
Affine Determinant Programs: A Framework for Obfuscation and

Witness Encryption

James Bartusek∗ Yuval Ishai† Aayush Jain‡ Fermi Ma§ Amit Sahai‡

Mark Zhandry¶

July 16, 2020

Abstract

An affine determinant program ADP : {0, 1}n → {0, 1} is specified by a tuple (A,B1, . . . ,Bn)
of square matrices over Fq and a function Eval : Fq → {0, 1}, and evaluated on x ∈ {0, 1}n by
computing Eval(det(A +

∑
i∈[n] xiBi)).

In this work, we suggest ADPs as a new framework for building general-purpose obfuscation
and witness encryption. We provide evidence to suggest that constructions following our ADP-
based framework may one day yield secure, practically feasible obfuscation.

As a proof-of-concept, we give a candidate ADP-based construction of indistinguishability
obfuscation (iO) for all circuits along with a simple witness encryption candidate. We provide
cryptanalysis demonstrating that our schemes resist several potential attacks, and leave further
cryptanalysis to future work. Lastly, we explore practically feasible applications of our witness
encryption candidate, such as public-key encryption with near-optimal key generation.

∗UC Berkeley. Email: bartusek.james@gmail.com.
†Technion. Email: yuvali@cs.technion.ac.il.
‡UCLA. Email: {aayushjain,sahai}@cs.ucla.edu.
§Princeton and NTT Research. Email: fermima@alum.mit.edu.
¶Princeton and NTT Research. Email: mzhandry@princeton.edu.

1

Contents

1 Introduction 3
1.1 Technical Overview . 4

2 Preliminaries 7
2.1 Randomized Encodings . 8
2.2 Witness Encryption . 8
2.3 Indistinguishability Obfuscation . 9

3 Affine Determinant Programs: Syntax and Definitions 9
3.1 Encoding Functions as ADPs . 10
3.2 One-time Security. 10
3.3 iO Security. 11

4 Constructing ADPs 11
4.1 Obfuscating Simple Functionalities with ADPs . 11
4.2 ADPs for Log-depth Boolean Formulas . 13
4.3 Encoding Branching Programs as ADPs . 14

5 Witness Encryption 15
5.1 Definitions . 15
5.2 Candidate Witness Encryption Constructions . 20

6 Applications of ADP-Based Witness Encryption 22
6.1 Public-Key Encryption with Short Public Keys . 22

7 Cryptanalysis of the Witness Encryption Candidate 25
7.1 Formula-Based All-Accept . 26
7.2 NSS-Based All-Accept . 29

8 Candidate Obfuscation for Branching Programs 30
8.1 Functionality-Preserving Transformations . 31
8.2 Extensions of the Basic Construction . 34

9 Cryptanalysis and Parameter Estimation for the Branching Program Obfusca-
tion Candidate 35
9.1 Polynomial Extension Attacks . 35
9.2 The Need for Super-polynomial Error and Modulus 37
9.3 The Need for Random Local Substitutions . 39

10 Applications and Future Work 40

2

1 Introduction

Program obfuscation “scrambles” a program, preserving functionality while hiding implementation
details. A theoretical study of program obfuscation was initiated by Barak et al. [BGI+01], who
demonstrated that the natural notion of virtual black-box (VBB) obfuscation is impossible to
achieve for all circuits. This initially led to skepticism that general cryptographically useful program
obfuscation might not be realizable.

The situation changed several years ago when Garg et al. [GGH+13b] gave the first candidate
construction of indistinguishability obfuscation — a weaker notion not subject to the impossibility
— and, along with subsequent work [SW14], showed how to use this weaker notion in a multitude
of cryptographically useful ways. In fact, today indistinguishability obfuscation (iO) is widely
regarded as “crypto complete,” capable of achieving essentially any cryptographic task.1

Initially all candidate obfuscators required cryptographic multilinear maps [GGH13a, CLT13,
GGH15], a powerful new mathematical tool. Very recently, two new lines of work have emerged
on constructing obfuscation without multilinear maps. The first line of work builds upon the con-
nection between obfuscation and functional encryption (see [AJL+19] and the references therein);
the second builds on a number of new mathematical methods [GJK18]. While these new direc-
tions expand the set of methodologies for achieving general-purpose obfuscation, the set of viable
approaches for building general-purpose obfuscation remains extremely limited.

