
number of accesses. This primitive dates back to the seminal work by Goldreich and Ostrovsky [GO96,
Gol87]. ORAM has been extensively studied, both in terms of advanced capabilities and stronger security
models [PR10, SCSL11, CLP14, GGH+13].

In this paper we consider the problem of hiding the access pattern when multiple clients concurrently
read from and write to an untrusted storage server. This is a fundamental problem in the realm of protect-
ing outsourced storage and verification of outsourced computations – Boyle et al. [BCP16] defined and con-
structed Oblivious Parallel RAM (OPRAM) and subsequent works have mainly focused on improving the
efficiency of realized schemes [NWI+15, CLT16, CCC+16, NK16, SZA+16, CS17, CCS17, CGLS17, CNS18].

The OPRAM literature to date is most suited for the situation where the clients are co-located, such
as when each client represents (possibly a core of) a processor in the same computer. Trust between
the clients is required because the clients pass their accesses to each other and sort based on the access
locations (in order to deal with access conflicts): this process stops the server learning from which client a
given access originated. In some situations the clients may be restricted by legal systems or organisational
policy and thus want their memory accesses to remain as private as possible from the server (as provided
by OPRAM) but also if possible from the other clients. If the clients are processors – or more generically,
devices – that are based in disparate geographic locations and are accessing some central (storage) service,
then not only is inter-client communication an issue of cost, but also a concern regarding both the privacy
and legal implications of multi-jurisdiction data sharing. In short, the low-latency and pairwise-secure
channels assumed by previous descriptions of OPRAM may not be realistic in practice.

Motivating Scenario

Consider an organisation with operating facilities in several distinct locations, with numerous legal require-
ments for each jurisdiction meaning that a strict access control regime and audit trail is required for the
data that flows between the clients, and data that is stored on a central storage server. This organisation
wishes to store data in such a way that all facilities can append their latest reports at regular intervals,
but access the other facilities’ data only when necessary (and perhaps only when approved following legal
procedure). To do this, a storage provider is tasked with holding the database, but an oblivious RAM
protocol is used to hide access patterns, and since the regular update procedure is at a predictable time,
oblivious parallel RAM is used to ensure that the identity of the facility updating an entry is hidden from
the storage server.

How does this scenario fit with the security model for OPRAM in the literature? Do existing con-
structions facilitate mechanisms for reducing the volume of data that is leaked to each client as part of
the protocol? In this context, there may exist other central entities that are used by the organisation to
assist with enhancing privacy for the clients as part of the protocol – if this is the case, then what are the
trade-offs regarding efficiency and trust by using such entities? It is these questions that we approach in
this work.

Contributions

In this paper we introduce an additional security property for OPRAM schemes, which we call client
obliviousness (CO), which informally states that the clients should learn as little as possible about the
other clients’ accesses. Numerous subtleties consequently arise, and we address the minimal leakage in (a
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large class of) OPRAM schemes and the effects of techniques such as client anonymisation and storage-
space partitioning. We provide an instantiation that is functionally equivalent to the subtree-OPRAM
scheme of Chen et al. [CLT16], yet to obtain security in the strong CO sense, the constituent parts are
almost all replaced with other primitives (from the cryptographic literature). We conclude by providing a
thorough discussion of the implications of our approach, and potential extensions and modifications.

Threat Model

The system consists of a set of users, a storage database S, and a routing entity R. The users encrypt data
using symmetric encryption and store it with S, and S is assumed to try to learn as much as it can from
correct execution of the protocol, i.e. is honest-but-curious (HbC). Any collusion between one user and S
leads to total loss of any security – this is inherent in ORAM and OPRAM schemes in which the client/all
clients have shared ownership of the stored data. The router R is to carry some of the management burden,
yet it should not learn which users are making which accesses, and is also assumed to be HbC. We use
‘semi-trusted’ to refer to the combination of user anonymity and HbC that we desire from R.1

Related Work

Oblivious RAM is a very active research area and was initially introduced by Goldreich and Ostro-
vsky [GO96]. In this paper, we consider the parallel version of ORAM first formalised by Boyle, Chung
and Pass (BCP) [BCP16] in work that built upon several earlier ideas [GM11, WST12, LPM+13]. Their
OPRAM formulation requires considerable inter-client communication in order to synchronise before and
after accesses to the data storage occur. In particular, clients coordinate with each other in an obliv-
ious aggregation phase to ensure that no two clients access the same block simultaneously, and if two
(or more) wish to write to the same block, some regime defines which client proceeds. Chen, Lin
and Tessaro (CLT) [CLT16] provided a more efficient OPRAM construction, named Subtree-OPRAM,
based on an extension of the well-known Path-ORAM [SvS+13] protocol: we will build upon this con-
struction later on. CLT also provided a generic construction from ORAM to OPRAM, with slightly
worse complexity than Subtree-OPRAM. Other works have subsequently given further optimised OPRAM
schemes [CS17, CCS17, CGLS17, NK16, CNS18].

One area in which curious/malicious clients have been considered is the realm of Multi-client ORAM
(MC-ORAM) [FWC+12], where a number of distinct data owners (clients) use some central data store and
can delegate read and write access to other users for their files. (Recall that in OPRAM the entire database
is necessarily shared between all clients, so there is no concept of file ownership.) Security of access control
in the MC-ORAM context has been studied by Maffei et al. [MMRS15, MMRS17] (hereafter MMRS) and
their aim is to model the capabilities of adversarial clients who wish to learn i) which clients are making
read requests and ii) any information about write requests to data that the adversary does not have access
to. We investigate a subtly different scenario that is motivated by OPRAM. Consider a database that is
collectively owned by a number of clients who share key material, and is partitioned such that all clients
can perform accesses on only a subset of the database – an explicit property of many OPRAM schemes in
the literature. If client A wishes to read an entry in the database, it will (usually, if the eventual position
is not in its partition) be directed to the partition accessor for that data item, client B, who will make the
lookup. Client B can see the value being written or read, this is essential to the proper operation of the
system, however, they should not learn the identity of client A. So far this is captured by the definitions
of MMRS, however, in our system architecture, following OPRAM constructions in the literature, the

1This abstraction – using a device that would normally exist in the system topology of our application scenario – takes
inspiration from prior work on verifiable computation [AJCC16], where a simple and minimally-trusted entity acts as a key
distribution centre for the clients.
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new location of the data item after it is read could be in another partition, and in fact it may well be
with high probability. As far as MMRS are concerned this means that data ownership is transferred (to
randomly chosen other clients), something their model can’t support. We reiterate that this per-timestep
partitioning is a natural method for achieving OPRAM since it aids both obliviousness and efficiency.

Chen and Popa [CP20] target hiding file metadata in outsourced storage using multi-client ORAM and
two servers that use multi-party computation. Their work hides user identities from the servers, which
MMRS do not, however, the malicious clients they consider are essentially the same as in MMRS.

TaoStore [SZA+16] is an extension of Path-ORAM to the asynchronous setting, achieved by employing
a trusted proxy; their aim is not to provide an OPRAM construction, but rather to deal with continuous
and asynchronous requests to the storage server by one or more clients in the presence of an adversary
that learns timing information of the accesses. The security model presented by the authors is cast as a
game-based notion: we follow this approach, however, this is approximately where the similarities between
their problem setting and ours end. Their proxy is considerably more trusted than the router we wish to
employ – the paper’s focus is to bundle concurrent reads and eviction operations efficiently and not to hide
any information from a client obliviousness perspective. We note however, that employing a trusted proxy
can give strong guarantees of client obliviousness, and there may exist scenarios slightly outside of our
target problem setting for which this – or a combination of this approach and ours – is a more appropriate
solution.

Chakraborti and Sion [CS16, CS19] study efficiency in parallel accesses to ORAM architectures. In
the process, they consider the information leakage to each client inferred by the global set of accesses, but
their threat model is considerably weaker than our notion of client obliviousness: no attempts are made
to stop observation of accesses of the other clients. As mentioned before, works regarding multi-client
ORAM schemes fall into a similar regime. Recall that in this setting, multiple clients have their own data,
however, stored in a single ORAM, where each client is free to share parts of their data with other clients.
Franz et al. [FWC+12] initiated the study of multi-client ORAM by introducing the concept of delegated
ORAM. Karvelas, Peter and Katzenbeisser [KPK16] introduced Blurry-ORAM, a multi-client extension
of Path-ORAM that tried to hide the access patterns for their own data from the storage server as well as
other clients. Clients owning only some data and sharing with other clients requires sharing and revocation
algorithms: these concerns are not relevant to the OPRAM scenario.

