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Abstract. We propose a leakage-resilient inner-product functional encryption scheme (IPFE)
in the bounded-retrieval model (BRM). This is the first leakage-resilient functional encryp-
tion scheme in the BRM. In our leakage model, an adversary is allowed to obtain at most
l-bit knowledge from each secret key. And our scheme can flexibly tolerate arbitrarily leakage
bound l, by only increasing the size of secret keys, while keeping all other parts small and
independent of l.

Technically, we develop a new notion: Inner-product hash proof system (IP-HPS). IP-HPS is
a variant of traditional hash proof systems. Its output of decapsulation is an inner-product
value, instead of the encapsulated key. We propose an IP-HPS scheme under DDH-assumption.
Then we show how to make an IP-HPS scheme to tolerate l′-bit leakage, and we can achieve
arbitrary large l′ by only increasing the size of secret keys. Finally, we show how to build a
leakage-resilient IPFE in the BRM with leakage bound l = l′

n
from our IP-HPS scheme.

Keywords: Inner-Product Functional Encryption · Bounded-Retrieval Model · Hash Proof
System.

1 Introduction

Leakage-resilient Cryptography. In traditional cryptography model, security usually relies on
complete privacy of the secret values, such as secret keys and randomness. For many cryptographic
systems in such a model, even if a single bit of these secrets is leaked, then the security will totally
lose. However, it is often unrealistic to avoid all kinds of leakage of the secret values. Actually,
developments of side channel attacks [38, 41–43] have found that the adversary is possible to ob-
tain partial information of these secret values by capturing the physical nature of cryptographic
operations. Cryptographic systems should be proven secure against the largest possible class of po-
tential adversaries. Therefore, a new topic of modern cryptography: leakage-resilient cryptography
appeared.

Leakage-resilient cryptography was introduced to provide formal security guarantees even the
adversary can obtain some information of the secret values. There have been lots of studies on
leakage-resilient cryptography, including public key encryption [5, 6, 14, 15, 26, 46], identity-based
encryption [16,20,44,58], attribute-based encryption [57,59], signatures [13,40] and so on.

The first step of achieving leakage-resilience is to decide an appropriate model of what informa-
tion of secrets the adversary can learn. If the adversary can learn anything of the secret keys, then
it is impossible to design a secure cryptographic system. So we have to restrict the power of the
adversary. We may bound the amount of leakages the adversary can obtain in the following models.
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Relative-leakage model. In this model, the secret key size is chosen in the same way as in
standard cryptographic systems, which is based on the security parameter. We bound a leakage-
ratio 0 < µ < 1, then we allow the adversary to obtain µ|sk| bits from a secret key with bit-length
|sk|. In this model, no matter what the secret key size is, the adversary can get some imperfect
reading of the secret key.

Bounded-retrieval model. The bounded-retrieval model (BRM) [23,29] is a generalization of the
relative-leakage model. In this setting, the leakage bound l is decided by external factors, and we
can resist such attacks by increasing the length of the secret key, to dominate l. Thus, we hope that
the size of secret key can be set flexibly depending on the security parameter and the leakage bound
l. When l is extremely large, it is desirable that we can resist such attacks by only increasing the
length of the secret key without affecting efficiencies of others, such as public key size, encryption
time, decryption time and even master secret key size in the case of IBE. The BRM is to ensure
that all efficiency parameters other than the secret key size only depend on the security parameter,
and not on the leakage bound l.

Functional Encryption. As another new tide of modern cryptography, functional encryption
(FE) [12,49] was proposed to address the “all-or-nothing” issue of traditional public key encryption
(PKE). That is, the decryption result of traditional PKE is the plaintext if the secret key sk
matches the public key pk, or nothing otherwise. Traditional PKE is found to be insufficient for
many emerging applications in which users are only allowed to obtain a function value of the
ciphertext without any other information about the ciphertext. Roughly speaking, considering a
functional encryption scheme for a functionality F (k, x), where k is in the key space and x is in the
plaintext space, the authority with the master secret key can generate secret key skk for each value
k. Given a ciphertext of x, the user who holds skk can only learn F (k, x) and nothing else except
possible the length of x. Before the definition of FE appears, there were many works to overcome the
“all-or-nothing” barrier. These works, including identity-based encryption (IBE) [11, 34, 39, 51, 54],
attribute-based encryption (ABE) [37, 55] and predicate encryption (PE) [52], are considered as
special cases of FE.

After proposing the definition of FE, researchers started to build FE schemes for general circuits,
Turing machines and some very powerful functions [7,33,35,36,56]. But these FE schemes either have
bounded collusion, or have to rely on powerful, but impractical and not well studied assumptions
(indistinguishable obfuscation (IO) and its variants, or polynomial hardness of simple assumptions
on multi-linear maps). Attacks were identified for some constructions that are based on IO and
multi-linear maps [8, 18,19,21].

Functional encryption for inner-product (IPFE) from standard assumptions. Many works try
to build efficient schemes for specific functions from well studied standard assumptions in recent
years [1–3, 9, 60]. Most of them started their work from inner-product, which is simple but very
useful. More precisely, given an encrypted vector x from message space X and a secret key sky
based on vector y in the key space K, the decryption algorithm will output the inner-product
〈x,y〉 without revealing any other information about x except the length of it. One of practical
applications of IPFE is to calculate the weighted mean, a useful tool to describe the main features
of a collection of information in statistics, and to protect the privacy of the data set which is used
to calculate the weighted mean.

Leakage-resilient functional encryption in the BRM. While there are many existing re-
sults about PKE and IBE in the BRM, designing FE schemes in the BRM seems not easy. When
considering the security model of FE, unlike traditional PKE, [49] showed that simulation-based
security (SIM-security) is not always achievable for FE. So Indistinguishability-based security (IND-
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security) is widely used in FE research. It is a folklore in the literature that there is a restriction in
IND-security that all secret key queries for function F (k, ·) should ensure that F (k, x0) = F (k, x1),
where x0, x1 are the challenge ciphertexts.

However, this restriction causes that the IND-security of FE is weak in the sense that a trivially
insecure scheme for a certain functionality can be proved IND-secure [12, 49]. One possible way
to enhance the IND-security is to allow the adversary to get some knowledge about the secret
keys for functions F (k, ·) where F (k, x0) 6= F (k, x1). More precisely, the adversary is allowed to
make leakage query to such secret keys to collect some information. Of course, if an adversary can
get unrestricted information about the secret key, i.e., it can learn the secret key for F (k, ·) where
F (k, x0) 6= F (k, x1) totally, then it can distinguish whether the challenge ciphertext is an encryption
of x0 or x1 easily. Thus, we must place some restrictions on the type or amount of information that
the adversary can learn through leakage queries. Therefore, it is the time to build FE schemes which
is still IND-secure even the adversary can obtain a bounded amount of leakage to such secret keys.

The only related work [53] considered leakage-resilient FE for general functions in the relative-
leakage model. They presented a leakage-resilient CCA-secure generic construction for single-key
and single-ciphertext functional encryption via hash proof system(HPS), one-time lossy filter and
garbled circuits. But the power of the adversary in this work is very limited since queries for one
secret key and one ciphertext can be made. And another drawback is that when the system tries
to tolerate a larger amount of leakage, the efficiencies of all parts become lower. Therefore, it is
insufficient for practical application of functional encryption.

