
SoK: A Taxonomy of Cryptocurrency Wallets

Kostis Karantias

IOHK
kkarantias@gmail.com

Abstract. The primary function of a cryptocurrency is money trans-
fer between individuals. The wallet is the software that facilitates such
transfers. Wallets are nowadays ubiquitous in the cryptocurrency space
and a cryptocurrency is usually supported by many wallets. Despite that,
the functionality of wallets has never been formally defined. Addition-
ally, the mechanisms employed by the many wallets in the wild remain
hidden in their respective codebases.
In this work we provide the first definition of a cryptocurrency wallet,
which we model as a client to a server, or set of servers. We provide a
distinction of wallets in various categories, based on whether they work
for transparent or private cryptocurrencies, what trust assumptions they
require, their performance and their communication overhead. For each
type of wallet we provide a description of its client and server protocols.
Additionally, we explore superlight wallets and describe their difference
to superlight clients that have appeared in recent literature. We demon-
strate how new wallet protocols can be produced by combining concepts
from existing protocols. Finally we evaluate the performance and security
characteristics of all wallet protocols and compare them.

1 Introduction

Cryptocurrencies have seen a significant increase in usage in recent years. In
2008, Bitcoin was introduced to the world [48]. Along with the whitepaper, a
piece of software implementing the cryptocurrency was released that contained
a single user-facing application—the wallet. The wallet allowed users to interact
with the cryptocurrency, to send it to others and receive it. For a while it seemed
that money transfer between individuals was the sole purpose of a cryptocur-
rency. With the rise of applications such as Colored Coins [57] built on top of
Bitcoin, and ultimately Ethereum [8,70], wallets had to fill more roles than just
money transfer. However, looking at the majority of wallets in the wild today,
money transfer between individuals appears to remain their central role.

Wallets on the surface seem relatively unchanged throughout the years. Their
user interface is usually simple and intuitive, and nowadays they are ubuquitous.
There exist desktop wallets, mobile wallets, and hardware wallets. With the
plethora of cryptocurrencies coming to exist in the recent years, many solutions
have been developed to support them.

Due to the multitude of supported platforms for wallets, and the require-
ments for efficiency and ease of use, wallet developers have devised different ways

of implementing them. Usability is one of the most important obstacles in the
adoption of cryptocurrencies [41]. One of the main problems wallet developers
have been faced with is the blockchain size [41,5]. Simple Payment Verification
(SPV), originally mentioned in the Bitcoin whitepaper [48] has been frequently
leveraged in order to build wallets which are light on storage and network com-
munication. Some very popular wallets are based on it, but the nuances of each
of these protocols are hard to find and do not appear in literature.

With the advent of Ethereum and its account model, new ways of designing
wallets appeared that also have not made their appearance in literature. Finally,
private cryptocurrencies such as ZCash and Monero have appeared in recent
years, for which different wallets have been built. The techniques and challenges
faced by these wallets differ from the ones already discussed, but also do not
appear in literature.

Unfortunately until today no exposition of all proposed solutions exists. This
has led to wallets in the market that maybe insecure or have varying assumptions
that may seem unlikely.

Our contributions. In this work, we:

– Define the purpose of a cryptocurrency wallet: to create and broadcast valid
transactions, to know the balance and to know the transaction history in Sec-
tion 3.

– Provide detailed descriptions of how wallets in practice work for transparent
cryptocurrencies in both the UTXO (Section 4) and account (Section 5)
models.

– Describe existing solutions for wallets for private cryptocurrencies in the
UTXO model in Section 6.

– Define for the first time the functionality of superlight clients, which are
commonly conflated with superlight wallets in Section 7.

– Provide constructions for superlight wallets based on a superlight client for
transparent (Section 7.1) and private (Section 7.2) cryptocurrencies.

– Compare all wallet protocols on their performance and security characteris-
tics in Section 8.

2 Preliminaries

2.1 The UTXO Model

In the UTXO model a transaction consists of inputs and outputs. An output
consists of an amount and a locking script (called scriptPubKey in Bitcoin). In
Bitcoin the locking script is described in a stack-based language called Bitcoin
Script. An input consists of an unlocking script (called scriptSig in Bitcoin)
and an output pointer (also called an outpoint) which is a tuple of the form
〈txID, outputIndex〉. We say that an input spends an output, where txID refers
to the transaction id that includes the output and outputIndex refers to the
zero-based index of the output to be spent in that transaction.

The global state of UTXO based cryptocurrencies includes all transaction
outputs, and all spent transaction outputs. UTXO stands for unspent transac-
tion outputs, which be trivially computed from any state σbtc as σbtc.utxo ,
σbtc.outputs \ σbtc.spentOutputs.

An input is valid with regards to a state σbtc (a) if the output it references
exists (i.e. ∈ σbtc.outputs) and is not already spent (i.e. /∈ σbtc.spentOutputs)
and (b) if the unlocking script of the input “unlocks” the locking script of the
output. In the case of Bitcoin, the unlocking script runs on an empty stack,
and subsequently the locking script runs on the resulting stack of the unlocking
script’s execution. The input is considered to unlock the output if the locking
script terminates successfully.

The transaction as a whole is valid if all inputs are valid and the sum of the
values generated by its outputs is at most the sum of the values brought in by
its inputs. The absolute value of the difference of values is called the fee and
is used to incentivise miners in the network as we are going to see shortly. The
state can be updated by a valid transaction as shown in Algorithm 1, where the
new outputs are added and newly spent outputs are marked as such.

The most usual form of output is Pay-to-Public-Key-Hash (P2PKH) which,
as its name implies, includes the public key hash of the recipient. For an input
spending it to be valid, it needs to contain a signature of the corresponding
secret key over the new transaction skeleton and the output to be spent.

Algorithm 1 The applybtc function given a state σbtc and a transaction tx.
1: function applybtc(σbtc, tx)
2: for o ∈ tx.outputs do
3: σbtc.outputs∪= {o}
4: end for
5: for i ∈ tx.inputs do
6: σbtc.spentOutputs∪= {i.output}
7: end for
8: return σbtc
9: end function

2.2 The Account Model

In the account model, a transfer transaction consists of a sender, a receiver, an
amount, a nonce, a fee and a signature. The sender and receiver are public keys.
The fee acts as an additional miner reward as in the UTXO model.

Each address has its own state. The state of an address is defined as 〈balance,nonce〉.
For a previously unused address all fields are assumed to be of zero value, specif-
ically: σeth[address] = {balance: 0,nonce: 0}. With σeth[address] we denote the
state of the account with the specified address.

For a transfer transaction to be valid with respect to a state σeth, the following
conditions need to hold.

– The signature must be valid and generated by the secret key of the sender
over the rest of the transfer transaction.

– The nonce must be equal to σeth[sender].nonce + 1.
– The sender must have adequate balance.

σeth[sender].balance ≥ amount + fee

We remark that the nonce is necessary in order to avoid replay attacks [16],
for if it was absent some receiver would be able to repeat the same transaction ad
infinitum until the sender account is completely drained. Note that a potential
solution to this would be to maintain a set of processed transaction ids and add
a requirement that the transaction to be evaluated for validity does not belong
in that set. If the sender ever wishes to send the same amount to the same
recipient, they will need to generate a new signature and thus the transaction
will have a different transaction id. In theory this solution stands, however in
practice due to the malleability of ECDSA a signature can be modified in a way
that it changes and consequently the transaction id changes, while retaining its
validity [62].

A valid transaction according to a state can be applied to it to generate a new
state. We perform this state transformation with a function applyeth(σeth, tx)
which debits the sender, credits the receiver and increments the sender’s nonce.
The full definition of applyeth is given in Algorithm 2.

Algorithm 2 The applyeth function given a σeth and a transaction.
1: function applyeth(σeth, tx)
2: σeth[tx.sender].nonce += 1
3: σeth[tx.sender].balance -= tx.amount
4: σeth[tx.receiver].balance += tx.amount
5: return σeth
6: end function

2.3 The Blockchain

Transactions are usually arranged in batches and included in so-called blocks.
Blocks are arranged in a structure which resembles a linked list, in which each
block contains a pointer to its previous block in the form of its hash. The only
exception to this rule is the first block of the list, which is called the genesis and
does not include any such pointer. This linked list is called the chain, which we
usually denote with C. With C[i] we denote the i-th block of the chain, and we
customarily denote the genesis block as Gen , C[0].

We adopt the Python notation to refer to parts of the chain, which is illus-
trated in Table 1. We call C[: −k] the stable part of C.

Whether in the UTXO or account model, we say that each block has a state.
The state of a block C[i] is defined as the state of the previous block C[i − 1]

Table 1. The notation used throughout this work.

