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Abstract

Internet of Things is developing at a very fast rate. In order to ensure secu-
rity and privacy, end-devices (e.g. smartphones, smart sensors, or any connected
smartcards) shall be protected both against cyber attacks (coming down from the
network) and against physical attacks (arising from attacker low-level interaction
with the device). In this context, proactive protections shall be put in place to
mitigate information theft from either side-channel monitoring or active compu-
tation/data corruption. Although both countermeasures have been developing fast
and have become mature, there has surprisingly been little research to combine
both.
In this article, we tackle this difficult topic and highlight a viable solution. It is
shown to be more efficient than mere fault detection by repetition (which is any-
way prone to repeated correlated faults). The presented solution leverages the fact
that both side-channel protection and fault attack detection are coding techniques.
We explain how to both prevent (higher-order) side-channel analyses and detect
(higher-order) fault injection attacks. The specificity of this method is that it works
“end-to-end”, meaning that the detection can be delayed until the computation is
finished. This simplifies considerably the error management logic as there is a
single verification throughout the computation.

Keyword: Security, privacy, Internet of Things, side-channel analysis, fault injec-
tion attacks, countermeasure, high-order, coding theory, direct sum masking (DSM).
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1 Introduction
Along with the advent of Internet of Things (IoT), sensitive data is basically flowing
through network locations which cannot be determined in advance. This means that
information can be recovered at any point of the network. Now, the weakest point is the
end-device (e.g. the user’s smartphone, smart sensor, or connected smartcard). Indeed,
it can easily be procured by an attacker and then be thoroughly studied by him. This
may allow for instance template attacks, which are a type of side-channel attacks which
need to make experiments on the device priorly to the attack. Side-channel and fault
injection analyses are two independent albeit equally dangerous attacks on embedded
devices. Such attacks compromise the IoT data privacy and code security. They are,
for instance, well documented in some application notes [8] from the Common Criteria
ISO/IEC 15408 standard.

In this article, we leverage on provable masking schemes that can detect errors. We
also relax some constraints on previously discussed schemes; namely, we subsume the
original article “Orthogonal Direct Sum Masking” (short for ODSM [5]), in that:

• The computation is not bound to be in F2, but can take place in any finite field K.
This allows to use K= F2l , where the computation can be carried out on words
(of l-bit width) rather than on individual bits. Therefore, algorithmic computa-
tion schemes can be leveraged (see Section 2.5).

• The information and the masking data must live in codes C and D such that the
mapping (x,y) ∈C×D 7→ x+ y is injective, so that it is possible to retrieve the
sensitive data coded by x from the masked data x+ y, but there is no need that C
and D be orthogonal linear codes, which is the case in ODSM; it is even possible
to search for them among unrestricted (i.e. linear or nonlinear) codes like Z4-
linear codes [14]. This leaves the possibility for more efficient codes, since linear
complementary dual (LCD [18, 6]) codes constitute only a subset of all possible
complementary codes.

• The information is considered to embed a certain level of redundancy, allowing
for end-to-end fault detection capability. Historically, in ODSM paper, only the
masks could be checked for errors, not the information. Now, the check is made
at the very end of the algorithm. This redundancy can be at bit or at word level,
depending on the expected implementation.

Contributions. In this article, we review masking schemes which also enable, as an
additional feature, to detect faults. They are not so many, and most of the time, fault
detection is ad hoc. Our main novel contribution is to disclose a masking scheme
with provably end-to-end fault detection, using optimized parameters. Moreover, this
masking scheme generalizes most classical masking schemes (in particular, Boolean
masking BM and inner product masking IPM). For the sake of illustration, we provide
instantiation examples in Verilog Hardware Description Language (HDL).

Outline. Existing high-order masking schemes are reviewed in Section 2. The origi-
nal Direct Sum Masking (DSM) is presented in Section 3, where we waive some con-
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straints of the original ODSM paper. Our original contributions start in Section 4,
where we expose our new modus operandi for end-to-end fault detection. Finally, Sec-
tion 5 presents conclusions and perspectives.

2 State-of-the-art about high-order masking schemes

2.1 Notation
Cryptographic algorithms can be seen either at bit or at word level. At bit level, all
computations are carried out in the finite field F2. Such representation is useful for
implementation at hardware-level (with parallelism) and at software-level, in the case
of bit-slice implementations [2]. At the word level, the computations leverage accel-
eration in software; indeed, processor registers and memories are word-oriented, i.e.,
they typically manipulate several bits in parallel. The choice of word length (i.e., the
bitwidth l) depends on the target processor but also on the target algorithm. Usually,
the computation takes place in Fl

2 for l = 4 or 8. One further advantage of working with
words is that some operations can be better implemented in the finite field K=F2l . The
mapping between vector spaces Fl

2 and F2l , based on the fact that these sets are two
vector spaces of the same dimension l over F2, is usually irrelevant, but we will precise
it whenever necessary.