1.1 Our results

Towards practical functional encryption, we focus our research on leakage-resilient IPFE from stan-
dard assumptions in the BRM. We use the indistinguishability-based security model together with
a leakage query oracle to describe its security. Any adversary can access the leakage query oracle
with some secret keys and functions certain times before seeing the challenge ciphertext as long as
for each key sky, the total number of bits output by the leakage query oracle is at most the leakage
bound l (i.e.,

∑
f |f(sky)| ≤ l, where |f(sky)| is the bit-length of f(sky) ).

As our main contribution, our leakage-resilient IPFE scheme and its security proof build on
hash proof system [22]. 1 [5,46] showed how to use a hash proof system (HPS) to construct leakage-
resilient PKE and IBE schemes. An HPS can be viewed as a key encapsulation mechanism (KEM)
with specific structure. A KEM includes a key generation algorithm to generate public key and
secret key, an encapsulation algorithm to generate a pair of ciphertext and encapsulated key, and a
decapsulation algorithm which uses the secret key to recover the encapsulated key from a ciphertext.

An HPS is a KEM with the following properties: (1) An HPS includes an invalid-encapsulation
algorithm to generate invalid ciphertexts. And the invalid ciphertexts are computationally indistin-
guishable from those valid ciphertexts generated by a valid-encapsulation algorithm. (2) The output
of decapsulation algorithm with input a fixed invalid ciphertext and a secret key is related to the
random numbers used to generate the invalid ciphertext and the secret key. The main benefit of
using HPS to construct encryption scheme is that, when proving the security, after switching the

1 [10] showed how to construct an IPFE scheme from projective hash functions. But in their construction,
the projective hash function is considered as a building block which is not related to the functionality
in IPFE. And the way they build the construction is just like building an IPFE scheme from a PKE
scheme. So it is difficult to build connection between the leakage-resilience of IPFE and the smoothness
of hash functions.
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valid ciphertext into invalid ciphertext in the first step, we can argue the leakage using information-
theoretic analysis.

However, existing HPS such as IB-HPS in [5] cannot be applied to our cases directly. Recall that
IPFE requires that the decryption result only reveals an inner-product value of two vectors and
nothing else. When we convert an HPS into an encryption scheme, we usually use the encapsulated
key as a mask to hide the plaintext in the encryption algorithm, and recover the plaintext from
ciphertext by running decapsulation algorithm to get the encapsulated key. But when applying to
FE, if the decapsulation algorithm of the underlying HPS still outputs the encapsulated directly,
then the decryption of FE will reveal the plaintext vector, other than an inner-product value only.
In order to guarantee the security of resulting IPFE scheme, some modifications are needed on the
underlying HPS definition. Here, we develop the notion Inner-product hash proof system(IP-HPS),
which can yield an IPFE scheme. Different from other HPS, in an IP-HPS scheme, the valid/invalid
encapsulation algorithms will take a vector as input and will output a ciphertext and a encapsulated
key k. The key generation algorithm will output a secret key for a vector y. And the decapsulation
algorithm will output an inner-product value of y and the encapsulated key k. Actually, this is
the first hash proof system whose output of decapsulation is not the encapsulated key itself. This
modification ensures that we can get a secure IPFE from IP-HPS very easily, by simply using the
encapsulated key as a one-time pad to encrypt a message. As a benefit of it, we can move our focus
from leakage-resilience property of IPFE to a leakage-smoothness property of IP-HPS. Leakage-
smoothness states that the distribution of encapsulated key derived from an invalid ciphertext
and secret keys is almost uniform over the key space, even if the adversary can obtain at most l′

bits information about the secret keys, where l′ is a pre-determined leakage bound. We prove the
following theorem:

Theorem 1 (informal). Given a l′-leakage-smooth IP-HPS, we can get a l = l′

n -leakage-resilient
IPFE. And when the IP-HPS scheme meets the efficiency requirements of the BRM, the resulting
IPFE scheme also meets the efficiency requirements of the BRM.

Now, our goal is to design a l′-leakage-smooth IP-HPS, which meets the efficiency requirements
of the BRM. As the first step to do it, we would like to design an IP-HPS scheme from simple
assumptions, without the requirements of leakage-smoothness and efficiency. We build an IP-HPS
Π1 over Zp from an IPFE scheme [3] based on DDH assumption. Notice that the key generation
algorithm in the IPFE scheme [3] is deterministic, while in HPS, we require that the secret key
is generated randomly. Thus, in the key generation algorithm of Π1, we first choose a random
number and form a new vector by concatenating y and the random number. Then we run the key
generation algorithm of the IPFE scheme with input the new vector, and thus the new secret key
sky is related to the random number we chosed. Then, we study a property called 0-universality
of the decapsulation algorithm in Π1. The 0-universality ensures that it is impossible that any two
distinct secret keys for the same vector y will decapsulate an invalid ciphertext to the same value.
With these properties, we show that we are able to convert Π1 into an l′-leakage-smooth IP-HPS
for arbitrarily large leakage-bound l′:

Theorem 2 (informal). Given Π1, we can get an l′-leakage-smooth IP-HPS Π2 for arbitrarily
large leakage bound l′, and Π2 meets the efficiency requirements of the BRM.

Firstly, we find that the leakage amplification method of IB-HPS in [5], which can be viewed
as parallel-repetition with small public key size, cannot be applied to our cases here. In IB-HPS,
the output of the decapsulation is already the encapsulated key, then the leakage-smoothness of



Leakage-Resilient IPFE in the BRM 5

their scheme can be proved from the 0-universality by leftover-hashing lemma [47]. Thus the only
thing they need to do is to amplify the leakage bound while meeting the efficiency requirements of
the BRM. However, in IP-HPS, the output of decapsulation is an inner-product value between the
encapsulated key and the vector in the secret key, so we need at least n secret keys to determine an
encapsulated key. Then, we cannot find the relation between leakage-smoothness and universality
very easily. Thus, our task is to convert an IP-HPS with 0-universality of decapsulation algorithm
into an leakage-smoothness IP-HPS for arbitrarily large leakage bound and meets the efficiency
requirements of the BRM.

Although the leakage amplificaion method cannot be applied directly, there are some ideas we
can borrow. We introduce a key-size parameter m, which gives us flexibility in the size of secret key
and will depend on the desired leakage bound l′. And also, due to the efficiency requirements, the
encapsulation will choose only target on a small subset from {1, ...,m}, and show that the size of
the subset (denote by η) is independent of l′. Then, recall that we need n secret keys to recover one
encapsulated key. In order to finish the proof of leakage-smoothness, the key generation will take
an invertible n × n matrix Y as input and the encapsulation algorithm will output n ciphertexts
wihch shares the same encapsulated key.

In the proof, we use a similar idea with approximately universal hashing defined in [5], where
we only insist that two secret keys generated by running the key generation algorithm with the
same input Y which are different enough are unlikely to result in a same encapsulated key. Then we
obtaion the leakage-smoothness by applying a variant of leftover-hash lemma, and show our scheme
meets the efficiency requirements of the BRM by giving a lower bound of η, which is independent
of the leakage bound l′.