C the chain
C[i] the i-th block of the chain (i ≥ 0)
Gen the genesis block (C[0])
C[−i] the i-th block from the end of the chain (i > 0)
C[i : j] all chain blocks starting from C[i] up to but not including C[j]
C[: j] all chain blocks from the genesis up to but not including C[j] (equivalent to C[0 : j])
C[i :] all chain blocks from C[i] up to and including the last (equivalent to C[i : |C|])

k the stability parameter of the blockchain protocol

upon application of all transactions present in C[i]. More formally, we define the
state of a block as follows:

state(C[i]) =
{

apply(state(C[i− 1]), C[i].txs) if i ≥ 0
ε otherwise

Application of a sequence of transactions occurs by applying each transaction
and using the new state for the next application. This can be written more
formally as follows{

apply(st, [tx1, . . . , txz]) = apply(apply(st, tx1), [tx2, . . . , txz])
apply(st, []) = st

A block b is split in two parts, the header and the body. The header is a
fixed-size string, and the body is the place where all transactions reside. All the
transactions in a block’s body are committed to in the block’s header, usually in
the form of a Merkle Tree root over all of them. A block with its body is what
we call a full block. We will use C[i] to refer to a block header or the full block
at height i interchangeably, as well as C to refer to both the header chain and
the full block chain.

Money generation happens with coinbase transactions. A coinbase transac-
tion is a special transaction that provides miners (in Proof-of-Work based crypto-
currencies) or minters (in Proof-of-Stake based cryptocurrencies) with a reward.
Each block may have a single coinbase transaction. For cryptocurrencies in the
UTXO model the coinbase transaction contains no inputs and generates only as
much value as the block reward per the consensus rules, plus any transaction
fees. Coinbase transactions could also exist in account-based cryptocurrencies,
for example having a sender field of all zeros. In practice Ethereum-based cryp-
tocurrencies don’t have them but instead directly include the miner’s address
inside the block header. For our purposes we will not consider the change of
state due to miner rewards.

2.4 Network Actors

Full Nodes A full node maintains the full block chain, along with every transac-
tion. Every transaction is verified for validity and a block that contains an invalid

transaction is considered invalid by the full node. A full node participates in a
Peer-to-Peer (P2P) network. Other nodes may request blocks or transactions
from it, and it serves them akin to a relay.

Miners A miner is a full node that also attempts to mine a new block on top
of the best block chain. If a block is successfully mined, it is broadcasted to the
P2P network of full nodes for them to consider adopting it.

2.5 Simple Payment Verification

Simple Payment Verification (SPV) first appeared in the Bitcoin whitepaper [48]
as a way for nodes to figure out their transactions without the need to download
and store full blocks. An SPV client works by obtaining the header-chain from
other full nodes and validating it. Upon doing that, it can verify any transaction
is included in one of the blocks by verifying a Merkle inclusion proof against a
Merkle root in one of the headers. We will now formally define an SPV client.

Definition 1 (SPV client). An SPV client is an ITM that knows a genesis
block Gen and connects to a set of full nodes P, at least one of which is honest. It
may only request block headers at a range of heights. It obtains all header-chains
C1, . . . , C|P|, keeping only those for which the chain structure holds (∀1 < i ≤
|C| : H(C[i − 1]) = C[i].previd). It subsequently compares them and adopts the
chain with the most difficulty.

The assumption of at least one honest full node is necessary to avoid eclipse
attacks [26,72].

We state some results pertaining to the adopted chain of an SPV client which
have appeared previously in [5,3] and are more formally derivable from the works
of [20,21,55].

Definition 2 (Honest majority assumption). The adversarial mining power
is at all times upper bounded by the half of the total mining power of the network.

Theorem 1 (SPV security). Under the honest majority assumption, the sta-
ble part of an SPV client’s adopted chain C[: −k] is a prefix of the chain of an
honest full node.

Corollary 1. Under the honest majority assumption, the underlying full chain
of the stable part of an SPV client’s adopted chain produces a valid state.

3 Our Model

A cryptocurrency wallet facilitates the transfer of funds between individuals.
The wallet contains the private keys that can be used to spend the user’s cryp-
tocurrency. With those private keys, it should be able to fulfill the following
functions.

1. Present the user with their balance.
2. Allow the user create new valid transactions, given a description.
3. Present the user with their transaction history.

The lifecycle of the wallet is as follows.

Sync. First the user generates a new secret key or recovers from an existing
secret key. The wallet then performs an initial synchronisation by using the
network, in order to obtain everything necessary for it to be able to perform
the aforementioned functions. We denote this synchronisation step as producing
a wallet state wstate ← SyncGen,S(pk), where Gen is the genesis block of the
blockchain and S a set of servers the wallet is allowed to interact with. After
this initial synchronisation is complete, the wallet keeps using the network to
stay up to date with relevant events such as the user receiving a new transaction.
The user may shut down the wallet and start it at some other point in time,
when the wallet will attempt to catch-up to the network in order to be one again
usable.

Fund. The user may wish to create a new transaction. They specify a transac-
tion description to the wallet which includes the recipients and the amounts of
cryptocurrency the users wishes to send to each one. To obtain the final valid
transaction invokes a function tx ← Fund(sk,wstate, description) which makes
use of the user’s secret key sk, the wallet state wstate obtained from the Sync
function and the provided transaction description.

History. We model the transaction history as a function extracting it from the
wallet state, namely tx1, . . . , txy ← History(pk,wstate).

Balance. The wallet provides a function to determine the balance of the user
based on the wallet state as balance← Balance(pk,wstate).

Definition 3 (Wallet Protocol). A wallet protocol πwallet with respect to
some server protocol πwallet-server that each server s ∈ S implements and a block-
chain rooted in Gen is defined as a tuple of functions 〈SyncGen,S ,Fund,History,Balance〉.

Seeds. Bitcoin wallets traditionally generate a different address for every transac-
tion description to use for the tranasction’s change output. This however means
that the user needs to periodically backup an ever-increasing number of secret
keys or risk some of their coins. A solution to this was presented in 2011 in
the form of “hierarchical deterministic wallets” [40,71]. A single secret called the
seed is used to deterministically generate all future secret keys of the wallet. It
is thus necessary only to backup this seed for a user to be able to retain all their
funds, no matter how long they will make use of the wallet for. It is possible for
a master public key to be created that only gives access to the public keys that
correspond to the private keys derivable from the secret seed. Whereas wallets in
practice usually restore from a seed, we adopt the simplification that the wallet

is called to restore from a signature scheme secret key. Restoring from the seed
can be thought of as invoking the Sync protocol many times, starting from the
first derivable public key of the seed and continuing until we reach a public key
that seems unused. Additionally, in protocols when the public key is directly
provided as part of synchronisation, the master public key could be provided
instead so that the server has access to all of the wallet’s public keys directly.

4 Transparent UTXO-based Wallets

A transaction description specifies the desired outputs of a transaction and a fee.
In the simplest case of sending some funds to a specific address, the transaction
description is comprised of a single P2PKH output.

A wallet needs to be able to turn a transaction description into a valid trans-
action in a process called funding. To fund a transaction description, the wallet
performs the following steps:

– Collect a set S of unspent transaction outputs spendable by the public key
such that ∑

o∈S

o.value ≥ value

– Create a change output directed back to the public key1 such that∑
input

input.value−
∑

output

output.value = fee

– For each unspent transaction output in S, generate its unlocking script and
use it as an input. In the typical case the unlocking script includes the
signature of said transaction with the secret key of said output recipient.

The balance of a wallet can be obtained as the sum of the values of all unspent
outputs destined to public key.

The transaction history of a wallet can be extracted from the set of all trans-
actions implicating the public key. Specifically, inputs which are spent by the
secret key are debits, and outputs which are directed to the public key are credits.

4.1 Full Node

A full node contains in its state the complete chain with full blocks, that include
all of their transactions. In addition, the chain is assumed to be verified for
validity.

Full construction. When presented with a public key, the full node wallet starts
evaluating all transactions in every block from genesis up to the tip to detect
which ones implicate the user’s public key. This process is linear in the chain
size, thus Θ(n).
1 A new public key is normally generated through the seed, but we study a simplified
model here.

Reduced functionality mode. A full node needs to hold at all times the state at
the blockchain tip in order to be able to verify potential new blocks extending
the tip. For UTXO-based cryptocurrencies this state is exactly the UTXO. When
presented with a public key, the wallet instead of looking through all transac-
tions in history to obtain the full user’s history can locate all currently unspent
outputs directed to the user by looking through the UTXO set. In this way the
user’s balance can be directly obtained as the sum of such outputs. However, the
transaction history is not known but new transactions can be generated without
a problem.

