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Abstract

We construct a succinct non-interactive publicly-verifiable delegation scheme for any log-space uniform
circuit under the sub-exponential LWE assumption, a standard assumption that is believed to be post-
quantum secure. For a circuit of size S and depth D, the prover runs in time poly(S), and the verifier
runs in time (D+n) ·So(1), where n is the input size. We obtain this result by slightly modifying the GKR
protocol and proving that the Fiat-Shamir heuristic is sound when applied to this modified protocol. We
build on the recent works of Canetti et al. (STOC 2019) and Peikert and Shiehian (Crypto 2020), which
prove the soundness of the Fiat-Shamir heuristic when applied to a specific (non-succinct) zero-knowledge
protocol.

As a corollary, by the work of Choudhuri et al. (STOC 2019), this implies that the complexity
class PPAD is hard (on average) under the sub-exponential LWE assumption, assuming that #SAT with
o(logn · log logn) variables is hard (on average).

1 Introduction

In the past decade there have been tremendous efforts in constructing succinct and efficiently verifiable proofs.
These efforts were motivated by the increasing popularity of cloud services and block-chain technologies. The
question that is asked is the following: Can one generate a short certificate for the correctness of a long
computation? Such certificates are currently used, for example, in various block-chains (such as ZCash and
StarkWare) to prove the validity of transactions.

This task of constructing succinct proofs for long computations is believed to be impossible information
theoretically. Indeed, all works on succinct proofs rely on some computational assumption and argue
soundness of the scheme only against cheating provers who cannot break the underlying assumption. Such
computationally sound proofs are referred to as arguments [16].

In this work we focus on constructing succinct non-interactive arguments (SNARGs), such as the ones
needed for block-chain applications.1 As almost all prior work, we consider the CRS model, which assumes the
existence of a common reference string (CRS) known to all parties.2 Indeed, without a CRS it is impossible
to guarantee soundness against non-uniform cheating provers for schemes that are only computationally
sound, since the latter implies that there exists a proof for an incorrect statement, and thus without a CRS a
non-uniform adversary can simply hardwire such such a cheating proof. Our goal is to construct SNARGs
under a standard cryptographic assumption which is believed to be resilient to quantum attacks. Despite
extensive work in this area (which we elaborate on in Section 1.2), this goal was previously well out of reach.
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work supported by DARPA under Agreement No. HR00112020023. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the United States Government or
DARPA.
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1In particular, we focus on SNARGs that are publicly verifiable.
2Our SNARG is in the common random string model. Namely, our CRS is a non-structured random string.
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We consider the approach of constructing SNARGs by applying the Fiat-Shamir paradigm [31] to interactive
delegation schemes, in particular, to the GKR protocol [37] for delegating bounded depth computations.
The Fiat-Shamir paradigm is a general transformation for converting any public-coin interactive proof (or
argument) to a non-interactive argument in the CRS model. It is used extensively in practice for constructing
signature schemes [31], SNARGs [6,53] and non-interactive zero knowledge proofs (NIZKs) [65].

Loosely speaking, the Fiat-Shamir transform converts an interactive proof (P, V ) for a language L to a non-
interactive argument (P ′, V ′) for L in the CRS model. The CRS consists of a hash function h chosen at random
from some hash familyH. To compute a non-interactive proof for x ∈ L, the prover P ′(x) generates a transcript
corresponding to (P, V )(x), denoted by (m1, r1, . . . ,m`−1, r`−1,m`), by emulating P (x) and replacing each
random message ri of the verifier by ri = h(m1, r1, . . . ,mi−1, ri−1,mi). The verifier V ′(x) accepts if and only
if V (x) accepts this transcript and, for every i ∈ [`− 1], indeed ri = h(m1, r1, . . . ,mi−1, ri−1,mi).

This paradigm is extremely elegant and simple, and despite its abundant use in practice, its soundness is
still poorly understood. It is known to be sound in the Random Oracle Model (ROM) [5,62], yet at the same
time there are counterexamples that demonstrate its insecurity when applied to interactive arguments [3,4,36].
Recently, there have been several works that prove its soundness when applied to interactive proofs [17–19,44],
albeit under extremely strong assumptions.

Very recently, the beautiful work of Canetti et al. [17] and the followup work of Peikert and Shienhian [60]
prove the soundness of the Fiat-Shamir paradigm assuming standard LWE when applied to a specific protocol:
namely, (a variant of) the three round zero-knowledge proof of graph Hamiltonicity. This result gives the
first NIZK construction from LWE.

The focus of this work is on constructing SNARGs: our goal is to apply the Fiat-Shamir paradigm to a
succinct interactive proof. The work of Canetti et al. mentioned above, also proves the soundness of the
Fiat-Shamir paradigm when applied to the (succinct) GKR protocol, albeit under a very strong assumption:
the existence of a fully homomorphic encryption (FHE) scheme that has perfect circular security, that is,
every poly-size adversary, given Enc(sk), outputs sk with probability at most the probability of guessing (i.e.,
probability at most poly(κ) · 2−κ, where κ is the security parameter). By contrast, in our work we prove the
soundness of the Fiat-Shamir paradigm applied to (a variant of) the GKR protocol, assuming a much weaker
assumption: the sub-exponential hardness of LWE.

1.1 Our Results

In this work we build upon [17,60] and prove soundness of the Fiat-Shamir paradigm applied to (a variant
of) GKR, assuming the sub-exponential hardness of LWE, an assumption that is widely believed to be true
and is not known to be broken under quantum attacks.

Theorem 1.1 (Informal). The Fiat-Shamir transform is sound when applied to (a variant of) the GKR
protocol, with respect to a specific hash family, under the sub-exponential hardness of LWE.

We obtain this theorem by first proving the soundness of the Fiat-Shamir transformation when applied to
the sum-check protocol. The efficiency of the resulting non-interactive sum-check degrades double-exponentially
with the number of rounds in the underlying interactive sum-check protocol.

Theorem 1.2 (Informal). The Fiat-Shamir transform is sound when applied to the sum-check protocol, with
respect to a specific hash family, under the sub-exponential hardness of LWE. The resulting non-interactive

protocol has communication complexity that is κ2O(m)

, where m is the number of rounds in the sum-check.

The reason for this significant degradation in efficiency stems from the complexity leveraging technique
that we use to prove soundness, which we elaborate on in Section 2.2. This leveraging requires us to use a
hash function hi, to replace the i’th message of the verifier, with the property that for every i, the number of
bits that hi outputs is much larger than the number of bits that hi−1 outputs. As a result, the communication
complexity of the non-interactive sum-check protocol blows up double-exponentially with the number of
rounds (see Theorem 4.4 in Section 4 for the precise statement). In particular, the SNARG we obtain is not as
succinct as the interactive GKR protocol (which has communication complexity D · polylog(S)). Specifically,
we obtain the following corollary.
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Corollary 1.3 (Informal). Assume the sub-exponential hardness of LWE. Then for ε = ω(1/log logS), there
exists a SNARG for any log-space uniform circuit C of size S, depth D, and input size n, where the prover
runs in time poly(S) and the verifier runs in time (D + n) · Sε.

We also show how to use Theorem 1.2 to obtain PPAD hardness, following the blueprint of Choudhuri
et al. [25]. The complexity class PPAD was defined by Papadimitriou [58], and its importance, as well as the
motivation for studying its hardness, stems from the fact that the problem of finding a Nash equilibrium
is known to be PPAD-complete [23, 29]. Indeed, in recent years, several works established the hardness of
PPAD [12, 25,26,30,32,39], albeit under strong cryptographic assumptions. We elaborate on these works in
Section 1.2. We use Theorem 1.2 to obtain the following corollary.

Corollary 1.4 (Informal). Assume the sub-exponential hardness of LWE, and assume that #SAT with
o(log n · log log n) variables that is hard (on average). Then CLS is hard (on average).3

We note that [25] relied on the soundness of the Fiat-Shamir transform when applied to the sum-check
protocol, and on (distributional) hardness of #SAT with polylog(n) variables, to obtain PPAD-hardness. The
reason we need to strengthen the #SAT assumption and require hardness with o(log n · log log n) variables
stems from the fact that our non-interactive sum-check protocol is not as succinct as one would hope for (due
to the double-exponential growth in the round complexity). We refer the reader to Section 7 for details.

1.2 Related Work

In this section we elaborate on the related work, starting with the related work on delegating computation in
Section 1.2.1, and continuing with the related work on PPAD-hardness in Section 1.2.2.

1.2.1 Related Work on Delegating Computation

Many delegation schemes have been proposed in the literature. These schemes can be roughly divided into
three categories.

SNARGs. Extensive work, starting from the seminal work of Micali [54] and continuing with [7–9,28,33,38,49],
construct SNARGs for non-deterministic computations. However, the soundness of these schemes is
proved either in the Random Oracle Model [5] or based on non-standard hardness assumptions known
as “knowledge assumptions.”4 Such assumptions have been criticized for being non-falsifiable (as
in [56]) and for yielding non-explicit security reductions. We mention that some of these works form the
basis of several efficient implementations which are used in practice. Other schemes (for deterministic
computations) are known based on non-standard assumptions related to obfuscation [1,10,20,21,24,48]
or multilinear maps [57].

Very recently, [42] constructed a SNARG (for deterministic computations) based on an efficiently
falsifiable decisional assumption on groups with bilinear maps. While this assumption seems reasonable,
it is known to be broken with quantum attacks. Independently, [17] constructed a SNARG for all
bounded depth computations, assuming the existence of a FHE scheme with perfect circular security.
While this assumption is not known to be broken by quantum attacks, it appears to be an extremely
strong assumption.

Designated verifier schemes. A line of works starting from [45, 46] and continuing with [2, 14, 15, 41]
designed delegation schemes for deterministic computations and a sub-class of non-deterministic
computations, based on standard assumptions (such as computational private-information retrieval).
These schemes, however, are not publicly verifiable. Rather, the CRS is generated together with a
secret key, which is needed in order to verify the proof.

3By hardness on average, we mean that there is an efficiently sampleable distribution over instances, such that the underlying
problem (#SAT or a problem in CLS) is hard w.r.t. this distribution.

4For example, the Knowledge-of-Exponent assumption [27] asserts that any efficient adversary that is given two random
generators (g, h) and outputs (gz , hz) must also “know” the exponent z.
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Interactive schemes. In the interactive setting, we can achieve publicly verifiable schemes, even for non-
deterministic computations, under standard assumptions. Kilian [47] constructed a four message
protocol for any NP language with polylog communication, assuming the existence of a hash family
that is collision-resistant w.r.t. sub-exponential time adversaries. It has been shown that this scheme
can be converted into a three message protocol assuming a multi-collision resistant hash function [11].
The work of [59] constructs a two-message delegation scheme in addition to a (hard to compute) CRS
for low-depth circuits, assuming an attribute-based encryption scheme.

Finally, we mention that in the interactive setting, we can achieve publicly verifiable schemes even
unconditionally. For example, [37] and [63] give interactive delegation schemes for bounded depth and
bounded space computations with unconditional soundness. As mentioned above, in this work we build
on the GKR protocol from [37] to obtain our SNARG.

Despite all the above works, constructing SNARGs under standard post-quantum assumptions has
remained a major open problem.

1.2.2 Related Work on PPAD Hardness

Recently, there have been a proliferation of results proving the hardness of the class PPAD, defined by
Papadimitriou [58]. In his original paper, Papadimitriou suggested proving the hardness of PPAD under
cryptographic assumptions. After two decades of little progress on the question, a recent sequence of
works [12, 25, 26, 30, 32, 39] established the hardness of PPAD (and even that of a subclass known as
CLS ⊆ PPAD) under strong cryptographic assumptions. The first line of works, starting with that of Bitansky,
Paneth and Rosen [12], assumes sub-exponentially secure indistinguishability obfuscation, or functional
encryption [32,39].

The second line of works, which is more relevant to us, started with the work of Choudhuri et al. [25]
and relies on unambiguous incrementally updateable proofs. In particular, [25, 61] each construct a hard-
on-average instance in the class CLS under cryptographic assumptions. The work of [25] does so assuming
the adaptive soundness of the Fiat-Shamir transformation when applied to the sum-check protocol (and
assuming that #SAT with polylog(n) variables is hard on average). They then use the work of Canetti
et al. [17], which proves adaptive soundness of the Fiat-Shamir transformation applied to sum-check, to
obtain PPAD hardness assuming the existence of a perfectly secure FHE. The work of [61] relies on the
soundness of the Fiat-Shamir transformation when applied to Pietrzak’s interactive proof for repeated
squaring [61] (and assuming hardness of repeated squaring modulo a composite). Very recently, Lombardi and
Vaikuntantanathan [50] proved soundness of the Fiat-Shamir transform applied to Pietrzak’s interactive proof

for repeated squaring, assuming LWE is 2λ
1−ε

-hard (w.r.t. a hash function that takes time T (λ) = 2λ
ε

time
to compute), thus obtaining average-case CLS hardness under this assumption (and assuming that repeated
squaring is 2λ

ε

-hard). Independently, Kalai, Paneth, and Yang [43] obtained average-case CLS hardness
under a quasi-polynomial-time assumption on groups with bilinear maps (and assuming SAT with log(n)1+ε

variables is hard on average).
In this work, we obtain average-case CLS hardness assuming the sub-exponential hardness of LWE (and

assuming #SAT with o(log n · log log n) variables is hard on average). If we weaken the #SAT assumption to
a worst-case variant, namely, we assume that #SAT with o(log n · log log n) variables is hard in the worst case,
an assumption that is implied by the (non-uniform) exponential-time hypothesis (ETH) when the number of
variables is ω(log n), then we obtain worst-case CLS hardness.

2 Our Techniques

We build on ideas from [17, 60] to construct a SNARG for bounded depth computations by applying the
Fiat-Shamir transformation to a modified version of GKR. In what follows, we first discuss the hash functions
constructed by [17,60] and explain the difficulties with directly applying these hash functions to the sum-check
and GKR protocols. We then explain our basic idea of using complexity leveraging to prove security of the
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Fiat-Shamir paradigm applied to the sum-check protocol. Finally, we explain the technical hurdles that come
into play when applying this leveraging technique to the original GKR protocol. Specifically, the technical
problem we face is related to adaptivity. We show how to circumvent this adaptivity problem by slightly
modifying the original GKR protocol.

2.1 The Hash Functions from [17,60]

We follow the “bad-challenge function” methodology of Canetti et al. [17] for proving the soundness of
Fiat-Shamir paradigm. In this work, we use their method to avoid several bad challenges.

For simplicity, consider an arbitrary 3-round proof system for some language L, and denote the transcript
by (α, β, γ) (that is, the prover first sends α, the verifier replies with β, and the prover returns γ). The
soundness of this 3-round proof system implies that for every x /∈ L and α, there is only a negligible fraction
of the β’s for which there exists γ such that (α, β, γ) is an accepting transcript for x ∈ L. Denote by BADα
the set of such β’s. Suppose that for every α, the set BADα is small, say smaller than some polynomial Q.