We sum up our results in the following:
(1) Give the definition of IP-HPS, together with a series of properties. And propose an IP-HPS
construction Π1 from DDH assumption.
(2) Show how to build a l′-leakage-smooth IP-HPS Π2 from our IP-HPS Π1 for arbitrarily large l′,
and meets the efficiency requirements of the BRM.
(3) Develop the security definition for a leakage-resilient IPFE scheme with leakage bound l, and
the definition of leakage-resilient IPFE in the BRM. Then show how to build a leakage-resilient
IPFE scheme Π3 in BRM from our leakage-smooth IP-HPS Π2.

1.2 Related works: Leakage-resilient cryptography

There are several models in the research line of leakage-resilience. [45] started the line of formal
modeling of side-channel attacks by proposing the first model only computation leaks information.
In this model, a function of only the bits accessed is leaked when the cryptographic system is called
each time. Stream ciphers [31, 50] and signature schemes [32] were proposed under this model.
However, this model cannot capture many types of leakage-attack, such as cold-boot attack [38], in
which all memory contents can leak information regardless whether it is accessed.

In order to capture these attacks, many works try to study about relative-leakage model, in which
a proportion of secret values can be leaked. The public-key encryption schemes [4, 46], signature
schemes [40], and IBE schemes [20] were proposed under this model. Bounded-retrieval model was
proposed by [23, 29]. In this model, the amount of information can be leaked is bounded by an
external parameter, and this leakage bound can be very large. Further, it requires that the efficiencies
of other parts of cryptographic system (except the length of secret key) should be independent from
the leakage bound. Many works [5, 17, 30, 48] proposed different cryptographic systems under this
model. Auxiliary inputs model was introduced by [27], in which an adversary is given auxiliary
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input h(s), and it is computationally hard to find s (the secret values) from h(s). Symmetric
encryption schemes [27], public-key encryption schemes [24] and IBE schemes [58] were proposed
under this model. Continual leakage model was introduced by [15, 25], where there is a notion of
time periods and secret values will be updated at the end of each time period. In this model,
an adversary is allowed to obtain a bounded amount of information of secret values in each time
period, but there is no limitation on the total amount of information it can obtain in all time
periods. Public-key encryption schemes [15], IBE schemes [15, 44, 58], ABE schemes [44, 57]2 and
signature schemes [15,25] were proposed under this model.

2 Preliminaries

Notations. Let [n] denote set {1, . . . , n}. For vectors x and y, let x||y be their concatenation. For
a set S, define US be the uniform distribution over S. Similarly, let Uv be the uniform distribution
over {0, 1}v.
2.1 Functional encryption (FE)

We define FE and its indistinguishable security here. Following [12], we start by defining the notion
of functionality and then that of functional encryption scheme for functionality F .

Definition 1 (Functionality and FE scheme). A functionality F defined over (K,X ) is a func-
tion F : K × X → Σ ∪ {⊥}, where K is the key space, X is the message space and Σ is the output
space and ⊥ is a special string not contained in Σ. Notice that the functionality is undefined for
when either the key is not in the key space or the message is not in the message space.
A FE scheme for functionality F consists of 4 PPT algorithms just like FE: (Setup,KeyGen,Encrypt,
Decrypt). The algorithms have the following syntax.

– Setup(1λ): It takes the security parameter λ as input, and produces the master public key mpk
and the master secret key msk. The following algorithms implicitly include mpk as input.

– KeyGen(msk, k): It uses the master secret key msk and key k ∈ K to sample a secret key skk.
– Encrypt(mpk, x): It uses the master public key mpk and a message x ∈ X to generate a cipher-

text ctx.
– Decrypt(skk, ctx): It takes a ciphertext ctx and a secret key skk as input and outputs F(k, x)

Correctness. For any (mpk,msk) generated by Setup(1λ), any k ∈ K and x ∈ X , we have:

Pr

[
F(k, x) 6= γ

∣∣∣∣ skk ← KeyGen(msk, k)

ctx ← Encrypt(mpk, x), γ = Decrypt(ctx, skk)

]
≤ negl(λ) .

Indistinguishable security. We define the indistinguishable security game, parameterized by a
security parameter λ as the following game between an adversary A and a challenger in Table 1. The
advantage of an adversary A in the indistinguishable security game is defined by AdvFE−INDFE,A (λ) :=

|Pr[A wins]− 1
2 |.

2 In [57], it said that they discovered leakage-resilient functional encryption scheme for regular languages
based on composite-order pairing groups in continual memory leakage (CML) model. However, in a
functional encryption scheme for regular languages, a secret key skM is associated with a deterministic
finite automata M , and a ciphertext ct encrypts a message m and is associated with an arbitrary length
string w. A user holds skM is able to decrypt the ciphertext ct if and only if M accepts the string w.
Notice that the decryption result is still m or nothing, so it actually can be viewed as a ABE scheme for
wider classes of functionality.
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Table 1: FE-IND(λ)

Setup: The challenger computes (mpk,msk)← Setup(1λ) and sends mpk to the adversary A.

Query 1: The adversary A can adaptively ask the challenger for the following queries:
Secret key query : On input k ∈ K, the challenger replies with skk.

Challenge: The adversary A chooses two vectors x0, x1 ∈ X subject to the restriction that for all k
that the adversary have make the secret key query in Query 1, it holds that F(k, x0) = F(k, x1). The
challenger chooses b← {0, 1} uniformly at random and computes ctb ← Encrypt(mpk, xb) and gives ctb to
the adversary A.

Query 2: The adversary can make secret key query for arbitrary k as long as F(k, x0) = F(k, x1).

Output: The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

Definition 2 (IND-secure FE). A FE scheme is IND-secure, if (1) it satisfies the correct-
ness, and (2) the advantage of any PPT adversary A in the indistinguishable security game is
AdvFE−INDFE,A (λ) = negl(λ).

Inner-product functionality. Here, we are interested in the inner-product functionality over the
field Zp defined in [1]. It is a family of functionalities with key space Kn and message space Xn both
consisting of vectors in Zp of length n: for any y ∈ Kn,x ∈ Xn, the functionality F(y,x) = 〈y,x〉.

3 Inner product hash proof system(IP-HPS)

3.1 Definitions

To construct a leakage-resilient IPFE scheme, we introduce the notion, IP-HPS, together with the
required properties. An Inner product hash proof system (IP-HPS) consists of 5 PPT algorithms
just like IB-HPS. The algorithms have the following syntax. (M is the message space and K is the
encapsulated-key space.)

– Setup(1λ, 1n): It takes the security parameter λ and n as input, and produce the master public
key mpk and the master secret key msk. The following algorithms implicitly include mpk as
input.

– KeyGen(msk,y): It uses msk and a vector y ∈ K with length n to sample a secret key sky.
– Encap(z): This is the valid encapsulation algorithm. It uses z ∈M to output a valid ciphertext

ctz and a encapsulated key k.
– Encap∗(z): This is the invalid encapsulation algorithm. It uses z ∈M to output only an invalid

ciphertext ctz.
– Decap(ctz, sky,y): This is the decapsulation algorithm(deterministic). It takes a ciphertext as

input and outputs an inner product of the encapsulated key and y: 〈k,y〉.

Correctness. Given msk,mpk from Setup(1λ, 1n) and y with length n, we have:

Pr

[
〈k,y〉 6= γ

∣∣∣∣ sky ← KeyGen(msk,y)

(ctz,k)← Encap(z), γ = Decap(ctz, sky,y)

]
≤ negl(λ) .

