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Abstract. In an article from HOST 2018, which appears in extended form in the
Cryptology ePrint Archive, Baksi, Bhasin, Breier, Khairallah, and Peyrin proposed
the tweak-in-plaintext method to protect block ciphers against a differential fault
analysis (DFA). We argue that this method lacks existential motivation as neither of
its two envisioned use cases, i.e., the electronic codebook (ECB) and the cipher block
chaining (CBC) modes of operation, is competitive. Furthermore, in a variant of
the method where nonces are generated using a linear-feedback shift register (LFSR),
several security problems have not been anticipated for. Finally, we analyze the
security level against a brute-force DFA more rigorously than in the original work.
Keywords: differential fault analysis, cipher block chaining, provable security

1 Introduction
Differential fault analysis (DFA) of block ciphers is highly efficient: for the Advanced
Encryption Standard (AES) [6] with a 128-bit key, Tunstall et al. [14] showed that one
random, single-byte fault at the input of the antepenultimate round reduces the attack
complexity from 2128 to 28. Fortunately, DFA is only applicable in scenarios where the
attacker can encrypt a given plaintext twice such that both the correct and a faulty
ciphertext are obtained. Hence, randomization of either the plaintext [10, 13, 2, 12] or the
key [8] at protocol level is an effective countermeasure. We focus on the tweak-in-plaintext
randomization method as proposed by Baksi et al. [2, 3]. Despite its name, the method
applies to conventional, untweakable block ciphers; the term “tweak” could be replaced
by “nonce”, i.e., an ideally non-repeating and usually random number is inserted into the
plaintext.

1.1 Contribution
According to Baksi et al. [2, 3], tweak-in-plaintext protection is particularly useful for the
electronic codebook (ECB) and the cipher block chaining (CBC) [9] modes of operations, but
we argue that neither use case is convincing. For ECB mode, tweak-in-plaintext protection
is less Pareto optimal than an earlier proposal by Guilley et al. [10] in generalized form, i.e.,
the latter method is simultaneously more efficient and more secure. Likewise, by imposing
a timing constraint on the release of ciphertext, CBC mode inherently resists DFA in a
more efficient and more secure way. Equally unconvincing is a variant of tweak-in-plaintext
protection that uses a linear-feedback shift register (LFSR) in order to avoid the birthday
problem and detect faults: the birthday problem still applies, the security-critical reset
and initialization behavior of the LFSR is unspecified, and denial-of-service (DoS) attacks
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emerge. Finally, we analyze the security level against a brute-force DFA through a proven
derivation rather than through a rough approximation.

1.2 Structure
The remainder of this article is structured as follows. Section 2 provides preliminaries
on tweak-in-plaintext protection. Section 3 analyzes the prospective use cases. Section 4
analyzes the security level against a brute-force DFA.

2 Preliminaries on Tweak-in-Plaintext Protection
2.1 Notation
Constants and variables are denoted by characters from the Greek and Latin alphabets
respectively.

2.2 Attacker Model
Consider the transfer of encrypted data between two parties: the sender, to which an
attacker can gain physical access, and the receiver, which resides in a physically secure
location. An example of this setting is a wireless sensor network. The attacker tries to
recover the key by performing a DFA of the sender’s encryption module, i.e., the plaintext
P is fixed and both the correct ciphertext C and a faulty ciphertext C ′ are collected.
Attacks that do not require an unchanged plaintext P [7] are out of scope. Building blocks
besides the block cipher are untouchable. Most notably, an attacker is unable to control
the generation of (pseudo)random numbers R, even by resetting the device. However, an
unknown nonce R that is fed into a cipher can be XORed with a chosen error vector in
the first round.

