
Updatable Blockchains?

Michele Ciampi2, Nikos Karayannidis1, Aggelos Kiayias1,2, and
Dionysis Zindros3

1 Input Output HK Limited, Hong Kong, P.R.C. nikos.karagiannidis@iohk.io
2 The University of Edinburgh, Edinburgh, UK
mciampi@ed.ac.uk, akiayias@inf.ed.ac.uk

3 National and Kapodistrian University of Athens, Athens, Greece
dionyziz@gmail.com

Abstract. Software updates for blockchain systems become a real chal-
lenge when they impact the underlying consensus mechanism. The acti-
vation of such changes might jeopardize the integrity of the blockchain
by resulting in chain splits. Moreover, the software update process should
be handed over to the community and this means that the blockchain
should support updates without relying on a trusted party. In this pa-
per, we introduce the notion of updatable blockchains and show how to
construct blockchains that satisfy this definition. Informally, an updat-
able blockchain is a secure blockchain and in addition it allows to update
its protocol preserving the history of the chain. In this work, we focus
only on the processes that allow securely switching from one blockchain
protocol to another assuming that the blockchain protocols are correct.
That is, we do not aim at providing a mechanism that allows reaching
consensus on what is the code of the new blockchain protocol. We just
assume that such a mechanism exists (like the one proposed in NDSS
2019 by Zhang et. al), and show how to securely go from the old proto-
col to the new one. The contribution of this paper can be summarized
as follows. We provide the first formal definition of updatable ledgers
and propose the description of two compilers. These compilers take a
blockchain and turn it into an updatable blockchain. The first compiler
requires the structure of the current and the updated blockchain to be
very similar (only the structure of the blocks can be different) but it
allows for an update process more simple, efficient. The second compiler
that we propose is very generic (i.e., makes few assumptions on the sim-
ilarities between the structure of the current blockchain and the update
blockchain). The drawback of this compiler is that it requires the new
blockchain to be resilient against a specific adversarial behaviour and
requires all the honest parties to be online during the update process.
However, we show how to get rid of the latest requirement (the honest
parties being online during the update) in the case of proof-of-work and
proof-of-stake ledgers.

Keywords: Blockchain · Update · Ledger

? Research partly supported by H2020 project PRIVILEDGE #780477

2 Ciampi et al.

1 Introduction

Most of the existing software requires to be updated (or replaced) at some point.
Indeed, the most vital aspect for the sustainability of any software system is its
ability to effectively and swiftly adapt to changes; one basic form of which are
software updates. Therefore the adoption of software updates is at the heart of
the lifecycle of any system, and blockchain systems are no exception. Software
updates might be triggered by a plethora of different reasons: change requests,
bug-fixes, security holes, new-feature requests, various optimizations, code refac-
toring etc. More specifically, for blockchain systems, a typical source of change
is the enhancements at the consensus protocol level. There might be changes to
the values of specific parameters (e.g., the maximum block size, or the maximum
transaction size etc.), changes to the validation rules at any level (transaction,
block, or blockchain), or even changes at the consensus protocol itself. Usually,
the reason for such changes is the reinforcement of the protocol against a broader
scope of adversary attacks, or the optimization of some aspect of the system like
the transaction throughput, or the storage cost etc. A software update’s lifecycle
comprises of three important decision points: a) What update proposal should
be implemented, b) is a specific implementation appropriate to be deployed and
c) when and how the changes should be activated on the blockchain. A fully
decentralized approach should decentralize all of these three decisions. Indeed,
there are already proposals on how to update specific blockchain protocols in a
decentralized way [9,8,14]. Moreover, Bingsheng et al. [16], proposes a complete
treasury system in order to solve the funding problem for software updates. The
decentralization of such decisions is usually called in short decentralized gover-
nance. This paper does not focus on how to achieve decentralized governance for
software updates. Indeed, we assume that appropriate decentralized governance
processes (e.g., voting, delegation of voting, upgrade-readiness signaling etc.) are
in place and the community has already reached a consensus on what specific
update should be activated and this information is written on the blockchain.
Moreover, we assume that a sufficient percent of honest parties have expressed
(e.g. through a signaling mechanism) their readiness to upgrade to the new
ledger. This is exactly the point from where our focus begins. In particular, we
deal with the secure activation of software update changes on the blockchain in
a fully decentralized setting and essentially provide a way to safely transition
from the old ledger to the upgraded ledger without the need of a trusted third
party. Moreover, we define what is a secure activation of changes by introducing
the notion of updatable blockchains. To the best of our knowledge, our approach
is the first that treats the problem of decentralized activation of updates for
blockchains in such a formal way providing a security definition for updatable
blockchain and generic constructions (more details will be provided in the next
section).

Updatable Blockchains 3

1.1 Our Contributions

In our work, we try to define what is a ledger4 that supports updates and refer
to it as an updatable ledger.

Then we propose a generic compiler that takes a ledger L1 and turns it into
an updatable ledger that tolerates updates only with respect to ledgers that
follow the same consensus rule as L1 but have different blocks structure. We
then propose another (more generic) compiler that, always starting from L1,
turns L1 it into a ledger LUPD that can be updated to the code of a ledger L2.
This compiler works assuming only few similarities between L1 and L2, but it is
more complicated and decreases the throughput of the ledger during the update.
All our constructions do not rely on any trusted third party (TTP).

1.2 Our Techniques

Our definition of updatable ledgers is quite intuitive. We require an updatable
ledger LUPD to be secure under the standard definition of security (i.e., it has
to enjoy consistency and liveness) but on top of this, it has to support the
property of updatability. This property guarantees that, in the case there are
enough parties that are willing to upgrade the code of LUPD to the code of a
new ledger L2, the honest parties can securely run L2 and preserve the state of
LUPD.

Clearly, (almost) any ledger L1 can be turned into an updatable ledger LUPD

if we can rely on a TTP. Indeed, in this case the TTP can issue a genesis block
for L2 which incorporates the state of L1 (or just the hash of it), and then the
parties that where running L1 can abandon it and start running L2 using the
genesis block issued by the TTP.