The correctness requires that a ciphertext generated by Encap can be correctly decapsulated to
the corresponding inner-product of the encapsulated key and the vector y in the secret key.
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Valid/Invalid Ciphertext Indistinguishiability. Given the same input, the valid ciphertext
generated by Encap and the invalid ciphertext generated by Encap∗ should be computationally
indistinguishable. For an adversary A = (A1,A2), we define the following experiment for an IP-
HPS Π in Table 2:

Table 2: V/I-IND(λ, n)

Setup: The challenger computes (mpk,msk)← Setup(1λ) and sends mpk to the adversary A.

Query 1: The adversary A can adaptively ask the challenger for the following queries:
Secret key query : On input y ∈ K, the challenger replies with sky.

Challenge: The adversary A chooses a vector z ∈ M and sends it to the challenger. The challenger
computes ct0 ← Encap(z) and ct1 ← Encap∗(z). The challenger chooses b ← {0, 1} uniformly at random
and gives ctb to the adversary A.

Query 2: The adversary can make secret key query for arbitrary y.

Output: The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

The challenger computes sky ← KeyGen(msk,y) the first time that y is queried and responds to all
future queries on the same y with the same sky.

Definition 3. A PPT adversary A is admissible if it makes at most n key queries with linear
independent vectors. Then, we say that an IP-HPS Π is adaptively secure if for any admissible
adversary A, the advantage satisfies: AdvindΠ,A(λ, n) := |Pr[ExpindΠ,A(λ, n) = 1]− 1

2 |.

The valid/invalid ciphertext indistinguishability requires that the valid and invalid ciphertexts
are computationally indistinguishiable even if an adversary can obtain one secret key per vector
for at most n linear independent vectors. We explain why there is a restriction of numbers of
key queries here. By the requirement of HPS, the secret keys should be related to some random
numbers chosen by the key generation algorithm at each running. As a result of it, the output
of decapsulation which takes an invalid ciphertext and a secret key as input is dependent on the
random numbers used to generate the secret key. However, the output of decapsulation with a
valid ciphertext is always the real inner-product value. For example, the adversary first makes 2
key queries with y1 = (1, 0, ..., 0) and y2 = (2, 0, ..., 0). If the ciphertext ct is a valid one, then
Decap(ct, sky2

) − Decap(ct, sky1
) = 2k1 − k1 = k1 = Decap(ct, sky1

). However, if the ciphertext
ct is an invalid one, then Decap(ct, sky2

) − Decap(ct, sky1
) 6= Decap(ct, sky1

) since the random
numbers used to generate sky2

and sky1
are different. Thus, the adversary can distinguish whether

one ciphertext is valid or invalid. Note that, during the challenge phase, the adversary can choose
any vector z from the message space, since there is only one vector is chosen in the Challenge
stage, instead of 2 vectors in the definiciton of IND-security of IPFE.

We still need the following information theoretic properties, as in [5].

Definition 4 (ρ-Universality). A family H, consisting of (deterministic) functions h(·), is ρ-
universal if for any x1 6= x2, we have Prh←H[h(x1) = h(x2)] ≤ ρ. Then, an IP-HPS Π is ρ-universal
if: fix mpk,msk from Setup(1λ, 1n), two vectors y and z, {Decap(ct, ·,y)|ct← Encap∗(z)} is a ρ-
universal hash family.

Definition 5 (Smoothness and Leakage-smoothness). Define an n×n invertible matrix Y :=
[y1, . . . ,yn]. Define the statistical distance SD(X,Y ) := 1

2

∑
w |Pr[X = w] −Pr[Y = w]|. We say
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that an IP-HPS Π is smooth if, for any fixed values of mpk,msk from Setup(1λ, 1n), any fixed Y
and z ∈M, we have

SD ((ct,k), (ct,k′)) ≤ negl(λ),

where ct ← Encap∗(z), k′ ← UK and k is sampled by first choosing skyi ← KeyGen(msk,yi) for
each i and then computing kT := [Decap(ct, sky1

), . . . ,Decap(ct, skyn)]Y −1.
An IP-HPS Π is l-leakage-smooth if, for any (possible randomized and inefficient) function f

with at most l-bit output, we have

SD ((ct, f({skyi}ni=1),k), (ct, f({skyi}ni=1),k′)) ≤ negl(λ),

where ct,k′, z,k and each skyi are sampled as above.

3.2 Construction of IP-HPS Π1

– Setup(1λ, 1n): It chooses a cyclic group G of prime order p > 2λ, together with generators
g, h← G. Write h = gw. Then, ∀i ∈ [n+ 1], sample si, ti ←R Zp, s.t. sn+1 +wtn+1 6= 0 mod p
Compute hi = gsihti , i ∈ [n+ 1]. It outputs (msk := {(si, ti)}n+1

i=1 ),mpk :=
(
G, g, h, {hi}n+1

i=1

)
.

– KeyGen(msk,y): It generates a key for the vector y. Sample u← Zp and then define y∗ := y||u.
Output sky := (sky(1) = 〈s,y∗〉, sky(2) = 〈t,y∗〉, u).

– Encap(z): The input vector z has length n + 1. It samples r ← Zp and x ← Znp . Define

x∗ := x||0 with length n + 1. Let C = gr, D = hr, Ei = g
x∗i
zi h

r
zi
i ,∀i ∈ [n + 1]. Output ctz :=

(C,D, {Ei}n+1
i=1 , z),k := x.

– Encap∗(z): First sample r, r′ ← Zp with r 6= r′, and x ← Znp . Define x∗ := x||0 with length

n+ 1. Let C = gr, D = hr, Ei = g
x∗i
zi h

r′
zi
i ,∀i ∈ [n+ 1]. Output ctz := (C,D, {Ei}n+1

i=1 , z).

– Decap(ctz, sky,y): Calculate Ey :=
∏n+1
i=1 E

y∗i zi
i

Csky(1)Dsky(2) Then output logg(Ey).

Similar with [3], the decryption algorithm requires to compute a discrete logarithm. As the analysis
in [3], there are some methods to reduce the cost of this operation. We state the following theorem
to study the properties of Π1, and the proof is shown in Appendix A.

Theorem 3. Under DDH assumption, the above IP-HPS construction Π1 satisfies correctness,
valid/invalid ciphertext indistinguishability, and 0-universality.

4 Leakage-smoothness of IP-HPS

The next step is to construct an IP-HPS scheme, which is l′-leakage-smooth for arbitrarily large
l′, and meets the efficiency requirements of the BRM. The l′-leakage-smoothness states that the
scheme is still smooth even if the adversary can get some information about secret keys with the
output length is less than l′ bits. This property offers the chance to make our final IPFE scheme
become leakage-resilient for arbitrarily large leakage bound. The efficiency requirements of the BRM
states that except the length of secret keys, all other parts of the system should be independent of
the leakage bound l′. This requirement ensures that our final IPFE scheme also meets the efficiency
requirements of the BRM.