Organization of the Paper

In Section 2 we review the necessary background regarding ORAM and its parallel version OPRAM.
In Section 3, we turn our attention to defining client-oblivious OPRAM, and in Section 4 we provide a
construction with associated security proof that demonstrates how to achieve this notion. We conclude
the paper in Section 5. Additional preliminaries and a brief discussion on non-interactivity can be found
in the Appendix.

2 Preliminaries
We begin by setting the scene for Oblivious RAM [GO96] and its parallel analogous definition as put
forward by BCP [BCP16]. Throughout this section, we follow the notation from both BCP and CLT.

2.1 Notation and Abstraction Level

For vector x, let x[i] indicate the i-th component of x, and for integer n let [n] be the set {1, ..., n}. We will
at times define a vector as the concatenation of vectors: in this case consider the result as a matrix with a
vector in each column. If L is a matrix, we use Li,j to specify the entry in the i-th row and j-th column,
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and we will give context where necessary to identify which component serves which purpose. ∆(·, ·) is the
statistical distance between two distributions.

Since our work is mainly applicable to the setting of outsourced storage, we follow CLT’s approach and
notation for casting O(P)RAM in terms of clients, servers and accesses, rather than as abstract (parallel)
RAM program compilers – the formulations are in our setting equivalent. An oblivious RAM compiler
essentially turns the logical accesses to the storage medium into a sequence of actual accesses, in such a
way that the logical requests are hidden if the honest-but-curious server only sees the actual sequence of
accesses. In the multi-client setting, the adversary sees the transcripts of communication among the clients
(in addition to the communication between each client and the server).

Fix N ′, the number of cells (each of size B′) of the (external) database, and m, the number of clients.
Interactions between any client and the server’s storage (i.e. actual accesses) are of the form Acc(op,a, v)
where op ∈ {read,write}, a ∈ [N ′], and v is either in {0, 1}B′ (for writes) or ⊥ (for reads). An oblivious
parallel RAM (scheme/compiler) O = {Ci}i∈[m] takes as input security parameter λ, storage size parameter
N , and block size B, and proceeds in a sequence of T rounds, which represent the synchronous accesses of
the m clients. The logical accesses, which can be regarded as ‘pre-compiled’, are defined as above except
for being in the correct spaces: a ∈ [N ] and v ∈ {0, 1}B∪{⊥}. For all i ∈ [m], denote the logical operations
of client Ci as

yi =
(
Acc(opi,r,ai,r, vi,r)

)
r∈[T ].

Then, collect these operations using y = (y1, . . . ,ym). In the interactive OPRAM protocol that is
produced by the compiler from the parameters and these logical accesses, the clients can communicate with
each other (direct, point-to-point) and make ‘actual’ accesses to the server S(N ′, B′). In our construction
later, we will additionally allow clients to further interact with a routing entity R. In each round, each Ci
will output (intuitively: receive) some output vali,r and update its local state. If two or more parties wish
to access the same location in a given round, we term this an access collision. Similarly, if two or more
parties wish to write to the same location in a given round, we term this a write collision.

We follow CLT in writing the server as S(N ′, B′) where N ′ is a function of N , and B′ is a function of B
(and the security parameter) – in all existing schemes the relationship for block size expansion represents
encryption: B′ = B +O(λ).

2.2 Write-Conflict Resolution

BCP and CLT followed the concurrent-read-concurrent-write (CRCW) approach, explicitly insisting that
in the event of a write collision, the client with the lowest identifier will be the one that gets to go ahead
and write. We do not make such a restriction, and leave the write-conflict regime (Reg) as a system
parameter. Fich, Ragde and Wigderson [FRW84] detailed a number of possible regimes, including:

• PRIORITY [Gol78] (as used by BCP and CLT): clients have assigned identifiers, and priority is given
to e.g. the client with the lowest identifier;

• ARBITRARY [Vis83]: An arbitrary processor is allowed to write;

• COMMON [Kuc82]: Simultaneous writes to a location are allowed as long as the clients are writing
the same data;

• COLLISION: No client gets to write, and the special symbol ⊥c is written to the memory location.

Further, we also note that the concurrent-read-exclusive-write model (at most one client is allowed to write
to a location in each time step) described by Fich et al. and introduced by Fortune and Wyllie [FW78] may
also be appropriate for our setting, though this is a simplification that reduces a number of the challenges

6



that we tackle later on. In the scenario that motivates our work, the entity (or group of users) tasked with
access control would define which regime is in place for a subset of the rounds, or for the lifetime of the
system.

2.3 Oblivious Parallel RAM

For an OPRAM compiler to be meaningful and useful, it must be correct and oblivious. We again follow
CLT in this regard. We need to introduce the write-conflict regime Reg as a parameter of the algorithms
used to determine these two properties. We write O(y) as the executed compilation for logical (sequence
of) accesses y. Inspired by CLT, we define

ACPO(λ,N,B, Reg,y) = (ACP1, . . . ,ACPT )

as the collection of communication patterns for each round, representing the transcript of communication
between the clients, (between the clients and the third party, if it exists,) and between clients and the server.
Intuitively, a scheme provides obliviousness if an adversary given this information cannot infer anything
about y (other than the number of accesses). Similarly, we can define ACPi,r as the communication pattern
for client Ci in round r. Further, write the outputs for client i as vali = (vali,1, . . . , vali,T ) and all outputs
as

OutO(λ,N,B, Reg,y) = (val1, . . . ,valm).

For an OPRAM compiler O, outputs z = OutO(λ,N,B, Reg,y) are correct with respect to (parallel
access) sequence y if for each command Acc(opi,r,ai,r, vi,r) of y, the output vali,r in z is either the most
recently written data in ai or ⊥ if the location is yet to be written to. Further, it must be that write
regime Reg has been successfully implemented in the execution. Again following CLT, define Correct as
a predicate that takes as input (y, z) and returns 1 if the outputs z are correct with respect to y, and 0
otherwise.

Definition 2.1 (OPRAM [CLT16]). An OPRAM (scheme/compiler) O provides correctness and oblivi-
ousness if, for all N,B, T and fixed Reg, there exists a negligible function µ : N → R such that for every
λ ∈ N, and for every two (parallel sequences) y and y′ of length T :

• Correctness:
Prob[ Correct(y,OutO(λ,N,B, Reg,y)) = 1] ≥ 1− µ(λ),

• Obliviousness:
∆
(
ACPO(λ,N,B, Reg,y),ACPO(λ,N,B, Reg,y′)

)
≤ µ(λ).

While the work of BCP considered general programs where not all of the m processors need to be
active at each time step, we follow the approach of CLT, who consider the situation with all processors
responsible for a partition of the storage and all participating in each time step (we discuss later the ability
for protocols to provide dummy read requests for each client not wishing to make a genuine access). They
reference Stefanov et al. [SSS12] as the source of the partitioning technique. The BCP approach can still
be regarded as using partitioning, however their approach insists that this is in a sense dynamic for each
time step: the protocol chooses a representative for each data access.

2.4 Constructing OPRAM

To achieve OPRAM, the compiler appears to need to perform the following steps, with each communication
step among clients having fixed topology (and being independent of inputs) and each access to the storage
medium being protected by ‘regular’ ORAM security:
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• Identify repeated (colliding) requests, and create dummy requests if any collisions exist. This step
was termed the CPU co-ordination phase by BCP;

• Perform read accesses for the real and dummy requests, and transmit these values to the requesters;

• Put back or overwrite values in their newly assigned locations, and flush (or equivalent).

The challenge in the third step is to ensure that not only are these writes oblivious from the server, but
also the parallel writing procedure does not cause a failure of the ORAM protocol being simulated: this
could either occur if a client’s local storage becomes too big, or if a client cannot write back to a location
(or bucket) that is already full.

To give an idea of the mechanisms required to provide parallelism in a memory-oblivious manner, we
now briefly present the ideas behind two constructions from the OPRAM literature, by BCP and CLT.
We refer to these works for complete and formal definitions of the concepts described, and also for full
exposition of the sub-protocols that are combined to build the OPRAM compilers.

The BCP Construction

First, we briefly detail the construction of BCP [[BCP16], § 3]. The compiler builds OPRAM in a tree-
based manner, using oblivious sorting networks [AKS83]. We refer to the three steps above and give
general intuition of the inter-client sub-protocols.