We view the situation as being reminiscent of the early days of public key cryptography, which
also required new mathematical tools for the time. Some, such as Diffie-Hellman and RSA, have
withstood the test of time, whereas others, such as the Merkle–Hellman knapsack cryptosystem,
were ultimately found to be insecure. But even the failures yielded interesting insights, such as new
cryptanalysis techniques. Therefore, given the importance of obfuscation, we believe it is crucial
to investigate many potential lines of inquiry for realizing obfuscation. Furthermore, we believe
it is particularly important to emphasize simplicity in our search for new approaches, since even
successful cryptanalyses of simple proposals are likely to inform the scientific quest for secure and
efficient obfuscation. (This perspective is part of a larger research agenda exploring new sources of
hardness in cryptography [Sah19].)

This Work. In this work, we propose a new framework for building obfuscation through affine
determinant programs (ADP). An ADP consists of a tuple of square matrices (A,B1, . . . ,Bn)
over Fp, where evaluation on an input x ∈ {0, 1}n involves computing the affine combination
A +

∑
i∈[n] xiBi and taking the determinant. While ADPs have appeared before in the literature

(e.g. to build randomized encodings [IK02]), to the best of our knowledge no prior work has
considered their application to general obfuscation. We believe ADPs are a promising route toward
obfuscation for several reasons:

• ADPs are conceptually very simple.

• We can interpret the recent work of Bartusek et al. [BLMZ19] as an ADP for conjunction
obfuscation, with provable security under the LPN assumption. Thus, ADPs certainly provide
security for obfuscation in some situations.

• As we will show, ADPs may offer a route toward implementable applications.

1To be slightly more precise, building cryptography from iO also requires one-way functions.

3

Therefore, we initiate the study of ADPs for obfuscation, giving the following results:

• A New Framework for Building Obfuscation. We suggest ADPs as a route toward
building obfuscation without multilinear maps. To facilitate this approach, we provide a
number of techniques for protecting ADPs against attacks, and study the security of these
techniques by developing new cryptanalysis techniques.

• A Candidate Witness Encryption Scheme. We examine a special case of obfuscation,
called witness encryption, and give a very simple candidate construction. As an application,
we use our scheme to build a public key encryption scheme with low-complexity key genera-
tion. Our approach yields for the first time implementable applications of witness encryption.

• Towards Candidate iO Constructions. We then turn to the much more difficult problem
of constructing full indistinguishability obfuscation. We develop some initial ideas, including
cryptanalytic methods, leading to an initial candidate construction.

1.1 Technical Overview

One of the main approaches to general-purpose program obfuscation, pioneered in [GGH+13b], can
be seen as following a particular recipe:

1. Construct an algebraic randomized encoding for the input program, which can be seen as
offering a sort of “one-time” security.

2. Place the algebraic encoding “in the exponent” of a multilinear map, using the multilinear
map operations to evaluate the encoding.

In most of the literature, the randomized encoding used is a matrix branching program, which
can be obtained using Barrington’s theorem and Kilian re-randomization. Another common exam-
ple due to [Zim15] converts a circuit into an algebraic circuit.

Affine Determinant Programs. In this work, we consider another variant of randomized en-
codings from the literature (though not yet considered in the obfuscation literature) which we call
Affine Determinant Programs (ADPs). Here, the program consists of a matrix M whose entries are
affine functions mapping inputs x to a field Fp. We will denote by M(x) the entry-wise evaluation
of M on input x. There is also a fixed evaluation function Eval : F → {0, 1}. To evaluate the
program on input x, we simply compute Eval(det(M(x)).