If the proof system has the property that given (α, β) it is easy to check if β ∈ BADα, then it would be
easy to construct such a hash function that makes the Fiat-Shamir paradigm sound. This is done as follows:
h would simply enumerate over the first Q + 1 possible β’s, and output the first β such that β /∈ BADα.
Unfortunately, such proof systems are often not interesting, since in a sense, they are not really using the
power of interaction.

The fundamental observation of [17] is that for many interesting proof systems, this set BADα is easy to
compute, given some trapdoor. Namely, there exists a trapdoor td and an efficient function ftd such that
ftd(α) = BADα. It is tempting to use the hash function htd that (as above) enumerates over the first Q+ 1
possible β’s and outputs the first β /∈ BADα. However, the trapdoor td is often unknown, or at least needs to
remain unknown in some applications (such as applications to NIZKs).

Their beautiful observation is that for such proof systems, we can take a hash function that does not use
td but rather uses Enc(td), where Enc is the encryption function of a homomorphic encryption scheme. Given
Enc(td), the hash function on input α outputs a value not in BADα with probability 1. In the real scheme
the hash function will use Enc(0), but in the analysis we can consider the case where the hash function uses
Enc(td) instead of Enc(0), relying on semantic security to argue that these two settings are indistinguishable.

Such hash functions have recently been constructed for the case where |BADα|= 1 for all α. Canetti
et al. [17] construct them from a FHE scheme that is circular secure, and the followup work of Peikert and
Shienhian [60] construct them assuming the hardness of LWE.

Applying Fiat-Shamir using these hash functions. In [17,60], these hash functions were applied (via
the Fiat-Shamir transform) to special three round protocols to construct NIZKs from LWE. Since these
protocols consist of only three rounds, the verifier sends a single message, and hence only one hash function
is needed for the Fiat-Shamir transform. In this work, we apply the Fiat-Shamir transform to multi-round
protocols, specifically, the sum-check protocol and the GKR protocol. We first discuss some issues with
directly applying the hash functions from [17,60] to these multi-round protocols.

When trying to directly apply their hash functions to the interactive sum-check protocol, we run into
several issues. First, the set of BAD verifier’s messages in each round has size larger than one. In fact,
this set is of size d, where d is the univariate degree of the sum-check polynomial. This problem is easy to
overcome by simply considering d functions ftd,1, . . . , ftd,d (per round) where ftd,j(α) outputs the j’th bad
challenge (according to some fixed ordering). In the analysis, we assume that there is a cheating prover P ∗

who successfully cheats with non-negligible probability ε. By a standard hybrid argument, we argue that
there must exist a round i ∈ [m] (where m denotes the number of rounds) and an index j ∈ [d] such that his
partial transcript in the first i rounds hashes to the j’th bad challenge with probability ε/md. Thus, we can
focus on a single bad challenge.

However, there is a much more substantial problem: the set BADi of bad verifier messages in the i’th
round depends on all the previous verifier messages. Thus, any trapdoor function tdi computing BADi would
have to take as input all these previous messages. The problem is that evaluating this trapdoor function is

5



intractable for the bounded verifier. In [17], they circumvent this by using a different type of hash function
construction, similar in spirit to the construction proposed in the prior works of [19,44], at the price of relying
on perfect circular security.5

In this work, instead of computing tdi from all previous messages (which is a hard computational task),
our hash function guesses these messages, and precomputes and hardwires the corresponding trapdoor. This
is done in the analysis, whereas in the scheme itself, we hardwire a fake trapdoor, which is the all zero string.
The idea is then to prove soundness by relying on semantic security. To do this, we need semantic security to
hold even with probability of guessing correctly all the verifier’s messages. To this end, we use a complexity
leveraging technique, which we elaborate on below. We mention that this leveraging technique causes a
blowup to the communication complexity: the communication complexity of our non-interactive sum-check

protocol is κ2O(m)

, where m is the round complexity of the interactive sum-check protocol (which is equal
to the number of variables in the multivariate sum-check polynomial). As a result, we must take m to be
constant, or very slightly super-constant such as m = log log log(n). This means that the communication
complexity in our non-interactive GKR protocol is D · Sε, whereas [17] achieves a communication complexity
of D · polylog(S).

2.2 Applying Fiat-Shamir to the Sum-Check Protocol

We first give a brief description of the interactive sum-check protocol, then discuss applying the Fiat-Shamir
paradigm and our leveraging technique in doing so.

The interactive sum-check protocol. In the sum-check protocol, the prover convinces the verifier that∑
h1,...,hm∈H

g(h1, . . . , hm) = v,

for some known polynomial g of degree at most d in each variable over some large field F, and H ⊂ F is a
subset. The first message from the prover is the univariate polynomial

g1(·) :=
∑

h2,...,hm∈H

g(·, h2, . . . , hm)

of degree at most d. The verifier checks that indeed g1 is of degree ≤ d and that
∑
h∈H g1(h) = v. If this

is not the case, it rejects. Otherwise, it sends to the prover a random t1 ← F, and the task is reduced to
proving that ∑

h2,...,hm∈H

g(t1, h2, . . . , hm) = g1(t1).

In the next round, the prover sends

g2(·) :=
∑

h3,...,hm∈H

g(t1, ·, h3, . . . , hm).

The verifier checks that g2 is a univariate polynomial of degree ≤ d and that
∑
h∈H g2(h) = g1(t1). If this is

not the case, it reject. Otherwise, it sends a random t2 ← F, and the task is reduces to proving that∑
h3,...,hm∈H

g(t1, t2, h3, . . . , hm) = g2(t2).

This continues for m rounds at the end of which the verifer checks on its own that gm(tm) = g(t1, . . . , tm) for
a random tm ← F. We refer the reader to Section 3.2 for more details.

5The prior works of [19,44] also rely on perfect security and even on stronger primitives, such as obfuscation or KDM w.r.t.
arbitrary (unbounded) functions.
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Applying the Fiat-Shamir paradigm to the sum-check protocol. Fix any cheating prover P ∗ that
wishes to prove a false statement of the form

∑
h1,...,hm∈H g(h1, . . . , hm) = v. Denote P ∗’s first message by

g̃1, and let
BAD1 = {t ∈ F : g̃1(t) = g1(t)},

where
g1(·) =

∑
h2,...,hm∈H

g(·, h2, . . . , hm)

is the correct first polynomial. If P ∗ successfully proves a false statement then it must be the case that
g̃1 6= g1. If the verifier sends t1 ∈ BAD1 then it is now easy for P ∗ to cheat: he can simply follow the honest
prover strategy and convince the verifier of the (true) statement

∑
h2,...,hm

g(t1, h2, . . . , hm) = g̃1(t1).
Note that given g̃1, computing BAD1 is inefficient, unless we are given the true g1 as a trapdoor. Given

g1, it becomes easy to compute BAD1 since BAD1 is the set of roots of g1 − g̃1, and factoring can be done
efficiently. So, for this first verifier message, we can use a hash function hEnc(td,j) that on input g̃1, with
probability 1, outputs a value that is not the j’th root of g1 − g̃1, where td = g1. In the actual scheme, we
can set td∗ = 0 (and say j∗ = 1), and rely on semantic security to argue that if the prover cheats in the case
that the CRS contains hEnc(td∗,j∗) by outputting the j’th root of g − g̃, then the prover can still cheat by
outputting the j’th root of g − g̃ even if the CRS contains hEnc(td,j), and thus reach a contradiction.

So far, replacing the first verifier message by a hash function has worked the same as in the NIZK
constructions in [17, 60]. In the second round, we begin to run into problems. The trapdoor is now g2, where

g2(·) =
∑

h3,...,hm∈H

g(t1, ·, h3, . . . , hm).

Note that g2 depends on t1, the first verifier message. Unfortunately, we do not know a priori what t1 will be,
since after applying the Fiat-Shamir transformation, t1 depends on the value of g̃1 chosen by the cheating
prover, which in turn depends on the CRS. We could guess t1 and hardwire the CRS with the corresponding
trapdoor g2. However, this strategy will only be profitable when t1 is guessed correctly, which happens with
probability 1/|F|. Thus, in order to prove soundness, we need that the underlying homomorphic encryption
scheme cannot be broken with probability 1/|F|. Unfortunately, |F| is at least as large as the image of the
hash function, which in turn is at least as large as 2κ, where κ is the security parameter of the encryption
scheme, hence no encryption scheme can have such strong security.

Complexity leveraging to the rescue. The key idea is to use different security parameters for the different
hash functions. Namely, the i’th hash function hi uses a security parameter κi such that κ1 < κ2 < · · · < κm.
As a result, each ti, which is chosen from the image space of hi, is selected from a space much larger than that
for ti−1. Specifically, the first hash function h1 selects t1 from a (small) set H1 ⊂ F, of size approximately
2κ1 . This means that we can guess t1, and hence g2, correctly with probability roughly 2−κ1 . Since we
need semantic security of the ciphertext hardwired in the second hash function h2 to hold with probability
roughly 2−κ1 , we will choose κ2 ≥ κ1

1/δ for a small constant δ > 0, and thus can argue soundness based on
the sub-exponential security of the underlying encryption scheme. As a result, the second hash function h2

selects t2 from a larger set H2 ⊂ F of size roughly 2κ2 = 2κ
1/δ
1 . More generally, the ciphertext used in the i’th

hash function hi uses security parameter κi ≥ κi−1
1/δ, and ti is selected from a set Hi ⊂ F of size roughly

2κi . Using this setting of parameters, we prove soundness of the resulting non-interactive sum-check protocol
based on the assumption that the underlying homomorphic encryption scheme has sub-exponential security.
We refer the reader to Section 4 for more details.

Unfortunately, the m’th security parameter is κm ≥ κ
1/δm

1 , which implies that log|F|≥ κ
1/δm

1 , so the

communication complexity is ≥ κ
1/δm

1 , which makes the scheme useless even for m = log log n as we will
need to take κ1 ≥ poly(m log|H|). Nevertheless, as we argue this result is interesting (and useful) even for
m = O(1) or m = O(log log log n). Indeed, we manage to use this result (with this setting of parameters) to
construct our SNARG (Corollary 1.3), which is obtained by applying the Fiat-Shamir to (a variant of) the
GKR protocol.
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2.3 Applying Fiat-Shamir to the GKR Protocol

The GKR protocol consists of a series of sum-check protocols to reduce a claim about one layer of a circuit to
that of another. For a circuit C of size S, we choose |H|= S1/m, where m = O(1) or m = log log logS as is
needed for the sum-check protocol to be tractable. The resulting m-variate polynomials that the sum-checks
are performed on have degree poly(|H|) = poly(S1/m) in each variable. This is why the communication
complexity and verifier runtime are both Sε for a slight sub-constant ε, as opposed to polylog(S) as in the
original GKR protocol.

It is tempting to replace each interactive sum-check protocol in GKR with the non-interactive one (obtained
by applying the Fiat-Shamir transform), and thereby make GKR non-interactive. At first sight, it may seem
that the soundness of the non-interactive sum-check protocol would imply the soundness of the non-interactive
GKR protocol.

Unfortunately, when we tried to analyze the soundness of the resulting non-interactive GKR protocol,
we failed for the following reason: In the original GKR protocol, the random coin-tosses of the verifier in
one sum-check determine the polynomial used in the next sum-check. In the Fiat-Shamir setting, these coin
tosses are replaced with a hash of the transcript so far, and thus can be chosen adaptively by the cheating
prover. This adaptivity prevents us from proving soundness, as we do not manage to prove full adaptive
soundness for the underlying non-interactive sum-check protocol.

Combating adaptivity. We manage to solve the problem of adaptivity by both strengthening the soundness
requirement of the non-interactive sum-check protocol and modifying the GKR protocol to limit adaptivity.
Specifically, we show that our non-interactive sum-check protocol is sound against provers who have a limited
choice over g and v, a property we call semi-adaptive soundness. Semi-adaptivity means that v can be chosen
completely adaptively, while g must be chosen from a poly(|H|m) = poly(S)-size set. On the GKR protocol
side, we manage to convert each sum-check statement

∑
h1,...,hm∈H g(h1, . . . , hm) = v to many (poly(|H|))

statements
∑
h1,...,hm∈H g

′(h1, . . . , hm) = v′, all of which have g′ that belongs to a relatively small (size
poly(S)) predetermined set ∆ of m-variate polynomials. Thus, we limit adaptivity, at the price of converting
each sum-check statement to many statements.

At first it may seem that this tradeoff is too costly, as it may seem that the number of sum-check
statements will blow up exponentially. Fortunately, this is not the case. We use a recent idea from [40], which
shows that if these sum-checks are run in parallel, where the verifier uses the same randomness in all these
executions, then no blowup is incurred. We discuss our modified GKR scheme in more detail in Section 5.

Since our modified GKR protocol runs the sum-check protocol many times in parallel, where the verifier
uses the same randomness in all executions, we need to argue that the Fiat-Shamir paradigm is sound when
applied to the parallel sum-check protocol. This is done in Section 4.3.

2.4 Obtaining PPAD-Hardness

The soundness of the Fiat-Shamir transform applied to the sum-check protocol has implications to the
hardness of the complexity class PPAD. This was observed in [25], which proved, informally, the following:

Theorem 2.1 (Informal). [25] Suppose that the Fiat-Shamir transform applied to the sum-check protocol
is both adaptively sound and adaptively unambiguous. Then, the complexity class CLS ⊆ PPAD is hard on
average (assuming #SAT is hard on average).

They prove this by reducing #SAT instances to instances of the Relaxed-Sink-of-Verfiable-Line (rSVL)
problem, which is in CLS (we refer the reader to Definition 7.5 in Section 7 for the definition of rSVL). These
rSVL instances use the non-interactive sum-check protocol, obtained by applying the Fiat-Shamir transform,
and satisfy the guarantee that if one could solve these rSVL instances, then one could either solve #SAT, or
break the adaptive soundness or adaptive unambiguity of the non-interactive sum-check protocol.

At first, one may hope that Theorem 2.1, together with Theorem 1.2, immediately imply PPAD hardness
assuming the sub-exponential hardness of LWE (and assuming #SAT is hard on average). Indeed, the
unambiguity of the Fiat-Shamir transform when applied to the sum-check protocol follows straightforwardly
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from the proof of soundness (under the sub-exponential hardness of LWE). However, as we noted above, we
do not guarantee adaptive soundness, rather we only guarantee adaptivity over the choice of v and some
limited semi-adaptivity over the choice of g.

Nevertheless, upon inspection of the proof of Theorem 2.1 in [25], we noted that adaptivity over g wasn’t
needed at all. Instead, they needed adaptivity over the first j verifier messages, and required the resulting
(m− j)-variate sum-check to be unambiguously sound. Our leveraging technique allows us to prove precisely
this!