2.3 Basic Scheme
Baksi et al. [2, 3] slow down DFA through plaintext randomization, i.e., ciphertext pairs
(C,C’) that correspond to the same plaintext P become hard to collect. Instead of
C ← E(K,P ), where P,C ∈ {0, 1}λ, the sender computes and transfers C ← E(K,P ||R),
where R is selected uniformly at random from {0, 1}γ and where P ∈ {0, 1}λ−γ . The
receiver computes P ||R← D(K,C), retains P , and discards R. The obtained security level
against a brute-force DFA is expressed in terms of the birthday problem, i.e., the attacker
tries to find collisions of R for a fixed P . For AES, which has a block size λ = 128, the
authors suggest choosing γ ∈ {4, 8, 12, 16, 20, 24, 28, 32}. The scheme is deemed suitable
for the ECB and CBC modes of operation, in which the sender and receiver encrypt and
decrypt respectively. Due to the high intake of random bits, nonces R may be generated
through a pseudorandom function (PRF) or a stream cipher that expands a random seed.
A mentioned advantage of the scheme is that related-key attacks are precluded.

2.4 Scheme Variations
• To circumvent the birthday problem, the nonces R ∈ {0, 1}γ can be deterministically

generated by a γ-bit, maximum-length linear-feedback shift register (LFSR), which
cycles through 2γ − 1 states. Hence, to obtain δ ciphertext pairs (C,C ′), the attacker
has to perform 2γ + δ − 1 queries.

• When an LFSR is used, the receiver has a means of fault detection. Values R ∈ {0, 1}γ
that are recovered from consecutive ciphertext blocks should correspond to consecutive
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states of the LFSR. This supposedly increases the difficulty of an attack: the
communication channel between the sender and the receiver should be blocked in
order to avoid counteractions such as a key update or device revocation.

• The scheme is mentioned to be applicable to the parallelizible message authentication
code (PMAC) [5] mode of operation, even though the sender and the receiver both
use the encryption function E.

3 Use Case Analysis
3.1 Ill-Defined Fault Model
The fault model of Baksi et al. [2, 3] is ill-defined. The authors discuss known/chosen-
plaintext attacks in the context of traditional cryptanalysis, but it is unclear whether
or not P is, besides repeatable, known/chosen during a DFA as well. Also, it is unclear
whether or not the XOR capabilities of the first round of the data path extend to the key
schedule and the last few rounds of the data path. For the key schedule in particular, the
ability to XOR the key with a known constant would partially contradict the claim that
the scheme precludes related-key attacks: assuming P is pubic, which is conventional for
this type of attack, when an LFSR is used, there are only 2γ possibilities to recover all
nonces R regardless of the number of encryptions. The authors also do not comment on
set-to-0 and set-to-1 faults, even though a collision is instantly generated by overwriting
the state vector with a constant in identical rounds of two encryptions. Furthermore, the
authors do not distinguish between transient, persistent, and permanent faults. To be
conservative, we further only consider XORing of the nonce and an abstract transient fault
injection method for the first round and the last few rounds of the data path respectively.
Moreover, it is unclear whether multiple fault injections per encryption are allowed, e.g.,
an injection both in the first round and in the last few rounds.

3.2 The LFSR
3.2.1 Birthday Problem Still Applies

In the first round, the attacker can XOR the LFSR-generated nonce R with an error
vector that is selected uniformly at random from {0, 1}γ . Hence, after XORing, R is
uniformly distributed on {0, 1}γ , and the scheme becomes equivalent to the original version
in Section 2.3, i.e., the birthday problem reemerges. The same holds even under a weaker,
random-fault model. In one version of the attack, all cipher evaluations are faulted in the
first round to randomize the nonce, and 50% of these evaluations is additionally faulted in
the last few rounds. In another version of the attack, which avoids double fault injections,
50% of the evaluations is faulted in the last few rounds exclusively, whereas the remaining
50% is faulted in the first round exclusively.