Let n be a strictly positive integer. Then the Cartesian product Kn is endowed by
a structure of a vector space. The subsets of Kn are called unrestricted codes. Linear
subsets, in that, for all pairs of elements c,c′ ∈K, any linear combination αc+βc′ (for
arbitrary α,β ∈ K) also belongs to the subset, are simply called linear codes. They
are generated by a basis of k non-zero vectors, whose representation as a k×n matrix
of elements from K is called the generator matrix of the code. For both unrestricted
and linear codes, the minimum number of nonzero positions in c+ c′ for all c 6= c′,
is referred to as the minimum distance, and is customarily denoted by d. For linear
codes, it coincides with the minimum Hamming weight of the nonzero codewords. An
unrestricted binary code is characterized by its base field K of cardinality 2l , its length
n, its number of codewords m, and its minimum distance d. Its parameters are denoted
as (n,m,d)2l . A linear code C is characterized by its basefield K of cardinality 2l , its
length n, its dimension k = dim(C), and its minimum distance d (also denoted dC in
case of ambiguity). Its parameters are denoted as [n,k,d]2l . When the base field is
obvious, the index (i.e., 2l) can be omitted. The dual C⊥ of a linear code C is the code
whose all codewords are orthogonal to those of C, according to the usual scalar product
〈c,c′〉= ∑

n
i=1 cic′i ∈K, where c,c′ ∈Kn, and where n is the length of codes C and C⊥.

We have dim(C⊥)+dim(C) = n and the so-called dual distance d⊥C is defined as dC⊥ .
Note that the notion of dual distance extends to unrestricted codes, see [16].

We are interested in a dth-order masking scheme. Traditionally (see for instance [3,
24]), this means that each variable is splitted in (d +1) shares, or, equivalently, that d
random numbers are drawn to mask a sensitive variable. In this article, we consider d
as a security parameter, as we will be using redundant shares: the number of shares is
not directly linked to the security order. Therefore, assuming that there is no flaw in the
scheme, we stick to the understanding that any attack combining d shares (or fewer)
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is doomed to fail. This expresses the definition of the d-th order probing model. The
successful attack of lowest order is thus a (d +1)th-order attack, as illustrated in [23].

Usually, masking schemes are chosen according to their affinity with the algorithm
to protect. For instance, in the case of a block cipher, many operations revolve around
the XOR operation; therefore Boolean masking is chosen. In this respect, the linear
functions with respect to XOR are simple, since they apply verbatim to each share. The
difficulty lays in the masked evaluation of non-linear functions. In a view to be general,
we denote them by (n,m)-functions, that is applications Fn

2→ Fm
2 . Such functions are

used in block ciphers, under a different name: substitution boxes (or S-box in short).
All those are synonymous.

2.2 Problem statement
When cryptographic algorithms are run over smart cards and other mobile crypto-
graphic devices, or on light hardware devices (e.g. FPGA, ASIC), side-channel infor-
mation (through running-time, power consumption, electromagnetic emanation, etc.)
is leaked by the algorithm. side-channel attacks (SCA) can take advantage of this ad-
ditional information and use it for extracting the secret parameters of the algorithm.
The classical counter-measure is to mask the sensitive data (which leaks a part of the
secret), say x, assumed to be a binary vector (to simplify our presentation): vectors
m1, . . . ,mn−1 of the same length as x are drawn at random and the algorithm, instead of
handling x, handles the n-tuple (x+∑

n
i=2 mi,m2, . . . ,mn). Fault injection attacks (FIA)

can also be performed, extracting the secret key when the algorithm is running over
some device, by injecting some fault in the computation, so as to obtain exploitable
differences at the output. Featuring both side-channel mitigation and fault detection
is mandatory from a “threat model” point of view, but at the same time, it is fairly
difficult to combine those protections. Indeed, fault detection consists of replicating
(giving redundancy to) information for consistency checking. Now, the way informa-
tion is copied might induce uncontrolled leakages, which can reduce the security order
of the countermeasure. Reciprocally, fault detection assumes some predictable format-
ting of variables (in terms of minimum distance). Their representation is important
for the detection to operate as intended. Now, masking replaces variables by random
sharing, thereby jeopardizing the encoding of codewords.

For these reasons, the composability of independent side-channel and fault detec-
tion countermeasure can be termed non-obvious. Provable countermeasures against
passive and active attacks are thus the topic of active research.

Still, some research papers have proposed masking schemes amenable to fault in-
jection detection. For instance:

• Attempts have been done by sporadic checks on states (leaving computations
unprotected) in [5],

• Private circuits III [11] also went in this direction, but on a special masking
scheme.

Advantageously, the detected faults might as well be injected either adversarially
(posing then a security problem) or naturally (posing a safety problem—as addressed
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in ISO 26262 for the automotive field). Therefore, the effort to detect faults kills two
birds with one stone. This is for instance required in mission-critical applications, such
as automotive.

In the rest of this Section 2, we review existing high-order side-channel protec-
tion schemes. A scheme is a method to compute a complete algorithm (say AES [20],
which is our running example) using the proposed protection. Namely, in Section 2.3,
the global look-up table approach is presented. An equivalent concept, where such
time tables are recomputed just-in-time, therefore with a smaller footprint, is the topic
of Section 2.4. Last but not least, rewriting of the algorithm under the form of compu-
tations in (one or several) field(s), is illustrated in Section 2.5.