We show how to construct an updatable ledger without relying on a TTP.
The starting point for our construction is a standard ledger L1 that we enhance
with the following mechanism. At time T0 (when enough parties are assumed to
be willing to update to L2) a block of L1 is chosen and translated into a genesis
block for L2. All the parties that wanted to update can now simply run L2 on
the chosen genesis block. This approach clearly requires that there is an efficient
way to translate a block of L1 into a block for L2, and this might limit the class
of ledgers to which LUPD can be updated

Even though the above approach seems to work, there are unfortunately
many subtleties that we need to deal with. The first is that the adversary might
be able to see the genesis block for L2 before any other honest parties do, and
therefore he can take advantage in the generation of the blocks of L2 thus com-
promising the security of the system. The second issue is that the adversary
might influence the choice of the genesis block. Indeed, we do not know how
the consensus algorithm of L1 works and what is the power of the adversary in
biasing the content of L1’s blocks. We note that this scenario (where there are
4 With slight abuse of terminology we use the words ledger and blockchain inter-
changeably.

4 Ciampi et al.

many candidates blocks and the adversary can decide which block is added to the
final chain) is well studied (see [11]) and many blockchain protocols allow this
kind of adversarial behaviour (i.e., an adversary can create forks and influence
the decision on what fork will become part of the stable chain). To tackle these
issues, we further shrink the class of ledgers to which LUPD can be updated, and
require L2 to retain its security even in the case the genesis block can be seen by
the adversary before that the hones parties can see it, and even if the adversary
can pick the genesis block from a set of candidate genesis blocks. Despite being
quite general, this compiler has the drawback that the honest parties need to
be online during the update. Indeed, if an honest party is offline before T0 and
comes online after the update then no security can be guaranteed for this party.
However, we show how to relax the requirement on the honest parties being
online during the update by relying on a 2-for-1 mining approach (more details
are provided in the end of Sec. 4.2).

The second scheme that we propose requires LUPD and L2 to be the same (i.e.,
they use the same consensus rules) but might have a different block structure.
In this case, the update process is even simpler, the parties, starting from a
pre-agreed block index j, start extending the state of LUPD using the rules of
L2 even if the block in position j is not stable. That is, it might happen that
different honest parties start running L2 using a different starting block given
that the block j does not belong to the common prefix. We prove that this does
not cause issues even in the case when not all the honest parties participate to
the update (i.e., some honest parties are offline or decided to not participate to
the update). The advantage of this approach over the first that we have proposed
is that we do not require all the honest parties to be online during the update,
and the throughput is not affected by the update process.

2 The Model

Protocol participants are represented as parties—formally Interactive Turing
Machine instances (ITIs)—in a multi-party computation. We assume a central
adversary who corrupts miners and uses them to attack the protocol. The adver-
sary is adaptive, i.e., can corrupt (additional) parties at any point and depending
on his current view of the protocol execution. Our protocols are synchronous
(G)UC protocols [4,15]: parties have access to a (global) clock setup, denoted
by Gclock, and can communicate over a network of authenticated multicast chan-
nels. We note that the assumption on the existence of a global clock has been
used to prove the security of Bitcoin [4] and we are not aware of any other formal
proof that relies on weaker notion of “time”. For this reason we believe that the
use of the functionality Gclock in this work is without loss of generality.

We assume instant and fetch-based delivery channels [15,7]. Such channels,
whenever they receive a message from their sender, they record it and deliver it to
the receiver upon his request with a “fetch” command. In fact, all functionalities
we design in this work will have such fetch-based delivery of their outputs. We
remark that the instant-delivery assumption is without loss of generality as the

Updatable Blockchains 5

channels are only used for communicating the timestamped object to the verifier
which can anyway happen at any point after its creation. However, our treatment
trivially applies also to the setting where parties communicate over bounded-
delay channels as in [4].

We adopt the dynamic availability model implicit in [4] which was fleshed out
in [3]. We next sketch its main components: All functionalities, protocols, and
global setups have a dynamic party set. i.e., they all include special instructions
allowing parties to register, deregister, and allowing the adversary to learn the
current set of registered parties. Additionally, global setups allow any other setup
(or functionality) to register and deregister with them, and they also allow other
setups to learn their set of registered parties. For more details on the registration
process we refer the reader to Appendix B.

The Clock Functionality Gclock (cf. Fig. 4). The clock functionality was initially
proposed in [15] to enable synchronous execution of UC protocols. Here we adopt
its global-setup version, denoted by Gclock, which was proposed by [4] and was
used in the (G)UC proofs of the ledger’s security.5 Gclock allows parties (and func-
tionalities) to ensure that the protocol they are running proceeds in synchronized
rounds; it keeps track of round variable whose value can be retrieved by parties
(or by functionalities) via sending to it the pair: CLOCK-READ. This value is in-
creased when every honest party has sent to the clock a command CLOCK-UPDATE.
The parties use the clock as follows. Each party starts every operation by read-
ing the current round from Gclock via the command CLOCK-READ. Once any party
has executed all its instructions for that round it instructs the clock to advance
by sending a CLOCK-UPDATE command, and gets in an idle mode where it simply
reads the clock time in every activation until the round advances. To keep more
compact the description of our functionalities that rely on Gclock, we implicitly
assume that whenever an input is received the command CLOCK-READ is sent to
Gclock to retrieve the current round. Moreover, before giving the output, the
functionalities request to advance the clock by sending CLOCK-UPDATE to Gclock.

2.1 Ledger Consensus: Model

In this section, we define our notion of protocol execution following [11,5]. The
execution of a protocol Π is driven by an environment program Z that may
spawn multiple instances running the protocol Π. The programs in question can
be thought of as interactive Turing machines (ITM) that have communication,
input and output tapes. An instance of an ITM running a certain program will
be referred to as an interactive Turing machine instance or ITI. The spawning
of new ITI’s by an existing ITI as well as the interaction between them is at the
discretion of a control program which is also an ITM and is denoted by C. The
pair (Z, C) is called a system of ITM’s, cf. [5]. Specifically, the execution driven
by Z is defined with respect to a protocol Π, an adversary A (also an ITM)
5 As a global setup, Gclock also exists in the ideal world and the ledger connects to it
to keep track of rounds.

6 Ciampi et al.

and a set of parties P1, . . . , Pn; these are hardcoded in the control program C.
Initially, the environment Z is restricted by C to spawn the adversary A. Each
time the adversary is activated, it may send one or more messages of the form
(corrupt, Pi) to C. The control program C will register party Pi as corrupted,
only provided that the environment has previously given an input of the form
(corrupt, Pi) to A and that the number of corrupted parties is less or equal tc, a
bound that is also hardcoded in C.