The main technical tool to solve CPU (client) co-ordination, the first bullet point above, is an input-
independent oblivious aggregation procedure allowing CPUs to learn whether two or more want to access
the same position, and in the event of a write, decide who gets to proceed (all others do a dummy read
and know they’re doing a dummy read). First, the clients sort based on the data item they want to access,
so that all conflicting accesses are adjacent, then among conflicting clients, the one with the lowest index
learns all information about the conflicts (so that it knows who to transmit to later). Then, once the
actual accesses have been made, oblivious multi-cast allows the designated accessor to send back requested
values to the (other) desiring clients. Doing put-backs in a parallel manner requires a different approach
to regular tree-based ORAMs, since the root node would overflow – data is thus placed into level logm of
the tree: the trick here is for the clients to pass the data using a (data-independent) routing network that
always has logm rounds, such that at the end each client is responsible for one node at the write-back
level of the tree. Simultaneous flushing (pushing data items ‘down’ towards the leaves as far as they can
go, for a random path for each client) requires aggregation, and the client identifier again provides the
marker for which client should perform flushing on nodes (this is particularly likely higher up the tree).

The CLT Construction

We focus on the Subtree-O(P)RAM [[CLT16], § 3] construction. Subtree-ORAM is a generalisation of Path
ORAM [SvS+13] such that m ≥ 1 accesses can be made simultaneously: to do this, path fetching, write-
back and flushing are all done on an entire subtree to eliminate sequentiality. As in BCP, fake reads must
be created to disallow trivially observable data access collisions. Subtree-OPRAM is an instantiation of
Subtree-ORAM but with m clients making one access each per round: thus (i) the clients must obliviously
agree on the fake reads and write-back locations; (ii) the individual stashes of the clients emulate the single
stash in the single-user version; and (iii) parallel flushing emulates the single-client flushing procedure. The
idea is to start with a partitioned tree-based ORAM, with each client independently managing its own
subtree. To make this work, a partition map is included with the regular position map. To write-back
and flush, instead of sequentially placing the new locations back in the tree, the items in the stash are
combined with the read locations for all clients and are essentially permuted: each item is assigned a new
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position and then placed on the furthest down bucket on its path in the previously-read ‘global’ subtree –
this ensures that the re-writing of the accessed subtree (for this timestep) is done completely in one go.

To give more detail, we briefly summarise Path-ORAM and then provide a description of the two-step
transformation to Subtree-OPRAM. To implement to storage space for N data blocks, the storage space
is represented as a complete binary tree with depth O(logN). Each node in the tree is a “bucket” that
contains a fixed number of Z = O(1) encrypted blocks. In order to hide the access pattern, each data
block is assigned to a random path ` and stored in some bucket along this path. After each access, the
assignment needs to refreshed to a new path `′i. Each client also keeps an additional (small) memory of
overflowing data blocks, known as the stash. Now for Subtree-OPRAM, we assume that m = 2l and the
top logm levels of the tree are removed (in fact, moved to the stash) turning it into a forest of m complete
binary trees T1, . . . , Tm (each of depth logN − logm) where each client (partition accessor) is responsible
to manage one of these trees. In parallel, each client does the following:

1. Using the global position map, client Ci finds the path `i assigned to ai and delegates the job of
accessing the data item to the responsible client Cj managing Tj in which `i is contained.

2. After retrieving all paths that correspond to requests in the client’s partition, these paths form a
subtree of Tj . The client can now find the data items either in the subtree or the local stash, and
send back the items to the requesting clients.

3. After receiving a data item that it requested, Ci assigns to ai a new path `′i and delegates the job of
writing back to the client responsible for the tree containing `′i. In the event of a write, the new data
to be written is including in the transmission to the partition owner of the new position `′i.

4. Finally each client runs the subtree-flushing procedure locally on their obtained subtree and own stash
to write the subtree back into their partition Ti.

The set of oblivious inter-client communication protocols that enable this procedure are mostly in-
spired by those given by BCP. (We reiterate that oblivious here means from the perspective of a network
eavesdropper that sees ciphertexts.)

2.5 System Assumptions

Here we clarify our setting and briefly discuss some of the choices we have made. We assume a group of
m clients who will interact with some central data store (‘server’) that is capable of storing N ′ fixed-size
data items (‘blocks’), plus a router R. We assume R to be a very simple device and we minimise the trust
assumptions placed upon it as much as is possible.

The task of R is to prepare the received client access requests in a well-formed manner which includes,
e.g., to remove repetitions in accessing the same data items. Note that this routing entity could be an
elected group of the set of users (with the election occurring in a separate pre-processing phase), or run
using multi-party computation between two or more of the users. However, we prefer to aid readability
by explicitly assuming this routing entity to be a separate one.2 All existing ORAM schemes assume
at a minimum that plaintext data blocks are encrypted, and it is the ciphertexts that are subject to
ORAM operations. All clients possess the (symmetric) key material used to encrypt the data blocks,
plus the system parameters (including e.g. encryption algorithms) necessary to implement the compiled
OPRAM protocol (and thus interact with the database hosted by the server). The encryption mechanism is
assumed to provide semantic security, and the constructions will apply further primitives to the plaintexts

2The router can, if required, (i) enable a fully non-interactive system architecture, where the clients only communicate
with R and not each other; and/or (ii) assist with the audit trail, in the motivating example of restrictive legislation. In
Appendix B we give a brief discussion on non-interactivity in OPRAM schemes.
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and ciphertexts involved. We assume that there are pairwise secure communication channels between all
m clients, and between the clients and R, however we do not assume that the cost of this communication
is free or negligible.

In prior work the clients are given identifiers {1, . . . ,m} (or more generally elements of some identifier
space ID) and the write-conflict regime Reg is fixed as PRIORITY as defined in Section 2.2. Defining
this regime as a parameter means that we also need to make the mechanism for choosing (unique) client
identifiers as the designer’s prerogative. If identifiers are fixed and known amongst the clients (e.g. the
identifier is the location of the client) but Reg uses some hierarchical mechanism then an adversary may
be able to calculate its position in the hierarchy using its requests. In this sense, a random allocation of
(unique) identifiers is the simplest setting, but we wish to additionally build protocols that defend against
such side channels.

We will only consider tree-based O(P)RAMs in this work, and as such we will often use the terminology
(paths, nodes etc.) to reflect this. Two important components of O(P)RAM schemes are the position map,
that maps positions for the logical accesses a ∈ [N ] to locations in the storage medium a′ ∈ [N ′], and
the local stash. In our construction we assume that R holds and updates the position map – this is to
make the protocol simpler and reduce the challenges invoked by synchronisation. Prior work (such as
Path ORAM [SvS+13]) has shown how to recursively store the position map in another ORAM, and while
this appears possible in our setting it is not clear if the extra communication rounds required to securely
realise this would benefit what is, for the most part, a proof-of-concept. Since our construction functionally
emulates the Subtree-OPRAM protocol of CLT, the analysis of stash is inherited from their work.

We have already mentioned the partitioning existing in prior work: the storage medium’s data locations
are (approximately equally) divided into N ′

m entries and each of the clients is responsible for making accesses
in just one partition. This implies the existence of some partition map, where the allocation may either
be fixed for all T rounds, or be dynamic. If the storage medium itself is geographically divided then it
would certainly make sense for the partitions to be fixed, however we leave the decision for this to the
implementer.

3 Client-oblivious OPRAM
Deploying current instantiations of OPRAM would mean that in the (fixed-topology) shuffling phase, that
decides which client should be responsible for writing to which location in the database, the records of
each client are by design passed between a large number of the other clients. This may be undesirable,
and it will often be preferable that an instantiation would limit the sharing between the clients as much
as possible. We discuss the unavoidable leakage and give a security model that captures this scenario.

3.1 Inevitable Leakage in OPRAM

Given the system assumptions detailed in Section 2.5, we now indicate what it is possible to hide, and
what information must necessarily pass to clients in any protocol that achieves the OPRAM definition
(Def. 2.1).

We have fixed that each client can only read and write to one partition, on behalf of the other clients.
In each round, parallel requests need to be managed before and after the actual access, and ensuring (at
most) two a priori-fixed representatives for each actual access (the read, then the write-back) fulfils this
role. This in itself makes client obliviousness without a trusted proxy (à la TaoStore [SZA+16]) more
challenging: we seek to minimise the impact. If a client makes a request to a position that is not in
their partition, then some other client doing the read will observe the data in this position, and the client
writing back will necessarily see the prior content of the cell or the new data being written (though it
should not be able to distinguish these cases). This leakage is unavoidable, and even if it was protected in
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one time-step using some encryption mechanism, the partition-accessing client could of course just read
that data item in the next time-step. More important from our point of view is that the identity of the
client that originally made the access should be hidden from the partition accessor. We must thus split
the ORAM access process into two steps: first the clients read m data items from the storage, and then
those data items plus potentially some other items are written back (or overwritten, in the case of writes)
and flushed into position.