We intentionally focus on the protection of substitution boxes, as they are non-
linear functions with respect to addition in K= F2l , which is hard to protect.

2.3 Computation with global look-up table
It is always possible to tabulate the complete masking scheme computational parts.
Regarding AES, a didactic explanation is provided in [10]. Of course, the described
implementation regards field-programmable gate arrays (FPGAs), but is transposable
without difficulties to software code. In this respect, replace:

• block random access memories (BRAM) by look-up tables,

• logic by Boolean instructions, and

• Digital signal processing (DSP) blocks by arithmetic operations.

But tables may be really too large. Then, one shall consider evaluating tables of smaller
sizes. One such possibility is explained in the following

Lemma 1 (Sub-evaluation of substitution boxes). A table S :Fn
2→Fm

2 can be evaluated
as two evaluations of smaller tables S0,S1 : Fn−1

2 → Fm
2 . The definition of tables S0 and

S1 is as follows:

∀x = (x1, . . . ,xn−1) ∈ Fn−1
2 ,

{
S0(x) = S(x||0) = S(x1, . . .xn−1,0),
S1(x) = S(x||1) = S(x1, . . .xn−1,1).

The reconstruction of the original S-box S is as follows:

S(x) = (xn +1) ·S0(x1, . . . ,xn−1)+ xn ·S1(x1, . . . ,xn−1), (1)

where “·” is scalar multiplication.
The decomposition presented in Lemma 1 can be applied to masked representations,
namely x can be the concatenation of several shares (if the shares are made of several
bits, we shall have to apply it iteratively). Ultimately, this strategy allows to decompose
all the table look-ups.

Other divide-and-conquer strategies are possible, for instance, when n is even, by
directly replacing n by n/2 in Lemma 1. This strategy has been applied in the past
to optimize generalizations of private circuits (Ishai, Sahai, Wagner [13]) from F256
(Rivain, Prouff [24]) to F16 (Kim, Hong, Lim [15]).
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2.4 Computation with recomputed look-up tables
The size of precomputed tables can be prohibitive, despite memory-time possible trade-
offs, allowed for instance by Lemma 1. For this reason, Coron prepared a new scheme
which consumes only about l2ln bits of memory (with n tables containing the 2l val-
ues at the l-bit vectors). But actually, recomputation can be leveraged to maintain a
target security order d whilst limiting this memory size. Recomputation requires about
n2 clock cycles. As underlined by Coron [9], this scheme is only efficient on random
S-boxes, otherwise, algebraic computations (see next subsection 2.5) perform better.

2.5 Algebraic computation
In some situations (more in the framework of smart cards), the whole algorithm must
be rewritten (in a polynomial form) so that all the sensitive data is in the masked ver-
sion. This needs to change each transformation F(x) in the original algorithm into a
transformation F ′(z) in the masked algorithm, taking as input the masked version z of
x and giving as output a masked version of F(x). We shall say that F ′ is a masked
version of F and speak of masked computation when dealing with the transformed al-
gorithm. For cryptographic algorithms which are efficiently described as operations in
an extension K = F2l of F, it has been proven beneficial to perform computations in
F2l rather than in Fl

2 (which has less structure). Any computation in a finite field can
be represented as the evaluation of a polynomial (which can be obtained by Lagrange
interpolation). In usual cases, the algorithm control flow is independent of the inputs.
Therefore, this Lagrange interpolation polynomial is static (same whatever the inputs)
and can be evaluated using basic field addition and multiplication operations. Horner’s
method can be leveraged for efficient polynomial evaluation. In practice in symmetric
cryptography, most operations are explicitly carried out in some field of characteristic
two, such as:

• K= F24 for PRESENT [4] (l = 4) lightweight block cipher,

• K= F28 for AES [20] (l = 8) standard block cipher, etc.

Therefore, a cryptographic algorithm can be decomposed into computations in some
field F2l . For example,

• in F16 represented as F2[x]/〈x4 + x+ 1〉, we denote1 by [0x0, 0x1, 0x2, 0x3,
0x4, . . ., 0xf] the 16 elements [0, 1, x, x+ 1, x2, . . ., x3 + x2 + x+ 1]. Using
magma [27], we get for the S-box of PRESENT the expression:

S-box(a) = 0xc+0x7 ·a2 +0x7 ·a3 +0xe ·a4 +0xa ·a5

+0xc ·a6 +0x4 ·a7 +0x7 ·a8 +0x9 ·a9 +0x9 ·a10

+0xe ·a11 +0xc ·a12 +0xd ·a13 +0xd ·a14.