We divide time into discrete units called time slots or round. Players are
equipped with (roughly) synchronized clocks Gclock that indicate the current
slot: we assume that any clock drift is subsumed in the slot length.

Ledger Consensus. Ledger consensus (a.k.a. “Nakamoto consensus”) is the
problem where a set of nodes (or parties) operate continuously accepting inputs
that are called transactions and incorporate them in a public data structure
called the ledger. A ledger (denoted in calligraphic-face, e.g. L) is a mechanism for
maintaining a sequence of transactions, often stored in the form of a blockchain.
In this work, we denote with L the algorithms used to maintain the sequence,
and with L all the views of the participants of the state of these algorithms
when being executed. For example, the (existing) ledger Bitcoin consists of the
set of all transactions that ever took place in the Bitcoin network, the current
UTXO set, as well as the local views of all the participants. In contrast, we
call a ledger state a concrete sequence of transactions Tx1,Tx2, . . . stored in the
stable part of a ledger state L, typically as viewed by a particular party. Hence,
in every blockchain-based ledger L, every fixed chain C defines a concrete ledger
state by applying the interpretation rules given as a part of the description of
L. In this work, we assume that the ledger state is obtained from the blockchain
by dropping the last k blocks and serializing the transactions in the remaining
blocks. We refer to k as the common-prefix parameter. We denote by LP [t] the
ledger state of a ledger L as viewed by a party P at the beginning of a time
slot t and by ĽP [t] the complete state of the ledger (at time t) including all
pending transactions that are not stable yet. LP [t] can be obtained from ĽP [t]
by dropping the last k block.

For two ledger states (or, more generally, any sequences), we denote by �
the prefix relation. Recall the definition of secure ledger protocol given in [10].

Definition 1. A ledger protocol L is secure if it enjoys the following properties.

Consistency. For any two honest parties P1, P2 and two time slots t1 ≤ t2,
it holds LP1 [t1] � ĽP2 [t2].
Liveness. If all honest parties in the system attempt to include a transaction
Tx then, at any slot t after s slots (called the liveness parameter), any honest
party P , if queried, will report Tx ∈ LP [t].

In this work we also explicitly rely on the properties of Common Prefix (CP),
Chain Growth (CG) and Chain Quality (CQ).

Updatable Blockchains 7

Common Prefix (CP); with parameters k ∈ N states that for any
pair of honest players P1, P2 at rounds r1 ≤ r2 respectively, it holds that
LP1 [r1] � ĽP2 [r2].
Chain Growth (CG); with parameters τ ∈ (0, 1] and s ∈ N. Consider
the chain C adopted by an honest party at the onset of a slot and any
portion of C spanning s prior slots; then the number of blocks appearing in
this portion of the chain is at least τs.
Chain Quality (CQ) with parameters µ ∈ R and ` ∈ N. For any honest
party P with chain C it holds that for any ` consecutive blocks of C the ratio
of honest blocks is at least µ.

We consider a setting where a set of parties run a protocol maintaining a
ledger L1. Following [13], we denote by A1 the assumptions for L1. That is,
if the assumption A1 holds, then ledger L1 is secure under the Definition 1.
Formally, Ai for a ledger Li is a sequence of events Ai[t] for each time slot t
that can assume value 1, if the assumption is satisfied, and 0 otherwise. For
example, Ai may denote that there has never been a majority of hashing power
(or stake in a particular asset, on this ledger or elsewhere) under the control of
the adversary; that a particular entity (in case of a centralized ledger) was not
corrupted; and so on. Without loss of generality, we say that the assumption
A1 for the ledger L1 holds if and only if the fraction of corrupted parties (the
parties that received the input (corrupt, ·)) is below the threshold tc1 (where tc1
is part of the control function as described in the beginning of this section).

Chain selection rule and block validation. We sometimes assume that a ledger
protocol describes a chain selection rule that we denote with ChainSel. That is,
we assume that each party in each round of the execution of the protocol collects
all chains that come from the network and runs the algorithm ChainSel to decide
whether to keep his current local chain Cloc, or adopt one of the newly received
chains. Following [4] we also assume that before applying the chain-selection
rule, any given chain is tested using the procedure IsValidChain. IsValidChain
checks filters the valid chains among all the chain received from the network and
only the valid chain are used as input for ChainSel. ChainSel in turns rely on the
algorithm IsValidBlock. IsValidBlock take as input a block B of Cloc and outputs
1 if B is a valid block (i.e., the structure of the block is correct) and 0 otherwise.

We note that by assuming that a ledger protocol is always equipped with the
algorithms ChainSel, IsValidChain and IsValidBlock make some of our results less
general. However, we will show that it is possible to obtain a better updatable
ledger in the case when the two ledgers (the current ledger) and the new ledger
have the same chain selection rule (among other similarities).

2.2 Genesis Block Functionality

The ledger protocols that we consider in this work are equipped with the de-
scription of an algorithm genesis that, on input a random value of appropriate

8 Ciampi et al.

length, outputs a valid genesis block (i.e., the first block of the chain). The secu-
rity of most of the known ledger protocols holds under the additional assumption
that the genesis block is correct. That is, the genesis block has been generated
accordingly to genesis using appropriate randomness. Multiple ways have been
presented to generate a correct genesis block in the literature (i.e., by relying on
a trusted authority, use unpredictable information (like in bitcoin), run a multi-
party computation (MPC) protocol [1], rely on PoW [12] assumptions and so on
and so forth). In this work we abstract the generation of the genesis block by
means of an ideal functionality. The ideal functionality that one might expect,
upon being activated from the adversary or from an honest party, should sample
a random string and use it to run the algorithm genesis. Unfortunately this sim-
ple functionality does not cover real world scenarios where an adversarial party
might see the genesis block before the honest parties do. This, for example, can
happen in the case when genesis is realized via an MPC protocol and a rushing
adversary6 could hold the genesis block (the output of the computation) for some
bounded amount of time τmax before the honest parties can see it. We note that
an adversary can use this strategy to take an advantage on the generation of the
blocks that extend the genesis block. Therefore, the first modification that we
consider for our ideal functionality is to allow the adversary to see the genesis
block up to τmax rounds earlier than the honest parties. The second relaxation
allows the adversary to see up to m honestly generated genesis blocks and conse-
quently decide which of these blocks will become the genesis block. We propose
the formal description of our genesis functionality Fgen in Fig. 1. We note that
the case where τmax = 0 and m = 1 corresponds to the case where there is only
one candidate genesis block and all the parties can see it at the same round.