In [25], they reduce a #SAT instance corresponding to a Boolean formula with polylog(n) variables to
an rSVL instance, and make the assumption that the Fiat-Shamir transformation applied to the sum-check
protocol with |H| = 2 and m = polylog(n) is sound. In our case, due to the leveraging technique we use, our
non-interactive sum-check protocol requires that m is much smaller, and thus |H| is much larger. In fact,
we take |H| = n and m = o(log log n). Then, in the reduction from #SAT to rSVL, the Boolean formula
corresponding to the #SAT instance has o(log n · log log n) variables. Thus, to obtain PPAD-hardness (on
average), we need to assume that #SAT with o(log n · log log n) variables is hard (on average), which, when the
number of variables is ω(log n), follows from the (average case variant of the) Exponential Time Hypothesis.
We obtain the following corollary:

Corollary 2.2 (Informal). Assuming LWE is sub-exponentially hard and #SAT with o(log n · log log n)
variables is hard (on average), PPAD is hard (on average).

We discuss this result further in Section 7, and refer the interested reader to the original result proved
in [25], which contains most of the ideas.

3 Preliminaries

Notation. In this paper, we use the following notation:

X . Y ⇐⇒ X = O(Y )

X � Y ⇐⇒ X = o(Y )

X ≈ Y ⇐⇒ X = θ(Y ).

3.1 Low Degree Extension

Let F be a field and let H ⊆ F be a set. We always assume (without loss of generality) that field operations
can be performed in time that is poly-logarithmic in the field size. Fix an integer m ∈ N.

A basic fact is that for any function W : Hm → F, there exists a unique extension of W into a function
Ŵ : Fm → F (which agrees with W on Hm, i.e. Ŵ |Hm≡ W ), such that Ŵ is an m-variate polynomial of
degree at most |H|−1 in each variable. This function Ŵ is called the low degree extension of W . Moreover,
the function Ŵ can be expressed as

Ŵ (t1, . . . , tm) =
∑

h1,...,hm∈H

ÊQ(t1, . . . , tm;h1, . . . , hm) ·W (h1, . . . , hm), (1)

where ÊQ : Fm × Fm → F is the low degree extension of the function EQ : Hm ×Hm → {0, 1} that, on input
(t1, . . . , tm;h1, . . . , hm), compares t = (t1, . . . , tm) with h = (h1, . . . , hm) and outputs 1 if and only if t = h.
We can explicitly write ÊQ as follows:

ÊQ(t1, . . . , tm;h1, . . . , hm) =

m∏
i=1

∑
ν∈H

∏
σ∈H\{ν}

(ti − ν)(hi − ν)

(σ − ν)2
.

It’s not hard to check that ÊQ can be evaluated in poly(m, |H|, log|F|) time, is degree at most |H|−1 in each
variable, and, restricted to the domain Hm ×Hm, ÊQ(t;h) = 1 if t = h and 0 otherwise.

9



Proposition 3.1. Given H, F, and an integer m, the 2m-variate polynomial ÊQ : Fm × Fm → F can be
constructed in time poly(m, |H|, log |F|). Furthermore, ÊQ can be evaluated in time poly(m, |H|, log |F|).

Evaluating the low degree extension of a function can be done via Equation (1) by summing over |H|m
values.

Proposition 3.2. Given H, F, an integer m, and the values of a function W |Hm , for any t ∈ Fm, the value
of Ŵ (t) can be computed in |H|m·poly(m, |H|, log|F|) time.

3.2 The Sum-Check Protocol

Let F be a field, and let H ⊆ F be a subset. Let g(x1, . . . , xm) be a multivariate polynomial of degree at
most d in each variable and with coefficients in F, and let v ∈ F.

In the sum-check protocol, a (not necessarily efficient) prover takes as input an m-variate polynomial
g : Fm → F of degree ≤ d in each variable (think of d as significantly smaller than |F|). Its goal is to convince
a verifier that

∑
h∈Hm g(h) = v for some constant v ∈ F. The verifier only has oracle access to g, and is

given the constant v ∈ F. It is required to be efficient in both its running time and its number of oracle
queries. In Figure 1, we review the standard sum-check protocol from [51,64]. We denote this protocol by
(PSC(g), V gSC(v)).

Sum-Check Protocol for
∑
h1,...,hm∈H g(h1, . . . , hm) = v

1. Set i = 1.

2. PSC computes the univariate polynomial gi : F→ F defined by

gi(x) :=
∑

hi+1,...,hm∈H

g(t1, . . . , ti−1, x, hi+1, . . . , hm),

and sends gi to VSC.

3. VSC checks that gi is a univariate polynomial of degree at most d, and that

∑
h∈H

gi(h) =

{
v i = 1

gi−1(ti−1) i > 1.

If not, VSC rejects.

4. If i < m, VSC chooses a random element ti ∈R F and sends ti to PSC. Set i = i+ 1 and go back to step 2.

5. If i = m, VSC chooses a random element tm ∈R F and checks that

gm(tm) = g(t1, . . . , tm)

by querying the oracle at the point (t1, . . . , tm).

Figure 1: Sum-check protocol (PSC(g), V gSC(v)) [51,64]

Lemma 3.3. [52,64] Let g : Fm → F be an m-variate polynomial of degree d in each variable. The sum-check
protocol (PSC, VSC) described in Figure 1 satisfies the following properties.

• Completeness: If
∑

(h1,...,hm)∈Hm g(h1, . . . , hm) = v then

Pr [(PSC(g), V gSC(v)) = 1] = 1.
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• Soundness: If
∑

(h1,...,hm)∈Hm g(h1, . . . , hm) 6= v then for every (unbounded) interactive prover P ∗,

Pr [(P ∗(g), V gSC(v)) = 1] ≤ md

|F|
.

• Efficiency: VSC has oracle access to g : Fm → F. The prover PSC(g) runs in time ≤ poly(|H|m).6 The
verifier V gSC(v) runs in time ≤ poly(|H|, log|F|,m, d), and queries the oracle g at a single point. The
communication complexity is ≤ poly(|H|, log|F|,m, d), and the total number of bits sent from the verifier
to the prover is O(m · log|F|). Moreover, this protocol is public-coin; i.e., all the messages sent by the
verifier are truly random and consist of the verifier’s random coin tosses.

3.3 Homomorphic Encryption

Definition 3.4. A homomorphic encryption scheme E = (Gen,Enc,Dec,Eval) w.r.t. a circuit family C =
{Ck}k∈N consists of four p.p.t. algorithms such that:

• (Gen,Enc,Dec) is a public key encryption scheme.

• Eval(pk, C, ct1, . . . , ctk) takes as input a public key pk, a circuit C ∈ Ck, and k ciphertexts ct1, . . . , ctk
(each encrypting a single bit), and outputs another ciphertext ct′ which has size polynomial in the
security parameter λ and in the output length of C (independent of the size of C).

• For any x = (x1, . . . , xk) ∈ {0, 1}k, and any circuit C ∈ Ck there exists a negligible function µ such that,

Pr[Dec (sk,Eval(pk, C,Enc(pk, x1), . . . ,Enc(pk, xk))) = C(x1, . . . , xk)] ≥ 1− µ(λ),

where the probability is over (pk, sk)← Gen(1λ) and over the randomness of the encryption algorithm.

Definition 3.5. An encryption scheme (Gen,Enc,Dec) is said to have sub-exponential security if there

exists a constant δ > 0 such that for every (large enough) security parameter λ ∈ N, and for every 2λ
δ

-size
adversary A,

|Pr[A(Enc(pk,Enc(pk, 0))) = 1]− Pr[A(Enc(pk,Enc(pk, 1))) = 1]| ≤ 2−λ
δ

,

where the probability is over (pk, sk)← Gen(1λ) and over the randomness of Enc.

In this work we rely on the homomorphic encryption scheme of Gentry, Sahai and Waters [34] (GSW),
which is known to be homomorphic w.r.t. the class of bounded depth circuits denoted by C = {Ck}k∈N (where
the length of the evaluated ciphertexts grow with the depth of the evaluated circuit), assuming the (standard)
LWE assumption. Moreover, it is known to be sub-exponentially secure under the sub-exponential LWE
assumption.

Theorem 3.6. [34] The GSW encryption scheme has sub-expoenential security under the sub-exponential
LWE assumption.

The recent work of Peikert and Shiehian [60] showed that the GSW encryption scheme has the following
additional property.

Lemma 3.7. [60] The GSW homomorphic encryption scheme has the following property: There is an efficient
algorithm InertEval, that takes as input a public key pk, which is a matrix A ∈ Zn×Mq (where n,M, q correspond

to the security parameter λ and M = M(λ) ∈ [λ, λ2]),7 a circuit C ∈ Ck such that C : {0, 1}k → {0, 1}M
(for the same M as above), and k ciphertexts cti = Enc(pk, xi), and outputs a special (inert) commitment

6Here we assume the prover’s input is a description of the function g, from which g can be computed (on any input) in time
≤ poly(|Hm|).

7Typically in the literature M is denoted by m, however throughout this work m denotes an m-variate polynomial, and hence
we use M instead of m in the encryption scheme.
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Com(pk, C(x1, . . . , xk)) ∈ {0, 1}M , such that under the LWE assumption, for every poly-size adversary A and
every x = (x1, . . . , xk) ∈ {0, 1}k,

Pr[A(pk, ct1, . . . , ctk) = C : C ∈ Ck ∧ InertEval(pk, C, ct1, . . . , ctk) = C(x)] = negl(λ), (2)

where cti ← Enc(pk, xi) for every i ∈ [k], and the probability is over (pk, sk) ← Gen(1λ) and over the
randomness of Enc.

Moreover, under the sub-exponential LWE assumption, there exists a constant δ > 0 such that Equation (2)

holds with probability at most 2−λ
δ

for any 2λ
δ

-size adversary A and any x ∈ {0, 1}k.

Remark 3.8. In the above lemma we deviate from the notion of Peikert and Shiehian [60]. In particular,
their inert commitment of a string y ∈ {0, 1}M is of the form Ar +G(y) where A ∈ Zn×Mq is the GSW public

key, G : {0, 1}M → Znq is a fixed linear function with an inverse G−1 : Znq → {0, 1}M . Their main technical
contribution is to show how to convert a GSW ciphertext Enc(y) into an inert commitment Ar +G(y).

In the lemma above we let the inert commitment be G−1(Ar + G(y)). We deviate from their notation
for the sake of treating their work in a modular (and black-box) way. We emphasize that for us, the inert
commitment of an M -bit string is itself an M -bit string.

4 Our Non-Interactive Sum-Check Protocol

In this section we show that the Fiat-Shamir paradigm is sound when applied to the sum-check protocol
(Figure 1) with a sufficiently large field size, assuming that LWE is sub-exponentially secure. Specifically, for
our security proof to go through we need, roughly, the property that log |F| ≥ (m log|H|)(1/δ)m , where m is
the number of variables (corresponding to the number of rounds) in the sum-check protocol and δ > 0 is a
small enough constant related to the sub-exponential security of the homomorphic encryption scheme. This
result is interesting only in the setting where |H| is quite large and m is very small, for example, the setting
where |H|= nε where ε > 0 is a small constant and m is a large enough constant (or ε = 1/log log log(n) and
m = O(log log log n)). This should be the setting of parameters the reader should have in mind.

At a high-level, we obtain this result, by using the recent works of [17, 60], together with a leveraging
technique that allows us to relax their perfect security assumption to a sub-exponential one.

4.1 The Hash Function Family

In this section we describe the hash function family we use for instantiating the Fiat-Shamir paradigm. This
hash family is very similar to the hash family of Peikert and Shiehian [60], which in turn is inspired by the
hash family from [17].

Roughly speaking, in order for a cheating prover to convince the verifier of a false statement in the
sum-check protocol in Figure 1, there must be some round i such that the polynomial g̃i sent by the prover in
the i’th round is incorrect (i.e., g̃i 6= gi, where gi is the polynomial that would have been sent by the honest
prover), and yet the element ti sent by the verifier satisfies that g̃i(ti) = gi(ti). The hash function we create
will need to avoid these “bad” values of ti that allow the prover to cheat. Note that if g̃i 6= gi, then there are
at most d bad values of ti, where d is the degree of gi.

More generally, suppose that there are d′ such bad values that we need to avoid. Let ϕa,1, . . . , ϕa,d′ be
poly-sized functions that are given a non-uniform advice a (which, in the case of the sum-check protocol, is
the description of the true gi) and each output a “bad” value in F that we want to avoid. We will construct a
hash family H, such that given a random h← H, it is hard to find an input x such that h(x) ∈ {ϕa,j(x)}j∈[d′].

The seed to the hash family is a ciphertext. In the analysis, this ciphertext will be an encryption of a
bad function ϕa,j . However, in the scheme itself, it will be an encryption of the all zero function. Note that
the non-uniform advice a is often hard to compute (and in the case of the sum-check it is not even a priori
determined, since the polynomial gi depends on the messages of the verifier in the first i− 1 rounds), and
hence cannot be used in the CRS. We will rely on the semantic security of the encryption scheme to argue
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that if there exists a cheating prover that breaks soundness when the ciphertext encrypts the all zero function,
then the prover also breaks soundness when the ciphertext encrypts one of the bad functions ϕa,j .

Our hash function will satisfy a special property that its output will belong to a subset Hλ ⊂ F of size
2M , where M = M(λ) is polynomially related to λ, the security parameter of the GSW encryption scheme
that we use. More specifically, our hash function will always output an inert commitment (see Lemma 3.7),
which belongs to {0, 1}M . We identify Hλ both as a subset of F and as {0, 1}M , and switch freely between
the two notions. We will need to choose λ so that 2M(λ) > d′.

As we will be working with output space Hλ = {0, 1}M , we will need to confine the output of ϕa,j to Hλ.
This will be done by the function ξλ that, on input y, outputs y if y ∈ Hλ, and 0M(λ) ∈ Hλ otherwise.

We next construct our hash family, denoted by Hϕ. This hash family consists of a seed generation
algorithm Hϕ.Gen, and an evaluation algorithm Hϕ.Hash. The seed generation algorithm takes as input a
security parameter 1λ, and outputs a seed k, whereas the evaluation algorithm takes as input a seed k and
an input x and outputs hk(x). In what follows we slightly abuse notation, and allow the seed generation
algorithm Hϕ.Gen to take two additional inputs (a, j). These additional inputs are useful for the analysis,

but in the actual scheme these additional inputs are always instantiated with fixed constants (say, a = 0d
′+1

and j = 1).

Construction 4.1. Let E = (Gen,Enc,Dec,Eval) be the GSW public key homomorphic encryption scheme.
We define the following hash family Hϕ:

• Hϕ.Gen(1λ, a, j) generates (pk, sk)← Gen(1λ), computes ct = Enc(pk, ξλ◦ϕa,j), and outputs k = (pk, ct).