To mitigate some of the data leakage we wish to avoid, an anonymisation step could occur before any
data sharing between the participating clients takes place. The goal here is to hide client identities, as
much as is possible without inhibiting functionality, from other clients, but also from any routing entity
or other third party. In doing this, the OPRAM protocol’s ability to remove repeated entries and return
the retrieved values to the correct clients invokes many challenges. For a given round, in the event that
multiple clients wish to access the same data item, fake read accesses must be created such that requests
for a total of m positions are eventually passed into what can be thought of as the non-parallel component
of the OPRAM compiler.

Intuitively, we consider a security game in which an adversary tries to learn or infer some information
that was not passed via its (set of) corrupted client(s). The adversary A provides some parameters:
the number of clients, the size of the database, and the number of ‘rounds’ (time steps) of the program
(sequence of accesses). Then, the challenger constructs a program based on these parameters, with random
data for writes. The compiler then runs, turning this program into an interactive OPRAM protocol. For
each round, A receives the transcript of all communication that it has elected to see, as defined by a
corruption strategy it provides. Then, A must submit its output of an access that it believes was made: a
client, a data position and a round. Since A will see accesses for its corrupted clients in their partitions,
we normalize A’s advantage by the number of uncorrupted clients in the round it gave, as output.

Given these concerns, we wish to design schemes that give the following protections simultaneously:

• The entity hosting the server should not be able to infer anything beyond the number of accesses,
i.e. regular ORAM security;

• The entity hosting the server should not be able to distinguish parallel requests (i.e. multiple requests
to the same position, compared with the same number of requests to distinct positions), i.e. regular
OPRAM security;

• The protocol should be client oblivious: For any access that a client did not make itself, it should not
learn:

– the originating client
– the position being read, for positions outside of its partition

A possible extension to client obliviousness is to also capture the data being written, however: (1) formal-
ising this in a definition is very challenging, and (2) our construction does not cover this and cannot be
easily extended to do so.

We now give a definition for client obliviousness which captures these properties: clients cannot learn
information about other clients’ accesses, beyond the inevitable leaks discussed above. In Section 3.3 we
discuss some potential extensions to our definition.

3.2 Client Obliviousness for OPRAM

We cast CO as a game-based notion: this allows more fine-grained corruption of clients, however this
necessitates care regarding win conditions. Our construction uses public-key primitives and so we require
a computational adversary, moving away from the statistical security definitions in many areas of the
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ExpCO-OPRAM
O, A (λ):

1 : (m,T,N,CorrStrat)← A
2 : for i = 1, . . . ,m do
3 : for j = 1, . . . , T do
4 : opi,j ←$ {read,write}
5 : if opi,j = write do
6 : vi,j ←$ {0, 1}B

7 : else vi,j ←⊥
8 : ai,j ←$ {1, . . . , N}
9 : yi,j ← Acc(opi,j ,ai,j , vi,j)

10 : yi ← {yi,1, . . .yi,T }
11 : y← {y1, . . . ,ym}

12 : (ACP1,1, . . . ,ACPm,T )← O(y)
13 : for i = 1, . . .m do
14 : if CorrStrat[i] 6=⊥ then
15 : ∀j ≥ CorrStrat[i] do
16 : TrnA ← TrnA ∪ {ACPi,j}
17 : (id,a, r)← A(TrnA)
18 : if ∃Acc(·,aid,r, ·) ∈ y then
19 : return 1
20 : else return 0

Figure 1: Client Obliviousness security experiment.

O(P)RAM literature. Our game-based security experiment for CO is given in Fig. 1. The idea is that
an adversary submits a set of parameters, which specifies the number of clients and rounds. Then the
game will, for each access, choose read or write, choose a location, and if a write choose some data. The
adversary specifies its corruption strategy, e.g. client 7 from round 3 onwards, client 2 from round 6
onwards: this is a vector CorrStrat of m elements, where entries are either a round number {1, . . . , T} or
⊥. In doing so, the adversary specifies the points from which it sees a ‘decrypted’ version of each client’s
transcript. Finally, it outputs a triple: a client identifier, a position in the ORAM and a round identifier.
If the adversary had corrupted that client before that round, then it trivially loses.

Since we assume that all clients are active in all rounds, if the adversary has corrupted a client and
does not see any accesses to its partition then it learns that none of the clients accessed its data items.
Further, since a client has to read (in cleartext) requests in its own partition, the adversary can just corrupt
one client, wait until it is asked to make a request in its own partition (on average one per round) then
output that data item with a random other client identifier, and win with probability upper-bounded3 by

1
m−1 . This means we must normalise the success probability by the number of uncorrupted clients in the
round that was output by the adversary: CCr (number of corrupted clients in round r) is calculated by
incrementing a counter once for every entry in CorrStrat smaller than or equal to r.

Definition 3.1 (Client Obliviousness (game-based)). O is a Client Oblivious Oblivious Parallel RAM
(CO-OPRAM) compiler if there exists no adversary with non-negligible advantage in the following sense:

AdvCO-OPRAM
O, A (λ) =

∣∣Prob
[

ExpCO-OPRAM
O, A (λ) = 1

]
− 1
m− CCr

∣∣,
where experiment ExpCO-OPRAM

O, A (λ) is given in Fig. 1 and CCr is defined as above.

3.3 Extensions to Client Obliviousness Model

In this section, we discuss some potential extensions to this representation of client obliviousness.
A hierarchy of adversarial power exists for game-based definitions of client obliviousness (CO). Specif-

ically, an adversary can:
3Note that any protocol achieving regular OPRAM security needs to (at a minimum) produce one fake read every time

that an access collision occurs. If the protocol hides which reads are real and which are fake from the reading clients, and the
probability of access collisions is high, then this probability may be much smaller.
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• have access to ‘decrypted accesses’ of one client

• have access to ‘decrypted accesses’ of k clients, for k ∈ [m]

• (Section 3.2) have access to ‘decrypted accesses’ of k clients, plus can specify from which point onwards
it wants to corrupt each one (thus being able to win by outputting one of these clients before corruption
time)

• adaptively corrupt clients as the game progresses

We believe that the corruption power that we presented in Section 3.2 is the most interesting and natural,
and discuss here how it is possible to mitigate against any additional powers.

Intuitively the client obliviousness game requires that the adversary can not distinguish which of the
other clients made memory accesses to its portion of the memory. We now discuss some variants of this
definition.

The definition that we present is in a sense analogous to one-wayness: the adversary is required to
produce a triple where for any two values being fixed there is only one valid entry in the third value. One
potential modification is to move towards an indistinguishability-based notion, however there does not
appear to be any direct analogue to our game, since the adversary could not provide two programs. A
similar argument follows for real-or-random notions: it is not clear what either execution would consist
of. It is possible to ask subtly different questions, e.g. define security if the adversary can not tell if two
clients made an access to the same memory location, however the relationship between such a definition
and ours is not immediate.

As mentioned earlier, corruption in our definition is static: the adversary provides one vector indicating
its strategy. The setting of adaptive corruptions does not appear to be much more difficult to provide
security in, since the adversary has no power over the logical accesses being executed. However it is not
clear if there is a separation result here (a protocol that is secure in the static setting but insecure in the
adaptive setting), mainly because we are only aware of one construction (in Section 4) that meets the
static CO notion.

We assume that the clients, the server and any additional parties operate according to the protocol,
and even after the adversary corrupts a client the adversary can then perform computations based on the
information it receives via the transcripts. Extending to malicious clients that can arbitrarily deviate
would require some additional assumption that this behaviour retains correctness. It may be possible
(and efficient) for the challenger to check this for some protocols however in general this may be very
challenging, and any security reductions would need to take this into account – further it is not apparent
if this strengthening is necessarily well motivated in our motivating scenario.

Security properties that capture the ‘information learned’ by some adversary are often presented using
a simulation-based definition. In our setting this does not appear to help, since the simulator’s task
of extracting the adversary’s inputs is very challenging. Providing security proofs for schemes in this
framework is left as an open problem.