• in F256 represented as F2[x]/〈x8 + x4 + x3 + x+ 1〉, we denote by [0x00, 0x01,
0x02, 0x03, 0x04, . . ., 0xff] the 16 elements [0, 1, x, x+ 1, x2, . . ., x7 + x6 +

1In hexadecimal notation; the prefix 0x is used in C and related languages.
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Table 1: Summary about use of three computation paradigms, in conjunction with
masking

K Global Look-up Ta-
ble (GLUT)

Table recomputation
(htable)

Algebraic computa-
tion (Lagrange)

(Sec. 2.3) (Sec. 2.4) (Sec. 2.5)

F2 Source: [22] ? Source: ISW [13]
F2l * Source: Coron [9] Source: RP [24]

x5 + x4 + x3 + x2 + x+ 1]. From the documentation on AES [19, Sec. 8.5, page
38/45], we get for SubBytes, the AES S-box, the following expression:

S-box(a) = 0x63+0x8f ·a127 +0xb5 ·a191 +0x01 ·a223 +0xf4 ·a239

+0x25 ·a247 +0xf9 ·a251 +0x09 ·a253 +0x05 ·a254. (2)

Taking into account that, by Fermat’s little theorem, ∀a ∈ F256\{0}, a−1 = a254,
Eqn. (2) rewrites:

S-box(a) = 0x63+0x05 ·a−1 +0x09 ·a−2 +0xf9 ·a−4 +0x25 ·a−8

+0xf4 ·a−16 +0x01 ·a−32 +0xb5 ·a−64 +0x8f ·a−128.

In this respect, many works have been optimizing masked computation. However,
the algebraic manipulation (that is addition and/or multiplication) of masked data is
today only known in the case each sensitive data is masked by one or more shares.
This means that the masked variables have a bit-width n which is a multiple of l, in
which cases we can exploit:

• in F2 the Ishai-Sahai-Wagner [13] (ISW);

• in F2l the Rivain-Prouff generalization [24] of ISW.

2.6 Summary about the three computation paradigms
The usage of computation paradigms in the context of masking is recalled in Tab. 1. As
we shall further detail, the masking schemes can come in several options. For instance,
each sensitive variable might be masked independently (as in classical masking). This
means that the information is a single scalar X (of dimensionality k = 1) whereas the
masked variable consists of a vector ~Z (of length n > 1). The masking schemes which
adhere to this masking principle are underlined in gray cell . Some masking schemes

are more generic, in that the information can be a vector of symbols ~X ∈Kk (for some
k, 1 ≤ k ≤ n), while the masked representation is another vector ~Z ∈ Kn, for n ≥ k.
Such schemes which do not feature limitation are represented in white cells.

Let us comment on the contents of Tab. 1, on a per-column basis:
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• Global look-up table (GLUT): the operation to be conducted on masked ma-
terial ~Z is performed through a statically precomputed table (computed once for
all, and stored in read-only memory upon software delivery first-time load). Such
table takes as input the whole word ~Z. In terms of security analysis, this has led
some to confusion, since in the probing model, it could be (erroneously) assumed
that the “item to be probed” is ~Z in its entirety, whereas the words to consider
are actually individual bits (= elements of the base field K = F2). Words are
vectors of l bit strings, and a word of n bit long is a word array (which cannot be
probed at once: in the word-level leakage probing model, n probes are needed).
Regarding applicability of GLUT to K= F2l , there is a direct translation (hence
the * symbol in Tab. 1), by subfield representation of F2l elements into Fl

2 (lin-
ear transformations allow to go from one representation to the other). Therefore,
new information size on F2 is k′ = kl and new masking length on F2 is n′ = nl.

• Table recomputation: in this paradigm, one element X ∈ K is applied a table
(such as a cryptographic S-box) under its shared form ~Z ∈ Kn. The algorithm
consists in on-the-fly computation of tables adapted to ~Z, for a specific masking
scheme (only X = ∑

n
i=1 Zi paradigm is supported). It would not seem unreason-

able to extend this computation paradigm to K= F2, using information ~X ∈Kk,
but this has never been studied yet (hence the ? symbol in Tab. 1).

• Algebraic computation: all transformations in the algorithm being expressed
under a polynomial form, which reduces then the problem of masking them to
addressing addition and multiplication, secure addition and multiplication have
been studied, in [13] at bit-level and in [24] at word-level. Nonetheless, these
schemes only work for scalar information X ∈ K, which we extend to vectorial
information ~X ∈Kk in this article (refer to Section 4.2).

Therefore, all three computation paradigms have merits and drawbacks, in terms of
implementation size, evaluation time, etc.

But all three strategies described in Section 2.3, 2.4 and 2.5 lack fault detection
capability.

3 Direct Sum Masking

3.1 Introduction on Direct Sum Masking
This section presents a masking scheme called Direct Sum Masking (DSM), which is
based on two complementary codes. We generalize in this section the original con-
cept, presented in [5]. It consists of encoding some information ~X ∈Kk such that it is
randomized by a mask ~M ∈ Kn−k. The mixture occurs thanks to a direct sum in Kn,
between the two codes generated by G (matrix of size k× n) and H (matrix of size
(n− k)× n). The protected information writes ~Z = ~XG+ ~MH. The transformations
from (~X , ~M) to ~Z are described in Fig. 1.

Remark 1 (On notations G and H). In this section, we explore different “calibrations”
of DSM. Therefore, for each one, a new definition of matrices G and H is provided. The
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only requirement is that the codes they spawn are complementary, i.e., that
(

G
H
)

is an
invertible n×n matrix in K.