3 Secure Updatable Ledgers

3.1 Defining Secure Updatable Ledgers

In this section, we provide the definition of updatable ledgers. Our definition is
generic in the sense that can be applied to a large class of ledgers (e.g., PoS, PoW
and so on). Let LUPD and L2 be the two ledgers with the respective assumptions
A1 and A2. Assuming that A1 holds, then among the parties that are running
LUPD we could have up to a fraction of tc1 corrupted parties (i.e., parties that
have received the command corrupt). Analogously, the assumption A2 for the
ledger L2 holds if the number of corrupted parties divided by the number of
honest party is below the threshold tc2.

The interface of an updatable ledger extends the interface of a standard ledger
by adding the command (activate,L2). That is, each party that runs an updatable
ledger LUPD can receive the command (activate,L2) from the environment to
enable the update procedure. Let tPi

denote the time in which a party Pi receives
6 A rushing adversary waits to receive the messages from all the honest parties and
then computes its reply. Note that this means that, in general, the adversary is
always able to see the output of the computation before the honest parties do.

Updatable Blockchains 9

Genesis Functionality for L
Parameters. The functionality is parametrized by τmax, the maximum number of
candidate genesis block m, the genesis block Bgen initialized with a default value
⊥ and the procedure genesis(). We assume the functionality to be registered to
Gclock and that it maintains a set of registered parties P. On any input I the
functionality queries Gclock, and we denote with R be the response obtained by
Gclock.

- If I = GEN_GENESIS is received from the adversary A then set τ := R, generate
m genesis blocks (each block is generated by running the procedure genesis())
GB := {Bgen

1 , . . . , Bgen
m } for L, and send GB to the adversary.

- If I = GET_GENESIS is received from an honest party pi ∈ P do the following
– If Bgen 6= ⊥ then return Bgen to pi.
– If Bgen = ⊥ and R − τ > τmax then set generate a genesis block ˜Bgen by

running genesis, set Bgen ← ˜Bgen and send Bgen to pi.
- If I = (GET_GENESIS, Bgen′) is received from the adversary do the following

– If (R− τ) ≤ τmax and Bgen′ ∈ GB then set Bgen := Bgen′.
– Else, return ⊥ to the adversary.

Fig. 1. The genesis functionality Fgen.

the activation command and let Pu be the set of parties that received this
command. Informally, an updatable ledger guarantees that if the set of honest
parties that are willing to run L2 (i.e., the number of parties that received
(activate,L2)) is such that A2[τ] = 1 for all τ ≥ T0 for some T0 ∈ N, then
the state of L2 at time T0 + ∆ corresponds to the state of LUPD at some time
T ∈ [T0, T0 +∆]. The parameter ∆ represents the time required for the update
process to be completed. The above implies that L2 extends L1 and that L2 is
secure (i.e., it enjoys consistency and liveness). In a nutshell, a secure update
process guarantees that the state of the old ledger is moved into the new ledger,
and that the new ledger is secure. We now give a more formal definition.

Definition 2 (Updatable Ledger). We say that a ledger LUPD is updatable
with activation parameter ∆ (where ∆ ∈ N) if it is a secure ledger according to
Def. 1 and it enjoys the following property.

Updatability. Let L2 be a secure ledger (always according to Def. 1). Let
Pu be the set of parties that received the input (activate,L2). If Pu is such that
A2[τ] = 1 for all τ ≥ T0 for some T0 ∈ N and A1[τ ′] = 1 for all τ ′ ≤ T1 = T0+∆,
then

1. LPi
1 [T ′] � L2 for some Pi ∈ Pu with T0 ≤ T ′ ≤ T1.

2. for all τ ′′ ≥ T1 L2 enjoys consistency and liveness

We note that this definition says nothing on the security of LUPD after the
time T1 = T0 + ∆. Indeed, the Definition 2 implies that if after this time slot

10 Ciampi et al.

T0 +∆ LUPD becomes insecure (e.g., because A1 does not hold) then the security
of L2 is not compromised.

We relax the above definition by introducing the notion of updatable ledger
in the semi-online setting. An updatable ledger in the semi-online setting guar-
antees the properties of updatability only for the honest parties that where active
during the activation period [T0, T1]. That is, if an honest party P is offline be-
fore time T0, and comes online after at time T1 then no security is guaranteed
with respect to P .

4 Our constructions

In this section we propose two main approaches to turn a ledger L1 into an
updatable ledger LUPD. That is, we show how to make L1 able to self-update
to the code of a new ledger L2. The first approach proposed requires L1 and
L2 to be the same (i.e., they use the same consensus rules) but might have
a different block structure. The advantage in this approach is that we get a
very simple updatable ledger, that does not decrease the throughput of LUPD

during the update and does not require all the honest parties to be online during
the update7. The second approach requires fewer similarities between the two
ledgers, but it is proven secure only in the semi-online. We also show that we
can relax the requirement on the honest parties being online during the update
by relying on a 2-for-1 mining approach (more details are provided in the end
of Sec. 4.2).

We now provide a detailed description of our approaches and formally prove
their security.

4.1 First approach.

In this section we consider a simplified scenario where the two ledgers, L1 and
L2, are the same except for the block format (i.e., L1 and L2 might have a
different block size). Moreover, we assume that a block valid for L1 is valid for
L2 as well (but the vice versa does not necessarily hold). Formally, this means
that if the block validation algorithm IsValidBlock1 of L1 outputs 1 on some
input B, then also the block validation algorithm IsValidBlock2 of L2 outputs 1
(see Sec. 2.1 for more details). We now prove the following theorem

Theorem 1. If L1 and L2 are secure ledgers with block validation rules respec-
tively IsValidBlock1 and IsValidBlock2 such that:

1. L1 and L2 are the same except with respect to the block validation rules;
2. for every block B such that if IsValidBlock1(B) = 1 then IsValidBlock2(B) =

1,
3. L1 (resp. L2) has common-prefix parameter k, chain-growth parameter (τ, s)

and assumption A1 (resp. A2) with A1 = A2,
7 We also show that we can relax the requirement on the honest parties being online
during the update for the case of PoW ledgers.