The main idea is: (1) introduce a key-size parameter m, which gives us flexibility in the size
of secret key and will depend on the desired leakage bound l′. For each input vector y of the key
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generation algorithm, project it into m new vectors in the same vector space, and then generate
secret key for each new vector. (2) In order to meet the efficiency requirements, the encapsulation
will choose only η indices from {1, ...,m}, denoted as a vector w; and the decapsulation will only
use these η secret keys. Here η is a parameter to be determined later and is independent of m. (3) In
the proof of leakage-smoothness, we need to use the same random numbers to generate the n secret
keys for each vector yi. So the key generation algorithm will take n linear independent vectors as
input (denoted as an invertible matrix Y ). (4) Since the key generation algorithm will output n
secret keys for n vectors, the encapsulation algorithm will also run n times to get n ciphertexts.
These n ciphertexts shares the same encapsulated key k. The i-th ciphertext can be decapsulated
by the i-th secret key.

Before showing our construction, we talk about why a simple extension of leakage amplification
of IB-HPS in [5] cannot be applied here:

On one hand, in IB-HPS, the output of the decapsulation algorithm is already the encapsulated
key. So, in their definition of leakage-smoothness, it only needs one secret key to compute an
encapsulated key. However, in IP-HPS, the output of the decapsulation algorithm is just an inner-
product value between the encapsulated key and the vector y in the secret key. So, in order to
determine an encapsulated key, we need at least n secret keys for n linear independent vectors,
which makes our leakage-smoothness definition and proof become more complicated.

On the other hand, in an IB-HPS, the inputs of KeyGen and Encap (Encap∗) have the same
parameter: identity. This brings lots of convenience for decapsulation, since the output of decapsu-
lation algorithm only need to be reasonable when the identity in the ciphertext is the same as the
identity in the secret key. While in IP-HPS, there is no relation between the inputs of KeyGen and
Encap/Encap∗, and the outputs of decapsulation algorithm need to be reasonable for all possible
inputs of vectors.

We start with our IP-HPS scheme Π1 = (Setup,KeyGen1,Encap1,Encap∗1,Decap1), and then
construct an IP-HPS scheme Π2 = (Setup,KeyGen2,Encap2,Encap∗2,Decap2) where the number
of secret keys associated with one vector(i.e. m) can be arbitrarily large. Then we will obtain the
property of l′-leakage-smoothness for arbitrary l′ without losing efficiency.

Let M be a family of n × n invertable matrices and let |M| = m. Define functions H1, H2 :
Znp × [m]→ Znp : H1(y, α) := MT

α y, H2(y, α) := M−1α y. They are both one-to-one for Znp .

Define Π2 = (Setup,KeyGen2,Encap2,Encap∗2,Decap) as follows:

– Setup(1λ, 1n): The Setup algorithm is the same as that of Π1.

– KeyGen2(msk, Y ): Let Y = [y1, . . . ,yn] be invertible. First sample u[1], . . . , u[m] ← Zp. For

all α ∈ [m], i ∈ [n], let skyi [α] :=

(
skyi [α](1) = 〈s,y∗i [α]〉, skyi [α](2) = 〈t,y∗i [α]〉, u[α], i

)
.

Here we set y∗i [α] := H1(yi, α)||u[α]. Let sky := (sky[1], . . . , sky[m]) and then output skY :=
(sky1 , . . . , skyn).

– Encap2(z): z is a vector in Zn+1
p . First sample a vector k ∈ Znp . This algorithm will run the

following steps for n times. In step i:
(1)sample wi ← [m]η and θi ← Zηp.
(2)For each α ∈ [η], sample ki[α]← Znp s.t.

∑η
α=1 θi[α]ki[α] = k; and ri[α]← Zp.

(3)Let k∗[α] := H2(k[α], wi[α])||0 with length n + 1. Let Ci[α] = gri[α], Di[α] = hri[α] and

Eij [α] = g
k∗j [α]

zj h
ri[α]

zj

j (Recall that hj is from mpk and hj = gsjhtj ).
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(4)Set ctz[α][i] =

(
Ci[α], Di[α], {Eij [α]}n+1

j=1

)
.

Then Encap2 outputs ctz =

(
(ctz[α][i])α∈[η],i∈[n],w1, . . . ,wn,θ1, . . . ,θn, z,k

)
.

– Encap∗2(z): z is a vector in Zn+1
p . First sample a vector k ∈ Znp . This algorithm will run the

following steps for n times. In step i:
(1)sample wi ← [m]η and θi ← Zηp.
(2)For each α ∈ [η], sample ki[α] ← Znp s.t.

∑η
α=1 θi[α]ki[α] = k; and ri[α], r′i[α] ← Zp with

ri[α] 6= r′i[α].
(3)Let k∗[α] := H2(k[α], wi[α])||0 with length n + 1. Let Ci[α] = gri[α], Di[α] = hri[α] and

Eij [α] = g
k∗j [α]

zj h

r′i[α]

zj

j (Recall that hj is from mpk and hj = gsjhtj ).

(4)Set ctz[α][i] =

(
Ci[α], Di[α], {Eij [α]}n+1

j=1

)
.

Then Encap∗2 outputs ctz =

(
(ctz[α][i])α∈[η],i∈[n],w1, . . . ,wn,θ1, . . . ,θn, z

)
.

– Decap2(ctz, sky): It outputs the inner product of k and y. Parse w1, . . . ,wn,θ1, . . . ,θn from
ctz and i from sky. For each α ∈ [η], obtain dec[α][i] := Decap1(ctz[α][i], sky[wiα]). Output∑η
α=1 θiα × dec[α][i].

For the leakage-smoothness and efficiency, we propose Theorem 4. The proof of it is shown in
Appendix B, together with the analysis of correctness and valid/invalid ciphertext indistin-
guishability. From Theorem 4, we can conclude that our IP-HPS scheme Π2 is l′-leakage-smooth

for arbitrarily large l′, by choosing m ≥ l′+n log p+2λ
(1−ε) log p .

Theorem 4. For any ε > 0, there exists η = O(log p), s.t. for any polynomial m(λ), the above
construction of Π2 from Π1 is l′-leakage-smooth as long as: l′ ≤ (1− ε)m log p− n log p− 2λ.

5 Leakage resilient inner-product functional encryption

We define the security for an Inner-product functional encryption (IPFE) scheme which is resistant
to key leakage attacks in the bounded-retrieval model (BRM) and show how to use an leakage-
smooth IP-HPS to construct such an IPFE scheme. Our security notion only allows leakage attacks
against the secret keys of the various functions, but not the master secret key. And we only allow the
adversary to perform leakage attacks before seeing the challenge ciphertext. As shown in [4, 6, 46],
this limitation is inherent to encryption schemes since otherwise the leakage function can simply
decrypt the challenge ciphertext and output its first bit.

5.1 Definitions

Indistinguishable security with leakage. We define the indistinguishable security game, parametrized
by a security parameter λ, a parameter of vector length n and a leakage parameter l, as the following
game between an adversary A and a challenger in Table 3.

A PPT adversary A is admissible if it makes leakage queries for at most n linear independent
vectors in Query 1. The advantage of an admissible adversary A in the indistinguishable security
game with leakage l is defined by AdvIPFE-IND

IPFE,A (λ, n, l) := |Pr[A wins]− 1
2 |.
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Table 3: IPFE-IND(λ, n, l)

Setup: The challenger computes (mpk,msk) ← Setup(1λ, 1n) and sends mpk to the adversary A. The
challenger constructs a list Lsk to store the secret keys which are queried by the adversary, and a vector R
to store the random numbers which are used to generate the secret keys.