4 Construction
Removing the inter-client communication between entities in a parallel ORAM scenario where multiple
clients access data will often be a desirable property in the realm of the system architecture that we
consider. However, current OPRAM schemes inherently require the clients to communicate with each
other in order to access the requested data item within the ORAM. Achieving the above notion of client-
obliviousness is not a straightforward task and hence, our system assumptions (described in Section 2.5)
have been made to enable a clear exposition here.
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In this section, we provide a detailed overview of our construction which (functionally) emulates the
Subtree-OPRAM protocol of CLT (see Section 2.4), with major modifications to the sub-protocols to
ensure client obliviousness. We now set the scene and begin with m clients C1, . . . , Cm and routing entity
R, where each client is “responsible” for accessing data within one distinct part (partition) of the ORAM
(data storage), even on behalf of the other clients. We assume that all m clients share a secret symmetric
key for a semantically-secure encryption scheme, with which the data blocks are encrypted. Note that the
router does not possess this key. Each client now wishes to execute an operation (either read or write) to
a data item within the ORAM. These clients wish to store N items (each of size B, for N a power of two)
on a server by using N ′ cells with the assistance of R. Following our motivating scenarios for this type of
protocol, some type of router or equivalent infrastructure will already exist, and we will simply make use
of it. The protocol (specifically, R) will implement some write-conflict regime Reg (see Section 2.2).

Our protocol follows Subtree-OPRAM in organising the server storage as a forest of m complete binary
trees T1, . . . , Tm of depth logN − logm where each node in each separate tree contains a bucket of blocks
in which data items can be stored. As usual, we identify a path with a leaf in the tree. By Pos.Map, we
denote the position map that maps the locations a ∈ [N ] to the leaves in the server storage. Each client Ci
is responsible for handling a partition of the ORAM, namely the corresponding tree Ti. This means that Ci
executes reads and writes to all leaves (i.e. paths) that belong to this tree, and each client needs to locally
manage a stash Stashi to store overflowing blocks whose path belongs to Ti. Note that the top logm levels
of the tree that have been initially removed are incorporated into the stashes of the clients. This means
that the tree – the combination of the subtrees and the shared stash for upper levels – is a complete binary
tree with no ‘overlap’ between the partitions. Further, the union of all client stashes emulates the single
stash in the Subtree-ORAM protocol. Only R has access to the position (and thus partition) map4.

4.1 Client-oblivious OPRAM construction

We will use in the following a public-key encryption scheme PKE = (Gen,Enc,Dec) and a (one-time)
symmetric encryption scheme SKE = (KG,E,D). We also assume the existence of a TOR-style onion-
routing network to anonymously route accesses between the clients such that the router R does not learn
the origin of each request. Our exposition here asks that the clients themselves use a (size m) TOR-style
network, however this is not inherent, and the clients could use any (larger) network as long as all clients
act as exit nodes. Indeed an external onion routing may often be preferable, as it does not assume some
fixed identification system of the clients. For a formal treatment of TOR, we refer to [DMS04, DS18].

We now describe the execution of the protocol in a given round. Each of them clients and R initially run
Gen to generate a key-pair (pkCi , skCi)i∈[m] and (pkR, skR), respectively. Additionally, each client generates
a one-time symmetric key k̃Ci . We will also require the router R to sample fake key material of equal
length as the one-time symmetric keys – this requires that the size of the output of KG is a constant. Each
client Ci produces/provides a logical access request of the form Acc(opi,ai, vi) and the m clients proceed
in parallel to process the m logical accesses:

1. Preparing the access request in an anonymised fashion. The aim of this first phase is to
anonymise each client’s access to the ORAM from the other clients as well as the router R. We
achieve this through a combination of a TOR-style mechanism sending the requests to the router
and also using random client identifiers to hide the client’s identity. We assume that all clients are
active TOR nodes and that the initial setup has taken place before the start of the protocol. Each
client chooses a random identifier from the identifier space via idCi ←$ ID and generates a one-
time symmetric key via k̃Ci ←$ KG(1λ). The purpose of this key is to encrypt the retrieved data

4We make this assumption to more closely represent our motivating scenarios; in the event that the position map is known
to all clients then Step 6 in our construction can be replaced by a broadcast.
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item and then simply broadcast the ciphertext. Since this ciphertext is encrypted under the client’s
one-time symmetric key, only this requesting client can successfully decrypt it. The client chooses a
random route of three TOR relays tor1, tor2, tor3 ∈ [m] and establishment of this circuit will result in
the generation of symmetric keys ktor1 , ktor2 , ktor3 for each of the nodes. Next it prepares the onion
encryption as

Ektor1

(
Ektor2

(
Ektor3

(R‖EncpkR(idCi‖k̃Ci‖Acc(opi,ai, vi)))
))

and sends this ciphertext through the chosen route: each node decrypts one layer after another until
the inner (public-key) encryption arrives at R.

2. Digesting the access requests. After having received m ciphertexts, R first decrypts all of them
and checks whether there are any collisions between the client identifiers. If so, it will abort and send
each client ⊥ to indicate that the protocol failed. Otherwise, the router continues, and first must
handle access collisions. In the event of any access collision, i.e. m̃ clients (m̃ ≥ 2) wishing to access a
location, R must create m̃− 1 fake reads by selecting a random location a ←$ [N ], setting op = read
and v =⊥. In the event of a write collision, i.e. m̃′ clients (m̃′ ≥ 2) wishing to write to a location, R
must enforce Reg to decide which clients (if any) get to write. In summary, R will turn the m logical
access requests that it decrypted into m actual accesses, and appending to each access a record of
the client (identifiers), if any, that actually requested the location. Using the position map, R can
determine which accesses need to be executed by which partition accessor, i.e., it determines the path
`i to which each request corresponds. In more detail: for each received request, R simply fetches the
information about the path from the position map, i.e., `i = Pos.Map(ai). Then it sets a′i = ai, and
immediately refreshes the position map Pos.Map(ai) to a new randomly assigned path `′i ←$ [N ].
This new path might fall into another client’s partition. Hence, we add also the information to which
client the block needs to be re-routed later since the clients themselves do not have access to the
position map. Note that for write requests, the behaviour here still applies: the client expects to
receive the old data item in return, so the router is also required to fetch the corresponding path. If
the determined path belongs to tree Tj then this means that R needs to prepare an access request to
the partition accessor Cj . In order to keep it oblivious from the partition accessor how many clients
wish to access the data item in Tj , we force the router to include m many one-time symmetric keys
into the request. Here we distinguish between valid keys, i.e., keys that were initially sent by the
requesting client, and fake keys which are generated by R to simply keep the partition accessor busy
without learning how many clients really wish to access this particular data item. We distinguish
three cases to clarify our approach. The first case is that only one client wishes to access a particular
data item in the handled partition of Cj . This means that R has received a “proper” one-time key
generated from Ci, namely k̃Ci . For the remaining m − 1 keys, the router simply samples m − 1
many fake keys fk1, . . . , fkm−1 from a key space K ensuring that they are all of equal length to k̃Ci .
Being equipped with those keys, R now prepares the access instruction for the partition accessor,
i.e., (opi,a′i, vi, `i, `′i‖Ck, π(k̃Ci‖fk1‖ . . . ‖fkm−1)) where π permutes the keys such that the partition
accessor does not know which key is valid. The second case deals with the more general version of the
above where we have an access collision for a data item, i.e., multiple clients wish to access the same
data item. This boils down to the router to include as many real keys as the number of clients who
requested the same location plus filling up the remaining key material with fake keys until a total of
m keys are included in the request. The third case is when the read operation is fake, so no clients
made this logical access request. In this case, R must simply produce m fake keys. Finally, R encrypts
the access instruction for a data item under the partition accessor’s public key, i.e.

EncpkCj

(
opi,a′i, vi, `i, `′i‖Ck, π

(
{k̃Cp}p∈[m̃]‖{fkq}q∈[m̂]

))
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where we decompose the number of clients as m = m̃ + m̂ while m̃ corresponds to the number of
clients making a real access and m̂ corresponds to the number of fake keys that need to be included.
Finally, the router sends the resulting ciphertext to Cj . Note that the transmission of this ciphertext
does not need to happen in a Tor-style manner since each partition accessor knows from the protocol
that they will receive prepared (encrypted) accesses by the router.

3. Accessing the paths. Each client Cj , j ∈ [m], now receives a set of ciphertexts including the accesses
it must make. The client starts with decrypting them using its secret key skCj . In the next step, all
the requested paths are retrieved and batched5 as a set Sj . Then, proceed as follows:

i The partition accessor retrieves all paths in Sj which form a subtree TSj .
ii For each request (opi,a′i, `i), the partition accessor finds the block a′i in either TSj or Stashj with

data item v̄i and keeps it locally, and deletes it either in the tree or stash.