• Hϕ.Hash(k, x) interprets k as (pk, ct) and outputs InertEval(pk, Ux, ct), where Ux denotes the universal
circuit that takes as input any circuit C : {0, 1}n → {0, 1}M of size Size(ξλ ◦ ϕa,j), where Size(ξλ ◦ ϕa,j)
denotes the size the circuit computing ξλ ◦ ϕa,j,8 and outputs

Ux(C) = C(x).

Lemma 4.2. Under the sub-exponential LWE assumption, there exists a constant δ > 0 such that for every

(sufficiently large) λ ∈ N, any 2λ
δ

-size adversary A, and any non-uniform advice (a, j),

Pr[A(pk, ct) = x : Hϕ.Hash(k, x) = ϕa,j(x)] ≤ 2−λ
δ

where the probability is over k = (pk, ct)← Hϕ.Gen(1λ, a, j).

The proof of this lemma follows directly from the definition of

Hϕ.Hash(k, x) = InertEval(pk, Ux, ct),

together with Lemma 3.7, and noting that if ϕa,j(x) 6∈ Hλ, then Hϕ.Hash(k, x) 6= ϕa,j(x) trivially.

4.2 Non-Interactive Sum-Check Protocol

In what follows, we present the non-interactive sum-check protocol, obtained by applying the Fiat-Shamir
transform to the interactive sum-check protocol (Figure 1) with the hash family from Construction 4.1. In
particular, let H be a subset of a field F, and let N = |H|m. Suppose the prover wishes to prove that∑

h1,...,hm∈F
g(h1, . . . , hm) = v,

where g is a m-variate polynomial with individual degree d and coefficients in F, and v ∈ F is a field element.

8Clearly, there are many circuits computing ξλ ◦ ϕa.j . We choose one to use in the construction, and it is this circuit size
that we refer to above.
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We use the hash functions from Construction 4.1 with the following d functions: {ϕa,`}`∈[d], where on input
x, ϕa,` outputs the `’th root of x− a, using the Cantor-Zassenhaus [22] algorithm to factor the polynomial
x− a. Here, the advice a and the input x are both degree d univariate polynomials represented by a tuple of
d + 1 coefficients. We assume an arbitrary ordering over F so that “the `’th root” is well-defined, and as
a convention, if the number of roots of x(j) − a is smaller than d, say, c < d, then for every ` ∈ [c + 1, d],
ϕa,`(x) = 0.

Our non-interactive sum-check protocol employs a leveraging technique. More specifically, we choose
security parameters κ = κ1 < κ2 < · · · < κm such that in round i we use the Fiat-Shamir hash function Hϕ
as defined in Construction 4.1, setting the security parameter λ to be κi. Importantly, we assume that the
GSW scheme with security parameter κi is such that Equation (2) holds with probability at most 2−Li−1 ,

where Li−1 =
∑i−1
j=1Mj denotes the total number of bits sent by the verifier in the first i− 1 rounds, and

Mj = M(κj) is the length of the inert commitment (see Lemma 3.7). This allows us in the analysis to guess
all the messages of the verifier in the first i− 1 rounds, and still argue that, conditioned on guessing correctly,
one cannot break semantic security of the i’th encryption scheme.

We set the security parameters as follows: let κ = κ1 ≥ (logN)2/δ, where N = |H|m, and for every r > 1,
let

κr = (2M(κr−1))1/δ,

where δ > 0 is the constant related to the sub-exponential LWE assumption (see Lemma 3.7). Let F be a
field that has size at least 2M(κm), and take subsets Hi ⊂ F, where |Hi|= 2M(κi).

Since M(λ) ≤ λ2 by Lemma 3.7, we have that

κr ≤ 21/δ · κ2/δ
r−1 ≤ κ

3/δ
r−1,

so κm ≤ κ(3/δ)m−1

, meaning that M(κm) ≤ κ2·(3/δ)m−1

. So it will suffice to take F to so that

log|F|≥ κ2·(3/δ)m−1

. (3)

The non-interactive version of the sum-check protocol is given in Figure 2.

Theorem 4.3. Let N = |H|m. Assuming κ ≥ (logN)2/δ and F is a field such that log|F| ≥ κ2·(3/δ)m−1

, the
protocol in Figure 2 has the following properties.

• Completeness: For any m-variate polynomial g of individual degree d, if∑
h1,...,hm∈H

g(h1, . . . , hm) = v,

then
Pr
[
(PniSC(g), V gniSC(v)) = 1

]
= 1.

• Non-adaptive soundness:9 For v ∈ F and m-variate polynomial g of degree ≤ d with coefficients
over F, if ∑

h1,...,hm∈H

g(h1, . . . , hm) 6= v,

then for any poly(N)-size cheating prover P ∗,

Pr [P ∗(CRS) = π : V gniSC(v,CRS, π) = 1] = negl(N),

assuming the sub-exponential hardness of LWE.

9Actually, stronger forms of soundness hold for the non-interactive sum-check protocol, such as semi-adaptive soundness (see
Theorem 4.4) or prefix-adaptive soundness (see Theorem 7.3). We state here non-adaptive soundness for the sake of simplicity.
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Non-Interactive Sum-Check Protocol

In this non-interactive protocol, PniSC convinces VniSC that∑
h1,...,hm∈H

g(h1, . . . , hm) = v,

where g is a m-variate polynomial of individual degree d whose coefficients are in F.

• Setup: Sample ki = (pki, cti)← Hϕ.Gen(1κi , 0d+1, 1) and set CRS = {ki}i∈[m].

• Prover: PniSC iteratively computes

gi(·) =
∑

hi+1,...,hm∈H

g(t1, . . . , ti−1, ·, hi+1, . . . , hm)

and
ti = Hϕ.Hash(ki, gi) ∈ Hi.

PniSC sends {(gi, ti)}i∈[m] to VniSC.

• Verifier: For each i ∈ [m], VniSC checks that gi is a polynomial of degree at most d and that

∑
h∈H

gi(h) =

{
v i = 1

gi−1(ti−1) i > 1.

VniSC also checks that
gm(tm) = g(t1, . . . , tm),

which is done by querying the oracle for g. Finally, he checks that all ti’s are computed correctly, i.e. for all
i,

ti = Hϕ.Hash(ki, gi).

If any of these are false, VniSC rejects. Otherwise, he accepts.

Figure 2: Non-interactive sum-check protocol (PniSC, V
g
niSC)

• Efficiency: The prover’s runtime is poly(N, dm, log|F|), the communication complexity is poly(m, d, log|F|),
and the verifier’s runtime (given oracle access to g) is poly(m, d, |H|, log|F|).

Rather than prove Theorem 4.3, we prove a more general theorem for a parallel version of this non-
interactive sum-check protocol in Section 4.3 (see Theorem 4.4). This non-interactive parallel sum-check
protocol will be used as a subroutine in the non-interactive GKR protocol in Section 6.

4.3 Non-Interactive Parallel Sum-Check Protocol

A key component in our non-interactive GKR protocol is our non-interactive sum-check protocol. We will need
to run many non-interactive sum-checks in parallel where the verifier uses the same random coin-tosses in all
these parallel executions. In what follows, we present and analyze such a non-interactive parallel sum-check
protocol, obtained by applying the Fiat-Shamir paradigm with the hash functions from Construction 4.1.

Let H be a subset of a field F, and let N = |H|m. Suppose that we have a list of e ≤ poly(N)10 claims of
the form ∑

h1,...,hm∈H

g(j)(h1, . . . , hm) = v(j), j ∈ [e],

10We will only need e = poly(|H|), but Theorem 4.4 holds for e up to poly(N).
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where each g(j) is a m-variate polynomial over F of individual degree d ≤ poly(|H|). We use the notation

g = {g(j)}j∈[e] and v = {v(j)}j∈[e]. (Similarly, it should be understood, for instance, that gi = {g(j)
i }j∈[e].)

We use the hash functions from Construction 4.1 with the following d′ = ed functions: ϕa,j,` := ϕa,(j−1)d+`,

which on input x, outputs the `’th root of x(j) − a, using the Cantor-Zassenhaus [22] algorithm to factor
polynomials. Here, the advice a is a degree d univariate polynomial represented by a tuple of d+ 1 coefficients,
and the input x is a set of e univariate polynomials {x(j)}j∈[e], each of degree d. As in Section 4.2, we assume
an arbitrary ordering over F so that “the `’th root” is well-defined, and as a convention, if for j ∈ [e] the
number of roots of x(j) − a is smaller than d, say, cj < d, then for every ` ∈ [cj + 1, d], ϕa,j,`(x) = 0.

We use the same leveraging technique as in Section 4.2, where we choose security parameters κ = κ1 <
κ2 < · · · < κm such that in round i we use the Fiat-Shamir hash function Hϕ as defined in Construction 4.1,
setting the security parameter λ to be κi. We set κ = κ1 ≥ (logN)2/δ, where N = |H|m, and for every r > 1,
we set

κr = (2M(κr−1))1/δ,

where δ > 0 is the constant related to the sub-exponential LWE assumption (see Lemma 3.7). We let F be a
field of size at least 2M(κm), and take subsets Hi ⊂ F, where |Hi|= 2M(κi). As noted in the previous section

in Equation (3), we can take any field F that contains H such that log|F| ≥ κ2·(3/δ)m−1

.
Our non-interactive, publicly verifiable parallel sum-check procedure for the e claims∑

h1,...,hm∈H

g(j)(h1, . . . , hm) = v(j), j ∈ [e],

where each g(j) is a m-variate polynomial of individual degree at most d, is described in Figure 3.
In what follows, let ∆ denote a predetermined set of size poly(N), where the elements of ∆ are m-variate

polynomials of individual degree ≤ d with coefficients in F. We will show that our non-interactive parallel
sum-check protocol satisfies a soundness that is semi-adaptive, meaning that the protocol is sound against
a cheating prover that selects the multi-varaiate polynomials g(j) adaptively, so long as g(j) ∈ ∆ for all
j ∈ [e]. This semi-adaptive soundness property will be important in proving soundness of our non-interactive
GKR protocol in Section 6. Note that this semi-adaptive soundness guarantee for the parallel sum-check
immediately implies non-adaptive soundness for the (single) sum-check in Figure 2 by letting |∆| = 1 and not
allowing the prover a choice of v. (In fact, semi-adaptive soundness implies non-adaptive soundness for the
parallel sum-check protocol as well by letting ∆ contain all polynomials g(j), and rejecting if the prover picks
values of g(j) other than the correct ones.)

Theorem 4.4. Let N = |H|m. Assuming κ ≥ (logN)2/δ and F is a field such that log|F| ≥ κ2·(3/δ)m−1

, the
protocol in Figure 3 has the following properties.

• Completeness: For every ḡ = (g(1), . . . , g(e)) such that each g(j) is an m-variate polynomial of
individual degree d, if ∑

h1,...,hm∈H

g(j)(h1, . . . , hm) = v(j)

for all j ∈ [e], then

Pr
[
(PniPSC(g), V gniPSC(v)) = 1

]
= 1.

• Semi-adaptive soundness: For any poly(N)-size cheating prover P ∗ and any set ∆ of size poly(N)
of m-variate polynomials of individual degree ≤ d,

Pr

P ∗(CRS) = (g, v, π) :


g(j) ∈ ∆ ∀j ∈ [e]

∧ ∃j ∈ [e] s.t.
∑
h∈Hm

g(j)(h) 6= v(j)

∧ V gniPSC(v,CRS, π) = 1


 = negl(N),

assuming the sub-exponential hardness of LWE.
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Non-Interactive Parallel Sum-Check Protocol

In this non-interactive protocol, PniPSC convinces VniPSC of the e equations∑
h1,...,hm∈H

g(j)(h1, . . . , hm) = v(j), j ∈ [e].

• Setup: Sample ki = (pki, cti)← Hϕ.Gen(1κi , 0d+1, 1) and set CRS = {ki}i∈[m].

• Prover: PniPSC iteratively computes

g
(j)
i (·) =

∑
hi+1,...,hm∈H

g(j)(t1, . . . , ti−1, ·, hi+1, . . . , hm) ∀j ∈ [e]

and
ti = Hϕ.Hash(ki, gi) ∈ Hi.

PniPSC sends {(gi, ti)}i∈[m] to VniPSC.

• Verifier: For each i ∈ [m], VniPSC checks for all j ∈ [e] that g
(j)
i is a polynomial of degree at most d, and

that ∑
h∈H

g
(j)
i (h) =

{
v(j) i = 1

g
(j)
i−1(ti−1) i > 1.

VniPSC also checks for all j ∈ [e] that

g(j)m (tm) = g(j)(t1, . . . , tm),

when is done by querying the oracle for g(j). Finally, he checks that all ti’s are computed correctly, i.e. for
all i,

ti = Hϕ.Hash(ki, gi).

If any of these are false, VniPSC rejects. Otherwise he accepts.

Figure 3: Non-interactive parallel sum-check protocol (PniPSC, V
g
niPSC)

• Efficiency: The prover’s runtime is poly(N, dm, e, log|F|), the communication complexity is poly(m, d, e, log|F|),
and the verifier’s runtime (given oracle access to g) is poly(m, d, e, |H|, log|F|).

Proof. Completeness again follows from the correctness of the sum-check protocol. Efficiency follows straight-
forwardly from an analysis of the non-interactive parallel sum-check protocol, and noting that the hash
functions take time poly(d, log|F|) to compute (since they homomorphically factor a degree d polynomial via
the Cantor-Zassenhaus algorithm). We will focus on proving semi-adaptive soundness against a cheating
prover.

We will prove in fact that for every poly(N)-size cheating prover P ∗ and every set ∆ of size poly(N),

Pr

P ∗(CRS) = (g, v, π) :


g(j) ∈ ∆ ∀j ∈ [e]

∧ ∃j ∈ [e] s.t.
∑
z∈Hm

g(j)(z) 6= v(j)

∧ V gniPSC(v,CRS, π) = 1


 ≤ 2mde|∆|/2κ

δ

.

For κ ≥ (logN)2/δ, the right hand side is negligible in N , since d ≤ poly(|H|) and e, |∆|= poly(N).
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Suppose for the sake of contradiction that

Pr

P ∗(CRS) = (g, v, π) :


g(j) ∈ ∆ ∀j ∈ [e]

∧ ∃j ∈ [e] s.t.
∑
z∈Hm

g(j)(z) 6= v(j)

∧ V gniPSC(v,CRS, π) = 1


 = ε > 2mde|∆|/2κ

δ

.

Let
g

(j)
i =

∑
hi+1,...,hm∈H

g(j)(t1, . . . , ti−1, ·, hi+1, . . . , hm)

denote the correct value of the i’th round polynomial for the j’th claim, and let g̃
(j)
i denote the polynomial

that the prover claims is g
(j)
i .