The basic result on DSM is that the side-channel protection is at order d in the
probing model, where d is the dual distance of the code generated by H, minus the
number one [5, 21]. That is, d = d⊥span(H)− 1 = dspan(H⊥)− 1. A security order of d
means that all attacks of order d or less than d do fail. When the base field is K= F2l ,
with l > 1, the dual distance d⊥span(H) can be considered on K or on F2, in which case the
security order is considered respectively at word- or an bit-level. As the dual distance
increases after sub-field representation, the security level is not smaller at bit-level
compared to word-level. A successful attack must combine at least (d + 1) words (or
bits), depending on whether d is the security order at a word or at a bit level.

Two examples of DSM codes are given hereafter.

Example 1 (DSM generalizes classical masking [3]). In classical masking, we have
that:

G =
(
1 0 0 . . . 0

)
∈K1×n

H =


1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

. . . 0
1 0 0 . . . 1

 ∈K(n−1)×n.

Example 2 (DSM generalizes Inner Product Masking [1]). In inner product masking,
we have that:

G =
(
L1 0 0 . . . 0

)
∈K1×n

H =


L2 1 0 . . . 0
L3 0 1 . . . 0
...

...
...

. . . 0
Ln 0 0 . . . 1

 ∈K(n−1)×n.

This scheme is distinct from classical masking scheme, in that binary elements are
replaced by elements Li ∈ F2l (1 ≤ i ≤ n). Let us underline that in IPM masking,
coefficient L1 6= 0 can also, without loss of generality, be chosen equal to 1. Indeed
both ~Z ∈Kn and ~Z/L1 ∈Kn do carry the same information.

Note that neither classical masking (example 1) nor IPM (example 2) are orthogo-
nal direct sum masking schemes.

3.2 Generalization from k = 1 to 1≤ k ≤ n, and from F2 to F2l

When the code generated by matrix G has dimension k > 1 on K and k does not divide
n, then only computation algorithms are actually those based on table look-ups, namely
“global look-up tables” (Section 2.3) or “table recomputation” (Section 2.4). Indeed,
today’s algebraic evaluation (Sec. 2.5) requires k = 1, i.e., one data is masked by (n−
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1) masks. Such computation is meaningful only on bits (classical ISW). On words,
multiplication algorithm such as the algebraic evaluation (Section 2.5) applies, but only
provided k = 1.

3.3 DSM vs ODSM
In the original ODSM paper, not only the codes were provided on F2 (and not on
K = Fl

2), but also they required the complementary codes C = span(G) and D =
span(H) (with C⊕D = Kn) to be orthogonal. Such configuration is convenient and
holds the name of C and D being two linear complementary codes (LCD). This al-
lows simplifying the write-up of some equations, such as ΠC(~Z) =~ZGT

(
GGT

)−1G or

ΠD(~Z) =~ZHT
(
HHT

)−1H.
Security-wise, it is not requested that C = D⊥ (i.e., we do not require GHT = 0).

Relaxing such constraint allows for more efficient parameters selection. Let us give a
couple of examples.

Example 3 (Best linear code). Let a linear code over F2 of length n = 8 and dimension
k = 4. Such code being linear, its generating matrix G can be written in systematic
form, i.e., as

1 0 0 0 · · · ·
0 1 0 0 · · · ·
0 0 1 0 · · · ·
0 0 0 1 · · · ·

=


1 0 0 0
0 1 0 0 P0 0 1 0
0 0 0 1


where P ∈ F4×4

2 . If one line of P has four 1’s, then:

• if a second line also has four 1, the Hamming distance between the two code-
words will be 2;

• if a second line has strictly less than four 1, then the codeword on that line has
Hamming distance at most 4.
Therefore a minimum distance of 5 is not possible

We show that the minimum weight of all lines can actually reach 4. This implies that
all lines of P have Hamming weight 3. It can be checked that the only 0 on the lines
of P cannot be at the same position. Thus, up to equivalence of codes by coordinates
swapping, we have that

P =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

However, this (unique) binary code of parameters [8,4,4]2 is self-dual. Therefore, it is
not LCD. It can be deduced that all suitable codes for ODSM with length n = 8 and
k = 4 have at most minimum distance d = 3.

At the opposite, it is possible to use relax the constraint of the two codes to be dual.
In this case, the previous basis of the extended Hamming code of parameters [8,4,4]
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can be completed by vectors of unitary weight. Consequently, one can consider for
instance the two complementary codes generated by G and H, equal to:

G =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 and H =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

 .

If one encodes information ~X with masks ~Y as protected word ~Z = ~XG+~Y H, then
decoding is still possible despite codes C = span(G) and D = span(H) are not dual
one of each other. The reverse operation is ~X = ΠC(~Z) = ~ZJ and ~Y = ΠD(~Z) = ~ZK,
where:

J ∈ Fn×k
2 and K ∈ Fn×(n−k)

2 are defined as:
(
J K

)
=

(
G
H

)−1

,

such that:

J =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


and K =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


.