3.2.2 Reset Method

Baksi et al. [3] specified that an attacker is unable to control the values of the nonces
R ∈ {0, 1}γ by resetting the device, but a method that fulfills this condition for LFSR-
generated nonces R is unspecified. Evidently, collisions can instantly be generated if the
γ-bit state of the LFSR is reset to a predefined constant. Equally problematic, resetting the
state to a random value would reintroduce the birthday problem, similar to Section 3.2.1.
Furthermore, if resets are also performed legitimately, both of the above reset strategies
are partially incompatible with receiver-side fault detection. The only conceivable solution
is to store the state in reprogrammable, non-volatile memory such as Flash. Unless Flash
is already used in other subsystems of the device, its inclusion results in a more expensive
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manufacturing process: floating-gate transistors require additional masks and processing
steps. In their proof-of-concept implementation on a field-programmable gate array (FPGA),
the authors unconcernedly use and report the overhead for standard flip-flops, i.e., volatile
memory.

3.2.3 Initialization Method

A related problem is that an initialization method for the γ-bit state of the LFSR is
unspecified. If a predefined constant would be used as the initial value for all manufactured
devices, then newly issued devices that have as yet performed zero of few encryptions are
at risk. Given knowledge of the next two nonce values, Ri, Ri+1 ∈ {0, 1}γ , an attacker can
XOR Ri with Ri ⊕ Ri+1 in the first round of the first encryption and fault the second
encryption in the last few rounds to obtain a ciphertext pair (C,C ′). To solve this problem,
the initial value of the state should be selected uniformly at random from {0, 1}γ \{00 · · · 0}.
An alternative solution is the use of a pseudorandom permutation, which Baksi et al. [3]
considered but deemed costly.

3.2.4 Receiver-Side Fault Detection

An unacknowledged problem with receiver-side fault detection is that DoS attacks become
easier to perform. If a device revocation or a key deletion policy is implemented, an attacker
can disable a device without gaining physical access to that device: it suffices to alter a
few bits in an otherwise legit wireless communication stream. Furthermore, it seems more
elegant to realize receiver-side fault detection by using a block-cipher mode of operation
that allows for authenticated encryption [1]. Although more expensive than unauthenticated
encryption, if the nonce inherently counters DFA [7, 12], compensation is received by
eliminating tweak-in-plaintext protection and its associated overhead. Finally, little
protection against DFA is gained in exchange for a DoS exploit: blocking communication
channels is not usually regarded as difficult. Even if the sender cannot be moved out-of-
range, a metal mesh can be adopted as a Faraday cage, or communications can locally
and directionally be jammed by transmitting noise on the given carrier frequency.

3.3 ECB Mode
ECB mode with tweak-in-plaintext protection is depicted in Fig. 1. We assume that
the nonces Ri are selected randomly, uniformly, and independently from {0, 1}γ for each
evaluation, given that the birthday problem still applies to LFSR-generated nonces anyway
as argued in Section 3.2.1. Under an identical assumption, we compare tweak-in-plaintext
protection to an earlier proposal by Guilley et al. [10], which is presented here in a
generalized form. As shown in Fig. 2, the sender computes C ← E(K,P ⊕ (0||R)), where
P,C ∈ {0, 1}λ and R ∈ {0, 1}γ , and transmits both C and R. The receiver computes
P ← D(K,P )⊕ (0||R). Originally [10], γ , λ, but we allow γ ∈ [0, λ]. A second difference
with the original is the following timing constraint: R should not be released before C is
computed. Otherwise, an attacker with XOR capabilities in the first round can instantly
generate collisions. A third difference is that the nonces R may be generated through a
PRF, where the random seed is transmitted together with the ciphertext C.

For any given nonce length γ ∈ [0, λ], the methods of Baksi et al. [2, 3] and Guilley
et al. [10] provide an identical security level against DFA. Hence, it suffices to compare
the following two parameters for a given γ and a given message length µ. First, the
computational cost in terms of the required number of encryption blocks, β. The method
of Guilley et al. [10] requires an additional XORing step, but we presume that the
associated cost is small or negligible compared to the encryption. The second parameter
is the communication overhead in terms of the number of transferred bits, τ . The
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Figure 1: ECB mode with tweak-in-plaintext protection [3].