If the UTXO is stored as a list, performance is linear in its size. However,
the UTXO can easily be indexed by address, which makes detection Θ(1).

In practice. Cryptocurrencies are defined by their full nodes so the implemen-
tation already exists, so they are the easiest to build a wallet on top of. Usually
the wallet is included in the bundle of software that the full node ships with.
This is the case with Bitcoin [48], Litecoin [38], Dogecoin [12], Ergo [15], and
many other cryptocurrencies.

4.2 BIP-37 SPV

SPV was first described in the Bitcoin whitepaper [48] and proposed how trans-
actions can be verified by a node without them holding the full block chain, but
instead by only holding the header chain. The idea is as follows, a light node
only requests and holds the header chain, that is only the header part of each
block (which in Bitcoin is 80 bytes) and not the full block. When someone wishes
to prove a transaction took place to an SPV node, they need to provide (a) the
transaction (b) the id of the block that contains it and (c) a Merkle proof of
inclusion to the Merkle root included in said block. The SPV node can check
that the claimed block is part of its local best header chain and the Merkle proof
provided is valid against the block’s Merkle root.

For BIP-37 SPV, the server protocol supports the following special calls:

1. filterload(bloom-filter): sets the connection bloom filter to the one pro-
vided

2. getblock(height):
(a) if the connection bloom filter is set, returns a partial block for C[h] with:

i. the block header
ii. only the transactions of the block with outputs that match against

the bloom filter
iii. a multi-element proof of inclusion in the block transaction tree for

all the aforementioned transactions
(b) otherwise: returns the full block C[h]

Using this functionality of an SPV node as a building block and the server
protocol, we examine how an SPV wallet according to BIP-37 [24] can be built.
The SPV wallet connects with the full node network. There, it establishes con-
nection with some server. Remember the aim of the wallet is to figure out all

transactions relevant to a specified public key pk. The wallet constructs a bloom
filter that includes pk and sets it as the connection bloom filter via a filterload
call. After that it starts sending getblock requests to the server, starting from
the genesis block.

For every block the server returns, it scans each transaction for matches
to the set bloom filter. To the wallet, the block header is sent along with the
transactions. Finally for verification, a multi-element Merkle proof of inclusion
(named Partial Merkle Tree in BIP-37) for all the matching transactions is also
sent. The wallet repeats getblock calls until it reaches the blockchain tip. By
that point and assuming an honest peer, the full transaction history is known,
along with the balance, and new transactions can be successfully created. The
process is illustrated in detail in Algorithm 3.

Algorithm 3 The BIP-37 client syncing protocol for a blockchain rooted in
Gen, with access to a fixed set of servers S and a public key pk for which all
transactions must be obtained.
1: function SyncGen,S(pk)
2: C ← Gen
3: for server ∈ S do
4: Ĉ ← server.GetHeaderChain(Gen)
5: C ← maxvalid(C, Ĉ)
6: end for
7: ourTXs← {}
8: filter← bloom-filter({pk})
9: for server ∈ S do
10: server.filterload(filter)
11: for blk ∈ C do
12: 〈txs, π〉 ← server.getblock(blk)
13: if ¬Ver-Multiauth-set(blk.merkleRoot, txs, π) then
14: break
15: end if
16: for tx ∈ txs do
17: if relevant(tx, pk) then
18: ourTXs∪= {tx}
19: end if
20: end for
21: end for
22: end for
23: return ourTXs
24: end function

In practice. A well known implementation of BIP-37 SPV is included in the
bitcoinj library [25], which is a full Bitcoin implementation in Java. Andreas
Schildbach’s famous Android Bitcoin wallet [58] is based on that library, as well
as decentralized exchange Bisq [4]. Other applications that implement BIP-37

SPV wallets include BRD [6] and OpenBazaar [49]. Other libraries that imple-
ment BIP-37 include uspv [14] and its fork spvwallet [64] (available both for
Bitcoin and Bitcoin Cash [52]).

Note that the protocol may seem wasteful, especially in case the header
chain is already synced as it forces us to re-download the whole header chain.
Additionally, it may seem wasteful that the peer needs to process every single
transaction in history in order to service the peer. It has been shown that not only
is it wasteful but can be an exploitable Denial-of-Service vector [65]. This lead to
the reference implementation of Bitcoin, Bitcoin Core, to disable BIP-37 server
functionality by default on full nodes [10]. These inefficiencies are mitigated in
the next protocol we are going to discuss.

4.3 Electrum

Electrum [68] was the first alternative and so-called “light” wallet for Bitcoin
after the reference implementation. The protocol it utilizes is as follows. First, the
wallet connects to 10 servers chosen from a hardcoded list in the software. One of
them is selected as primary at random. The servers speak an Electrum-specific
protocol called Stratum which follows the design originally proposed in [60] and
not the full node protocol. In Electrum, servers hold an address index over all
historical transactions. In early versions [69] of the server the index was arranged
in a Merkle Patricia Trie [56]. The most widely used server implementation [76]
does not arranging the index in this way and simply relies on an underlying
key-value store.

The wallet obtains all the header-chains advertised by its servers and veri-
fies their Proof-of-Work. It then only keeps the heaviest valid chain for further
processing. Subsequently it makes use of the blockchain.scripthash.get_-
history 2 API call to obtain all transactions concerning the address of the user.
For each of these transactions it requires a Merkle proof of inclusion that is valid
against some block in the heaviest chain. The full process of syncing is illustrated
in Algorithm 4.

We remark that the Electrum protocol is more efficient than the previous
SPV wallet solution. Unfortunately, this comes at the cost of directly reveal-
ing the user’s addresses to the remote server. An Electrum server customarily
maintains an address index for all historical transactions, making servicing the
get_history very efficient, in contrast with the heavy work a full node has to
do to service an SPV wallet.

4.4 Neutrino

Neutrino is a new proposal for more efficient light syncing on Bitcoin which aims
to be an improvement over SPV.
2 The full API offered by an Electrum server is shown in https://electrumx.

readthedocs.io/en/latest/protocol-methods.html

https://electrumx.readthedocs.io/en/latest/protocol-methods.html
https://electrumx.readthedocs.io/en/latest/protocol-methods.html

Algorithm 4 The Electrum client syncing protocol for a blockchain rooted in
Gen, with access to a fixed set of servers S and a public key pk for which all
transactions must be obtained.
1: function SyncGen,S(pk)
2: C ← Gen
3: primary $← S
4: for server ∈ S do
5: Ĉ ← server.GetHeaderChain(Gen)
6: C ← maxvalid(C, Ĉ)
7: end for
8: txs← primary.GetTXs(pk)
9: ourTXs← {}
10: for 〈tx, h, π〉 ∈ txs do
11: if ¬Verauth-set(C[h].merkleRoot, tx, π) then
12: continue
13: end if
14: ourTXs∪= {tx}
15: end for
16: return ourTXs
17: end function

The simplest of its variants works as follows. It requires a hard or soft fork
that is yet to occur for Bitcoin. With this fork, every block header includes
a commitment to a bytearray which represents information about the block’s
transactions. Specifically, the bytearray which is called the filter is a Golomb-
Coded Set [23] which encodes the set of all output scripts and the scripts of the
outputs the inputs spend (except OP_RETURNs for technical reasons). The full
construction for the filter is described in [50].

With this filter in place the light wallet works as follows. Initially, it down-
loads all block headers as usual and verifies them. Then it proceeds to download
the filter corresponding to each block. It then checks locally for every block if it
contains transactions of interest by making use of the filter. If a block contains
transactions of interest, all its transactions are requested without witness data
(e.g. signatures and data belonging to unlocking scripts). Then from the trans-
actions obtained the wallet only keeps the actual transactions of interest and
discards the rest. The process is illustrated in Algorithm 5.

Deployment paths. We look at two ways of implementing Neutrino filters in an
existing cryptocurrency like Bitcoin.

Forks. First, with a soft-fork or hard-fork a commitment to the filter can be in-
cluded in each block. With a soft-fork the commitment is included in the coinbase
transaction, similar to how the wtxid root is included for SegWit [39]. With a
hard-fork the commitment is included directly in the block header as a new field.
The soft-fork is also indirectly commited in the header due to the transaction
Merkle Tree root in the header. The commitment can be verified by additionally

verifying a Merkle proof of inclusion for the coinbase transaction against the
tree root in the header and checking that the coinbase transaction itself con-
tains the filter commitment. The hard-fork implementation of a Neutrino client
is illustrated in Algorithm 5.