Example 4 (Best unrestricted code). It is known that the best binary code of length
n = 16 and with m = 256 codewords is the Nordstrom-Robinson code, unique code of
parameters (16,256,6)2 [25]. This code is unique and self-dual. Therefore, it is not
LCD. But as in the previous example, a non-orthogonal complementary code can be
found, for instance span(I8,08), where I8 (resp. 08) is the identity (resp. null) matrix
of size 8×8.

4 Fault detection with DSM

4.1 Venues for fault detection in DSM representation
The concept of fault detection during the execution of a cryptographic algorithm is
illustrated in Fig. 2. We describe hereafter this figure. Without loss of generality,
we consider the example of a block cipher (such as AES-128). All input variables,
collectively referred to as “~X” (which gathers plaintext, key, etc.), is masked by some
random variables ~M. Classical block cipher design is based on product ciphers (or
iterative ciphers) pattern. The state is updated several times in round logic, which is
most of the time, the same (or almost the same) operation iterated several times. Notice
that both message and key are updated concomitantly in usual encryption schemes.
Sometimes, the first and the last rounds are specialized versions of the inner rounds.
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ΠD

~Z = ~XG+ ~MH
DC

EC
~X ~XG

+

ΠC

~M
ED

DD

~MH

Global lookup table

Algebraic computation

Table recomputation

spacevector C

spacevector D

direct sum “C ⊕D” (aka DSM)
(see ~Z → ~Z′ → ~Z′′ → . . . in Figure 2)

Figure 1: Commutative diagram of DSM masking scheme (valid for both K= F2 and
K= F2l )

The convention used in the figure 2 we describe is that we denote by ~X the inputs and
by ~X ′ the outputs. The outputs can thus be the ciphertext along with the last round key
(in case of encryption) or the master key (in case of decryption). The round logic is
referred to as combinational logic (denoted as “combi”), because, when implemented
in hardware, this part would consist in stateless functions. The intermediate states
are denoted as ~Z, ~Z′, ~Z′′, etc. The number of primes (i.e., the depth of quoting “ ′ ”
symbols) indicates the depth of round logic inside of the algorithm. In both schemes (a)
& (b) presented in Fig. 2, the protected representation is referred to as a combination of
type ~Z = ~XG+ ~MH. Precisely, the conversions are recalled in the diagram represented
in Fig. 1.

We highlight two computation schemes enabling fault detection:

• state-of-the-art direct sum masking, in Fig. 2(a), and

• our new end-to-end masking scheme with end-to-end fault detection capability,
as illustrated in Fig. 2(b).

Both schemes feature exceptional alarms, which are checkpoints raising computation
abort in case of verified invariant violation. In a view to highlight the difference be-
tween the two schemes, the background of unprotected data/operation is shown in gray,
as follows unprotected . Therefore our new method is definitely useful for legacy rea-
sons.

In the direct sum masking, the idea is to check whether the refreshed values of the
masks have been changed or not once stored in the state register ~Z (or ~Z′, ~Z′′, etc.) This
requires to project (securely) the masked state ~Z onto corresponding mask ~M. This is
always possible since information and masks are encoded in direct sum. But combi-
national logic is not protected. Indeed, predicting its parity is hard in practice. Hence
several unprotected spots (actually all combinational logic inside of the algorithm).
Clearly, inputs and outputs are not checked, but this is of little practical importance, as
attacks aiming at extracting the key shall target sensitive values, that is values which
depend on the key and of either the plaintext and/or the ciphertext.

Remark 2 (On the security of recovery ~M from ~Z). When recovering the mask ~M from
a sensitive variable ~Z = ~XG+ ~MH, one shall not leak information on ~X. A priori, this
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~X ~X ~M

etc.

second state

second round logic

first round logic

initial state~Z

ΠD

ΠD

?
=

alarm

~Z

( ~X, . . . , ~X)G+ ~MH~XG+ ~MH

return ~X ′ = ~X1
alarm

No~X1
?
= . . .

?
= ~Xk

~X1
~Xk. . .

Figure 2: Comparison between “check the masks” ((a), [5]) and “encode-
information” ((b), this paper) fault detection side-channel protected schemes

is not trivial. But let us explain that there is, in general, no risk, provided the LCD
codes spawn by G and H are built properly. The masking code, i.e. that generated
from H, can be chosen systematic, and written as H =

(
L In−k

)
, where L is an (n−

k)× k matrix. In original DSM, only the property of H was relevant for the side-
channel security. Thus, G can be constructed arbitrarily provided it complements the
codewords of H to build the universe code Kn. Therefore, the simple choice G =(
Ik 0k×(n−k)

)
fills this need. Indeed, whatever L,

(
G
H

)
=

(
Ik 0k×(n−k)
L In−k

)
is an

invertible matrix.