Query 1: The adversary A can adaptively ask the challenger for:
Leakage query : On input a vector y ∈ V, a PPT function f∗, if Lsk is empty, the challenger runs sk(y,1) ←
IPFE.KeyGen(msk,y, 1), then stores the tuple (r, 1) in R, and the tuple (y, sk(y,1)) in the list Lsk. Else
if y is not in the list Lsk, then the challenger reads and deletes the tuple (r, τ) from R and generates
sk(y,τ+1) ← IPFE.KeyGen(msk,y, τ + 1) with randomness r. The challenger stores (r, τ + 1) in R and the
tuple (y, sk(y,τ+1)) in the list Lsk. Else if y is in the list Lsk, then the challenger reads the tuple (y, sk(y,τ))
from it. Then the challenger replies with f∗(sk(y,τ∗)) if

∑
f∈{f ′}y∪{f∗} |f(sk(y,τ∗))| ≤ l, where {f ′}y denotes

the set of functions that the adversary have queried with input sk(y,τ∗), and |f(sk(y,τ∗))| is the bit-length
of the function value f(sk(y,τ∗)).

Challenge: The adversary A chooses two vectors x0,x1 ∈ V The challenger chooses b← {0, 1} uniformly
at random and computes ctb ← Encrypt(xb) and gives ctb to the adversary A.

Output: The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

Now we give some explanation about the definition. All restrictions of the definiiton come from
the definitions and proofs of properties of IP-HPS Π2. Recall that there are only 3 items in the
definition of leakage-smoothness: (ct, f({skyi}ni=1),k). The secret keys {skyi}ni=1 used to compute
the encapsulated key k do not appear in the equation directly. In order to use leakage-smoothness
of Π2 to prove the security of leakage-resilient IPFE scheme, for the secret keys used to compute k,
any adversary can only know a function value f(·), instead of the secret keys. And in the security
proof, all secret keys generated in Query 1 will be used to compute k Thus, we allow the adversary
to make leakage queries on arbitrary vector y, rather than making secret key queries on vectors y
subject to the condition that 〈x0,y〉 = 〈x1,y〉.

In the valid/invalid ciphertext indistinguishability definition of leakage-smooth IP-HPS Π2, the
adversary is allowed to make secret key query once for a n × n invertible matrix Y = [y1, ...,yn]
and get skY = {sky1

, ..., skyn} ← Π2.KeyGen(msk, Y ). In order to rely the security of leakage-
resilient IPFE on the valid/invalid indistinguishability of Π2, we have to require that there are at
most n different linear independent vectors appearing in the leakage query. And such n secret keys
should be generated from the same random numbers, and are corresponding to the 1-th,...,n-th
parts of ciphertext respectively. In the definition, we use a parameter τ to indicate that sk(y,τ) is
corresponding to τ -th part of the ciphertext. (sk(y,τ) generated by IPFE.KeyGen(msk,y, τ) can
decrypt the τ -part of the ciphertext.)

Definition 6 (leakage-resilient IPFE). An IPFE scheme is l-leakage-resilient, if (1) it satisfies
the correctness, and (2) the advantage of any admissible PPT adversary A in the indistinguishable
security game with leakage l is negl(λ). We define the leakage ratio of the scheme to be µ = l

β̂
,

where β̂ is the number of bits needed to efficiently store secret key sky.

Definition 7 (leakage-resilient IPFE in the BRM). An IPFE scheme is adaptively leakage-
resilient in the bounded retrieval model (BRM), if the scheme is adaptively leakage-resilient, and
the master public key size, master secret key size, ciphertext size, encryption time, and decryption
time (and the number of secret-key bits read by decryption) are independent of the leakage-bound
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l. More formally, there exist polynomials mpksize,msksize, ctsize, encTime,decTime, such that for
any polynomial l and any (mpk,msk)← KeyGen(1λ, 1n, 1l),x ∈ V, ctx ← Encrypt(mpk,x):

– Master public key size is |mpk| ≤ O(mpksize(λ)), master secret key size is |msk| ≤ O(msksize(λ)),
and ciphertext size is |ctx| ≤ O(ctsize(λ, |x|)).

– Run-time of Encrypt(mpk,x) is ≤ O(encTime(λ, |x|)).
– Run-time of Decrypt(sky,x), and the number of bits of sky accessed, are ≤ O(encTime(λ, |x|)).

5.2 Construction of Leakage-resilient IPFE

The construction of leakage-resilient IPFE from a leakage-smooth IP-HPS is very simple. Given an
l-leakage-smooth IP-HPS scheme Π = (Setup,KeyGen,Encap,Encap∗,Decap) where the encapsu-
lated key space is K and the message space is M, we construct an IPFE scheme with the same
vector space V = K. We show our construction in Table 4.

Recall that in our leakage-smooth IP-HPS scheme Π2, the encapsulation algorithm will output
n ciphertexts sharing the same encapsulated key k, and the i-th ciphertext can be decapsulated by
the i-th secret key. So in our leakage-resilient IPFE scheme, we will choose an index τ ∈ [n] in key
generation algorithm to indicate which ciphertext it wants to decrypt with this secret key.

Table 4: The construction from an l-leakage-smooth IP-HPS scheme Π2 to an IPFE scheme.

Setup(1λ, 1n): The Setup procedure is the same as Π2.Setup.

KeyGen(msk,y, τ): It chooses n − 1 random vectors y1, ...,yτ−1,yτ+1,yn, such that Y = [y1, ...,yτ =
y, ...,yn] is a n × n invertible matrix. It gets (sky1 , sky2 , ..., skyn) ← Π2.KeyGen(msk, Y ), and returns
sk(y,τ) = skyτ .

Encrypt(x): It chooses a random z ∈M and computes (ctz,k)← Π2.Encap(z). It sets c1 = ctz, c2 = k+x.
Output ctx = (c1, c2).

Decrypt(ctx, sk(y,τ)): Parse ctx = (c1, c2) and output y · c2 −Π2.Decap(c1, sk(y,τ))

Theorem 5. Assume that we start with an l′-leakage-smooth IP-HPS Π2, and for the challenge
ciphertext ctb = (c1, c2) and any sky, the adversary can only do Π2.Decap(c1, sky) in a black-box

way. Then the construction in Table 4 yields an l = l′

n -leakage-resilient IPFE.

Here, the restriction on the computations of Π2.Decap comes from the valid/invalid ciphertext
indistinguishability analysis of Π2. We use a series of games argument in our security proof, wihch
begins with the real security game and ends with a game whose challenge ciphertext is independent
of the bit b chosen by the challenger.

The formal proof of Theorem 5 can be found in Appendix C.

Theorem 6. Using the l′-leakage-smooth IP-HPS construction Π2 in Section 4, we can get an l-
leakage-resilient IPFE scheme in the BRM with message space V = Znp and :
(1) Master public-key size, master secret-key size, ciphertext-size and the number of secret-key bits
read by decryption are the same as Π2, and are independent of l.
(2) Encryption time consists of the Encap time of Π2 and the time of one vector addtion operation
with length n. Decryption time consists of the Decap time of Π2, the time of inner-product oper-
ation with vector length n, and a subtraction. Both the encryption time and decryption time are
independent of l.
(3) The leakage ratio is µ = 1−ε

3n , for sufficiently large values of the leakage-parameter l.
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Proof. The first two statements are directly proved by the construction of l′-leakage-resilient IPFE
scheme from a l′-leakage smooth IP-HPS. For the leakage ratio, by Theorem 4, we have l = l′

n ≤
(1−ε)m log p−n log p−2λ

n . We can write m(l) is a function of l, and choose m(l) ≥ l′+n log p+2λ
(1−ε) log p is

sufficient. Then the leakage ratio for a given l is defined as:

µ =
l

3m(l) log p
=

(1− ε)l
3nl + 3n log p+ 6λ

.