Majority vote. Another way to utilize Neutrino filters without adjusting the
block structure and thus eliminating the need for either a soft- or hard-fork is
to ask all servers for the filter of each block and pick the one with the most
votes as valid, if a majority of the server has voted on it. This requires us to
harden our security assumptions about the set of servers the wallet is connected
to. Whereas previously we required that at least one server is honest, now we
require that the majority of servers is honest.

The filter chain. In [51] a construction is put forth which is secure under our
standard assumption of at least one honest server in S. The construction intro-
duces the notion of a filter chain, which is a hash chain of block filters. More
formally if filter(C[i]) refers to the Neutrino filter of block C[i], the filter chain F
for the block chain C is defined for 0 ≤ i < |C| as

F [i] =

{
H(F [i− 1],H(filter(C[i]))) if i > 0

H(filter(Gen)) otherwise

where every element of the filter chain is called a filter header. Neutrino
servers compute this chain based on their filters.

The construction on a high-level works as follows. After first syncing the
header-chain C, the wallet connects with many Neutrino servers and requests all
their filter chains. If two servers disagree on their filter chains we wish to tell
who is honest and who is dishonest. The wallet finds the first filter header they
disagree on, and obtains the filters for the corresponding block from both servers,
as well as the full block. It then checks if one of the provided filters is invalid
against the full block, and if it is the server that sent it is dishonest and the
competing filter chain wins. This competition takes place for all disagreements
and is how the honest filter chain is decided. Finally, the full filters can be
downloaded from any server and verified against the local filter chain. The rest
of the protocol proceeds as normal.

The improvements over SPV are twofold:

Privacy. In an SPV wallet, the transactions of interest to the wallet are directly
leaked to the peer, except with some relative deniability due to the bloom filter’s
false positive rate. Due to the low false positive rate of a bloom filter and the
widely known transaction linking heuristics that can be applied [42,22] the peer
can be almost certain which transactions belong to the same entity, breaking the
pseudonymity of Bitcoin.

Server performance. Observe how in Neutrino the server does no special com-
putation for each client in contrast with an SPV server. In Neutrino servers
are essentially relays of information, which is much cheaper and makes it more
appealing to operators to operate them.

Algorithm 5 The Neutrino client syncing protocol for a blockchain rooted in
Gen, with access to a fixed set of servers S and a public key pk for which all
transactions must be obtained. The deployment method is through a hard-fork.
1: function SyncGen,S(pk)
2: C ← Gen
3: for server ∈ S do
4: Ĉ ← server.GetHeaderChain(Gen)
5: C ← maxvalid(C, Ĉ)
6: end for
7: ourTXs← {}
8: for blk ∈ C do
9: for server ∈ S do
10: filter ← server.GetFilter(blk)
11: if H(filter) 6= blk.filter then
12: continue
13: end if
14: if filter ∩ {pk} 6= ∅ then
15: fullblk ← server.GetFullBlock(blk)
16: valid← validate(fullblk)
17: if fullblk.header 6= blk ∨ ¬valid then
18: continue
19: end if
20: for tx ∈ fullblk do
21: if relevant(tx, pk) then
22: ourTXs∪= {tx}
23: end if
24: end for
25: end if
26: end for
27: end for
28: return ourTXs
29: end function

Client performance. Additionally, in contrast with SPV, if the wallet happens to
hold the header-chain through some means, it can just obtain the filters without
the need to redownload the already downloaded headers as is the case with SPV.

However these improvements come at the cost of bandwidth. For each block
its corresponding filter must be downloaded to detect relevant transactions in
that block. The filter size for a 1.4MB block is approximately 20KB [61]. This
is a significant overhead compared to SPV, where no such filter needs to be
downloaded.

In practice. Neutrino is currently implemented in the bchd full node [54], giving
an easy option to any bchd full node to act as a Neutrino server if they so desire.
The homonymous Neutrino wallet [53] for Android works for Bitcoin Cash and
uses the filter-chain variant of the Neutrino protocol. The Lightning wallet [33]

makes use of their Lightning Lab’s inhouse Neutrino library [34] that implements
the filter-chain variant of the Neutrino protocol.

4.5 Explorer-based

Most wallets in practice are explorer based. An explorer based wallet does not
connect to full nodes or peers that relay block headers, only to a blockchain
explorer. It requests the user’s transactions from the explorer, but does not verify
that the transactions are all included in blocks in the best chain. From them the
wallet determines the UTXO set and can thus fund transaction descriptions,
compute the balance and show the transaction history. Since no transaction
verification is taking place, the explorer is a trusted third party.

In practice. The most popular wallets implement explorer-based solutions in-
cluding Yoroi [73], Exodus [18] and Coinbarn [43]. Additionally, the apps that
utilize hardware wallets like Ledger [37] and Trezor [66] work in this manner.

5 Transparent Account-based Wallets

For simplicity and without loss of generality we assume an Ethereum-like cryp-
tocurrency.

Because in the account model there is no need for change outputs, new ad-
dresses are not automatically derived by wallets. New addresses are derived and
used only by the explicit request of the user. Traditionally account-based wallets
only hold a single address and public key, and we will assume the same in this
section for simplification.

A transaction description is comprised of the address of the recipient, an
amount of cryptocurrency and a fee. In Ethereum this fee takes the form of a
gas price [70]. To fund a transaction description the wallet performs the following
steps:

1. Fill in a valid address corresponding to a public key that:
(a) holds at least as much cryptocurrency in its balance than what will be

spent in the transaction and
(b) is derivable from the seed.

2. Fill in the valid nonce in order to make this transaction spendable.
3. Sign the transaction with the appropriate secret key.

The transaction can subsequently be broadcast and accepted by the network.
We remark that an account-based wallet may offer limited functionality. For

example, having access to the state it is easy to know the nonce and balance of
any address of interest, thus funding a transaction description is straightforward.
State however does not allow us to obtain the transaction history.

5.1 Full Node

A full node has access to the complete state and the full chain (i.e. all blocks
and all their transactions), after a sync. For each derivable address, its balance
and nonce can be looked up directly from the state. To obtain the transaction
history for a set of addresses, every tranaction from the genesis block up to the
tip must be checked.

5.2 Explorer-based

An explorer-based wallet as in the UTXO model connects to a trusted server and
requests the list of all transactions, which then becomes its wallet state and it
uses to function. It has no notion of the honestly adopted chain or any chain at
all. For the account-model the differences are minimal. In Ethereum the wallet
may additionally connect to a trusted Ethereum node for getting the balance or
transaction count (i.e. the nonce).

In practice. Metamask [44] is the most popular Ethereum wallet and is explorer-
based. An explorer is used in order to obtain the transaction history, usually
Etherscan [17].

5.3 SPV without history

It is very easy to conceive how an SPV wallet for Electrum would work without
history capabilities. Observe that for spendability only the nonce for the wallet’s
address is necessary. The nonce along with the balance are included in the state
trie of Ethereum, which is committed in the form of the trie root inside every
block header. Thus a wallet would work as follows:

1. Perform a headers sync to obtain the blockchain tip.
2. Ask for the value of the address of the user in the state trie at the tip, along

with a proof for the value.
3. Verify the that the value is indeed committed in the root found at the tip

block header and extract the balance and nonce from it.

5.4 Electrum-like

We propose a solution based on Electrum for account-based cryptocurrencies.
We augment the wallet server protocol that we demonstrated in Section 4.3
for accounts with one more function which we call get_state. get_state(pk, h)
takes a public key pk and a block height h and returns the state 〈balance,nonce〉3,
along with an authenticated map proof against the state trie found in the block
header at height h.
3 For simplification we only mind the state for Externally Owned Accounts and we
completely disregard smart contracts in our accounts model.

The operation of the wallet proceeds as follows. The wallet first completes
a headers-based synchronisation obtaining the honestly adopted chain. Servers
which did not provide the honestly adopted chain are disregarded for the next
steps. It then picks a server at random and asks for all transactions using get_-
history. After verifying all the Merkle proofs for all transactions, it requests
the state and a proof for the chain tip by invoking get_state(pk, |C| − 1). It
verifies this proof against the block header of its local chain tip.

It then is able to reconcile the history obtained with the confirmed state of pk
in order to ensure that no transactions have been omitted. First, the number of
debits should be equal to the nonce found in the state, and secondly the balance
should be equal to the sum of all credits minus the sum of all debits and their
corresponding transaction fees. If any of these checks fail, the server lied about
the history and another server is chosen for the process to repeat, until a server
finally says the truth. By our standard assumption of at least one honest server
this is bound to happen.