4.2 Computation with end-to-end DSM fault detection
For the scheme depicted in Fig. 2(b) to work, the information X ∈ K shall be repre-
sented as ~Z = (X , . . . ,X)G+ ~MH, where ~M ∈Kn−k is the masking material for k-times
replicated information ~X = (X , . . . ,X) ∈ Kk. It can be noticed that all unfolds as of

13



each coordinate of (X , . . . ,X)2 is masked with the same mask ~M. Therefore, evaluation
is conducted as follows:

• Computation is carried out independently on each copy X of ~X = (X , . . . ,X) ∈
Kk,

• Mask homogenization between the k computations is carried out: this step con-
sists in making sure that each k shared values (in (n− k+ 1) shares) are using
the same (n− k) masks. It is, therefore, possible to rebuild a consistent word
of format (X , . . . ,X)G+ ~MH, as underlined in Alg. 1. This algorithm takes two
vectors ~T ,~T ′, and assumes an IPM representation (recall Example 2). We call
~L = (L1 = 1,L2, . . . ,Ln) where n is the length of vectors ~T and ~T ′. The security
proof of Alg. 1 is provided in [7].

Algorithm 1: Homogenization of two sharings (in the case of IPM)

input : ~T = (T1, . . . ,Tn) and ~T ′ = (T ′1 , . . . ,T
′

n)

output: ~̃T ′, a new sharing with those properties:

• it is equivalent to ~T ′, meaning that 〈~L,~T ′〉= 〈~L,~̃T ′〉, and

• it has the same masks as ~T , meaning that T̃ ′i = Ti for 2≤ i≤ n.

1 ~̃T ′← ~T ′

2 for i ∈ {2, . . . ,n} do
3 ε ← Ti +T ′i
4 ~̃T ′← ~̃T ′+(Liε,0, . . . ,0,ε,0, . . . ,0) where the value ε lays at position i

5 return ~̃T ′

End-to-end computation is better achieved as per Fig. 2(b). Fault detection in the
whole algorithm is deferred until the very end of the computation, which considerably
simplifies the management of the alarm signal, whilst leaving no unprotected hole in
the algorithm to protect.

4.3 Examples in F2

4.3.1 Bitwise multiplication without error detection

Let us recall the original ISW scheme at hardware level, i.e., where we have l = 1 and
n = 2 (whilst k = 1, necessarily). The masked data representation is that of DSM with:

G =
(
1 0

)
and H =

(
1 1

)
.

2If the initial clear material is already vectorial, such as 16 bytes of plaintext + 16 bytes of key, such as
in AES-128, then the input information is already denoted as a vector ~X ∈K32, where K= F256. Hence the

redundant information is (~X , . . . ,~X) ∈Kk , where 32|k. This quantity can be noted as
−−−−−−→
(~X , . . . ,~X) ∈K32k , but

for the sake of formula readability, we prefer to stick to one single stage of arrows when denoting vectors.
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Though it is trivial in this case, one can verify that H⊥ = H =
(
1 1

)
, which generates

the binary repetition code of parameters [2,1,2]2. Therefore, the scheme is protected at
1st-order (recall characterization enunciated in Section 3.1). The product of two shares
(a1,a2) of a ∈ F2 and of b ∈ F2, also represented shared, as (b1,b2), can be computed,
according to [3].

In order to simplify the notations, we denote the multiplicand as ~Z = (a1,a2,a3),
the multiplier as (b1,b2,b3), and the multiplication result as (c1,c2,c3). Without fault
protection, we have, for instance:

• c1 = a1b1 +a2b2 + r1, and

• c2 = a1b2 +a2b1 + r1,

where r1 an additional random mask which is needed while computing the masked
product c. It is straightforward to check that the shared computation of c = c1 + c2 is
correct, since indeed:

c1 + c2 = ab , where a = a1 +a2 and b = b1 +b2.

The number of gates is eight (four AND and four XOR).

4.3.2 Bitwise multiplication with detection of a single error

Let us now consider one single data redundancy, meaning that n = 3 and k = 2. The
first step is to expand the data representation, whilst keeping a first-order side-channel
security. The masked representation now becomes:

G =

(
1 0 0
0 1 0

)
and H =

(
1 1 1

)
. (3)

One can see that

H⊥ =

(
1 0 1
0 1 1

)
,

which indeed spawns a linear code of minimum distance two. Therefore, the represen-
tation

~Z = (X1,X2)G+MH = (X1 +M,X2 +M,M) (4)

is still protected at first order against side-channel attacks.
According to the mode of operation for computation presented in Section 4.2, the

multiplication shall be carried out on each coordinate of ~X = (X1,X2), as sketched in
Fig. 3.

Now, in order to get to know how to proceed with multiplication, the recipe is to
compute using (X1,M) on the one hand, and (X2,M) on the other. The representation,
in either case, is the same, hence this yields on the one hand:

• c11 = a1b1 +a3b3 + r1,

• c12 = a1b3 +a3b1 + r1,

and on the other hand:
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Figure 3: Decomposition of the computation with k = 2 information bits X1 and X2 in
two computations

• c21 = a2b2 +a3b3 + r2,

• c22 = a2b3 +a3b2 + r2,

where r1 and r2 are two independent random bits required for the multiplication to be
secure.

The homogenization consists now in merging the pair (c11,c12) and (c21,c22) into
the single representation of Eqn. (4). In our case, we apply Alg. 1 on masks c12 and
c22:

• c12 is the pivot, and c22 is turned into c′22 = c12 = c22 + ε , where ε = c12 + c22;

• therefore information c21 becomes in turn

c′21 = c21 + ε = c21 + c12 + c22

= (a2b2 +a3b3 + r2)+(a1b3 +a3b1 + r1)+(a2b3 +a3b2 + r2).