Updatable Blockchains 11

then there exists an updatable ledger LUPD with update parameter ∆ := (k +
1)τ−1 + s.

Proof. We assume that enough parties have received the command (activate,L2)
such that A2 holds and denote the time when this happen with T0. Our updatable
ledger LUPD works as follows.

Each party Pi ∈ Pu does the following steps.

1. Use IsValidBlock2 as a block validation algorithm.
2. Create and post a transaction that contains an activation flag.
3. Let if be the index of the block that will contain the first transaction with

an activation flag.
4. Let j := if + k + 1, run L1 and when the j-th block Bi

j becomes part of
ĽPi

1 [τi] for some τi ≥ T0 start extending Bi
j using the rules of L2 instead of

the rules of L1 (we recall that a valid block for L1 is also a valid block for
L2)

We provide a pictorial description of what happens to the ledger state during
the update in Fig. 2. We note that two honest parties P1 and P2 might have
different ĽP1

1 [τ] and ĽP2
1 [τ] at any time τ . The Fig. 2 describe the scenario where

P1 might start to run L2 starting from an unstable block (i.e. a block of ĽP1
1 [τ]

with τ ≥ T0 + s) which is different from the block that P2 is using. However,
after sufficiently many rounds (at some round τ ′ ≤ T0 + s + (k1 + 1)τ−1

1 to be
precise) P1 and P2 will agree on what is the last block of L1 and what is the
first bock of L2.

To complete the proof we need to show that L2 enjoys consistency and live-
ness and that the state L1 at some time τ ∈ [T0, T1] is a prefix of L2’s state.

Before doing that, we introduce the notion of canonical execution for the
ledger L2. A canonical execution represents a standalone execution of L2. More
precisely, we assume the existence of a genesis block for L2 (that the adversary
and the honest party see at the round 0) and that A2[τ]=1 for all τ ≥ 0. Let P
be the set of parties that is running L2. Also, let t be the smallest time slot in
which Bif appears in LPi

2 [t] for all Pi ∈ P and let t̃i,j be the smallest time slot
in which Bi

j appears in ĽPi
2 [ti,j] for each Pi ∈ P with j := if + k + 1.

We now go back to our updatable ledger protocol. In the protocol that we
have described, by assumption, we have that A2[T0] = 1 for all τ ≥ T0. From the
moment when A2 becomes true the activation process takes ∆ ≤ (k+ 1)τ−1 + s
time slots to be completed.

This is because the parties need to wait for the block if to be part of all the
honest parties stable view and wait for the j-th block (with j := if + k + 1) of
to be part of ĽPi

1 [ti,j] for all Pi with ti,j ∈ N. Note that in the moment that the
block Bi

j becomes available to an honest party Pi ∈ Pu (i.e., Bi
j is part of ĽPi

1)
then the party starts running L2 to extend Bi

j as described earlier (we recall
that at this time slot the assumption A2 holds). Let t′i,j be the smallest time
slot in which Bi

j appears in ĽPi
2 [t′i,j] for each Pi ∈ P with t′i,j ∈ N. If we consider

the execution of the protocol from time T0 and T0 + ∆ this can be seen as a

12 Ciampi et al.

flag

if

L1 block

if + k + 1 if + k

T0 T0 + s T0 + s1 + (k1 + 1)τ−1

1Round

Block index

Unstable L1 block

L2 block

if + k + 1

if + k + 1

Unstable L2 block

Fig. 2. Transition from L1 to L2. Note that different honest parties might have different
views (i.e., forks) of the unstable part of the chain which have also different lengths.

canonical execution of L2 given that L1 and L2 follow the same rules and the
same assumption, and given that ĽPi

1 (and ĽPi
2) contains at most k blocks more

than LPi
1 (and LPi

2) for all Pi ∈ Pu. Hence, any advantage that the adversary has
on our updatable ledger can be translated into an advantage for an adversary
that is attacking L2, which is assumed to be secure. Note that it is crucial that
the assumption that underlines the two ledger is the same. Indeed, we note that
the number of honest parties that received (activate,L2) might be lower than
the overall number of honest parties. Hence, the honest parties that are running
the update procedure are less than the parties that are running L1 (this might
happen as we do not require all the honest parties to update). However, given
that A1 = A2, we can see the honest parties that did not receive the command
(activate,L2) as parties controlled by the adversary as they are not following the
update procedure. Luckily, this does not cause problems as even if we consider
these parties as adversarial, A1 would still hold (given that A1 = A2). Hence, we
can claim that in the worst case everything that can be done by the adversary
during the update can be done also in the canonical execution given that the
number of honest parties in the canonical execution is the same as the number
of honest parties that are performing the update.

We remark that the only difference between this and the canonical execution
described above is that the blocks Bif , . . . , Bj−2, Bj−1 are generated using L1,
but this does not represent an issue since we are assuming that any block of L1
is valid for L2.

Updatable Blockchains 13

We finally note that this protocol does not put any restriction on whether an
honest party needs to be online or not during an update given that L1 and L2
have the same chain selection rule (only the block selection rule is different). One
practical advantage of our approach is that if L1 (and L2) allows bootstrapping
from the genesis block (like in [3]) so does our updatable ledger.

4.2 Second Approach

Before providing our construction we introduce the notion of genesis-compatible
ledgers. We say that two ledgers L1 and L2 are genesis-compatible if a block of
L1 can be turned into a valid candidate genesis block for L2. We now propose a
formal definition.

Definition 3. Let L1 and L2 be two secure ledgers where Fgen is the genesis
functionality of L2 parameterized by the algorithm genesis() (see Fig. 1).

We say that L1 is genesis-compatible with L2 if there exists a deterministic
polynomial time algorithm Π1→2 that, on input a valid block B of L1 outputs
a valid genesis block B̃ for L2. Moreover, the output of Π1→2 is identically
distributed to the output of the procedure genesis().

We note that Π1→2 could be a very simple protocol. For example, if we con-
sider two PoW ledgers that use the same puzzles, then L1 is genesis-compatible
with L2 since the Π1→2 can simply take a block of L1 and use it as a candidate
genesis block for L2. We note that the definition of genesis-compatibility only
tells that it is possible to generate a genesis block for L2 with a valid structure.
That is, it does not imply that L2 can be securely run using any genesis block
generated using Π1→2 as, for example, using an old block of L1 could give an
advantage to the adversary over the honest parties. More details follow.