4. Multicast data items. After having retrieved the requested data item v̄i, the partition accessor
prepares m encryptions of the data item using the m keys received from R. After having prepared all
ciphertexts, the partition accessor simply broadcasts all of them. Note that only the ciphertexts that
were generated with a valid one-time key can be decrypted by the respective requester: the decryption
of all other ciphertexts will fail with overwhelming probability since they have been generated using
fake keys.

5. Retrieve data items. Client Ci now fetches all ciphertexts and starts trial decrypting them all using
one-time key k̃Ci . (As soon as one ciphertext has successfully decrypted Ci can stop, since only one
data item was requested.)

6. Re-route blocks. Each partition accessor has also received the information in Step (2) to which
path `′i the data item needs to be routed. Since the client does not have access to the position map,
the router has initially provided the information to which client Ck the blocks need to be given. For
each retrieval made in step (3), the partition-owning client prepares m− 1 encryptions6

EncpkCi
(msg), where msg =

{
(`′i,a′i, ṽi) for i = k,
str otherwise.

}

where ṽi = vi if opi = write, and ṽi = v̄i if opi = read, and str is some fixed string of length equal
to `′i||a′i||ṽi. Then, the client sends these m− 1 equal-length ciphertexts to the respective public key
holders.

7. Flush subtree and write-back. Each client Ck tries to decrypt each of the m ciphertexts received
in step (6), to learn which newly assigned paths must be written back to in its partition. After
successfully obtaining this information, each client runs the flushing procedure on all real-read paths
and the stash. Finally, the client writes back subtree TSk

. If at any point the Stash contains too many
blocks then the procedure outputs “overflow”.

4.2 Analysis of Our CO-OPRAM Protocol

In this section, we provide details of why the construction given in Section 4.1 is correct and satisfies
obliviousness. Since our construction is essentially built to emulate Subtree-OPRAM – and crucially all

5Note that it is possible that many clients have requested multiple data items held by one partition accessor. Therefore
we batch all data item in a set.

6Reminder that clients may read multiple paths (in a round) in their partition, or none. Further, the new location of the
path may be in the same partition as it was read from, and in this case the client only generates ‘dummy’ encryptions of str.
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sub-protocols are functionally the same – the main arguments of CLT regarding correctness and stash anal-
ysis simply apply also to our scheme. Obliviousness is more tricky, as we have introduced new components
that mimic the operation of the sub-protocols: we just need to argue that these components leak only as
much as the original scheme. A crucial component of this is fixing the topology of the communication:
the communication pattern seen by the OPRAM obliviousness adversary in each sub-protocol should be
independent of the inputs. As CLT observe, this means that they are oblivious in a very strong sense, and
unfortunately we cannot inherit this in our scheme. The ‘vulnerable’ communications in our protocol are
as follows, indicating in which step of the construction the communication occurs:

(1.) The (onion-encrypted) messages sent from clients to R;

(2.) The access instructions sent to the (reading) partition accessors;

(4.) Multicasting the results;

(6.) Re-routing from reading partition accessors to writing partition accessors.

The first step involves three ciphertexts per request, sent and forwarded by two random clients. Since at
this stage there is no link between these pre-processed requests and the accesses to be made, these requests
appear to be independent of the inputs from the perspective of an adversary seeing only ciphertexts. For
the second set of messages, which are again of fixed size, the adversary learns nothing other than what
it is about to learn from the subsequent path reads (assuming that the partition map is known to the
adversary). In the multicast stage, the messages sent by each partition accessor are again of fixed size,
and assuming security of the one-time encryptions this is again a fixed communication pattern. Finally,
the re-routing mechanism relies on the strength of the PKE scheme, the fact that messages are fixed size
and the fact that these clients write back anyway.

Client Obliviousness

Finally, we need to argue that our construction satisfies client obliviousness. This is based on the strength
of the one-time symmetric scheme OT-SKE that we employ in step 4, the PKE scheme PKE used in steps
1 and 6, and the TOR-style encryption7 MT-SKE used in steps 1 and 6 (we simply assume security of the
the block-encryption scheme used for the data items).

Fig. 2 details the transcript for client i in a single round of the protocol. As the proof proceeds, we
indicate which lines the challenger modifies in each game.

Theorem 4.1. Let O be the OPRAM protocol given in Section 4.1, built using OT-SKE, PKE and MT-SKE.
For any adversary A against the client obliviousness (CO-OPRAM) of O, there exist adversaries B, B′ and
B′′ against the one-time symmetric encryption scheme, the public-key encryption scheme, and the TOR-
style symmetric encryption scheme, respectively, such that

AdvCO-OPRAM
O, A (λ) ≤ Advµind-ote

OT-SKE, B(λ) + Advind-cpa
PKE, B′(λ) + Advµind-mte

MT-SKE, B′′(λ).

Proof. Note that in the CO-OPRAM game, in each round, the adversary is given transcripts for the clients
that it corrupts, and nothing for those it has not. A produces (id,a, r) and wins if client id actually sent
a logical request for location a in round r, and A had not corrupted client id before or during round r.
We seek to assess what information the adversary can glean from its transcripts alone, since this is all the
adversary actually gets. In particular, if it learns the plaintext sent in Step (4) via the one-time symmetric

7Note that in the TOR-style encryption that transmits the user accesses to R: if the adversary has corrupted all nodes in
the TOR circuit for an access by an uncorrupted client then the adversary will be able to win the CO game – this is why we
need to normalize the win probability in Definition 3.1.
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Transcript for client i:

1 : Acc(opi,ai, vi)
2 : idCi ←$ ID; k̃Ci ←$ KG(1λ)
3 : tor1, tor2, tor3 ←$ [m]
4 : Ca ← EncpkR(idCi‖k̃Ci‖Acc(opi,ai, vi))
5 : ctb ← Ektor3

(R‖Ca)
6 : ctc ← Ektor2

(ctb)
7 : ctd ← Ektor1

(ctc)
8 : Receive s ∈ {0, . . . , 3m} TOR ciphertexts.
9 : For ciphertexts ∈ {1, . . . , s}, decrypt, and route to designated client or R

10 : Receive t ∈ {0, . . . ,m} access requests from R, decrypt using skCi

11 : For each request ∈ {1, . . . , t}, read path, find block data, store locally
12 : For each read path, encrypt block data v̄i under all m keys
13 : Receive m ciphertexts
14 : Decrypt all under k̃Ci

15 : For each read path, encrypt (`′i,a′i, ṽi) under pkCk
and str under all other public keys

16 : Receive m− 1 ciphertexts, decrypt with skCi

17 : For each valid writeback request received, write ṽi to `′i

Figure 2: Transcript for client i in exection of OPRAM protocol given in Section 4.1.

encryption scheme, for any clients that it has not corrupted, then this would directly lead to the ability
to produce a winning output. (If it could decrypt any of the messages sent by R to uncorrupted clients
in Step (2) then this would also result in a win, however this is not part of the transcripts except for
corrupted clients.)

We require multi-user indistinguishability for symmetric encryption (µind-ote), which mimics the
encryption under one-time keys in the multicast step of our construction, and the multi-time variant
(µind-mte) for the TOR-style encryption. We additionally also require the standard notion of real-or-
random ind-cpa security for a public-key encryption scheme in the anonymisation step of our construction.
Definitions and security experiments for these games are given in Appendix A.1 and A.2.

In order to show that our proposed construction achieves our property of client obliviousness, we apply
the game-hopping technique. The games are specified as follows:

• Game 0. This game simply corresponds to the original CO-OPRAM game.

• Game 1. Same game as Game 0 except that the challenger now replaces all ciphertexts that were
generated in Step (4) of the construction, and hence are part of the transcript, with encryptions of
random messages, except for the ones that the clients should be able to decrypt.

• Game 2. Same game as Game 1 except that the ciphertexts that were generated in Step (1) are
now modified, and hence different in the transcript which the adversary receives. Here we replace
the innermost encryption of the TOR-style encryption mechanism, that is the public-key encryption
under the public key of R, with the encryption of a random message, with the restriction that the
client assigned to ktor3 is not corrupted.

• Game 3. Same as Game 2 except the challenger swaps the appropriate elements of the TOR-style
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mechanism to encryptions of random messages.