P ∗ successfully convincing VniPSC of the set of claims {
∑
h1,...,hm

g(j)(h1, . . . , hm) = v(j)}j∈[e], at least one

of which is incorrect, means that there is at least one round r and one claim c for which g̃
(c)
r 6= g

(c)
r , and tr is

a root of g̃
(c)
r − g(c)

r . By an averaging argument, there is some round r ∈ [m], some claim c ∈ [e], some ` ∈ [d],
some polynomial a ∈ ∆, and values {t′i ∈ Hi}i∈[r−1] for which with probability at least ε

m·d·e·|∆|·|H1|·····|Hr−1| ,

P ∗ produces a transcript such that the following four things hold:

1. g(c) = a,

2. P ∗’s transcript uses ti = t′i for all i ∈ [r − 1],

3. g̃
(c)
r 6= g

(c)
r ,

4. the `’th root of g̃
(c)
r − g(c)

r is tr.

Call these simultaneous four conditions event A. Note that event A is checkable in poly(N) = o(2κ
δ

) = o(2κ
δ
r )

time, since the correct value of g
(c)
r can be computed in poly(N) time. Let ar denote the correct value of g

(e)
r

when g(e) = a and ti = t′i for all i ∈ [r − 1].
We look at the probability of event A occurring. In the original hybrid, we have that event A occurs with

probability at least ε
m·d·e·|∆|·|H1|·····|Hr−1| , and the r’th hash key is kr = (pkr, ctr), where ctr = Enc(pkr, ξκr ◦

ϕ0d+1,1,1) is the encryption of the function that outputs the first root of g̃
(1)
r − 0 if it is in Hr, else it outputs

0 ∈ Hr. We replace kr by k′r = (pkr, ct
′
r), where ct′r = Enc(pkr, ϕa′r,c,`) is the encryption of the function that

outputs the `’th root of x(c) − ar if it is in Hr, else it outputs 0 ∈ Hr. The δ-sub-exponential security of the

encryption scheme and the fact that event A is checkable in 2κ
δ
r time imply that the difference in probabilities

of event A occurring under kr and k′r is at most 1

2κ
δ
r

. Moreover,

1

2κ
δ
r

≤ 1

2κδ ·
∏r−1
i=1 2M(κi)

=
1

2κδ · |H1|· · · · · |Hr−1|
<

ε

2m · d · e · |∆|·|H1|· · · · · |Hr−1|
,

where we defer the proof of the first inequality to the end of this proof, and the last holds by the definition of
ε. Thus, event A should still occur with with probability greater than ε

2m·d·e·|∆|·|H1|·····|Hr−1| .

Note that k′r is identical to a key generated by Hϕ.Gen(1κr , a′r, (c − 1)d + `). But by Lemma 4.2,

any 2κ
δ
r -sized adversary (and in particular any poly(N)-sized cheating prover) cannot find g̃r such that

tr = Hϕ.Hash(k′r, g̃r) is the `’th root of g̃r − ar with probability greater than 2−κ
δ
r . This means that property

A can only hold with probability at most 2−κ
δ
r < ε

2m·d·e·|∆|·|H1|·····|Hr−1| , giving a contradiction.

Finally, we check that 1

2κ
δ
r
≤ 1

2κδ ·
∏r−1
i=1 2M(κi)

, or equivalently, that

κδr ≥ κδ +

r−1∑
i=1

M(κi), (4)
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which we claimed earlier. The proof of this follows from a straightforward induction on r: Inequality (4)

clearly holds for r = 1, as it simply states that κδ1 ≥ κδ. Now, consider r > 1. Substituting (2M(κr−1))
1/δ

for κr, it suffices to show that

2M(κr−1) ≥ κδ +

r−1∑
i=1

M(κi),

or equivalently, that

M(κr−1) ≥ κδ +

r−2∑
i=1

M(κi).

This follows from the inductive hypothesis, which asserts that the right-hand-side is at most kδr−1, which in
turn is at most the left-hand side (since M(κr−1) ≥ κr−1).

Remark 4.5. By adjusting the values of |∆| and κ, we can in fact prove Theorem 4.4 for larger values of
|∆|, even |∆| that is super-polynomial in N . However, we will not need this fact in our application to GKR.

Remark 4.6. Under the sub-exponential LWE assumption, the CRS used in the construction of our non-
interactive (parallel) sum-check protocol is indistinguishable from a random string of the same length by

a 2κ
δ

-sized adversary with advantage greater than 2−κ
δ

. In particular, this means that no poly(N)-sized
cheating prover can distinguish the generated CRS from a random string. We can therefore replace the CRS
by a uniformly random string of the same length, giving a sound protocol in the common random string model.

5 The Modified Interactive GKR Protocol

In this section we present a modification to the GKR protocol, which we call mGKR, for delegating bounded
depth computations. Jumping ahead, we remark that we can prove the soundness of the Fiat-Shamir paradigm
when applied to mGKR (under sub-exponential circular security of the LWE assumption), whereas we do not
know how to prove soundness w.r.t the original GKR protocol.

We first recall the original GKR protocol in Section 5.1. Then in Section 5.2 we explain the technical
obstacles we face when trying to prove soundness of the Fiat-Shamir paradigm when applied to the original
GKR protocol. Finally, in Section 5.3 and present our modified GKR protocol which overcomes these obstacles.

5.1 The GKR Protocol

The GKR protocol is a publicly verifiable interactive proof for delegating log-space uniform bounded depth
computations. Fix any log-space uniform circuit C : {0, 1}n → {0, 1} of size S and depth D. Let H ⊆ F, where
F is an extension field of GF[2] for which addition and multiplication in F can be done in time polylog(|F|),
and where

max{D, logS} ≤ |H|≤ S,

Let m ∈ N be such that S ≤ |H|m≤ poly(S).

Remark 5.1. We note that in [37], they set |H|= poly(D, logS) and F to be a field of size that is polynomially
related to H. In this work we take |H|= Sε (for a slightly sub-constant ε = o(1)), and take F to be exponentially
larger than H.

Notations and Assumptions. We make the following assumptions (without loss of generality):

1. C is an arithmetic circuit over F.

2. C is a layered circuit of fan-in 2. Namely, the gates in C can be (uniquely) partitioned into layers such
that the inputs to a gate in layer i are the outputs of gates in layer i− 1. Layer 0 is the input layer,
and layer D is the output layer.
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3. Each layer has exactly S gates (we pad all the layers which consist of less than S gates, including the
input and output layers).

For each layer i ∈ [D], we assign each of the S gates a distinct label in Hm. We associate with each layer
i ∈ [D] two functions

addi,multi : H3m → {0, 1},

where, for ω1, ω2, ω3 ∈ Hm, addi(ω1, ω2, ω3) = 1 if and only if ω1 is an addition gate in layer i applied to
gates ω2 and ω3, which are in layer i− 1. Similarly, multi(ω1, ω2, ω3) = 1 if and only if ω1 is a multiplication
gate in layer i applied to gates ω2 and ω3 in layer i− 1. In particular, if at least one of ω1, ω2, ω3 does not
refer to a gate, then addi(ω1, ω2, ω3) = multi(ω1, ω2, ω3) = 0.

It will be convenient to work with circuits for which there are (not necessarily lowest degree) extensions

ãddi, m̃ulti : F3m → F that agree with addi and multi on H3m, and which can be evaluated quickly (in time
poly(logS, log|F|)). It is not known if such extensions of addi and multi exist for any given log-space uniform
circuit C. But any log-space uniform circuit C can be converted into a slightly larger circuit C ′ deciding the
same language, for which such extensions do exist.

Proposition 5.2. [35] For any log-space uniform circuit C of size S and depth D, there is a circuit C ′

of size S′ = poly(S) and depth D′ = D · polylogS such that C(x) = C ′(x) ∀x ∈ {0, 1}n, for which there are
size poly(m, log|H|) formulas computing add′i and mult′i that are constructible in poly(m, log|H|) time. In
particular, this means that for all i ∈ [D′], there are polynomials

ãdd′i, m̃ult′i : F3m′ → F

such that ãdd′i|H′3m′≡ add′i and m̃ult′i|H′3m′≡ mult′i, and both these polynomials are of degree ≤ poly(m′, |H ′|)
and are evaluable in poly(m′, |H ′|, log|F|) time.

In what follows, we consider circuits C for which ãddi and m̃ulti are both evaluable in poly(m, |H|, log|F|)
time, knowing that it is easy to convert any log-space uniform circuit into such a circuit.

Fix an input x ∈ {0, 1}n. For each i ∈ {0, 1, . . . , D}, we associate a function

Vi : Hm → {0, 1}

so that Vi(ω) is the value of the gate ω in the i’th layer of the circuit C on input x. So, if ωout is the output
gate, we have that VD(ωout) = C(x). Let

V̂i : Fm → F

be the low-degree extension of Vi.

Overview of the GKR protocol. Suppose the prover wishes to prove that C(x) = 0, or equivalently, that
V̂D(ωout) = 0. This is done in D phases (where D is the depth of C). In the original GKR protocol, in the
i’th phase (1 ≤ i ≤ D) the prover reduces the task of proving that V̂i(w) = r to the task of proving two
equations: V̂i−1(w1) = r1 and V̂i−1(w2) = r2, where w1, w2 are random elements in Fm determined by the
random coin tosses of the verifier. This is done by running the sum-check protocol.

In more detail, to go from layer i to layer i− 1, notice that for every p ∈ Hm,

V̂i(p) =
∑

ω1,ω2∈Hm
ãddi(p, ω1, ω2) ·

(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) · V̂i−1(ω1) · V̂i−1(ω2).

Thus, by Equation (1), for every w ∈ Fm,

V̂i(w) =
∑

p,ω1,ω2∈Hm
ÊQ(w; p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
 .
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For every w ∈ Fm, let fi,w : (Fm)3 → F be the function defined by

fi,w(p, ω1, ω2) := ÊQ(w; p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
 . (5)

This means that for every w ∈ Fm,

V̂i(w) =
∑

p,ω1,ω2∈Hm
fi,w(p, ω1, ω2).

Note that fi,w is a 3m-variate polynomial of size ≤ poly(S) and degree ≤ poly(m, |H|) (we will asssume m is
much smaller than |H|, so the degree will be poly(|H|)). In the GKR protocol, the prover and verifier run the
sum-check protocol, and thus reduce the task of verifying the statement V̂i(w) = r to verifying a statement
of the form fi,w(p, w1, ω2) = r′ for p, ω1, ω2 ∈ Fm which are determined by the random coin tosses of the
verifier.

Note that the verifier cannot compute on its own the function fi,w, though by Proposition 3.1 and

Proposition 5.2 he can compute efficiently the functions ÊQ, ãddi and m̃ulti. Thus, to compute the value of
fi,w(p, w1, ω2), he only needs to help in computing the values of V̂i−1(ω1) and V̂i−1(ω2). Indeed, as mentioned

above, the sum-check reduces the task of verifying one claim of the form V̂i(w) = r to verifying two claims of
the form V̂i−1(w1) = r1 and V̂i−1(w2) = r2.

To avoid an exponential blowup in the number of equations that are needed to check, they then reduce
the task of verifying that both V̂i−1(w1) = r1 and V̂i−1(w2) = r2 to the task of verifying a single statement of
the form V̂i−1(wi−1) = ri−1 by running a two-to-one protocol.11 Finally, the verifier checks on his own that
V̂0(w0) = r0, which can be done efficiently since it amounts to computing a single point on the low-degree
extension of x.

5.2 Obstacles for Arguing Soundness of the Non-Interactive GKR Protocol

It is tempting to replace each interactive sum-check protocol in GKR with a non-interactive version, and
thus make GKR non-interactive (ignoring the two-to-one protocol, as it was shown to be unnecessary in [40]).
At first sight, it may seem that the soundness of the non-interactive sum-check protocol would imply the
soundness of the non-interactive GKR protocol.

Unfortunately, when we tried to analyze the non-interactive GKR protocol we failed for the following
reason: In the original GKR protocol the sum-check statements are determined by the random coin-tosses of
the verifier. More specifically, if in the i’th layer the prover proves that V̂i(w) = r via the sum-check protocol,
then the sum-check polynomial fi,w depends on the value of w. In the Fiat-Shamir setting, the value of each
such w is determined by hashing the partial transcript, and thus can be chosen adaptively by the cheating
prover.

This adaptivity is precisely what prohibits the proof from going through, since we failed to prove adaptive
soundness of the non-interactive sum-check protocol (rather, we only managed to prove semi-adaptive
soundness (see Theorem 4.4)). Indeed, the proof would go through if we could somehow ensure that each
w belongs to a small set Λ ⊆ Fm. Unfortunately, we do not know how to reduce the task of verifying a
statement of the form V̂i(w) = r for an arbitrary w ∈ Fm to verifying a statement of the form V̂i(w

′) = r′ for
w′ ∈ Λ, where Λ ⊆ Fm is a small predetermined set. However, we do know how to convert it to e = poly(|H|)
statements of the form V̂i(z

(j)) = v(j), where z(j) ∈ Λ for every j ∈ [e]. This will be done via a one-to-many
reduction.

11It was shown in [40] that this two-to-one protocol is unnecessary. We use this fact in our modification to the GKR protocol
in Section 5.3.
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5.3 Our Modified GKR Protocol

In this work we modify the original GKR protocol, as follows: In each layer i, before running any sum-check

procedure, we first convert each claim V̂i(wi) = ri into e claims V̂i(z
(j)
i ) = v

(j)
i for j ∈ [e], where e = poly(|H|).

This, one-to-many reduction may at first seem counterproductive, and is in contrast with the more intuitive
two-to-one reduction of the original GKR protocol. However, it has the important property that all the

elements z
(j)
i belong to a small set Λ = Fm0 ⊆ Fm. The one-to-many reduction is defined in Definition 5.3.

The basic idea is to find e values z
(j)
i , such that the values of V̂i(z

(j)
i ) for every j ∈ [e] determine the value of

V̂i(wi).
This one-to-many reduction, together with the sum-check protocol, allows us to reduce the task of verifying

a single claim of the form V̂i(wi) = ri for wi ∈ Fm to verifying 2e claims of the form V̂i−1(z
(j)
i−1) = v

(j)
i−1

where each z
(j)
i−1 ∈ Λ. This is done by first using our one-to-many reduction to reduce the task of verifying

V̂i(wi) = ri to verifying e claims V̂i(z
(j)
i ) = v

(j)
i . Then, we run e sum-checks to reduce verifying these claims

to verifying 2e claims of the form V̂i−1(w
(j,b)
i−1 ) = r

(j,b)
i−1,b for j ∈ [e], b ∈ {1, 2}.

We can now use a 2e-to-one trick, similar to the two-to-one trick in the original GKR protocol, to reduce
the 2e claims to one, and continue from there. While we don’t see any problems with this approach, we will
choose not to implement a 2e-to-one trick, instead relying on an observation by [40] to prevent an exponential
blowup in the number of claims.