We now propose our first compiler that turns a ledger L1 that is genesis-
compatible with L2, into an updatable ledger. At a very high level our approach
is the following. We use L1 to realize the genesis functionality of L2, and then we
use the output of the genesis functionality to execute L2. We note that it is easy
to create a candidate genesis block from L1 because it is genesis-compatible with
L2. To complete the description of our compiler, we need to specify what block
of L1 will be chosen, and argue that this process is indeed sufficient to realize
the genesis functionality for L2. In our approach the parties that are running L1
agree on the index j of a block that will be used as a genesis block (this block can
be decided using the consensus algorithm of L1, more details will be provided).
When the block of position j, that we denote with Bj , becomes stable for all
the honest parties that decided to update, then these parties use Π1→2 to turn
Bj into a genesis block for L2 thus obtaining Bgen. At this point Bgen is used
to run L2 and L1 can be abandoned. Even though the above approach seems to
work, there are many subtleties. The first is that the adversary might be able to
see the block Bj before any other honest parties do, and therefore he can take
an advantage in the generation of the blocks of L2. The second issue is that the
adversary might influence the choice of the block that will appear in position j.

14 Ciampi et al.

Indeed, we do not know how the consensus algorithm of L1 works and what is
the power of the adversary in biasing the content of Bj . We denote with τmax′

the upper bound on the number of rounds that pass between the time at which
the adversary can see a candidate block for L1 for a position j, and the time
at which all the honest parties see Bj as part of the stable chain. We refer to
this parameter τmax′ as the prediction parameter. We also denote with m′ the
upper bound on the number of valid chains that are broadcasted on the network
that contain a block in position j and refer to this parameter as maximum forks
parameter.

Coming back to our protocol, we note that if the genesis functionality of L2
is parameterized with τmax = τmax′ and m = m′ then we can prove that the
solution we proposed works.

We are now ready to state formally our theorem and prove it.

Theorem 2. If L1 and L2 are secure ledgers and:

1. L1 has common-prefix parameter k1, chain-growth parameter (τ1, s1) and
assumption A1;

2. L2 has common-prefix parameter k2, chain-growth parameter (τ2, s2) and
assumption A2;

3. the prediction parameter of L1 is τmax′ and the maximum forks parameter is
m′;

4. the genesis functionality Fgen of L2 is parametrized by τmax = τmax′ and
m = m′;

5. L1 is genesis-compatible with L2.

then there exists an updatable ledger LUPD with update parameter ∆ :=
2k1τ

−1
1 + s1 in the semi-online setting.

Proof. We start the proof by describing how formally our protocol works. Let
T0 be such that A2 holds. At time T0 each party in Pi ∈ Pu does the following
steps.

1. Create and post a transaction that contains an activation flag, let if be the
index of the block that will contain the first transaction with an activation
flag (note that there might be more than one of such a transactions).

2. Keep running L1 until the block with index j = if + k1 becomes stable (i.e.,
becomes part of LP

1 [τ] for all P ∈ Pu for some τ ≥ T0) and stop issuing
transaction for L1 (if any).

3. When the j-th block Bj becomes stable then stop running L1 and start
running L2 using Bgen ← Π1→2(Bj) as the genesis block.

We provide a pictorial description of what happens to the ledger state during
the update in Fig. 3. The activation flag is used by the honest parties to reach an
agreement on what it will be the index of the block used as a genesis block. We
note that the blocks of L1 that extend Bj might be unstable, moreover after the
update has been completed the parties in Pu will ignore the blocks of L1 that

Updatable Blockchains 15

extend Bj (since after the update all the parties in Pu will be using the rules
L2, hence its chain selection rule). The reason why the parties in Pu will stop
issuing transactions for L1 is that these transactions might be included in blocks
that extend Bj , which will be ignored after T0 + ∆ rounds. This clearly affects
the throughput of the ledger in the interval [T0 + k1τ

−1
1 + s1, T0 + 2k1τ

−1
1 + s1]

(Fig. 3). We now continue with the proof. Let T0 be the time at which we know
that Pu is such that A2 holds. In the worst case, the time required for an honest
party to post a transaction that contains the activation flag takes time s1 rounds
(s1 comes from the liveness of L1). The number of rounds required for j to be
stable in the view of all the honest parties is 2k1τ

−1
1 rounds. This is because

to generate the block Bj are required at least k1τ
−1
1 rounds, and Bj has to be

extended with at least k1 blocks to be part of all the honest parties view (and this
takes additional k1τ

−1
1 rounds) Hence, the time required to complete the update

is ∆ = 2k1τ
−1
1 + s1. Once the block Bj becomes stable, the parties in Pu can

start running L2, and we are guaranteed that L2 enjoys liveness and consistency
because the genesis block for L2 is created accordingly to Fgen and by assumption
A2 holds. Therefore, everything that appears before Bgen is preserved due to the
consistency of L2. We refer to the state of L1 before Bgen as L̃1, and to the
state of the ledger after the update as L̃1||L2. We finally note that we guarantee
no security for the honest parties that were not online during the update. The
reason is that after T1 the honest parties abandon L1 and the adversary could
compromise it. For example, an adversary could potentially keep extending L1
after the block j, and create a very long chain, even longer that L̃1||L2. Hence, if
the chain selection rule of L1 prescribes to take the longest chain, then a party
that comes online at time T1 might take the chain L1 (which is compromised).

We remark that our construction requires the parties to generate empty
blocks for L1 from block index j + 1 and until block Bj becomes stable. This is
required as the honest parties, after the update completes, will ignore any block
generated using the rules of L1 that comes after Bj .