We start with analysing the hop from Game 0 to Game 1. The difference between both games only relies
on the fact that the encryptions generated in Step (4) of the construction are replaced with encryptions of
random messages (except for the ones that are generated for a corrupted client). Let A be the adversary
playing against the CO-OPRAM game. We build a reduction B playing against the µind-ote game and
running A as a sub-routine. On input of the security parameter, A begins with specifying its corruption
strategy, as well as the remaining parameters such as number of clients and number of rounds. B simulates
everything appropriately following the protocol specification, i.e., it runs lines 2 to 12 in the CO-OPRAM
game for the compiler O. After obtaining the appropriate data items, the reduction needs to add to the
transcript a set of ciphertexts (corresponding to line 12 in Fig. 2) generated from a symmetric encryption
scheme. Since B cannot generate them itself, it needs to embed, i.e. pass them to its own symmetric
encryption oracle E. Depending on the bit b, this encryption oracle either returns a genuine encryption in
case b = 1, or an encryption of a random message otherwise. The obtained ciphertexts are added to the
transcript and given to the adversary. Eventually, A outputs its guess of client identifier, position in the
ORAM and round identifier. If this is correct then B outputs b′ = 1, else b′ = 0.

Reduction B is efficient since all simulated steps are performed in polynomial-time. Depending on the
bit b chosen by the challenger for the encryption oracle E, B either simulates Game 0 or Game 1. Next
we analyse the probabilities for A winning in the respective games. Observe that the probability of A
winning in Game 0 corresponds of course to the probability of winning the CO-OPRAM game. Analysing
the probability of Game 1 gives that the adversary can win this game if it wins CO-OPRAM game and
also can distinguish what encryptions it has received from the reduction in its transcript. Hence a simple
calculation of probabilities gives us that |Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Advµind-ote

SKE, B (λ).
In the next step, we need to analyse the game hop from Game 1 to Game 2. The main difference

basically lies in the fact that we now swap genuine public-key encryptions from Step (1) to public-key
encryptions of random messages. For this, we again build a reduction B′ that depending on the bit b of its
encryption oracle Enc either simulates Game 1 or Game 2. B′ simulates everything appropriately following
the protocol specification, i.e., it runs lines 2 to 12 in the CO-OPRAM game for the compiler O. The main
changes occur in the transcript. In more detail, B′ executes lines 1 to 3 as detailed in Fig. 2. When it comes
to line 4 – and only where the TOR exit node (client assigned to ktor3) is uncorrupted – the reduction
sends (idCi‖k̃Ci‖Acc(opi,ai, vi)) to its encryption oracle Enc. In case the bit for the oracle corresponds to
b = 1, then the oracle will output an genuine encryption of the provided string. Otherwise, it simply
outputs an encryption of a random string. Next the reduction continues with prepring the TOR-style
onion encryptions in lines 5 to 7 in Fig. 2. The obtained ciphertexts are added to the transcript and given
to the adversary. Eventually, A outputs its guess of client identifier, position in the ORAM and round
identifier. If this is correct then B′ outputs b′ = 1, else b′ = 0.

Reduction B′ is efficient since all simulated steps are performed in polynomial-time. Depending on the
bit b chosen by the challenger for the (public key) encryption oracle Enc, B′ either simulates Game 1 or
Game 2. Following a similar analysis as before, |Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Advind-cpa

PKE, B′(λ).
Let us now move on to analyse the game hop between Game 2 and Game 3. The main difference is

that we now replace the TOR-style onion encryption8 under the appropriate input messages to random
messages (in lines 5 to 7). For this, we again build a reduction B′′ that depending on the bit b of its
encryption oracle E either simulates Game 2 or Game 3. B′′ simulates everything appropriately following
the protocol specification, i.e., it runs lines 2 to 12 in the CO-OPRAM game for the compiler O. Reduction
B′′ now executes lines 1 to 4 as specified in the transcript. When it comes to lines 5 to 7, it passes the
requests to its encryption oracle for any TOR circuit in which an adversarial client is not the exit node

8We assume that this TOR-style encryption mechanism provides onion encryption with labels, allowing clients (decrypting
nodes) to know whether to stop (if they are an exit node) or continue (and to which node to send the inner ciphertext).
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(assigned to ktor3). In case the bit b = 1 then the oracle returns genuine encryptions, otherwise it returns
encryptions under random messages. The obtained ciphertexts are added to the transcript and given to the
adversary. Eventually, A outputs its guess of client identifier, position in the ORAM and round identifier.
If this is correct then B′′ outputs b′ = 1, else b′ = 0.

Reduction B′′ is efficient since all simulated steps are performed in polynomial-time. Depending on
the bit b chosen by the challenger for the encryption oracle E in MT-SKE, B′′ either simulates Game 2 or
Game 3. Following a similar analysis as before, |Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ Advµind-mte

MT-SKE, B′′(λ).
Finally, we analyse the probability of the adversary winning in Game 3. Here the adversary has no

information that enables it to win the CO-OPRAM game: in a given round, the only remaining ‘real’ data
belongs to accesses of clients that the adversary has corrupted. We conclude that its win probability in
the experiment is normalized to zero, i.e. Pr[G3 ⇒ 1] = Prob

[
ExpGame 3

O, A (λ) = 1
]

= 1
m−CCr

and thus
AdvGame 3

O, A (λ) = 0, for m and CCr as defined in Section 3.2. Summing up the above gives the expected
bound.

4.3 Comparison to CLT construction

We now compare our construction given in Section 4.1 more closely with the construction of CLT. As stated
earlier, our protocol functionally emulates the operation of subtree-OPRAM, however, the sub-protocols
performed by the clients are replaced by the steps above, with the addition of the router R. Recall that the
Subtree-OPRAM protocol of CLT requires to run a sub-protocol OblivElect where a representative (for a
particular data item a) between all m clients is elected – this client is not necessarily the partition accessor
where respective accesses have been made. The representative receives the data items from the partition
accessor and is responsible to distribute them along the requesting clients. This process is highly interactive
and defeats the purpose of our client-oblivious notion. Steps (1) and (2) of our construction (perfectly)
emulate OblivElect with the help of R, since they are functionally the same, and the communication pattern
is of fixed topology (one fixed-size message from each client to R, and one fixed-size message from R to
each accessing client). Generation of fake reads is done in a similar manner as CLT – though it is R, rather
than the non-representatives that choose the locations of the fake reads to be made – and naturally the
reads themselves are done in the same way. To multicast we cannot use an unencrypted sorting network,
however, our step (4) allows only the requesting clients to retrieve their requests and is thus functionally
the same as OblivMulticast. Similarly we cannot use OblivRoute, however, in our step (6) we again use a
fixed topology mechanism so that a client receives the items that it must write to its partition. Flushing
and writing back is exactly as in Subtree-OPRAM.

4.4 Extension to the Scheme

4.4.1 Dynamic Partitioning

In the OPRAM literature, each client gets allocated a portion of space they are in charge of read/writing
to/from. These works normally discuss a scheme for when all clients are activated and say that it trivially
extends. Here, we discuss some of the subtleties that arise in this model, and the best way to approach
this. There are essentially two approaches; the data is shared once between all clients, or the data is
reshared at each timestep only between the active clients.

In the former setting clients may have to access data even if they are not active themselves in that
timestep. If only these clients request data, then this will reveal information about where data was accessed
from. Thus all clients must request data each time step regardless of if they are active.

In the latter setting, only the activated clients will have to perform any actions in the given timestep.
This is more desirable for the setting that we are considering where we have mutually distrustful clients,
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who may only be online for short periods of time. The disadvantage of this is that the clients who are
active in a timestep must initially separate out the space evenly between them.

Incorporating a revocation mechanism into the procedure may be a very valuable property in practical
applications. This is the simplest case of dynamic partitioning: in the event of revocation, the storage
medium needs to be re-divided amongst the remaining clients. We assumed that N

m is an integer, so even
beginning to perform revocation in an elegant way appears challenging.

4.4.2 Write-back Content Hiding

Note that in our construction, for a given access, the client performing the read in step (5) learns the data
to be written and the (new) position it is going to be written to. To hide this information from the reading
client, R could encrypt the new data to be written under the one-time key of the writing client (the partition
accessor of the new location `′), and the reading client could then send this ciphertext to all other clients,
such that only the writing client can decrypt. Doing so of course increases the communication between
clients, adding m2 messages per round (but removing the need for the TOR-style message transmission
in step (6)). Removing this altogether and incorporating some sort of functional encryption mechanism
(or possibly even just using homomorphic encryption) appears promising: for accesses that are reads, the
writing partition accessor will always learn what is to be written but they could combine what they get from
the reading partition accessor with an encryption of zero that is provided by R, such that they do not learn
if the data they are writing is fresh or not. However doing this for writes means the ‘encryption combiner’
would have to completely disregard what was sent by the reading partition accessor: this functionality
essentially has two encrypted inputs plus a flag indicating read or write, and the flag (which is hidden to
the decryptor) essentially determines which input is decrypted.