The observation of [40] is that the two-to-one trick in GKR is unnecessary. Rather, they show that one
can continue with two claims per layer, without incurring an exponential growth in the number of claims.
Specifically, their main observation is that this exponential growth can be avoided if the verifier uses the
same random coins in both sum-checks. Indeed, if the verifier uses the same random coin-tosses in both
sum-checks, then the two sum-checks reduce the task of verifying two claims of the form V̂i(wi,b) = ri,b to

verifying two claims of the form V̂i−1(wi−1,b) = ri−1,b (as opposed to four claims). This is the case since the
values of wi−1,1 and wi−1,2 are determined only by the verifier’s coin-tosses, and if he used the same coins in
both executions both claims are reduced to the same claims!

Thus, in our modified GKR protocol, the prover and verifier run 2e sum-checks in parallel, where the
verifier uses the same random coin tosses in all these 2e sum-checks. Thus, these 2e sum-checks reduce the

task of verifying 2e claims of the form V̂i(z
(j)
i ) = v

(j)
i to the task of verifying two claims V̂i−1(w

(b)
i−1) = r

(b)
i−1,

where w
(1)
i−1, w

(2)
i−1 ∈ Fm.

In more detail, when running in parallel 2e sum-checks for proving that for every j ∈ [2e],

v
(j)
i =

∑
p,ω1,ω2∈Hm

f
i,z

(j)
i

(p, ω1, ω2),

at the end, the verifier needs to check that f
i,z

(j)
i

(p, ω1, ω2) = ρ
(j)
i for the same values of (p, ω1, ω2) ∈ F3m,

since these values are determined by the random coin tosses used by the sum-check verifier. In particular, to
verify these 2e equations, all the verifier needs is V̂i−1(ω1) and V̂i−1(ω2), since it can compute the rest of

the terms on its own. Thus, we reduce the task of verifying V̂i(z
(j)
i ) = v

(j)
i for every j ∈ [2e] to the task of

verifying V̂i−1(ωb) = rb for b ∈ {1, 2}, where ω1, ω2 ∈ Fm. We set w
(b)
i−1 = ωb for the next layer.

We repeat these two steps (applying the one-to-many reduction, then running 2e sum-checks in parallel)
for each level i ∈ [D]. At the very end of the D rounds, it remains for the verifier to verify that for every
b ∈ {0, 1}, V̂0(ωb) = rb. This amounts to computing two points in the low-degree extension of the input x
(with respect to H,m,F), which he can compute on his own in time n · poly(m, |H|, log|F|).

A formal description of our modified GKR protocol can be found in Figure 5, and its analysis can be
found in Section 5.3.2. It makes use of a one-to-many reduction which can be found in Section 5.3.1.

5.3.1 One-to-Many Reduction

We define a one-to-many reduction, and give the specific construction we will use in our modified GKR
protocol.
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Definition 5.3. A one-to-many reduction for layer i ∈ [D] consists of two deterministic functions (Reducei,Verifyi):

• Reducei(w, r) takes as input w ∈ Fm and r ∈ F, and outputs a message R = {(z(j), v(j))}j∈[e].

• Verifyi(M,w, r) takes as input a message R = {(z(j), v(j))}j∈[e], w ∈ Fm, and r ∈ F, and outputs 0
or 1.

These functions should satisfy the following guarantees:

• Correctness: If V̂i(w) = r, then for R = {(z(j), v(j))}j∈[e] ← Reducei(w, r),

V̂i(z
(j)) = v(j) ∀j ∈ [e],

and
Verifyi(R,w, r) = 1.

• Statistical Soundness: If V̂i(w) 6= r is false, then for R = {(z(j), v(j))}j∈[e] ← Reducei(w, r), either

Verifyi(R,w, r) = 0

or there exists j ∈ [e] such that
V̂i(z

(j)) 6= v(j).

• Efficiency: Reducei is computable in poly(S) time, and Verifyi is computable in poly(e, log|F|) time.

Our one-to-many reduction depends on the following observation: take F0 ⊂ F to be a field extension of a
finite field. A basic fact is that there is a primitive element, i.e. some element ζ ∈ F such that F is a vector
space over F0, with basis elements (1, ζ, ζ2, . . . , ζβ). In particular, β is such that |F0|β+1= |F|, and we write
F = F0(ζ). Then for any element t ∈ F, there is a unique polynomial p of degree at most β and coefficients in
F0 for which p(ζ) = t. In fact, we can choose our field representation of F so that t is represented by p.

For this protocol, we fix a list of e = m ·β · (|H|−1) + 1 values in F0, known to both the prover and verifier.
We can take, for instance, the first e elements of F0 lexicographically. Call these elements y(1), . . . , y(e).

Lemma 5.4. The protocol in Figure 4 is a one-to-many reduction.

Proof. To show completeness, note that γ = Ṽi ◦p is a univariate polynomial of degree at most deg Ṽi ·deg p =
m(|H|−1) · β = e− 1, and it satisfies the property that γ(y(j)) = v(j) for all j ∈ [e] and γ(ζ) = r.

For soundness, note that e points on a univariate polynomial of degree ≤ e− 1 uniquely determine the
polynomial. If indeed Ṽi(z

(j)) = v(j) for every j ∈ [e], then the polynomial γ through the e points (y(j), v(j))
must in fact be Ṽi ◦ p. But then, γ(ζ) = Ṽi(p1(ζ), . . . , pm(ζ)) 6= r, so the verification must fail.

The efficiency claims are clear: the bottleneck for Reducei is computing v(j) = V̂i(z
(j)), which can be done

in poly(S) time. For Verifyi, there are e points y(j), and computing a polynomial through e points can be
done using interpolation in poly(e, log|F|) time.

Remark 5.5. A rather trivial one-to-many reduction is as follows: let e = 1, and define Reducei and Verifyi
so that Reducei(w, r) = (w, r) and Verifyi((w

′, r′), w, r) = [w′ = w ∧ r′ = r]. The mGKR protocol given in
Figure 5, using this trivial one-to-many reduction, will reproduce the variant of the GKR protocol in [40], in
which two claims in layer i are reduced to two claims in layer i− 1 by running two sum-checks in parallel.
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One-to-Many Reduction

• Reducei(t, r) takes as input t = (t1, . . . , tm) ∈ Fm and r ∈ F, and does the following:

1. Let p1, . . . , pm be the unique degree β polynomials with coefficients in F0 such that pi(ζ) = ti for all
i ∈ [m].

2. Compute z(j) = p(y(j)) = (p1(y(j)), . . . , pm(y(j))) ∈ Fm0 for each j ∈ [e].

3. Compute v(j) = V̂i(z
(j)) for each j ∈ [e].

4. Output R = {(z(j), v(j))}j∈[e].

• Verifyi(R, t, r) takes as input R = {(z(j), v(j))}j∈[e], t = (t1, . . . , tm) ∈ Fm, and r ∈ F, and does the following:

1. Let p1, . . . , pm be the unique degree β polynomials with coefficients in F0 such that pi(ζ) = ti for all
i ∈ [m].

2. Compute z(j)
′

= p(y(j)) = (p1(y(j)), . . . , pm(y(j))) ∈ Fm0 for each j ∈ [e].

3. Check that z(j) = z(j)
′

for all j ∈ [e], rejecting and outputting 0 if z(j) 6= z(j)
′

for some j.

4. Construct the unique degree ≤ e− 1 = mβ(|H|−1) polynomial γ such that γ(y(j)) = v(j) for all j ∈ [e].
Check that γ(ζ) = r, and output 0 if γ(ζ) 6= r, and output 1 otherwise.

Figure 4: One-to-many reduction

5.3.2 Analysis of the mGKR Protocol

Theorem 5.6. Fix any Boolean circuit C : {0, 1}n → {0, 1} of size S and depth D for which extensions

ãddi and m̃ulti are evaluable in poly(m, |H|, log|F|) time. The mGKR protocol (PmGKR, VmGKR), described in
Figure 5, has the following guarantees:

• Completeness: For every x ∈ {0, 1}n such that C(x) = 0,

Pr[(PmGKR, VmGKR)(C, x) = 1] = 1.

• Soundness: For every x ∈ {0, 1}n such that C(x) 6= 0, and for every (all powerful) cheating prover P ∗,

Pr[(P ∗, VmGKR)(C, x) = 1] ≤ D · 6mde
|F|

,

where d ≤ poly(H) is the individual degree of the polynomials polynomial fi,z.

• Efficiency: The prover PmGKR(C) runs in time ≤ S · poly(|H|m). The communication complexity
is ≤ D · poly(m, d, e, |H|, log|F|), and the runtime of the verifier is D · poly(m, d, e, |H|, log|F|) + n ·
poly(m, |H|, log|F|). Moreover, this protocol is public-coin; i.e., all the messages sent by the verifier are
truly random and consist of the verifier’s random coin tosses.

Remark 5.7. Recall that by Proposition 5.2, any log-space uniform circuit C can be converted into a circuit

C ′ for which there exist extensions ãddi and m̃ulti that are evaluable in poly(m, |H|, log|F|) time. This new
circuit C ′ has size S′ = poly(S) and depth D′ = D · polylog(S). The guarantees of Theorem 5.6 therefore
hold for any log-space uniform C as well.

Proof. The completeness condition follows immediately from the completeness of the sum-check protocol.
The efficiency guarantees follow from Proposition 5.2, together with the efficiency guarantees of the sum-check
protocol. We thus focus on proving soundness.
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The Modified GKR Protocol (PmGKR, VmGKR)(C, x)

In this protocol, PmGKR proves to VmGKR that V̂D(ωout) = 0, where ωout ∈ Hm corresponds to the output wire. This

is done in D phases. For every i ∈ [D], in the i’th phase, the task of proving that V̂i(w
(b)
i ) = r

(b)
i for b ∈ {1, 2} is

reduced to the task of proving that V̂i−1(w
(b)
i−1) = r

(b)
i−1 for b ∈ {1, 2}. This is done as follows:

1. Set w
(1)
D = w

(2)
D = ωout and r

(1)
D = r

(2)
D = 0, and set i = D.

2. PmGKR and VmGKR use a one-to-many reduction on each of the claims V̂i(w
(b)
i ) = r

(b)
i to reduce to a list

of 2e claims V̂i(z
(j)
i ) = v

(j)
i , j ∈ [2e]. That is, PmGKR computes R

(b)
i = ({(z(j+(b−1)e)

i , r
(j+(b−1)e)
i )}j∈[e]) ←

Reducei(w
(b)
i , r

(b)
i ) for b ∈ {1, 2} and sends R

(b)
i to VmGKR. The verifier then runs Verifyi(R

(b)
i , w

(b)
i , r

(b)
i ) for

each b and rejects if either check fails. Otherwise, PmGKR and VmGKR replace the two claims V̂i(w
(b)
i ) = r

(b)
i

with the 2e claims V̂i(z
(j)
i ) = v

(j)
i and continue.

3. PmGKR and VmGKR run 2e sum-check protocols in parallel: (PSC(f
i,z

(j)
i

), V
f
i,z

(j)
i

SC (v
(j)
i )) for j ∈ [2e], where the

verifier uses the same randomness in all sum-checks, and where for all i ∈ [D] and z ∈ Fm, fi,z is defined as
follows:

fi,z(p, ω1, ω2) = ÊQ(z, p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
 ,

where p, ω1, ω2 ∈ Fm. Namely, the prover proves that

V̂i(z
(j)
i ) =

∑
p,ω1,ω2∈Hm

f
i,z

(j)
i

(p, ω1, ω2) = v
(j)
i ∀j ∈ [2e].

At the end of this sum-check protocol, VmGKR needs to check that for all j ∈ [2e],

f
i,z

(j)
i

(p, ω1, ω2) = ρ
(j)
i ,

where p, ω1, ω2 ∈ Fm are random elements chosen by VSC in the sum-check protocol (which are the same in

all protocols), and ρ
(j)
i are values determined by the sum-check protocol.

4. VmGKR asks the prover for the values of V̂i−1(ω1) and V̂i−1(ω2), and obtains values r1, r2.

5. VmGKR checks that indeed for every j ∈ [2e] it holds that

ρ
(j)
i = ÊQ(z

(j)
i , p) ·

(
ãddi(p, ω1, ω2) · (r1 + r2) + m̃ulti(p, ω1, ω2) · (r1 · r2)

)
,

by computing ÊQ(z
(j)
i , p), ãddi(p, ω1, ω−2) and m̃ulti(p, ω1, ω2) himself. If this is not the case it rejects.

Otherwise, if i ≥ 1, then go back to Item 2 with i = i− 1, with w
(b)
i = ωb and r

(b)
i = rb for b ∈ {1, 2}.

6. If i = 0, VmGKR checks on his own that indeed for every b ∈ {1, 2} it holds that V̂0(ωb) = rb, by evaluating

V̂0(ωb) =
∑
p∈[n]

ÊQ(ωb, p) · xp,

where [n] is the set of input wires.

Figure 5: The Modified GKR delegation protocol (PmGKR, VmGKR)

To this suppose for contradiction that there exists x ∈ {0, 1}n such that C(x) 6= 0, and a (non-uniform,
all powerful) cheating prover P ∗, such that

Pr[(P ∗, VmGKR)(C, x) = 1] = p >
D · 6mde
|F|

.
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We assume without loss of generality that P ∗ is deterministic.12 Denote by r
(1)
i and r

(2)
i the two values sent

by P ∗ as supposedly corresponding to V̂i(w
(1)
i ) and V̂i(w

(2)
i ), where the values w

(1)
i , w

(2)
i ∈ Fm are determined

by the randomness of the verifier in the sumcheck protocol (as described in Figure 5). In particular, with
probability p,

(r
(1)
D , r

(2)
D ) 6= (V̂D(w

(1)
D ), V̂D(w

(2)
D )) and (r

(1)
0 , r

(2)
0 ) = (V̂0(w

(1)
0 ), V̂0(w

(2)
0 )).

By a standard hybrid argument this implies that there exists i ∈ [D] such that probability at least p
D ,

(r
(1)
i , r

(2)
i ) 6= (V̂i(w

(1)
i ), V̂i(w

(2)
i )) and (r

(1)
i−1, r

(2)
i−1) = (V̂i−1(w

(1)
i−1), V̂i−1(w

(2)
i−1)).