Practical implications. The updatable ledger that we have described can be
updated to any ledger L2 under the condition that the genesis functionality of
L2 tolerates an adversary that can see the genesis block τmax rounds before the
honest parties and decide the genesis block among a set of m candidate genesis
blocks. This requirement might look strong, but we note that the problem of
constructing a ledger that is secure in such a scenario is simpler than the problem
of constructing a ledger that supports temporary dishonest majority [2]. A ledger
with security assumption A that tolerates temporary dishonest majority is such
that its security properties (liveness and consistency) become valid again when
A[τ1] = 1, even if A[τ ′] = 0 for all τ ′ ∈ [τ0, τ1 − δ] for some τ0, τ1, δ ∈ N such
that τ1 − δ ≥ τ0. That is, the ledger become secure again when there is honest
majority (i.e., A holds) even if there was an interval of time when there was no
honest majority (i.e., A did not hold). Therefore, if we consider the extreme case
where τ0 = 0, we can assume without loss of generality that the ledger admits

16 Ciampi et al.

flag

if

L1 block

Unstable L1 block

L2 block

j = if + k1 if + 2k1

T0 T0 + s1
T0 + k1τ−1

1
+ s1 T0 + 2k1τ−1

1
+ s1Round

Block index

Fig. 3. Transition from L1 to L2. Note that the empty blocks of L1 might be non-stable.

a genesis functionality parametrized by τmax = δ, and by m that depends on
the upper bound on the number of forks that the adversary can create. Hence,
there are already ledgers that might fit our requirements for L2, and all the
advancement in the research that concerns the security of ledgers in the case
of temporary dishonest majority can be used to construct good candidates of
updated ledgers (L2) for existing ledgers (L1) that can be used in our compiler.

Security for Offline Parties. Our security notion above is ensured for parties
that are online during the upgrade process. Clearly it is necessary that the ma-
jority of the population’s consensus-maintaining parties are honest and online,
as the honest majority assumption mandates. Nevertheless, practical blockchain
systems often have a large number of consumer parties by count who have a very
small contribution to the total computational power of network, if at all, and
are not significantly contributing to the maintenance of the consensus. These
nodes can be wallets and other clients who mainly consume, rather than main-
tain, the blockchain, and are often offline for longer periods of time. Regardless,
these nodes constitute the economic majority of the nodes and we must ensure
they can also upgrade safely. The critical situation arises when such a party goes
offline prior to an upgrade, remains offline during every phase of the upgrade,
and comes online long after the rest of the population has successfully upgraded.
Before describing how to construct a protocol that can protect these parties, let
us briefly observe why an attack is easily possible by a minority adversary in a
construction with no relevant protective mechanism. Consider a situation where
a hard-fork-style change takes place and that blocks mined by upgraded parties
after the upgrade are incompatible with blocks mined prior to the upgrade, i.e.,
after the upgrade, an unupgraded party will not consider an upgraded block as

Updatable Blockchains 17

valid and an upgraded party will not consider an unupgraded block as valid.
After the upgrade has been completed, the majority of the population will shift
their mining power to mining new-style blocks. The adversary can take advan-
tage of this situation to ex post facto attack the old system, which now remains
unprotected as no significant mining power remains to secure it. As such, she can
break the common prefix property, rewrite history, and subvert the upgrade sig-
naling mechanism itself. More concretely, an adversary in this situation forks the
old chain from the parent of the block in which upgrade information appeared
for the first time and continues mining a chain parallel to the one that yielded
the upgrade. As soon as that alternative history overtakes the old chain in terms
of work, the adversary is successful. Any offline party who wakes up afterwards
will use the old-style consensus rules to choose the blockchain and hence the up-
grade will not appear in its view. The adversary has succeeded in isolating the
offline party from the rest of the network. To rectify the above issue, a practical
implementation of the protocol must leverage the mining power of the upgraded
population to maintain both the new chain while at the same time securing the
old chain. We propose a solution for the case where L1 and L2 are two proof-of-
work or two proof-of-stake type of ledgers. Our solution leverages on a variation
of 2-for-1 mining [11]. An upgraded miner works as follows. They maintain the
longest chain C in view of the new protocol rules, but also the longest chain C ′
in the view of an unupgraded party. In case of hard fork, these two chains will
differ. When they are about to mine a new block on top of the upgraded chain,
they construct a new-style candidate block b extending C as usual. In addition,
they also construct an empty (transactionless) old-style block b′ on top of the
best unupgraded chain C ′. In a commentary section of the old-style candidate
block b′, such as the coinbase transaction, the miner places the hash H(b) of the
new-style candidate block. The miner then attempts to find proof-of-work for
the old-style block, i.e., some nonce ctr that satisfies the proof-of-work equation
H(b′ ‖ ctr) ≤ T for the mining target T . If such proof-of-work is found, then
the block b′ is broadcast to the network and adopted as the tip of the longest
unupgraded chain by the rest of the (upgraded or unupgraded) miners. Note
that this block is designed to be backwards-compatible in the sense that it will
be accepted by unupgraded miners even though they remain unaware of the up-
grade. On the other hand, if the reverse proof-of-work equation H(b′ ‖ ctr)R ≤ T
is satisfied (where H(·)R denotes the reversed bitstring of H(·)), then b′ and
the respective proof-of-work and blocks b′, b are broadcast to the network. This
time unupgraded miners will not consider this a valid block. However, upgraded
miners examine the validity of the block b contained within the commentary
section of b′ and check that the reverse proof-of-work equation is satisfied. If so,
they adopt the block b as the next block in their upgraded blockchain. The above
mechanism is the only mechanism by which new-style blocks are accepted by up-
graded honest miners. The protocol just described has two advantages. Firstly,
the upgraded honest miners make use of their mining power to contribute to
the security of both the old and the new-style chain simultaneously. Therefore,
an adversary cannot attack the old chain ex post facto. Secondly, instead of di-

18 Ciampi et al.

viding their mining power between the two chains, the honest parties only use
their mining power once to mine on both networks, because the hash function
is only evaluated once. As such, the honest mining power is not diminished by
the use of this mechanism. We observe that, in the Random Oracle model, the
last bits of the hash output remain uniformly distributed conditioned on the fact
that the proof-of-work equation has a solution. Therefore, finding a solution of
the proof-of-work equation and finding a solution of the reverse proof-of-work
equation are two independent events (they will occur simultaneously so rarely
that the honest parties can ignore this possibility). Lastly, note that this scheme
can be used repeatedly when multiple upgrades have occurred on top of one an-
other, simply by treating a portion of the bits of the hash as the significant bits
to test against the proof-of-work equation (e.g., for a second upgrade, the hash
output can be split in three equal parts to be tested against the proof-of-work
equation). This scheme therefore theoretically resolves the question of securing
offline parties. In practice, because the scheme adds significant implementation
complexity, implementors may elect to maintain this backwards-compatibility
mechanism for a limited amount of time. In that case, parties who have remained
offline longer than the backwards-compatibility mechanism is maintained, will
have no guarantees for security, similarly to a classical system whose long-term
support window has expired. The scheme requires the added complexity of min-
ing two blocks simultaneously only in the case of proof-of-work. This is due to
the nature of proof-of-work and specifically the fact that each query counted
towards the proof-of-work quota can only be devoted to a specific message. In
proof-of-stake blockchains, the solution for maintaining the security of offline
unupgraded parties is the obvious one and allows for a much simpler implemen-
tation: We require upgraded parties to mint, alongside their new-style blocks
extending the longest upgraded chain and containing transactions, also empty
old-style blocks extending the longest unupgraded chain, to ensure the security
of their unupgraded counterparts.