Finally, we get for the multiplication in representation (4) the following formula:

• c1 = a1b1 +a3b3 + r1,

• c2 = (a2b2 +a3b3 + r2)+(a1b3 +a3b1 + r1)+(a2b3 +a3b2 + r2),

• c3 = a1b3 +a3b1 + r1.

Now, these equations can be optimized, as the term (a1b3+a3b1+r1) is used both in c2
and in c3, and since it can play the role of the refresh bit r2 involved in ISW algorithm
for the multiplication of the second coordinate:

• c1 = a1b1 +a3b3 + r1,
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// Original ISW multiplication
module mult_n2_k1( c, a, b, r );

parameter n = 2;
input [1:n] a, b; // Data to multiply
input [1:1] r; // Random for internal refresh
output [1:n] c; // Multiplication result

assign c[1] = a[1] & b[1] ^ a[2] & b[2] ^ r[1];
assign c[2] = a[1] & b[2] ^ a[2] & b[1] ^ r[1];

endmodule

Listing 1: Verilog code for the multiplication in F2, protected against masking at first
order with no fault detection capability (refer to Section 4.3.1)

Figure 4: Structure of ISW multiplication without error detection capability (k = 1,
n = 2), obtained from logical synthesis with Cadence genus EDA tool of Listing 1
with optimizations disabled

• c2 = (a2b2 +a3b3 + c3)+(a2b3 +a3b2),

• c3 = a1b3 +a3b1 + r1.

Eventually, the product a3b3 is needed both in c1 and c2 thus can be shared. This
results in 7 AND and 8 XOR, which is strictly less than the double size of the example of
Section 4.3.1. This shows the gain of leveraging codes to detect faults.

In terms of circuits, the version of bit multiplication without redundancy is repre-
sented in Fig. 4, along with its Verilog [12] netlist. The version with one bit of error
detection is represented in Fig. 5, also along with its netlist.

Please be careful that those netlists can feature glitches [17], which potentially
reduce the security order of the countermeasure. Those netlists must be carefully ana-
lyzed by a tool such as Virtualyzr R© [26].
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// ISW multiplication with redundancy
// (two interwoven ISW multiplications)
module mult_n3_k2( c, a, b, r );

parameter n = 3;
input [1:n] a, b; // Data to multiply
input [1:1] r; // Random for internal refresh
output [1:n] c; // Multiplication result

assign a1b1 = a[1] & b[1];
assign a2b2 = a[2] & b[2];
assign a3b3 = a[3] & b[3];
assign a1b3 = a[1] & b[3];
assign a3b1 = a[3] & b[1];
assign a2b3 = a[2] & b[3];
assign a3b2 = a[3] & b[2];

assign c[1] = a1b1 ^ a3b3 ^ r[1];
assign c[2] = (a2b2 ^ a3b3 ^ c[3]) ^ (a2b3 ^ a3b2);
assign c[3] = a1b3 ^ a3b1 ^ r[1];

endmodule

Listing 2: Verilog code for the multiplication in F2, protected against masking at first
order and with single fault detection capability (refer to Section 4.3.2)

Figure 5: Structure of ISW multiplication without error detection capability (k = 2,
n = 3), obtained from logical synthesis with Cadence genus EDA tool of Listing 2
with optimizations disabled
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5 Conclusions and perspectives
In addition to their functionality, Internet of Things devices are expected to enforce
security and privacy functions. However, some attacks aim at breaking those assets on
data/code. Therefore, masking schemes able to detect faults are of great practical im-
portance. We have revised the state-of-the-art, which focuses particularly on ODSM.
We underlined that original ODSM presents some shortcoming owing to non-optimal
parameter selection (rigid base field = F2) and pair of codes which have to be orthogo-
nal (which is an unnecessary convenience). But most importantly, we recall that ODSM
leaves holes regarding fault detection, as only states are verified but not the computa-
tions occurring between each state snapshot. Indeed, ODSM is designed to verify that
masks remain unaltered; unfortunately, masks are often refreshed, thereby cutting the
computational integrity verification chain.

In this article, we contribute a method based on DSM to detect faults end-to-end,
that is from plaintext to ciphertext, including both sequential and combinational logic.
This method works by injecting in the computation not only the information plain, but
actually some redundant information. Therefore, verification can be carried out on
the state (only when it is used as public information, e.g., as ciphertext in the case of
block ciphers). We show that all currently known computation paradigms (i.e., global
look-up table, table recomputation and algebraic computation) still apply and we detail
them.

As a perspective, it should be made more clear what is the quantitative gain of hav-
ing redundancy within the masking scheme for several parameters k and n. Besides, it
is desirable to provide a better error detection scheme than simply the k-fold repetition
code X 7→ ~X = (X , . . . ,X) ∈ Kk = Fk

2l . Indeed, proper encoding of X with a parity
matrix could allow to detect more faults at a given code rate k/n.
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