P ∗ and VmGKR apply the one-to-many reduction to the claims V̂i(w
(1)
i ) = r

(1)
i and V̂i(w

(2)
i ) = r

(2)
i to obtain

2e claims V̂i(z
(j)
i ) = v

(j)
i , j ∈ [2e]. By the statistical soundness of the one-to-many reduction, since VmGKR

does not reject during the verification check, there exists j ∈ [2e] for which v
(j)
i 6= V̂i(z

(j)
i ). In other words,

there exists i ∈ [D] and j ∈ [2e] such that with probability at least p
2e·D ,

v
(j)
i 6= V̂i(z

(j)
i ) and (r

(1)
i−1, r

(2)
i−1) = (V̂i−1(w

(1)
i−1), V̂i−1(w

(2)
i−1)). (6)

We argue that this contradicts the soundness of the sum-check protocol w.r.t. the multivariate polynomial

V̂i(z
(j)
i ) =

∑
p,ω1,ω2∈Hm

f
i,z

(j)
i

(p, ω1, ω2),

where recall that

fi,z(p, ω1, ω2) = ÊQ(z, p) ·
[
ãddi(p, ω1, ω2) ·

(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) · V̂i−1(ω1) · V̂i−1(ω2)

]
.

Indeed, consider the following cheating prover P ∗SC that breaks the soundness of the sum-check protocol. Let
transi be an emulation of a prefix of the interaction between (P ∗, VmGKR), until the point where the values

z
(j)
i are determined, such that the following two conditions hold:

1. v
(j)
i 6= V̂i(z

(j)
i ).

2. Pr[(r
(1)
i−1, r

(2)
i−1) = (V̂i−1(w

(1)
i−1), V̂i−1(w

(2)
i−1)) | transi] ≥ p

2e·D .

The prover P ∗SC will break soundness of the sum-check protocol by convincing the verifier VSC to accept the

false statement v
(j)
i =

∑
p,ω1,ω2∈Hm fi,z(j)i

(p, ω1, ω2) with probability at least 3md
|F| .

The prover P ∗SC has transi hard-wired, and emulates the mGKR cheating prover P ∗, as follows: in round
ι ∈ [3m], given the prefix t1, . . . , tι ← F sent by verifier VSC in the first ι rounds, emulate P ∗(transi, t1, . . . , tι)

to obtain (g
(1)
ι , . . . , g

(2e)
ι ), and send g

(j)
ι to VSC. The fact that Equation (6) holds with probability at least

p
2e·D > 3md

F contradicts the soundness guarantee of the sum-check protocol.

6 Our Non-Interactive mGKR Protocol

In this section, we apply the Fiat-Shamir paradigm to the mGKR protocol described in Section 5, by using
the non-interactive parallel sum-check procedure described in Section 4.3.

Recall that mGKR is an interactive protocol to delegate the computation of C(x), where C : {0, 1}n → {0, 1}
is a circuit of size S and depth D, and x ∈ {0, 1}n is an input. At a high level, the protocol has the following

structure: for each layer i of the circuit, we first reduce two claims of the form V̂i(w
(b)
i ), b ∈ {1, 2} to 2e

claims {V̂i(z(j)
i )}j∈[2e] using two applications of our one-to-many reduction, and then we run 2e sum-checks

12This assumption is without loss of generality since if P ∗ was randomized, one can simply hard-wire its random coin tosses.
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in parallel. At the end of these 2e sum-checks, we once again are left with two claims V̂i−1(w
(b)
i−1) = r

(b)
i−1,

b ∈ {1, 2}, for the next layer.
In this section, we present a non-interactive version of the mGKR protocol. Our non-interactive mGKR

protocol is similar to the interactive one, except that the parallel sum-check protocols are replaced with their
non-interactive version, as defined in Figure 3.

Let ε and m be such that 1/ε � m � log logS, and let κ = (logS)2/δ. Let F be a field of size

2(logS)2·(3/δ)
3m

≥ 2κ
2·(3/δ)3m−1

, and let H ⊂ F be a subset of size S1/m, so |H|m= S. Furthermore, take F0 ⊂ F
to be a subfield of size poly(|H|).

Our non-interactive mGKR protocol has the following structure: for each layer i ∈ [D], the prover begins

with two claims V̂i(w
(b)
i ) = r

(b)
i . He will do two things. First, he’ll apply the one-to-many reduction given in

Section 5.3.1 to reduce each of the two claims V̂i−1(w
(b)
i−1) = r

(b)
i−1 to e = 3mβ(|H|−1)+1 ≤ 3m · |H|· log|F| new

claims V̂i−1(z
(j+(b−1)e)
i−1 ) = v

(j+(b−1)e)
i−1 , each of which satisfies zji−1 ∈ F3m

0 . Next, he’ll generate an argument
for the 2e parallel sum-checks

V̂i(z
(j)
i ) =

∑
p,ω1,ω2∈Hm

f
i,z

(j)
i

(p, ω1, ω2) = v
(b)
i ,

using the non-interactive parallel sum-check procedure given in Figure 3. Each of the polynomials fi,z is a
3m-variate polynomial with individual degree ≤ d = poly(|H|). Finally, at the end of D layers, he sends the
verifier the messages of the one-to-many reductions, as well as the D arguments for the parallel sum-checks.

Our non-interactive, publicly verifiable mGKR protocol is described in Figure 6.

Remark 6.1. The CRS for our non-interactive mGKR protocol is the D CRS’s for the D parallel sum-
checks. As noted in Remark 4.6, each of these D CRS’s are indistinguishable from a random string under
the sub-exponential LWE assumption. Therefore, the CRS for our non-interactive mGKR protocol is also
distinguishable from a random string of the same length.

Theorem 6.2. For ε = ε(S) = ω(1/log logS), there are m, |H|, and |F| such that for any Boolean circuit

C : {0, 1}n → {0, 1} of size S and depth D for which ãddi and m̃ulti are evaluable in poly(m, |H|, log|F|)
time, the non-interactive mGKR protocol (PniGKR, VniGKR), described in Figure 6, has the following guarantees:

• Completeness: For any x ∈ {0, 1}n such that C(x) = 0,

Pr[(PniGKR, VniGKR)(C, x) = 1] = 1.

• Soundness: For any poly(S)-size cheating prover P ∗ and x ∈ {0, 1}n such that C(x) 6= 0,

Pr[(P ∗, VniGKR)(C, x) = 1] = negl(S),

assuming the sub-exponential hardness of LWE.

• Efficiency: The prover PniGKR(C) runs in time ≤ poly(S). The communication complexity is o(D ·Sε),
and the runtime of the verifier is o((D + n) · Sε).

Proof. In what follows, let m be so that 1/ε � m � log logS, and let F be a field of size 2(logS)2·(3/δ)
3m

and
H ⊂ F be a set of size S1/m. We split our proof into the three components.

Completeness - Completeness follows from the correctness of the mGKR protocol described in Figure 5 and
the correctness of our parallel sum-check protocol in Figure 3.

Soundness - Next, we prove soundness. Suppose that there is a poly(S)-size cheating prover P ∗ such that

Pr
π←P∗(CRS)

[VniGKR(CRS, C, x, π) = 1] > p(S),
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Non-Interactive mGKR (PniGKR, VniGKR)(C, x)

• Setup: For i ∈ [D], generate CRSi as in the setup of the non-interactive parallel sum-check protocol
(PniPSC, VniPSC) described in Figure 3. Set CRS = (CRS1, . . . ,CRSD).

• Prover: PniGKR follows the following procedure to generate the proof string:

1. Set w
(1)
D = w

(2)
D = ωout and r

(1)
D = r

(2)
D = 0, and set i = D.

2. For b ∈ {1, 2}, compute R
(b)
i = {(z(j+(b−1)e)

i , v
(j+(b−1)e)
i )}j∈[e] ← Reducei(w

(b)
i , r

(b)
i ), where Reducei is

given by the one-to-many reduction described in Figure 4.

3. Recall that
V̂i(z

(j)
i ) =

∑
p,ω1,ω2∈H

f
i,z

(j)
i

(p, ω1, ω2) ∀j ∈ [2e],

where

fi,z(p, ω1, ω2) = ÊQ(z, p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)
 .

Generate a proof string for the 2e claims {V̂i(z(j)i ) = v
(j)
i }j∈[2e] by running the non-interactive parallel

sum-check procedure (PniPSC, VniPSC) from Figure 3 on the 2e claims∑
p,ω1,ω2∈H

f
i,z

(j)
i

(p, ω1, ω2) = v
(j)
i ,

using CRSi. PniGKR thus obtains a proof string πi.

4. At the end of 2e parallel sum-checks, there will be a specific point (p, ω1, ω2) ∈ F3m determined by the

outputs of the hash functions used to simulate verifier queries. PniGKR computes r
(1)
i−1 = V̂i−1(ω1) and

r
(2)
i−1 = V̂i−1(ω2), and sets w

(1)
i−1 = ω1 and w

(2)
i−1 = ω2. Set i = i− 1, and if i ≥ 1, return to Item 2.

PniGKR sends π =

{(
πi,
(
w

(b)
i , r

(b)
i , R

(b)
i

)
b∈{1,2}

)}
i∈[D]

to VniGKR.

• Verifier: Upon obtaining π =

{(
πi,
(
w

(b)
i , r

(b)
i , R

(b)
i

)
b∈{1,2}

)}
i∈[D]

, VniGKR does the following checks:

– Check w
(1)
D = w

(2)
D = ωout and r

(1)
D = r

(2)
D = 0.

– For each i ∈ [D] and b ∈ {1, 2}, run Verifyi(R
(b)
i , w

(b)
i , r

(b)
i ), and reject if either output is 0.

– Check that w
(1)
i and w

(2)
i are indeed the outputs of the hash functions used in the parallel sum-

check procedure. Verify that each πi is a valid proof for the 2e claims V̂i(z
(j)
i ) = v

(j)
i by running

VniPSC(vi,CRSi, πi), replacing VniPSC’s oracle queries to f
i,z

(j)
i

with the computations

f
i,z

(j)
i

(p, w
(1)
i , w

(2)
i ) = ÊQ(z(j), p)·

(
ãddi(p, w

(1)
i , w

(2)
i ) · (r(1)i + r

(2)
i ) + m̃ulti(p, w

(1)
i , w

(2)
i ) · (r(1)i · r

(2)
i )
)
.

– Compute V̂0(w
(1)
0 ) and V̂0(w

(2)
0 ) and verify that r

(b)
0 = V̂0(w

(b)
0 ) for b ∈ {1, 2}.

If any of these checks fail, VniGKR rejects. Otherwise, he accepts.

Figure 6: Non-interactive GKR protocol (PniGKR, VniGKR)

for some non-negligible p(S). Then by a standard hybrid argument, there is some layer i ∈ [D] for which
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with probability at least p
D ,

(r
(1)
i , r

(2)
i ) 6= (V̂i(w

(1)
i ), V̂i(w

(2)
i )) and (r

(1)
i−1, r

(2)
i−1) = (V̂i−1(w

(1)
i−1), V̂i−1(w

(2)
i−1)).

By the statistical soundness of the one-to-many protocol, this means that with probability at least p
D ,

{v(j)
i }j∈[2e] 6= {V̂i(z

(j)
i )}j∈[2e] and (r

(1)
i−1, r

(2)
i−1) = (V̂i−1(w

(1)
i−1), V̂i−1(w

(2)
i−1)).

However, this contradicts the semi-adaptive soundness of the non-interactive parallel sum-check protocol

(PniPSC, VniPSC) from Figure 3: each z
(j)
i is chosen from Fm0 , so the polynomials f

i,z
(j)
i

belong to a set

∆i =

fi,z : (p, ω1, ω2) 7→ ÊQ(z, p) ·

 ãddi(p, ω1, ω2) ·
(
V̂i−1(ω1) + V̂i−1(ω2)

)
+ m̃ulti(p, ω1, ω2) ·

(
V̂i−1(ω1) · V̂i−1(ω2)

)


z∈Fm0

.

In particular, |∆|= |F0|m= (poly(|H|))m = poly(S). Thus, noting that p
D is non-negligible in S since D ≤ S,

we get a contradiction on the semi-adaptive soundness guarantee in Theorem 4.4, which states that this
should happen with probability negligible in S.

Efficiency - To analyze the efficiency of (PniGKR, VniGKR), we need the following two lemmas, which bound the
size of |F| and |H|, respectively. Recall that 1/ε � m � log logS.

Lemma 6.3. For any constant µ > 0, (log|F|)µ = o(Sε).

Proof. Recall that log|F|= (logS)2·(3/δ)3m . Because m, 1/ε = o(log logS), we have that

3m · log(3/δ) + log log logS + log(1/ε) � log logS

⇐⇒ 3m · log(3/δ) + log log logS � log ε+ log logS

=⇒ (3/δ)3m · log logS � ε logS

=⇒ (logS)2·(3/δ)3m � Sε

⇐⇒ polylog|F| = poly((logS)2·(3/δ)3m) � Sε.

Lemma 6.4. For any constant µ > 0, |H|µ = o(Sε).

Proof. This is easy to see as |H|= S1/m = So(ε).

Now, we analyze the efficiency of (PniGKR, VniGKR).
First, we look at the prover’s runtime. In each of D layers, PniGKR has to do two things. The first is

to run e = O(m · |H|· log|F|) non-interactive sum-checks in parallel. By Theorem 4.4, the prover runtime
for this parallel sum-check is poly(S, dm, e, log|F|) = poly(S, log|F|), where we use that d = poly(|H|) and
e = poly(|H|, log|F|). The second thing PniGKR has to do is perform two one-to-many reductions, each
of which involves computing V̂i at e points. This can be done in S · poly(m, |H|, log|F|) = poly(S, log|F|)
time, by Proposition 3.2. Altogether, the prover runtime is D · poly(S, log|F|). Using from Lemma 6.3 that
log|F|= o(Sε), we obtain that PniGKR runs in poly(S) time.

For the communication complexity, note that for each of the D layers, the prover generates a proof string
for the parallel sum-check as well as sends over the outputs of Reducei for the one-to-many reduction. By
Theorem 4.4, the proof string for the parallel sum-check has length poly(m, d, e, log|F|) = poly(|H|, log|F|).
The output of Reducei is a list of O(e) = poly(|H|, log|F|) values in F. In total, for each of D layers, the
communication complexity is poly(|H|, log|F|). By Lemmas 6.4 and 6.3, poly(H|) � Sε/2 and poly(log|F|) �
Sε/2, so the total communication complexity is D · poly(|H|, log|F|) = o(D · Sε).
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Finally, we check the verifier’s runtime. The verifier has to check three things: verify each parallel

sum-check, verify each one-to-many reduction, and verify the values of V̂0(w
(b)
0 ) for b ∈ {1, 2}. For the first,

each of D parallel sum-checks can be verified in poly(d,m, e, |H|, log|F|) = poly(|H|, log|F|) = o(Sε) time, by
Theorem 4.4 and the arguments above. Each of D one-to-many reductions can be verified by interpolating
e = poly(|H|, log|F|) points to get a degree e− 1 polynomial and evaluating this polynomial at a point. This

process takes poly(|H|, log|F|) = o(Sε) as well. Finally, to compute V̂0(w
(b)
0 ), b ∈ {1, 2}, recall that V̂0 is the

LDE of V0, which on Hm gives the value of the input corresponding input wire. As a slight abuse of notation,
let [n] denote the set of labels in Hm corresponding to input wires. Then, we can write:

V̂0(w) =
∑

p∈[n]⊂Hm
ÊQ(w, p) · V0(p).