E

+

P1 R1

C1

K E

+

P2 R2

C2

K E

+

Pβ Rβ

Cβ

K

· · ·

(a) Sender

D

+

P1

R1

K

C1

D

+

P2

R2

K

C2

D

+

Pβ

Rβ

K

Cβ

· · ·

(b) Receiver

Figure 2: ECB mode protected by the method of Guilley et al. [10], in generalized form.

latter parameter also reflects the cost of an encrypt-then-MAC [4] strategy, in case data
authenticity is required in addition to data confidentiality. When unprotected, β = dµ/λe
and τ = λdµ/λe. For the method of Baksi et al. [2, 3], β = dµ/(λ−γ)e and τ = λdµ/(λ−γ)e.
For the method of Guilley et al. [10], β = dµ/λe and τ = (λ+ γ)dµ/λe. For long messages
such as the 7 Gbit file encrypted by Baksi et al. [3], padding effects can be neglected. The
multiplicative overhead is then given in Eq. (1) and Eq. (2) for the methods of Baksi et
al. [2, 3] and Guilley et al. [10] respectively. If a PRF with a σ-bit seed is used for the
latter method, then τ = σ + λdµ/λe and τ× = 1.

β×,Baksi , lim
µ →∞

βBaksi

βdefault
= λ

λ− γ
, τ×,Baksi , lim

µ →∞

τBaksi

τdefault
= λ

λ− γ
. (1)

β×,Guilley , lim
µ →∞

βGuilley

βdefault
= 1, τ×,Guilley , lim

µ →∞

τGuilley

τdefault
= λ+ γ

λ
. (2)

Figure 3 shows that the method of Baksi et al. [2, 3] is inferior for medium-to-high
security levels in particular. For the suggested maximum security level γ = 32, the method
bears an overhead of ≈ 33% and is advertised to be “suitable for lightweight applications”,
but little resistance is offered in return for this cost: around 218 single-block encryptions
may suffice for a DFA to succeed. As it is not unusual for an AES implementation to
exceed 100M encryptions per second [11], the collection of those 218 ciphertexts might
take less than 3 ms. Although the method of Guilley et al. [10] is more scalable, modes
of operation that inherently resist DFA have the most favorable cost-to-benefit ratio, as
discussed next.

3.4 CBC Mode
Specifics on how to apply tweak-in-plaintext protection to CBC mode [9] are missing,
but arguably the most intuitive interpretation is shown in Fig. 4. If each nonce Ri is
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Figure 3: Overhead to protect a cipher with block size λ = 128 in ECB mode.

selected randomly, uniformly, and independently from {0, 1}γ , then several XOR operations
are superfluous and can be removed, as shown in Fig. 5. Under the assumption that
the sender selects the initialization vector (IV) N uniformly at random from {0, 1}λ
for each encryption and transmits it together with the ciphertext blocks Ci, tweak-in-
plaintext protection becomes unnecessary. CBC mode inherently resists DFA given the
following timing constraint: N should not be released before C1 is computed, and for
each i ∈ [1, β − 1], Ci should not be released before Ci+1 is computed. Then, the attacker
has no information about the block cipher input at the time of a fault injection, i.e.,
collisions cannot be generated by XORing an unknown block cipher input with a known
error vector. Lac et al. [13, Section 7.1] also pointed out the inherent resistance of CBC
mode, although under the assumption of a weaker attacker who injects random faults and,
therefore, without imposing timing constraints on the release of the IV and the ciphertext
blocks Ci. Another remark is that the first block in CBC mode is identically processed as
in the method of Guilley et al. [10], whereas the second and all subsequent blocks have the
advantage of requiring neither additional randomness nor additional transmission costs.
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Figure 4: CBC mode with tweak-in-plaintext protection.