6 Privacy Wallets

In this section we will discuss wallets for ZCash [74,27] and Monero [47], two
of the most prominent private cryptocurrencies. ZCash is based on the Ze-
rocoin protocol [45] which is in the UTXO model. Monero is based on the
Cryptonote [67] protocol, also in the UTXO model [2]. To our knowlege no
private cryptocurrencies exist in practice with wallets, so naturally this section
will only focus on wallets for private cryptocurrencies in the UTXO model.

In private cryptocurrencies transaction data such as sender, receiver and
amounts are not publicly disclosed as is the case with their transparent coun-
terparts. Instead, only the sender and receiver of the transaction can know this
information. Additionally we have two kinds of keypairs: the viewing key and
the spending key. An address is comprised of the public viewing and spending
keys. The private information of a transaction can only be obtained by use of
the private viewing key. In order to spend funds, the private spending key must
be used.

We first examine the requirements for a ZCash wallet to be functional. To
create a new transaction sending funds to some party, the wallet needs to know
the unspent outputs belonging to the user. From these outputs the amount and
some auxillary values must be discovered, in order to allow the wallet to create a
nullifier for the commitment and spend it. In order to create a valid transaction
with a valid Zero Knowledge proof the wallet also needs to know the full contents
of the commitment tree, to prove that they are spending a commitment included
in that tree.

6.1 Full Node

The full node wallet works in a straightforward manner. All blocks and trans-
actions are assumed to be already downloaded and verified locally. Upon being

presented with a seed, the wallet evaluates every transaction from the genesis
up to the tip for relevance. Outputs to the shielded address are decryptable by
the secret key corresponding to that shielded address.

When evaluating an output, it may be directed to a shielded address of the
user. In that case we store the commitment and private values of the output.
When evaluating an input, it may be that the user has spent a previous com-
mentment, in which case we mark the commitment as spent. Additionally for
every input and output we store the transaction to display to the user.

Finally, we end up with a set of unspent commitments along with their private
values. Given a transaction description the wallet can then spend any of those
unspent commitments.

6.2 SPV

SPV nodes for private cryptocurrencies don’t exist in practice due to the detec-
tion problem. Private cryptocurrencies are designed to make it hard to detect
receivers of transactions. Thus a helpful server who has the chain that is able
to detect transactions on account of a user is orthogonal to the design of the
cryptocurrency.

A hypothetical SPV wallet however, could avoid performing verification of
the chain contents (the transactions) and only perform verification of the header-
chain. While this does not reduce the bandwidth requirements of an SPV wallet,
it could significantly reduce the computation time for syncing. This is especially
important in the case of ZCash where verifying the validity of a zero-knowledge
proof of a transaction may take time in the order of milliseconds.

Compact Blocks. In ZIP-307 an optimization for bandwidth is proposed [63].
The optimization lies in noticing that since under the assumption of SPV secu-
rity transactions don’t need to be verified, transactions only need to hold the
minimum amount of data such that they are detectable. By only keeping this
data, transactions are compressed. Block headers remain unchanged. The new
block structure including these compressed transactions is dubbed a compact
block.

This is a backwards-compatible change to the ZCash network that does not
require any consensus changes. Blocks are adapted to this compact block format
by any interested server and are subsequently relayed to any clients that request
them.

If a client detects an inbound or outgoing payment of interest, it can then
request the full transaction from the server.

This compression of the transactions is lossy and means that the transactions
inclusion in the claimed block header can’t be verified via a Merkle proof in the
same way it can be verified on transparent SPV. This is because the hash of the
original transaction cannot be reproduced unless the full transaction is owned,
which defeats the purpose. However, a similar verification can be performed as
follows. Every shielded output references a new commitment. ZCash in its block
header includes a Merkle Tree root of the existing commitment set after adding

all commitments the transactions of the block itself create. Thus even though
transactions themselves cannot be verified as valid, shielded outputs can by
verifying a Merkle inclusion proof of inclusion of the commitment in the Merkle
Tree root of commitments. For the inputs no processing needs to be done. If an
input reveals a note belonging to the user then this note can be marked as spent
as the only person who would be able to reveal the note is the user itself and it
can’t be faked by any server. If an input reveals a note belonging to someone else
the server has nothing to gain by tricking the wallet into thinking it is revealed
in a block where it is not. Cases of double-spending by an adversarial server are
completely thwarted by the output verification.

We remark that this is not an asymptotic improvement over the theoretical
SPV solution. We posit that an asymptotic improvement over the theoretical
SPV solution which preserves privacy (i.e. no private keys are revealed to the
remote peer) cannot exist.

In practice. ZecWallet Lite [1] is a desktop wallet with a mobile companion
app that utilizes the Compact Blocks proposal. On the backend it uses lightwal-
letd [75], which offers transforms full blocks to the compact format.

6.3 MyMonero

A final solution for private cryptocurrencies observed in practice comes from
Monero. MyMonero [59] is a desktop and mobile wallet that operates with the
help of a trusted server. The viewing private key is disclosed to the server so
that it can detect transactions on the wallet’s behalf. Any detected transactions
are relayed to the wallet in order for the wallet to display and for the wallet to
hold an up-to-date UTXO for the purposes of creating new transactions.

MyMonero works differently when the user creates a new seed and when the
user recovers their wallet with an existing seed. When creating a new seed, the
viewing private key is disclosed but because the server knows the key was just
generated they can be certain that it has never received any transactions.

In the case of recovering from an existing seed there are two cases. Either
the server already knows the corresponding viewing private key, in which case it
can directly relay the transactions it knows, or the key is presented to the server
for the first time. If the latter case holds, the server will take on the difficult
task of looking through each transaction from the genesis up to the tip in order
to detect transactions sent to the user. However, because of the computational
difficulty of the task, it will request that the user pledges to send back a small
reward for the server in the form of Monero before starting.

The server is a full-node that maintains the whole chain and its tip. Only
when a client requests their transactions it scans the blocks starting from the
last processed block for the requested viewing key up until the tip.

7 Superlight Wallets

We have seen that SPV allows clients to verify the best chain by only download-
ing all block headers while maintaining security. A body of research, starting
with [46,19], tried to identify ways of adopting the best chain by downloading
less than all block headers. We introduce the notion of a superlight client to
more formally capture such solutions.

Definition 4 (Superlight client). A superlight client is an ITM that after
communicating with a set of parties P of which at least one is honest, can
determine by using o(n) of communication:

1. The tip of the honest chain.
2. The inclusion of some block in the honest chain.

Non-Interactive Proofs of Proof-of-Work [30,31,7] (NIPoPoWs) were intro-
duced that solve this problem, requiring clients to download only Θ(polylogn)
block headers while maintaining security—an exponential improvement.

For our superlight client definition a parallel can drawn to the verifier in [31].
The verifier is non-interactive whereas we also allow interactive protocols for
a superlight client. In NIPoPoWs a proof for the tip of the chain is called a
suffix proof and a proof for the inclusion of some block in a chain is called
an infix proof. A final difference is that in NIPoPoWs the proof size is fixed as
O(polylogn) whereas our definition is more general, allowing any sublinear proof
size.

The leading directions for NIPoPoWs are the following. Superblock NIPoPoWs [31,28]
are based on superblocks, blocks which have achieved much more proof-of-work
than their nominal target. FlyClient NIPoPoWs [7] rely on random sampling of
blocks.

A lot of attention has been given to superlight clients as a means to implement
1-way [29] and 2-way pegs [3,32]—ways to trustlessly transfer funds from one
cryptocurrency to another.

Little attention has been paid until now to wallet constructions that make
use of superlight clients. To this end we provide a first definition for wallets
which are also superlight.

Definition 5 (Superlight wallet). A wallet is called superlight if it can be
usable in all 3 aspects (transaction description funding, balance and transaction
history) by having a communication complexity of o(n) (assuming a constant
number of relevant transactions).

7.1 An ideal construction

Suppose a hypothetical cryptocurrency where we can specify the format of the
block header. We include a commitment to a map of the form address →
[tx1, . . . , txk].

For the commitment any key-value commitment structure can be used such
as Sparse Merkle Trees [11,36] or Merkle Patricia Tries which are already used
for header commitments in Ethereum [70]. We require that the commitments are
verified as part of the consensus protocol and that a block is rejected by honest
full nodes if its block header commitment is bogus.

A superlight wallet can work as follows. It first fires up a superlight client
according to some superlight client protocol and requests the blockchain tip. It
then extracts the commitment from the block header. It subsequently queries
a helpful node for the value of the map for an address of interest along with a
proof that the value actually belongs to the committed map. Finally it verifies
the proof and if successful can use this information to operate.

Performance. This construction succeeds in syncing by only downloading o(n)
block headers and Θ(y) transactions and proofs.

Theorem 2 (Security). The ideal superlight wallet construction is secure with
regards to a secure superlight client protocol.