By Proposition 3.1, ÊQ(w, p) can be evaluated in poly(m, |H|, log|F|) = o(Sε) time, so computing V̂0(w
(b)
0 )

takes o(n · Sε) time. In total, all verifier checks can be performed in o((D + n) · Sε) time.

In light of Proposition 5.2, Theorem 6.2 gives a non-interactive argument for any log-space uniform
Boolean circuit C : {0, 1}n → {0, 1}. This is done by running (PniGKR, VniGKR) on the circuit C ′, which is of
size S′ = poly(S) and depth D′ = D · polylog(S).

Corollary 6.5. Assuming the sub-exponential hardness of LWE, for any ε = ε(S) = ω(1/log logS) and any
log-space uniform circuit C : {0, 1}n → {0, 1} of size S and depth D, there is a non-interactive argument for
{x : C(x) = 0} with completeness 1 and soundness negl(S). The prescribed prover strategy runs in poly(S)
time, the communication complexity is bounded by D · Sε, and the verifier runtime is bounded by (D + n) · Sε.

7 PPAD Hardness

The main result of [25], restated to align with our non-interactive sum-check protocol, is the following theorem:

Theorem 7.1. [25] The class CLS is hard (on average), assuming that #SAT with log(n)·m variables is hard
(on average), where m = o(log log n), and assuming that the non-interactive sum-check protocol (PniSC, VniSC)
from Figure 2 (obtained by applying the Fiat-Shamir transformation), has the following guarantees for a
field F such that log|F| = poly(n), |H|= n, and d = poly(n). In what follows, Hi denotes the image space
of the i’th Fiat-Shamir hash function, and CRSj denotes the final m − j hash keys (kj+1, . . . , km), where
CRS = (k1, . . . , km).

• Prefix-adaptive soundness: For every m-variate polynomial g : Fm → F of individual degree d,
every j ∈ [0,m], and every poly(n)-size cheating prover P ∗,

Pr

P ∗(CRS) = (β1, . . . , βj , v, π) :


βi ∈ Hi ∀ i ∈ [j]

∧
∑

hj+1,...,hm∈H

gβ1,...,βj (hj+1, . . . , hm) 6= v

∧ V
gβ1,...,βj
niSC (v,CRSj , π) = 1



 = negl(n),

where gβ1,...,βj : Fm−j → F is an (m − j)-variate polynomial of individual degree d defined by

gβ1,...,βj (hj+1, . . . , hm) , g(β1, . . . , βj , hj+1, . . . , hm).

• Prefix-adaptive unambiguity: For every m-variate polynomial g : Fm → F of individual degree d,
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every j ∈ [0,m], and every poly(n)-size cheating prover P ∗,

Pr

P ∗(CRS) = (β1, . . . , βj , v, π1, π2) :


βi ∈ Hi ∀ i ∈ [j]

∧ π1 6= π2

∧ V
gβ1,...,βj
niSC (v,CRSj , π1) = 1

∧ V
gβ1,...,βj
niSC (v,CRSj , π2) = 1



 = negl(n).

• Efficiency: VniSC runs in time poly(n).

In Section 7.1, we show that our non-interactive sum-check protocol does indeed satisfy the properties of
prefix-adaptive soundness and prefix-adaptive unambiguity (Theorem 7.3), and that for κ = (m log n)2/δ and

|F|= 2(m logn)2·(3/δ)
m−1

, the size of log|F| and the runtime of VniSC are both poly(n) (Lemma 7.4). We thus
have the following corollary:

Corollary 7.2. Assuming that LWE is sub-exponentially hard and that #SAT with o(log n · log log n) variables
is hard (on average), then CLS is hard (on average).

We note that Theorem 7.1, as stated, differs from the theorem in [25]. Specifically, in [25] they require
full adaptivity of soundness and unambiguity, and in particular, allow the cheating prover to choose the
multivariate polynomial g adaptively as well. While we do not guarantee that our non-interactive sum-check
protocol has full adaptivity, upon inspecting their proof, we notice that they do not need the adaptivity on g
(and probably require it only for the sake of simplicity), and only need the adaptivity of β1, . . . , βj and v.

The rest of this section is split into two parts. In Section 7.1, we show that our non-interactive sum-check
protocol satisfies prefix-adaptive soundness and unambiguity. Then, in Section 7.2, we give a sketch of the
proof of Theorem 7.1.

7.1 Analysis of the Non-Interactive Sum-Check Protocol

In what follows, we prove that our non-interactive sum-check protocol in Figure 2 satisfies the prefix-adaptive
soundness and unambiguity properties. The proof of these properties follows from the same argument as that
of semi-adaptive soundness in Theorem 4.4, so we gloss the outline of the proof without diving too much into
details, referring the reader to the proof of Theorem 4.4 for a more detailed argument. In fact, we prove
something stronger, that the prefix-adaptive soundness and unambiguity guarantees hold with probability
negligible in N = |H|m against cheating provers that are size polynomial in N , as opposed to with probability
negligible in n against provers of size polynomial in n.

Theorem 7.3. Let κ = (logN)2/δ and |F|= 2κ
2·(3/δ)m−1

, where N = |H|m. Assuming that LWE is sub-
exponentially hard, the protocol in Figure 2 has the following guarantees:

• Prefix-adaptive soundness: For every m-variate polynomial g : Fm → F of individual degree d,
every j ∈ [0,m], and every poly(N)-size cheating prover P ∗,

Pr

P ∗(CRS) = (β1, . . . , βj , v, π) :


βi ∈ Hi ∀ i ∈ [j]

∧
∑

hj+1,...,hm∈H

gβ1,...,βj (hj+1, . . . , hm) 6= v

∧ V
gβ1,...,βj
niSC (v,CRSj , π) = 1



 = negl(N),

where gβ1,...,βj : Fm−j → F is an (m − j)-variate polynomial of individual degree d defined by

gβ1,...,βj (hj+1, . . . , hm) , g(β1, . . . , βj , hj+1, . . . , hm).
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• Prefix-adaptive unambiguity: For every m-variate polynomial g : Fm → F of individual degree d,
every j ∈ [0,m], and every poly(N)-size cheating prover P ∗,

Pr

P ∗(CRS) = (β1, . . . , βj , v, π1, π2) :


βi ∈ Hi ∀ i ∈ [j]

∧ π1 6= π2

∧ V
gβ1,...,βj
niSC (v,CRSj , π1) = 1

∧ V
gβ1,...,βj
niSC (v,CRSj , π2) = 1



 = negl(N).

Proof. Prefix-adaptive unambiguity follows from the proof of prefix-adaptive soundness, and specifically from
the fact that no poly(N)-size prover can form a proof π that goes from an incorrect statement to a correct
one, except with negligible probability. We focus on proving prefix-adaptive soundness. To this end, fix any
m-variate polynomial of individual degree d, an index j ∈ [0,m], and a poly(N)-size cheating prover P ∗. We
prove the stronger statement that

Pr

P ∗(CRS) = (β1, . . . , βj , v, π) :


βi ∈ Hi ∀ i ∈ [j]

∧
∑

hj+1,...,hm∈H

gβ1,...,βj (hj+1, . . . , hm) 6= v

∧ V
gβ1,...,βj
niSC (v,CRSj , π) = 1



 = ε ≤ 2(m−j)d/2κ
δ

= negl(N).

To this end suppose for contradiction that

ε > 2(m− j)d/2κ
δ

. (7)

For all i > j, let

gi(·) =
∑

hi+1,...,hm

g(β1, . . . , βj , tj+1, . . . , ti−1, ·, hi+1, . . . , hm)

denote the correct value of the i’th polynomial, and let g̃i denote the polynomial that P ∗ actually sends. By an
averaging argument, there must exist some round r ∈ [j + 1,m], ` ∈ [d], and values β′1, . . . , β

′
j , t
′
j+1, . . . , t

′
r−1

(where β′i ∈ Hi and t′i ∈ Hi) for which, with probability at least ε
(m−j)·d·|H1|·····|Hr−1| , the following four

things hold: (1) g̃r 6= gr, (2) tr is the `’th root of g̃r − gr, (3) βi = β′i for all i ∈ [j], and (4) ti = t′i for all
i ∈ [j + 1, r − 1]. Call these simultaneous four conditions event B, and let ar denote the correct value of gr
when βi = β′i for all i ∈ [j] and ti = t′i for all i ∈ [j + 1, r − 1].

Originally, the r’th hash key is kr = (pkr, ctr), where ctr = Enc(pkr, ξκr ◦ ϕ0d+1,1) is the encryption of
the function that outputs the first root of g̃r − 0 if it is in Hr, else it outputs 0 ∈ Hr. When we change kr
to k′r = (pkr, ct

′
r) (where ct′r = Enc(pkr, ξκr ◦ ϕar,`) is the encryption of the function that outputs the `’th

root of g̃r − ar if it is in Hr, else it outputs 0 ∈ Hr), the δ-sub-exponential security of the encryption scheme
means that the probability of event B occurring cannot change by more than

1

2κ
δ
r

≤ 1

2κδ · |H1|· · · · · |Hr−1|
<

ε

2(m− j) · d · |H1|· · · · · |Hr−1|
.

The proof of the left inequality is in the proof of Theorem 4.4, and the right inequality follows from
our contradiction assumption (see Equation (7)). This means that the probability of event B occurring
should still be greater than ε

2(m−j)·d·|H1|·····|Hr−1| . However, this yields a contradiction by Lemma 4.2,

since no poly(N)-size prover should be able to find the `’th root of g̃r − ar with probability more than
1

2κ
δ
r
< ε

2(m−j)·d·|H1|·····|Hr−1| .

Next, we check that for the setting of parameters stated in Theorem 7.1, the size of log|F| and the verifier
runtime of the non-interactive sum-check protocol are both polynomial in n.
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Lemma 7.4. For |H|= n, m = o(log log n), κ = (logN)2/δ, and |F|= 2κ
2·(3/δ)m−1

, it holds that log|F| =
poly(n). Furthermore, the runtime of VniSC (in Figure 2) for a m-variate sum-check polynomial of degree
d = poly(n) is poly(n).

Proof. Because m = o(log log n) and δ is a constant, we have that

m · log(3/δ) � log log n.

This implies that

m · log(3/δ) + log log(log n+ logm) � log log n

=⇒ 2 · (3/δ)m · log logN � log n

=⇒ (logN)2·(3/δ)m � n.

Then, because |F|= 2(logN)4·3
m−1/δm

< 2(logN)2·(3/δ)
m

, we have that log|F| < (logN)2·(3/δ)m � poly(n).
By Theorem 4.3, the runtime of VniSC is poly(m, d, |H|, log|F|), which is equal to poly(n) since m =

o(log log n) and d, |H|, log|F| . poly(n).

7.2 Sketch of Proof of Theorem 7.1

The proof of Theorem 7.1 in [25] reduces #SAT instances to the Relaxed-Sink-of-Verifiable-Line problem,
which is known to belong to CLS. We start by defining the rSVL problem.

Definition 7.5. The Relaxed-Sink-of-Verifiable-Line (rSVL) problem (S,V, T, s0) consists of time bound
T ∈ N, starting state s0 ∈ {0, 1}L, and poly(n)-sized functions S : {0, 1}L → {0, 1}L and V : [0, T ]×{0, 1}L →
{0, 1} with the guarantee that for all i ∈ [0, T ] and s ∈ {0, 1}L, if s = Si(s0) then V(i, s) = 1. The goal is to
find one of the following:

• The sink: some s ∈ {0, 1}L such that V(T, s) = 1,

• False positive: some i ∈ [0, T ] and s ∈ {0, 1}L such that s 6= Si(s0) but V(i, s) = 1.

Lemma 7.6. [25] rSVL is in CLS.

Proof sketch of Theorem 7.1. Let m = o(log log n). Beginning with a Boolean formula φ in k = log(n)·m
variables x1, . . . , xk, the task of the #SAT problem is to find the number of satisfying solutions to φ, or to
evaluate ∑

x1,...,xk∈{0,1}

φ(x1, . . . , xk).

Let H ⊂ F be a set of size n, and fix a bijection α : Hm → {0, 1}k. Then we can define φ′ = φ ◦ α, so
that φ′(h1, . . . , hm) = φ(x1, . . . , xk), where (x1, . . . , xk) = α(h1, . . . , hm). Finally, we arithmetize φ′ to get a
m-variate polynomial g of individual degree d = poly(n) that can be evaluated in poly(n) time. Then the
number of satisfying solutions to φ can be written also as∑

h1,...,hm∈H

g(h1, . . . , hm).

Denote by N = nm = |H|m the number of points we’re summing over. This computation can be delegated via
the sum-check protocol to a poly(N)-size prover who gives a verifiable and unambiguous proof of correctness.

The main technical contribution of [25] is that this proof can be done in an incremental, and efficiently
updatable manner. Namely, the summation above can be performed via a poly(N) sequence of steps, where
going from step i to step i+ 1 can be done in poly(n) time. More specifically, let si denote the state after
the i’th computation step. Incremental verifiability means that each intermediate state si includes a proof
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of its correctness, and the proof can be updated and verified in time poly(n). This incrementally verifiable
counting procedure is used to construct, given a #SAT instance, an instance of the rSVL problem.

The reduction from #SAT to rSVL, at a high level, is the following: The states correspond to the
incrementally updatable states of the computation, where the successor function S takes as input a pair (i, si)
and generates the next computational state (i+ 1, si+1). The verification procedure V takes as input a state
(i, si) and either accepts or rejects.

Suppose that there exists an adversary that solves the rSVL instance corresponding to the computation∑
h1,...,hm∈H

g(h1, . . . , hm).

It either solves the instance by finding a sink, which corresponds to successfully computing v such that∑
h1,...,hm∈H g(h1, . . . , hm) = v (i.e., solving #SAT), or by finding false positives, which corresponds to

breaking the unambiguous soundness of the underlying non-interactive sum-check proof.
We observe that the latter breaks the prefix-adaptive unambiguous soundness. In a nutshell, the polyno-

mial g is fixed, and the adaptivity is in choosing (i, s) such that V(i, s) = 1. Loosely speaking, each state s
corresponds to a prefix (β1, . . . , βj) ∈ H1 × · · · ×Hj , a partial sum v, and a proof π for the fact that∑

hj+1,...,hm∈H

g(β1, . . . , βj , hj+1, . . . , hm) = v.

Thus, finding a false positive implies choosing (β1, . . . , βj , v, π) as above, such that the proof π accepts, yet
s 6= Si(s0). This corresponds to either breaking the prefix-adaptive soundness or breaking the prefix-adaptive
unambiguity.

The formal proof follows precisely the proof in [25], and hence is not repeated here. Rather, we refer the
reader to [25] for details.
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