Baksi et al. [3, Section IV.F] acknowledge the inherent DFA-resistance of stand-alone
encryption modes but motivate tweak-in-plaintext encryption by the following perceived
weakness: an attacker might be able to trick the sender into reusing the initialization
vector N , depending on the chosen synchronization method between the sender and the
receiver. This motivation is questionable. Any ability to induce a reuse of N is a security
bug. It seems more favorable to patch any such bug than to keep the bug but add a fairly
expensive protection scheme. Even worse, if the bug is not patched, an attacker might not
even need DFA to succeed. An attacker who has a chosen-challenge advantage, who is
given a pair (C1, N1) corresponding to an unknown P1, and who can force the occurrence
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Figure 5: CBC mode with simplified tweak-in-plaintext protection.

of any given N2, can check the correctness of a guess P1,g by encrypting P1,g ⊕N1 ⊕N2
and comparing the result to C1. Several modes other than CBC fail more catastrophically.

3.5 PMAC Mode
Specifics regarding the PMAC adaptation are missing, but we presume that in contrast to
the ECB and CBC modes, nonces R ∈ {0, 1}γ should be transmitted together with the
message blocks M ∈ {0, 1}λ−γ in order to make this work. Furthermore, and similarly to
CBC mode, a blockwise randomization is inefficient for messages that span� λ blocks. The
randomization can be limited to a single block in order to resist DFA, e.g., by prepending a
single random number R ∈ {0, 1}γ to the message stream M ∈ {0, 1}µ prior to computing
the PMAC.

4 Rigorous Security Analysis
Baksi et al. [2, 3] analyze the average-case security level against a brute-force DFA through
a rough approximation. With “rough”, we mean that mathematical shortcuts such as
the following one are taken: given a function Z = g(Y ) and given EZ [Z] ≈ Y 2/ψ, it is
implied that EY [Y ] ≈

√
ψ Z. This differs from a more rigorous approximation in which,

for example, a small summand is neglected with respect to a much larger summand. We
opt for provable security and derive an optimal query strategy and a lower and an upper
bound on the attacker’s success probability. These derivations are limited to a single-fault
DFA, which is reasonable [14].

4.1 Assumptions and Problem Formalization
Consider κ single-block encryptions where the plaintext P remains unchanged. We assume
that faults in the last few rounds are injected with a success rate of 100%. We also assume
that collisions of the nonce R are detectable with 100% certainty. For the method of
Baksi et al. [2, 3], the latter assumption is approximately correct if faults leave part of the
ciphertext C unaffected. For the method of Guilley et al. [10], the latter assumption is
completely correct: R is transferred together with C.

The original birthday problem is formalized in Problem 1; an exact solution is given in
Eq. (3). We, however, face a more difficult variant of the birthday problem, as formalized
in Problem 2. The boolean variable Fi indicates whether or not a fault is injected.

Problem 1 (Birthday Original). For each index i ∈ [1, κ], draw a sample Ri uniformly at
random from {0, 1}γ . What is the probability ρ that at least one collision occurs, i.e., there
exists a pair of indices (i, j) such that i 6= j and Ri = Rj?
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ρ =


1−

κ−1∏
i=0

2γ − i
2γ = 1− κ!

2γ κ

(
2γ
κ

)
, if κ ≤ 2γ

1 , otherwise.
(3)

Problem 2 (Birthday Variation). For each index i ∈ [1, κ], choose a bin Fi ∈ {0, 1}
and, subsequently, draw a sample Ri uniformly at random from {0, 1}γ . Using an optimal,
adaptive strategy for choosing each Fi, what is the probability ρ that at least one inter-bin
collision occurs, i.e., there exists a pair of indices (i, j) such that Fi 6= Fj and Ri = Rj?