Proof (Proof Sketch). If the tip is chosen to k-buried then it belongs to the
honest chain except with negligible probability in the security parameter. Thus
the commitments obtained are valid, as honest nodes reject blocks with invalid
header commitments. Finally the data obtained from the helpful node for the
key of interest need to be consistent with the commitment due to the security
of the authenticated map protocol.

Theorem 3 (Uncensorability). An adversarial server cannot hide transac-
tions from the superlight wallet.

Proof. Assume an adversarial server that succeeds in hiding transactions from
the superlight wallet. This means they produced for some y, map M and key
k where y 6= M [k] a proof π such that Verauth-map(Commitauth-map(M), π, k, y) =
true, which directly conflicts with the security of the authenticatd map protocol.

Deployment paths. Although such helpful commitments have been proposed to
aid in building superlight and secure wallets since as early as 2012 [56], such
commitments do not exist in either Bitcoin or Ethereum today. We remark that
such commitments could be incorporated as a non-contentious soft-fork.

7.2 Private cryptocurrencies

We now turn our attention to building superlight clients for private cryptocur-
rencies. ZCash recently announced the upcoming Heartwood hard-fork that will
include FlyClient support [9] by means of adding a Merkle Mountain Range com-
mitment to its block headers [35]. The addition is warranted as, according to the
company in [9] “Flyclient enables interoperability efforts, cross-chain integration
and superlight-client use cases”.

It is interesting to note however that even though superlight clients are a wel-
come improvement, no straightforward light wallet solution has been proposed
for a light client of a private cryptocurrency. For a potential solution, there exist
two possible paths.

1. Revealing the private viewing key. The light wallet may work by sharing
its private viewing key with a server. The server then needs to detect relevant
transactions for the user. Unfortunately detecting transactions requires time
linear to the number of transactions in the network. Each transaction is
returned to the wallet, accompanied with a proof of inclusion in the wallet’s
adopted chain. The proof of inclusion of a transaction is comprised of:
(a) the header of the block the transaction is included in
(b) a Merkle inclusion proof against the Merkle root in that header
(c) a Merkle Mountain Range inclusion proof for that block header against

the MMR root in the tip header.
This solution requires O(m) computation for the server, and offers marginally
better security guarantees than the solution of MyMonero from Section 6.3.
Specifically, whereas in MyMonero the wallet is unaware of the honestly
adopted chain and does not perform any verification of transations, here the
it is guaranteed that the transactions the wallet receives are indeed included
in the honestly adopted chain. This removes the advantage of a server to
perform a double-spend attack against a vendor using the wallet.

2. Not revealing the private viewing key. The light wallet does not share
any information with the server. We posit that in this case the wallet must
receive all transactions, for if the server could know what transactions may
be more relevant, identifying information would need to be revealed about
these transactions. The so-called transaction detection [63] remains an open
problem for private cryptocurrencies.

8 Comparison

We now provide a comparison between all the wallets presented. The notation
used can be found in Table 3.

Our performance comparison is asymptotic in terms of the aforementioned
variables and is broken down on the following aspects.

– Communication: The communication complexity between the wallet and
server necessary to fully synchronise from scratch.

– Client computation: Any computation it is necessary for the wallet to per-
form in order to finish synchronisation and enter a usable state (for funding
transaction descriptions, balance and transaction history).

– Server lookups: Computation the server needs to decide what data it needs
to relay to the wallet. In the case of SPV this can be bloom filter checks, in
the case of private wallets it can be trial-decryption with a viewing key.

Our security comparison focuses on the following aspects.

Table 2. A comparison of the cryptocurrency wallets in practice. Proposals with an
asterisk* appear for the first time in this work. Server lookups only refers to the com-
putation the server is required to do to determine what to serve to a wallet during the
synchronisation process and does not include previous or continuous computation like
maintaining an address index. Partial satisfaction of a criterion is denoted with ◐ and
full satisfaction is denoted with ●.

Communication Client computation Se
rve
r l
oo
ku
ps

Op
en
pa
rti
cip
ati
on

Pr
iva
cy

Ch
ain

ch
eck

Un
cen

sor
ab
ilit
y

Proposal TX Model Privacy Model Performance Θ(·) Security
Full Node UTXO Transparent n+m n+m 1 ● ● ● ●

SPV UTXO Transparent n+ y lgα n+ y lgα m ● ◐ ●
Electrum UTXO Transparent n+ y lgα n+ y lgα 1 ●
Neutrino UTXO Transparent n+ yα n+ yα 1 ● ◐ ● ●

Explorer-based Both Transparent y 1 1
Full Node Account Transparent n+m n+m 1 ● ● ● ●

Electrum-like* Account Transparent n+ y lgα+ lgm n+ y lgα+ lgm 1 ● ●
Full Node UTXO Private n+m n+m 1 ● ● ● ●

SPV UTXO Private n+m n+m 1 ● ● ● ●
MyMonero UTXO Private y 1 m
Superlight* Both Transparent polylogn+ y + lgm polylogn+ y + lgm 1 ● ● ●
Superlight* UTXO Private polylogn+ y lgα polylogn+ y lgα m ● ●

Table 3. The notation used throughout our comparison.

n number of all blocks
m number of all transactions
y number of relevant transactions (implicating the wallet user)
α number of transactions per block

– Open participation: Whether participating as a wallet’s server is possible
for everyone.

– Privacy: Whether the wallet reveals information about the user’s addresses
to any server in order to synchronise.

– Chain check: We say that a wallet fulfills chain check whether the wallet
will only accept transactions included in the best chain.

– Uncensorability: Whether the server is not able to lie by omitting trans-
actions from the wallet.

A comparison of the wallets in tabular form is presented in Table 2.

8.1 Communication

The full node requires the most amount of communication, n+m as all full blocks
must be downloaded. This is the case for both UTXO and account models.

SPV implementations for transparent cryptocurrencies require n+y lgα com-
munication, which is broken down as (a) each block header (b) each relevant
transaction and (c) a Merkle inclusion proof for each transaction. In the worst
case each transaction belongs to a different block and no re-use of parts of the
proof can take place thus we need y proofs of size lgα each.

Electrum-based implementations for UTXO have the same communication
complexity. In Neutrino, all block headers need to be downloaded as well. In
addition, for every block including a relevant transaction it also needs to be
downloaded in full. In the worst case each relevant transaction will be included
in a different block yielding a communication complexity of n+ yα.

Our Electrum based construction for accounts requires n+ y lg a+ lgm com-
munication, with the lgm representating the state trie proof size. We assume
that the state trie grows as Θ(m).

Explorer-based wallets and MyMonero are all querying a trusted-third party
and obtain the relevant transactions directly, thus have a communication com-
plexity of y.

SPV wallets for private cryptocurrencies that do not reveal the private view-
ing key to a server require that all full blocks be downloaded, resulting in n+m
communication complexity.

Our superlight wallets based on some NIPoPoW superlight client have a
communication complexity of polylogn + y + lgm, and our private superlight
wallets have communication polylogn+ y lgα.

8.2 Client computation

Full nodes need to very all blocks and transactions in history resulting in n+m
computation.

In SPV wallets, for each block header verification takes place and for each
relevant transaction verification of its attached Merkle proof takes place, thus
client computation is also n+y lgα. The same holds for Electrum-based wallets.

Our Electrum based construction for accounts requires n+ y lg a+ lgm com-
putation.

For Neutrino the client computation is n+yα, as every header is verified and
the full block including each transaction is also verified.

Explorer-based wallets base their security on a trusted third party and per-
form no verification of what they obtain from the server, thus yielding a com-
plexity of 1. The same is true for privacy wallet MyMonero.

Our private superlight wallets based on NIPoPoWs verify NIPoPoW infix
proofs and for each relevant transaction its inclusion in a block of the proof,
resulting in a client computation of polylogn+y lgα. Our transparent superlight
wallets only verify a single Merkle inclusion proof after syncing through the
superlight client, resulting in polylogn+ y + lgm computation.

8.3 Server lookups

A full node server (its peer) does not need to perform any lookup to evaluate
what it needs to send to the client, yielding lookups of order 1.

BIP-37 SPV’s weak point is in server lookups, as the server looks though
every single transaction in history to evaluate if it matches the provided bloom
filter or not, thus it has the worst server computation complexity of all proposals,
n+m.

An Electrum server, simply relays all block headers, and because it maintains
an index of addresses to transactions where it can just look up the client’s
advertised addresses, resulting in a constant number of lookups.

The strong point of Neutrino is server lookups compared to BIP-37 that it
is designed to replace. The server simply acts as a relay of information so the
number of lookups is constant.