5 Conclusions and Future Work
In this paper we have presented a new security notion for OPRAM schemes, namely client-obliviousness
for clients. This notion captures the sensitivity of non-essential information that is passed among clients
in OPRAM schemes, and may be desirable when the clients are not physically collocated and do not trust
each other.

We have discussed the usefulness of our game-based exposition of this novel property, and our construc-
tion is built using well-established primitives with a minimally-trusted routing entity R. Our construction
is a proof of concept, and consequently we leave further optimisations as open problems, including enabling
dynamic assignment of storage partitions.

Another obvious avenue for improvement is to mimic the role of the router R using either a consortium
of the clients – perhaps in combination with the storage server – or even all of the clients. Doing this
in such a way that does not require (variants of) the sub-protocols of BCP and CLT appears to be very
challenging, since this entity sees and sorts based on plaintext accesses. If the storage server could provide
what is essentially a ‘bulletin board’ to which the clients could post the multicast ciphertexts in step (4),
this would save one round of inter-client communication – formalising and securely realising (a mechanism
similar to) this is also left as an open problem.

Another possible extension one could consider is to strengthen the model to ‘malicious security’, i.e. al-
lowing the router R to arbitrarily deviate from the protocol. We think that this is possible using generic
yet very inefficient techniques from the multi-party computation literature.
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A Additional Preliminaries
In this part of the appendix we provide any additional definitions which we require to construct our scheme,
but which are not core to the paper.

A.1 Public-key Encryption Scheme

In the following we review the notion of a public-key encryption scheme.

Definition A.1. A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of the following three
algorithms:

• (pk, sk) ←$ Gen(1λ) : this randomised key generation algorithm takes as input the common key the
security parameter and returns a public and secret key pair (pk, sk).

• C ←$ Enc(pk,m) : this randomised encryption algorithm takes as input the public key pk and a
message m outputting a ciphertext C.

• d ← Dec(sk, C) : this deterministic decryption algorithm takes as input the secret key sk and a
ciphertext C outputting a string d. In case that decryption was successful then d corresponds to the
message m, and otherwise ⊥/∈ {0, 1}∗.

Definition A.2. A public-key encryption scheme PKE is said to be correct, if for all security parameters
λ, all messages m ∈MPKE, and all key pairs (pk, sk)←$ Gen(1λ), it holds that

Prob[ Dec(sk,Enc(pk,m)) = m] = 1.

Security for a public-key encryption scheme is defined in terms of indistinguishability of encrypted
messages. The formulation corresponds to the well-known real-or-random paradigm and the formal details
are displayed in Figure 3. Intuitively, the game proceeds as follows. After generating the key pair, the
challenger chooses a bit b at random which parameterises the encryption oracle. Depending on this bit b,
the oracle either encrypts the “real” message m which the adversary has given or a “random” message .
After receiving back one ciphertext, the adversary’s goal is to guess which message has been encrypted.

Definition A.3. For the security game displayed in Figure 3, we define the advantage of the adversary
as

Advind-cpa
PKE, A(λ) = Prob

[
Expind-cpa

PKE, A(λ) = 1
]
− 1

2 .

A public-key encryption scheme PKE is said to be IND-CPA secure if for any adversary the above advantage
is negligible in the security parameter.

A.2 Symmetric-key Encryption Scheme

In the following we review the notion of a symmetric-key encryption scheme.

Definition A.4. A symmetric-key encryption scheme SKE = (KG,E,D) consists of the following three
algorithms:

• k←$ KG(1λ) : this randomised key generation algorithm takes as input the common security parameter
and returns a key k.
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Expind-cpa
PKE, A(λ):

11 : (pk, sk)←$ Gen(1λ)
12 : b←$ {0, 1}
13 : b′ ←$ AEncb(·)(1λ, pk)
14 : if b′ = b

15 : return 1
16 : else
17 : return 0

Encb(m):

21 : m1 ← m

22 : m0 ←$ MPKE

23 : C ←$ Enc(pk,mb)
24 : return C

Figure 3: Security notion of indistinguishability under chosen-plaintext attack (IND-CPA) for a public-key
encryption scheme.

• ct ←$ E(k,m) : this randomised encryption algorithm takes as input the key k and a message m
outputting a ciphertext ct.

• d ← D(k, ct) : this deterministic decryption algorithm takes as input the key k and a ciphertext ct
outputting a string d. In case that decryption was successful then d corresponds to the message m,
and otherwise ⊥.

Definition A.5. A symmetric-key encryption scheme SKE is said to be correct, if for all security param-
eters λ, all messages m ∈MSKE, and all keys k←$ KG(1λ), it holds that

Prob[ D(k,E(k,m)) = m] = 1.

IND-CPA security for symmetric-key encryption can be given in a similar fashion to the game given
in Figure 3. The only difference is that the key generation algorithm simply outputs a symmetric key k
and hence the encryption oracle also receives this key. Note that the adversary is only given the security
parameter. We need multi-user indistinguishability security for one-time symmetric encryption – this
experiment is defined in Figure 4. The µ represents the multiple users, and MSKE[·] is shorthand for
elements of the message space that are the same size as the input value. In this game, the adversary has
access to an oracle which takes as input an index and a message, and the adversary can query this oracle
once for each index. The oracle will provide in return an encryption of either the input message (under the
key associated with the index) or a random string, where this choice is made once for all oracle queries.

Definition A.6. For the security game displayed in Figure 4, we define the µind-xx advantage (for xx ∈
{ote,mte}) of an adversary A as

Advµind-xx
SKE, A(λ) = Prob

[
Expµind-xx

SKE, A(λ) = 1
]
− 1

2 .

A symmetric-key encryption scheme SKE is said to be µind-xx secure if for any adversary the above ad-
vantage is negligible in the security parameter.

B Non-Interactivity
As mentioned in the discussion of the motivating scenario in the Introduction, we aim to focus on the
case of OPRAM operating between some storage medium and many distinct client processors. In this
context, reducing the concrete communication complexity is paramount. This definition is stated as a
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Expµind-xx
SKE, A(λ):

11 : b←$ {0, 1}
12 : for i ∈ {1, . . . , µ} do
13 : k̃i ←$ KG(1λ)

14 : flagi ← 0

15 : b′ ←$ AEb(·,·)(1λ)
16 : if b′ = b

17 : return 1
18 : else
19 : return 0

Eb(i,m):

21 : if flagi = 1 then

22 : return ⊥

23 : flagi ← 1

24 : m$ ←$ MSKE[|m|]
25 : if b = 1 then
26 : return E(k̃i,m)
27 : else
28 : return E(k̃i,m$)

Figure 4: Security experiment for multi-user indistinguishability of one-time symmetric encryption
(µind-ote) (boxed code included) and multi-time symmetric encryption µind-mte (boxed code excluded).

possible design goal rather than a specific contribution of our work. We formally define what it means
for an OPRAM compiler to enforce the non-interactivity of the clients. Note that BCP [BCP16] already
hinted in Remark 1 that this property is desirable. Informally, the definition states that no two clients are
required to communicate with each other during the execution of the program.

Definition B.1 (Non-Interactive OPRAM). Let y be a sequence of parallel accesses. O is non-interactive
if all messages in O(y) are either sent or received by the server S(N ′, B′).

It is fairly straightforward to see that the constructions of OPRAM in the literature [BCP16, CLT16,
CS17, NK16] require interaction between the clients. However, they can (trivially) be made non-interactive
using the following proposition.

Proposition B.2. Any OPRAM compiler O can be converted into a non-interactive OPRAM compiler
O′ without changing the time complexity.

Proof. Any message sent from one client to another can be replaced by a pair of messages, one from the
sender to the server and then from the server to the recipient. This can at most double the number of
communication rounds and thus does not change the overall time complexity.

In the presence of the routing entity R, this definition of non-interactivity essentially means that the
instructions that are created by O, including those sent from one client to R and vice versa, are sent via
the server. This in itself may be undesirable depending on geographical proximity and system topology,
and we stress here that the utility of this definition and construction technique is very dependent on the
application scenario in question.
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