For sufficiently large l, the ratio is approximately 1−ε
3n .
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A Proof of Theorem 3

Correctness and Valid/Invalid Ciphertext Indistinguishiability. For any z,y with length n + 1
and n respectively, and for any correctly generated mpk,msk, sky from the above algorithms, if
(C,D, {Ei}n+1

i=1 , z) is generated by Encap(z), then correctness is proved by calculating logg(Ey):

Ey =

∏n+1
i=1 E

y∗i zi
i

Csky(1)Dsky(2)
=

∏n+1
i=1 g

x∗i y
∗
i grsiy

∗
i hrtiy

∗
i

gr〈s,y∗〉hr〈t,y∗〉
=

n+1∏
i=1

gx
∗
i y
∗
i =

n∏
i=1

gxiyi = g〈x,y〉 .

For the valid/invalid ciphertext indistinguishability, we show how to use an adversary A, which
can distinguish valid and invalid cipihertexts, to construct an adversary B, which can distinguish
whether c = ab or c is randomly chosen from Zp. B receives a DDH tuple (g, ga, gb, gc), then it sets

C = ga, hi = gb and Ei = g
x∗i
zi g

c
zi , where i is randomly chosen from [n], and sends mpk and the

challenge ciphertext to A. If A outputs it is a valid ciphertext, then B outputs c = ab. Otherwise,
B outputs that c is randomly chosen from Zp.
0-Universality of Π1. We show that the decapsulation function of Π1 is a 0-universal hash family.
Fix any (mpk,msk) produced by Setup(1λ, 1n), a set of linear independent vectors {yi}ni=1 and z,
let ct = (C,D, {Ei}n+1

i=1 , z) ← Encap∗(z). From our construction of Encap∗ we have C = gr, D =

hr, Ei = g
x∗i
zi h

r′
zi
i , where r, r′ are uniformly sampled from Zp with r 6= r′. Then, for any secret key

sky = (〈s,y∗〉, 〈t,y∗〉, u), it’s a random variable generated from KeyGen(msk,y) with y ∈ {yi}ni=1.
Then we can obtain (Assume h = gw):

Decap(ct, sky) = logg

( ∏n+1
i=1 E

y∗i zi
i

Csky(1)Dsky(2)

)
= logg

(∏n+1
i=1 g

x∗i y
∗
i gr

′siy
∗
i hr

′tiy
∗
i

gr〈s,y∗〉hr〈t,y∗〉

)

= logg

(
g〈x,y〉gr

′〈s,y∗〉hr
′〈t,y∗〉

g〈s,y∗〉h〈t,y∗〉

)
= logg

(
g〈x,y〉g(r

′−r)〈s,y∗〉h(r
′−r)〈t,y∗〉

)
= logg

(
g〈x,y〉+(r′−r)(〈s,y∗〉+w〈t,y∗〉)

)
= 〈x,y〉+ (r′ − r)〈s+ wt,y||u〉

(1)

Note that if sky is fixed, the randomness of Decap(ct, sky) is only from ct, i.e. from r′ − r,
which is uniformly random over Zp \ {0}. Further, we can define a hash function family H =
{Decap(ct, ·)|ct← Encap∗(z)}. To obtain universality of H, we need to show that given msk,mpk
and y, for any fixed sky, sk

′
y both generated from KeyGen(msk,y), with sky 6= sk′y, the following

probability is tiny: Prct←Encap∗(z)[Decap(ct, sky) = Decap(ct, sk′y)].

In fact we can prove that this probability is 0. Let u′ be the associated u in sk′y. Note that by

our construction of KeyGen, sky 6= sk′y implies u 6= u′. By our construction of Setup, the (n+ 1)-th

entry of s+ wt 6= 0. Then, for any sky 6= sk′y, 〈s+ wt,y||u〉 6= 〈s+ wt,y||u′〉. By r 6= r′, we know

that Prct←Encap∗(z)[Decap(ct, sky) = Decap(ct, sk′y)] = 0. We conclude that H is a 0-universal hash
family.
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B Analysis and Proofs of Leakage-smooth IP-HPS Π2

B.1 Correctness and Valid/Invalid Ciphertext Indistinguishability of Π2

The correctness is as follows. In each dec[α][i] = Decap1(ctz[α][i], sky[wiα]) where the ctz is valid,
we have (for simplicity we omit index i):

Ey :=

∏n+1
j=1 E

y∗j [wα]zj
j

Csky [wα](1)Dsky [wα](2)
=

∏n+1
j=1 g

k∗j [α]y
∗
j [wα]gr[α]sjy

∗
j [wα]hr[α]tjy

∗
j [wα]

gr[α]〈s,y∗[wα]〉hr[α]〈t,y∗[wα]〉
=

n+1∏
j=1

gk
∗
j [α]y

∗
j [wα] = g〈k

∗[α],y∗[wα]〉 ,

logg(Ey) = 〈k∗[α],y∗[wα]〉 = 〈H2(k, wα)||0, H1(y, wα)||u[wα]〉 = 〈M−1wαk[α],MT
wαy〉 = 〈k[α],y〉 ,

which is 〈ki[α],y〉. Therefore,
∑η
α=1 θα × dec[α][i] = 〈

∑η
α=1 θiαki[α],y〉 = 〈k,y〉.

When talk about the valid/invalid ciphertext indistinguishability of Π2, we edit the definition
of admissible adversary in Definition 3. The input of Π2.KeyGen is a n × n matrix instead of a
vector with length n. So here we allow the adversary to make key query for one n × n invertible
matrix, instead of at most n linear independent vectors. And for the challenge ciphertext ctb and
any secret key skyi , the adversary can only do Π2.Decap(ctb, skyi) in a black-box way. Thus, the
valid/invalid ciphertext indistinguishability can be easily extended from the valid/invalid ciphertext
indistinguishability of Π1. This modified indistinguishability is enough for our security proof of
leakage-resilient IPFE scheme in Section 5.

B.2 Proof of Theorem 4

Notations. Let Σ be some alphabet. [28] defined a generalized min-entropy called average condi-
tional min-entropy, where Z is another random variable:

H̃∞(X|Z) := − log
(
Ez←Z

[
max
x

Pr [X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
.

Definition 8 (Approximately Universal Hashing [6]). A function family H, consisting of
functions h : Σm → Γ , is called (δ, τ)-approximately universal if for all x, x′ ∈ Σm with dH(x, x′) ≤
δm we have Prh←H[h(x) = h(x′)] ≤ τ , where dH(·, ·) is the Hamming metric.

Theorem 7 (Approximate Leftover-hash Lemma [6]). Assume that H is (δ, τ)-approximately
universal. Let q = |Σ|, v = log |Γ |. Let δ ∈ [ 1

m , 1 −
1
q ]. Let X,Z be arbitrary random variables

where X is distributed over Σm and let β′ := H̃∞(X|Z). Let h be uniformly random over H.