4.2 Optimal Query Strategy
An optimal strategy for choosing each Fi in Problem 2 is given in Algorithm 1.

Algorithm 1 Optimal query strategy.
1: R0 ← ∅
2: R1 ← ∅
3: b← 0
4: i← 0
5: while i < κ do
6: i← i+ 1
7: Fi ← b
8: Ri ← Rand()
9: if Ri /∈ Rb then

10: Rb ← Rb ∪ {Ri}
11: b← b⊕ 1
12: end if
13: end while

Proof of Optimality. For any given i ∈ [1, κ], let set R0,i , {Rj | 1 ≤ j < i, Fj = 0} and let
set R1,i , {Rj | 1 ≤ j < i, Fj = 1}. If |R0,i| < |R1,i|, then it is optimal to choose Fi = 0.
This follows from the fact that the probability of generating a collision is |R1,i|/2γ and
|R0,i|/2γ for Fi = 0 and Fi = 1 respectively. Similarly, if |R0,i| > |R1,i|, then it is optimal
to choose Fi = 1. If |R0,i| = |R1,i|, then there is no preference for choosing the value of
Fi. Algorithm 1 consistently applies the above decision rules for every i ∈ [1, κ].

Evidently, ρ = 0 if κ = 1, ρ = 1/2γ if κ = 2, and ρ = 1 − (1 − 1/2γ)2 if κ = 3.
Unfortunately, for larger values of κ, branches conditioned on the occurrence if intra-bin
collisions emerge. Even though it might be feasible to derive an exact formula for ρ as a
function of κ and γ, nested summation and/or product operators would likely prohibit
evaluating such an expression for large numbers. Therefore, we derive a lower bound and
an upper bound on ρ instead.

4.3 Upper Bound
The original birthday problem as solved in Eq. (3) provides an upper bound on ρ. In terms
of Problem 2, this could be understood as a ‘lucky’ attack in which the first collision among
κ samples always happens to be an inter-bin collision and, therefore, not an intra-bin
collision.
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4.4 Lower Bound
To derive a lower bound on ρ for 4 ≤ κ ≤ 2γ+1, we consider the suboptimal query strategy
in Algorithm 2. If we let U ∈ [1, dκ/2e] denote the number of unique values R in the bin
F = 0, a lower bound is given in Eq. (4a). The second factor inside the summation operator
conveys that zero out of bκ/2c samples in the bin F = 1 collide with one of the U unique
samples in the bin F = 0. An exact formula for the probability mass function of U could be
derived using the generalized inclusion–exclusion principle, but is unnecessary as we only
evaluate the probability P

(
U = dκ/2e

)
. This reduction in complexity is possible because

the second factor inside the summation operator of Eq. (4a) decreases monotonically
with U , i.e., we can aggregate all summands where U ∈ [1, dκ/2e− 1] as shown in Eq. (4b).
As shown in Eq. (4c), P

(
U = dκ/2e

)
requires an identical computation as for the original

birthday problem in Eq. (3).

Algorithm 2 Suboptimal query strategy.
1: for i← 1 to dκ/2e do
2: Fi ← 0
3: Ri ← Rand()
4: end for
5: for i← dκ/2e+ 1 to κ do
6: Fi ← 1
7: Ri ← Rand()
8: end for

ρ ≥ 1−
dκ/2e∑
u=1

P(U = u)
(

2γ − u
2γ

)bκ/2c
(4a)

≥ 1−
(

1− P
(
U = dκ/2e

))(2γ − 1
2γ

)bκ/2c
− P

(
U = dκ/2e

)(2γ − dκ/2e
2γ

)bκ/2c
(4b)

where P
(
U = dκ/2e

)
=
dκ/2e−1∏
i=1

2γ − i
2γ . (4c)

In Fig. 6, we plot both bounds for γ = 32 using Maple. Although several approximations
and bounds to facilitate the evaluation of the original birthday problem in Eq. (3) and
Eq. (4c) exist, e.g., based on a Taylor series for the exponential function exp(·) or natural
logarithm log(·), Maple did not need them. Observe that both bounds are close to one
another and thus tight.
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g 2
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Figure 6: Bounds for γ = 32.
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