Explorer-based wallet servers (i.e. explorers) also hold an index of addresses
to their corresponding transactions as Electrum servers do. Similarly to electrum,
server lookups are constant.

8.4 Open Participation

The full node network is P2P and fully open to participation. Additionally full
nodes usually act as servers for BIP-37 SPV wallets, making them to open to
participation.

Server addresses are hardcoded in the Electrum software so participation is
limited.

Neutrino is planned to be integrated in the full node P2P protocol which
makes participation open.

For explorer-based wallets, the server address is hardcoded in the software,
this is not a P2P protocol and participation is not open.

8.5 Privacy

A full node has the best privacy as everything is downloaded thus no network
peer can distinguish which transactions or blocks are of interest. The address of
the wallet is never revealed to the network.

SPV wallets reveal a lot of information to the servers, even though the ad-
dresses are not directly revealed as shown in [22].

For private cryptocurrencies, SPV wallets that download full blocks but don’t
verify the transaction validity while relying on SPV security are fully private.
However solutions like compact blocks which provide a constant factor optimiza-
tion need to be treated carefully. The reason is that after the wallet detects the
compressed transactions that are relevant to its secret key, it may request to
get the full transactions for some reason (for example to examine the transac-
tion’s memo field in Zcash). This would lead to privacy loss. To mitigate this
the suggestion in [63] is to ask for all transactions in the block the transaction
is included in instead of the single transaction.

In Electrum, and explorer-based wallets addresses are directly provided to
the servers for efficiency.

For Neutrino, addresses are not leaked directly, however full blocks are only
received when they contain transactions of interest which could yield some in-
formation about the identity of the client to an adversary. In [51] the mitigation
proposed is that full blocks be queried from servers at random. However in the
face of a Sybil attack [13] the same loss of privacy ensues.

In MyMonero and our superlight client solution for private cryptocurrencies
the private viewing key is directly provided to the server, leading to complete
privacy loss.

8.6 Chain check

Motivation. If the wallet does not verify the transactions it receives, we show an
easy attack that can be performed against its user. Assume the user of the wallet
is a vendor that provides an item for some fee in Bitcoin. A transaction that
looks like it directs funds to the vendor can very easily faked. A full node would
not accept that transaction, as it spends inputs that are already spent or never
existed. However, if the wallet performs no check that the transactions received
are in the best chain, it cannot know that the transaction is fake. The attack
works as follows. The server, who now is a customer of the vendor, presents the
vendor’s wallet with a fake transaction. The wallet shows the transaction but
performs no check and considers it valid. The vendor is satisfied enough and
ships the item, for which the customer never actually paid.

The full node by definition verifies that any transaction used is contained in
the best chain.

BIP-37 SPV wallets and Electrum perform verification of Merkle proofs of
inclusion against the longest header-chain provided. By SPV security we know
that chain is actually the best chain a honest full node would adopt, so transac-
tions are actually verified against inclusion in the best chain.

Neutrino also maintains the best chain due to SPV security. For blocks
that contain transactions of interest the whole block is downloaded and veri-
fied against some header in the best header chain.

Explorer-based wallets do not have any notion of a chain locally and trust
the transactions provided. Thus the server could provided transactions that are
not part of the best chain and the wallet would have no way of knowing.

Our superlight wallet constructions synchronise the best chain due to NIPoPoW
security. All transactions provided are checked against blocks in that chain.

8.7 Uncensorability

A full node cannot be censored as it obtains all transactions and holds the full
blocks.

Unfortunately for most other solutions: SPV, Electrum (UTXO-based), explorer-
based, MyMonero the server can very easily not include transactions and the
wallet has no way of knowing.

For Neutrino however, as long as the filters are correct, transactions cannot
be censored. If a filter matches the whole block is downloaded and verified.

For our Electrum construction in the account model, a transaction-omitting
server can be easily identified.

Finally, for our ideal superlight wallet construction as proven in Theorem 3 no
censorship of transactions can take place. For our superlight wallet construction
for private cryptocurrencies no such commitment exists to prevent censorship
and the server may lie by omitting transactions with no way to be detected.

Acknowledgements

The authors wish to thank Dionysis Zindros, Pyrros Chaidos and Andrianna
Polydouri who read early versions of this paper and provided helpful suggestions.

References

1. adityapk00: Zecwallet-lite is z-addr first lightwallet for zcash (2019), https://
github.com/adityapk00/zecwallet-lite

2. Alonso, K.M.: Zero to monero (2018), https://www.getmonero.org/library/
Zero-to-Monero-1-0-0.pdf

3. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged side-
chains (2014), https://blockstream.com/sidechains.pdf

4. Bisq developers: Bisq - A decentralized bitcoin exchange network (2017), https:
//bisq.network/

5. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:
Research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy. pp. 104–121. IEEE (2015)

6. BRD developers: Brd - bitcoin wallet (2013), https://brd.com/

https://github.com/adityapk00/zecwallet-lite
https://github.com/adityapk00/zecwallet-lite
https://www.getmonero.org/library/Zero-to-Monero-1-0-0.pdf
https://www.getmonero.org/library/Zero-to-Monero-1-0-0.pdf
https://blockstream.com/sidechains.pdf
https://bisq.network/
https://bisq.network/
https://brd.com/

7. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: Super-light clients for crypto-
currencies. (2020)

8. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

9. Company, E.C.: Introducing heartwood (2020), https://electriccoin.co/blog/
introducing-heartwood/

10. Corallo, M.: [bitcoin-dev] Bitcoin Core to disable Bloom-based Filtering by
default (2019), https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
2019-July/017145.html

11. Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse merkle trees. In: Nordic Con-
ference on Secure IT Systems. pp. 199–215. Springer (2016)

12. Dogecoin developers: Dogecoin (2013), https://dogecoin.com/
13. Douceur, J.R.: The sybil attack. In: International Workshop on Peer-to-Peer Sys-

tems. pp. 251–260. Springer (2002)
14. Dryja, T.: uspv - micro-spv library (2016), https://github.com/mit-dci/lit/

tree/master/uspv
15. Ergo developers: Ergo: A resilient platform for contractual money (2019), https:

//ergoplatform.org/docs/whitepaper.pdf
16. Ethereum developers: Ethereum glossary (2014), https://github.com/ethereum/

wiki/wiki/Glossary
17. Etherscan developers: Etherscan (2016), https://etherscan.io/
18. Exodus developers: Exodus (2016), https://www.exodus.io/
19. Friedenbach, M.: Compact SPV proofs via block header commitments. Available

at: https://sourceforge.net/p/bitcoin/mailman/message/32111357/ (2014),
https://sourceforge.net/p/bitcoin/mailman/message/32111357/

20. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. Annual International Conference on the Theory and Applications of
Cryptographic Techniques pp. 281–310 (2015)

21. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of
variable difficulty. In: Annual International Cryptology Conference. pp. 291–323.
Springer (2017)

22. Gervais, A., Capkun, S., Karame, G.O., Gruber, D.: On the privacy provisions
of bloom filters in lightweight bitcoin clients. In: Proceedings of the 30th Annual
Computer Security Applications Conference. pp. 326–335 (2014)

23. Golomb, S.: Run-length encodings (corresp.). IEEE transactions on information
theory 12(3), 399–401 (1966)

24. Hearn, M., Corallo, M.: BIP: 37 — Connection Bloom filtering (2012), https:
//github.com/bitcoin/bips/blob/master/bip-0037.mediawiki

25. Hearn, M., et al.: bitcoinj - A library for working with Bitcoin (2013), https:
//bitcoinj.github.io/

26. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security Symposium. pp. 129–144 (2015)

27. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification
(2016), https://raw.githubusercontent.com/zcash/zips/master/protocol/
protocol.pdf

28. Karantias, K., Kiayias, A., Zindros, D.: Compact storage of superblocks for
nipopow applications. In: The 1st International Conference on Mathematical Re-
search for Blockchain Economy. Springer Nature (2019)

29. Karantias, K., Kiayias, A., Zindros, D.: Proof-of-burn. In: International Conference
on Financial Cryptography and Data Security (2019)

https://electriccoin.co/blog/introducing-heartwood/
https://electriccoin.co/blog/introducing-heartwood/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-July/017145.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-July/017145.html
https://dogecoin.com/
https://github.com/mit-dci/lit/tree/master/uspv
https://github.com/mit-dci/lit/tree/master/uspv
https://ergoplatform.org/docs/whitepaper.pdf
https://ergoplatform.org/docs/whitepaper.pdf
https://github.com/ethereum/wiki/wiki/Glossary
https://github.com/ethereum/wiki/wiki/Glossary
https://etherscan.io/
https://www.exodus.io/
https://sourceforge.net/p/bitcoin/mailman/message/32111357/
https://sourceforge.net/p/bitcoin/mailman/message/32111357/
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://bitcoinj.github.io/
https://bitcoinj.github.io/
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf

30. Kiayias, A., Lamprou, N., Stouka, A.P.: Proofs of proofs of work with sublinear
complexity. In: International Conference on Financial Cryptography and Data Se-
curity. pp. 61–78. Springer (2016)

31. Kiayias, A., Miller, A., Zindros, D.: Non-Interactive Proofs of Proof-of-Work. In:
International Conference on Financial Cryptography and Data Security. Springer
(2020)

32. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: International Conference on
Financial Cryptography and Data Security. Springer, Springer (2019)

33. Labs, L.: Lightning: Fast bitcoin wallet (2019), https://play.google.com/store/
apps/details?id=engineering.lightning.LightningMainnet

34. Labs, L.: Privacy-preserving bitcoin light client (2019), https://github.com/
lightninglabs/neutrino

35. Lai, Y.T., Prestwich, J., Konstantopoulos, G.: [zip 221] flyclient - consensus-layer
changes (2020), https://github.com/zcash/zips/blob/master/zip-0221.rst

36. Laurie, B., Kasper, E.: Revocation transparency. Google Research, September p. 33
(2012)

37. Ledger developers: Ledger live : Most trusted & secure crypto wallet (2018), https:
//www.ledger.com/ledger-live

38. Litecoin developers: Litecoin (2011), https://litecoin.org/
39. Lombrozo, E., Lau, J., Wuille, P.: BIP: 141 - Segregated Witness (Consensus layer)

(2015), https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
40. Maxwell, G.: Deterministic wallets (2011), https://bitcointalk.org/index.php?

topic=19137.msg239768
41. Meiklejohn, S.: Top ten obstacles along distributed ledgers path to adoption. IEEE

Security & Privacy 16(4), 13–19 (2018)
42. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,

G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140 (2013)

43. Meshkov, D.: Coinbarn wallet (2019), https://github.com/coinbarn/
coinbarn-extension

44. Metamask developers: Metamask (2016), https://metamask.io/
45. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-

cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy. pp. 397–411.
IEEE (2013)

46. Miller, A.: The high-value-hash highway. bitcoin forum post (2012)
47. Monero developers: Monero (2014), https://www.getmonero.org/
48. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Available at: https:

//bitcoin.org/bitcoin.pdf (2008), https://bitcoin.org/bitcoin.pdf
49. OpenBazaar developers: Openbazaar (2014), https://openbazaar.org/
50. Osuntokun, O., Akselrod, A.: BIP: 158 — Compact Block Filters for Light Clients

(2017), https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
51. Osuntokun, O., Akselrod, A., Posen, J.: BIP: 157 — Client Side Block Filtering

(2017), https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
52. Pacia, C.: Bitcoin cash p2p spv wallet (2018), https://github.com/cpacia/

BitcoinCash-Wallet
53. Pacia, C.: Neutrino wallet (2019), https://neutrino.cash/
54. Pacia, C., et al.: BCHD - The full node built for Bitcoin Cash developers (2019),

https://bchd.cash/

https://play.google.com/store/apps/details?id=engineering.lightning.LightningMainnet
https://play.google.com/store/apps/details?id=engineering.lightning.LightningMainnet
https://github.com/lightninglabs/neutrino
https://github.com/lightninglabs/neutrino
https://github.com/zcash/zips/blob/master/zip-0221.rst
https://www.ledger.com/ledger-live
https://www.ledger.com/ledger-live
https://litecoin.org/
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcointalk.org/index.php?topic=19137.msg239768
https://bitcointalk.org/index.php?topic=19137.msg239768
https://github.com/coinbarn/coinbarn-extension
https://github.com/coinbarn/coinbarn-extension
https://metamask.io/
https://www.getmonero.org/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://openbazaar.org/
https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/cpacia/BitcoinCash-Wallet
https://github.com/cpacia/BitcoinCash-Wallet
https://neutrino.cash/
https://bchd.cash/

55. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. pp. 643–673. Springer (2017)

56. Reiner, A.: Ultimate blockchain compression w/ trust-free lite nodes (2012
(accessed February 15, 2015)), https://web.archive.org/web/20150214114638/
https://bitcointalk.org/index.php?topic=88208.0

57. Rosenfeld, M.: Overview of colored coins. White paper, bitcoil. co. il 41, 94 (2012)
58. Schildbach, A.: Bitcoin wallet app for your android device (2014), https://

github.com/bitcoin-wallet/bitcoin-wallet
59. Shapiro, P.: The js codebase for the mymonero desktop and web wallet apps (2018),

https://github.com/mymonero/mymonero-app-js
60. slush: [Stratum] Overlay network protocol over Bitcoin (2011), https://

bitcointalk.org/index.php?topic=55842.0
61. Song, J.: Neutrino Presentation from Breaking Bitcoin 2019 (2019), https://

diyhpl.us/wiki/transcripts/breaking-bitcoin/2019/neutrino/
62. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof

methodologies to signature schemes. In: Annual International Cryptology Confer-
ence. pp. 93–110. Springer (2002)

63. Tankersley, G., Grigg, J., Green, M.: Light client pro-
tocol for payment detection (2018), https://github.com/
zcash/zips/blob/996cdd9686eb68a50ad75f13b58ff7c3b9f4ee58/
zip-XXX-light-payment-detection.rst

64. team, O.: P2p spv wallet/library in go used in openbazaar 2.0 (2016), https:
//github.com/OpenBazaar/spvwallet

65. Todd, P.: petertodd/bloom-io-attack (2016), https://github.com/petertodd/
bloom-io-attack

66. Trezor developers: Trezor beta wallet (2020), https://beta-wallet.trezor.io/
67. Van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/

whitepaper.pdf
68. Voegtlin, T.: Electrum (2011), https://electrum.org/
69. Voegtlin, T.: Electrum-server for the Electrum client (2012), https://github.com/

spesmilo/electrum-server/
70. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethe-

reum project yellow paper 151, 1–32 (2014)
71. Wuille, P.: BIP: 32 — Hierarchical Deterministic Wallets (2012), https://github.

com/bitcoin/bips/blob/master/bip-0032.mediawiki
72. Wüst, K., Gervais, A.: Ethereum eclipse attacks. Tech. rep., ETH Zurich (2016)
73. Yoroi developers: Yoroi - light wallet for cardano (2018), https://yoroi-wallet.

com/
74. Zcash developers: Zcash (2016), https://z.cash/
75. Zcash developers: Lightwalletd is a backend service that provides a bandwidth-

efficient interface to the zcash blockchain (2019), https://github.com/zcash/
lightwalletd/

76. Zeyde, R.: Electrum Server in Rust (2018), https://github.com/romanz/electrs

https://web.archive.org/web/20150214114638/https://bitcointalk.org/index.php?topic=88208.0
https://web.archive.org/web/20150214114638/https://bitcointalk.org/index.php?topic=88208.0
https://github.com/bitcoin-wallet/bitcoin-wallet
https://github.com/bitcoin-wallet/bitcoin-wallet
https://github.com/mymonero/mymonero-app-js
https://bitcointalk.org/index.php?topic=55842.0
https://bitcointalk.org/index.php?topic=55842.0
https://diyhpl.us/wiki/transcripts/breaking-bitcoin/2019/neutrino/
https://diyhpl.us/wiki/transcripts/breaking-bitcoin/2019/neutrino/
https://github.com/zcash/zips/blob/996cdd9686eb68a50ad75f13b58ff7c3b9f4ee58/zip-XXX-light-payment-detection.rst
https://github.com/zcash/zips/blob/996cdd9686eb68a50ad75f13b58ff7c3b9f4ee58/zip-XXX-light-payment-detection.rst
https://github.com/zcash/zips/blob/996cdd9686eb68a50ad75f13b58ff7c3b9f4ee58/zip-XXX-light-payment-detection.rst
https://github.com/OpenBazaar/spvwallet
https://github.com/OpenBazaar/spvwallet
https://github.com/petertodd/bloom-io-attack
https://github.com/petertodd/bloom-io-attack
https://beta-wallet.trezor.io/
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://electrum.org/
https://github.com/spesmilo/electrum-server/
https://github.com/spesmilo/electrum-server/
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://yoroi-wallet.com/
https://yoroi-wallet.com/
https://z.cash/
https://github.com/zcash/lightwalletd/
https://github.com/zcash/lightwalletd/
https://github.com/romanz/electrs

	SoK: A Taxonomy of Cryptocurrency Wallets