Then SD

(
(h, Z, h(X)), (h, Z, UΓ )

)
≤ 1

2

√
2Hq(δ)m log(q)+v−β′ + τ2v − 1, where Hq is q-ary Shan-

non entropy function. 3 In particular, the statistical distance above is at most ε as long as β′ ≥
Hq(δ)m log q + v + 2 log 1

ε − 1, and τ ≤ 1
2v (1 + ε2).

3 The definition of q-ary Shannon entropy function is Hq(x) := x logq(q− 1)−x logq x− (1−x) logq(1−x)
is the q-ary Shannon entropy function.
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Now, we move to prove the l′-leakage-smoothness of Π2. First fix an invertible Y . For simplicity,
we define x = skY , where xi = skyi = (skyi [1], ..., skyi [m]) is a sample of secret key for yi in Π2.
Then kT (c, x) = [Decap2(c, x1), . . . ,Decap2(c, xn)]Y −1, where c← Encap∗(z).

Then, Decap2(c, xi) =
∑η
α=1 θiαDecap1(c[α][i], xi[wiα]). So we can set gθ : Zηp → Zp, gθ(d) =

〈θ,d〉. The family G := {gθ|θ ← Zηp}, and it’s 1
p -universal. In Section 3 we already show that the

family of fc[α][i](·) is 0-universal. Now we write kT (c, x) as a hash function:

hc(x) = (gθ1
(fc[1][1](x1[w11]), ..., fc[η][1](x1[w1η])), ..., gθn(fc[1][n](xn[wn1]), ..., fc[η][n](xn[wnη])))Y −1

Let H := {hc()|c ← Encap∗2(z)}. Note that it’s equivalently a family of Zmp → Znp , for any fixed
invertible Y . This is because the random variable x given Y is determined by vector u ∈ Zmp .
Firstly, we show that the family H is approximately universal in the following lemma.

Lemma 1. Let function families F be ρ-universal and G be ρ′-universal, then the above family H
is (δ, τ)-approximately universal for any δ > 0 and τ ≤ ((1− δ)η + ρ′)n.

Proof. For any x, x′ ∈ Znp , where dH(x, x′) ≥ δm, we calculate Prhc←H[hc(x) = hc(x
′)]:

=

n∏
i=1

Prhc←H

[
gθi
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)
= gθi
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′
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′
i[wiη])

)]

≤
n∏
i=1

(
Pr
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fc[1][i](x1[wi1]), ..., fc[η][i](x1[wiη])

)
=
(
fc[1][i](x1[wi1]), ..., fc[η][i](x1[wiη])

)]
+ ρ′

)

≤
n∏
i=1

( η∑
j=0

Pr

[
dH
(
(xi[w1], ..., xi[wη]), (x′i[w1], ..., x′i[wη]) = j

)
ρj
]

+ ρ′
)

≤
n∏
i=1

(

η∑
j=0

(Citδ
i(1− δ)t−iρi) + ρ′) ≤

[
(1− δ(1− ρ))η + ρ′

]n
From the constructions of Π1 and Π2, we can know that ρ = 0, ρ′ = 1

p , so we can get τ ≤
((1− δ)t + 1

p )n. From Theorem 7, in order to ensure that SD ((c, f(skY ),k), (c, f(skY ),k′)) ≤ 2−λ,

we should have τ ≤ 1
pn (1 + (2−λ)2). So we get lower bounds of η and β′ := H̃∞(skY |f(skY )) are:

η ≥ log p− 1

log 1
1−δ

, and β′ ≥ Hp(δ)m log p+ n log p+ 2λ− 1 .

In our case, β′ ≥ H∞(skY ) − l′ = m log p − l′. For any constants ε > 0, there exists some
constant c ≥ 0, such that for any n ≥ 1, p ≥ 2, η ≥ c log p,m ≥ 0, we have that: If m log p − l′ ≥
εm log p + n log p + 2λ, then SD ((c, f(skY ),k), (c, f(skY ),k′) ≤ 2−λ. It means that Π2 is an l′-
leakage-smooth IP-HPS for l′ = (1− ε)m log p− n log p− 2λ.

C Proof of Theorem 5

Proof. The correctness of decryption follows by the correctness of decapsulation in Π2. We use a
series of games to analyze the security:
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– Game 0: Define Game 0 to be the IND-security game with leakage l. In the challenge stage
of Game 0, the challenger computes ctxb ← Encrypt(mpk,xb) which we parse ctxb = (c1, c2),
where c1 = ctz, c2 = k + xb.

– Game 1: We modify the challenge stage, so that the challenger uses the secret keys {skyi , i}ti=1, t ≤
n queried by A in Query 1, together with some new keys sk(yt+1,t+1), ..., sk(yn,n) generated by
runningΠ2.KeyGen(msk,yt+j , t+j), j ∈ [n−t] with the same random numbers as sk(yi,i), i ∈ [t],
where yt+1, ...,yn are randomly chosen subject to the condition that Y = [y1, ...,yn] is an
n × n invertible matrix. It computes (c1,k1) ← Encap(z), then finds k2 such that kT2 =
[Decap(c1, sk(y1,1)), ..., Decap(c1, sk(yn,n))]Y

−1, and computes c2 = k2 + xb.
The difference between Game 0 and Game 1 is only the use of k1 versus k2. However, by the
correctness of Decapsulation, we have k1 6= k2 with negligible probability, given that y1, ...,yn
are linear independent. So Game 0 and Game 1 are statistically indistinguishable.

– Game 2: We modify the challenge stage again, so that the challenger uses Encap∗ to compute
the ciphertext. It computes c1 ← Encap∗(z), then finds k2 such that kT2 = [Decap(c1, sk(y1,1)), ...,
Decap(c1, sk(yn,n))]Y

−1, and computes c2 = k2 + xb.
We claim that Game 1 and Game 2 are computationally indistinguishable by the valid/invalid
ciphertext indistinguishability of IP-HPS. Although the valid/invalid ciphertext indistinguisha-
bility game does not have leakage queries, it allows the adversary to learn at most n secret keys.
The total number of leakage queries the adversary have made in Query 1 is at most n, and
all secret keys have been queried by the adversary were generated by the same randomness R.
Therefore, indistinguishability between Game 1 and Game 2 holds even if the adversary sees all
the full secret keys sky that the adversary have made leakage queries in Query 1.

– Game 3: The challenge ciphertext ctxb = (c1, c2) is computed by: c1 ← Encap∗(z), c2 ← UK.
We claim that Game 2 and Game 3 are statistically indistinguishable by the l′-leakage-smoothness
of IP-HPS. Indeed, for a fixed value of mpk,msk, and i ∈ [n], the only things in Game 2 corre-

lated to skyi are the outputs of leakage query with size l ≤ l′

n bits. So the outputs of leakage
queries of {skyi}ni=1 are at most l′ bits. Recall the definition of l′-leakage-smoothness, by making
all leakage queries together as a single randomized function f(Y) with Y = {skyi}ni=1, k2 is
indistinguishable from choosing a completely independent random variable from UK.

Therefore Game 0 and Game 3 are indistinguishable by any PPT adversary. And the advantage of
any adversary in Game 3 is 0, since the challenge ciphertext in Game 3 is independent of the bit b.