A Modeling synchrony

We refer to Fig. 4 for the formal description of the functionality Gclock.

B Functionalities with Dynamic Party Sets

UC provides support for functionalities in which the set of parties that might
interact with the functionality is dynamic. We make this explicit by means of the
following mechanism (that we describe almost verbatim from [4, Sec. 3.1]): All
the functionalities considered here include the following instructions that allow
honest parties to join or leave the set P of players that the functionality interacts
with, and inform the adversary about the current set of registered parties:

– Upon receiving (REGISTER, sid) from some party pi (or from A on behalf of
a corrupted pi), set P := P ∪ {pi}. Return (REGISTER, sid, pi) to the caller.

Updatable Blockchains 19

The functionality is available to all participants. The functionality is
parametrized with variable τ , a set of parties P = p1, . . . , pn, and a set F of
functionalities. For each party pi ∈ P it manages variable di. For each F ∈ F
it manages variable dF
Initially, τ = 0,P = ∅ and F = ∅.

- Upon receiving (CLOCK-UPDATE, sid) from some party pi ∈ P set di = 1
execute Round-Update and forward (CLOCK-UPDATE, sid, pi) to A.

- Upon receiving (CLOCK-UPDATE, sid) from some functionality { ∈ F set dF =
1, execute Round-Update and return (CLOCK-UPDATE, sid, F) to F .

- Upon receiving (CLOCK-READ, sid) from any participant (including the envi-
ronment, the adversary, or any ideal-shared or local-functionality) return
(CLOCK-READ, sid, τ) to the requester.

Procedure Round-Update: If dF = 1 for all F ∈ F and di = 1 for all honest
pi ∈ P, then set τ = τ + 1 and reset dF = 0 and di = 0 for all parties in P.

Fig. 4. The functionality Gclock

– Upon receiving (DE_REGISTER, sid) from some party pi ∈ P, the functional-
ity updates P := P \ {pi} and returns (DE_REGISTER, sid, pi) to pi.

– Upon receiving (IS_REGISTERED, sid) from some party pi, return (REGISTER,
sid, b) to the caller, where the bit b is 1 if and only if pi ∈ P.

– Upon receiving (GET_REGISTERED, sid) from A, the functionality returns the
response (GET_REGISTERED, sid,P) to A.

In addition to the above registration instructions, global setups, i.e., shared
functionalities that are available both in the real and in the ideal world and
allow parties connected to them to share state [6], allow also UC functionalities
to register with them. Concretely, global setups include, in addition to the above
party registration instructions, two registration/de-registration instructions for
functionalities:

– Upon receiving (REGISTER, sidG) from a functionality F (with session-id sid),
update F := F ∪ {(F, sid)}.

– Upon receiving (DE_REGISTER, sidG) from a functionality F (with session-id
sid), update F := F{(F, sid)}.

– Upon receiving (GET_REGISTEREDF , sidG) fromA, return (GET_REGISTEREDF ,
sidG, F) to A.

We use the expression sidG to refer to the encoding of the session identifier
of global setups. By default (and if not otherwise stated), the above four (or
seven in case of global setups) instructions will be part of the code of all ideal
functionalities considered in this work. However, to keep the description simpler
we will omit these instructions from the formal descriptions unless deviations
are defined.

20 Ciampi et al.

References

1. Zcash, https://z.cash/
2. Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin security under tem-

porary dishonest majority. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol.
11598, pp. 466–483. Springer, Heidelberg (Feb 2019). https://doi.org/10.1007/978-
3-030-32101-7_28

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 913–930. ACM Press
(Oct 2018). https://doi.org/10.1145/3243734.3243848

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction
ledger: A composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 324–356. Springer, Heidelberg (Aug 2017).
https://doi.org/10.1007/978-3-319-63688-7_11

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

6. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85.
Springer, Heidelberg (Feb 2007). https://doi.org/10.1007/978-3-540-70936-7_4

7. Coretti, S., Garay, J.A., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg
(Dec 2016). https://doi.org/10.1007/978-3-662-53890-6_33

8. Decred: Decred white paper (2019), https://docs.decred.org/
9. Duffield, E., Diaz, D.: Dash: A payments-focused cryptocurrency (2018), https:

//github.com/dashpay/dash/wiki/Whitepaper
10. Garay, J.A., Kiayias, A.: SoK: A consensus taxonomy in the blockchain era. In:

Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 284–318. Springer, Heidel-
berg (Feb 2020). https://doi.org/10.1007/978-3-030-40186-3_13

11. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Anal-
ysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007/978-3-662-46803-6_10

12. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 465–495. Springer,
Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-76581-5_16

13. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 IEEE Sym-
posium on Security and Privacy. pp. 139–156. IEEE Computer Society Press (May
2019). https://doi.org/10.1109/SP.2019.00040

14. Goodman, L.: Tezos —a self-amending crypto-ledger white paper (2014), https:
//tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf

15. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (Mar 2013). https://doi.org/10.1007/978-3-642-36594-2_27

16. Zhang, B., Oliynykov, R., Balogun, H.: A treasury system for cryptocurrencies:
Enabling better collaborative intelligence. In: NDSS 2019. The Internet Society
(Feb 2019)

https://z.cash/
https://doi.org/10.1007/978-3-030-32101-7_28
https://doi.org/10.1007/978-3-030-32101-7_28
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-662-53890-6_33
https://docs.decred.org/
https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper
https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1109/SP.2019.00040
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://doi.org/10.1007/978-3-642-36594-2_27

	Updatable Blockchains