We note that, just like Barrington’s theorem or the algebraic circuit approach to constructing
algebraic randomized encodings, ADPs can also plausibly be used in conjunction with multilin-
ear maps (and appropriate re-randomization) to yield secure obfuscation2. However, the central
question we consider in this work is:

Can we obfuscate with ADPs in the clear, without using multilinear maps?

2There is a potential issue that the standard multilinear map interface does not allow for efficiently computing
determinants over encoded values. However, the first two multilinear map candidates [GGH13a, CLT13] do allow for
determinant computations.

4

Witness Encryption – An Initial Idea. As a starting point, we consider the easier task of
constructing a secure witness encryption [GGSW13] scheme. In witness encryption, a ciphertext c
is encrypted with respect to an instance x of some NP language L. The ciphertext may be decrypted
using any witness π that attests that x ∈ L. Security stipulates that, for any false instance x /∈ L,
encryptions relative to x completely hide the message from computationally bounded adversaries.
Note that the instance x is considered public.

We build a new framework for witness encryption for the NP-complete subset-sum problem,
where instances x are vector/scalar pairs (v, t) ∈ Zn×Z, and witnesses are 0/1 vectors w ∈ {0, 1}n
such that v · w = t. Under standard NP reductions, our construction extends to any NP language.

Testing the validity of a subset-sum witness can be trivially expressed as an ADP of dimension
one: Mv,t(w) = −t+ v · w is an affine function that is 0 if and only if w is a witness for (v, t). We
can introduce randomization and extend this to a matrix program by choosing a random R ∈ Fk×k
and setting Mv,t(w) = (−t + v · w)R. Then, with overwhelming probability over the choice of R,
for w ∈ {0, 1}n, det(Mv,t(w)) = 0 if and only if w is a valid witness.

While the above allows for testing if a witness is valid, we need a way to actually encode a
message in the output. There are many ways to do this, but perhaps the simplest is to encrypt 0
by sampling the distribution above, and encrypting 1 by sampling a uniformly random ADP. Let
Mv,t,m be the resulting ADP. A random ADP over a large field will have det(M(w)) 6= 0 with high
probability for any w. Therefore for valid witnesses w, we have that det(Mv,t,m(w)) = 0 if and only
if m = 0.

Witness Encryption – Resisting Attacks Through Structured “Noise.” It is not difficult
to see that the idea so far is completely insecure. The attacker can learn m by, for example, choosing
a w∗ that satisfies v · w∗ = t, but where w∗ now consists of arbitrary field elements rather than
0/1. Such a w∗ can be found trivially using linear algebra. In this case, we will still have that
det(M(w)) = 0 if and only if m = 0, thus revealing m. We call attacks of this form invalid input
attacks.

Alternatively, one could simply inspect a single entry of M and notice that in the case m = 0,
the entry is a multiple of the (known) function (−t+ v ·w), whereas if m = 1 the entry is a random
affine function and is most likely not a multiple of (−t+ v · w).

To remedy these issues, we will add as “noise” a randomized “all-accept” ADP MAA, which is
an ADP that accepts every 0/1 input, but rejects (with high probability) any input that is not 0/1.
The encryption of 0 will then be

M(w) = MAA(w) +Mv,t,m(w).

Since the all-accept program rejects any input that is not 0/1, meaning MAA(w) is full rank,
it is also the case that M(w) is full rank with high probability. Therefore, our witness encryption
scheme will reject any invalid inputs, just as a random ADP will. This shows that our witness
encryption scheme is at least immune to invalid input attacks.

Of course, as suggested by our noise analogy above, the security of this proposal depends on
how “noisy” the all-accept program MAA is. In Section 5 we discuss two simple approaches, and
how these approaches evade our attempts at cryptanalysis.

Applications. As suggested in [GGSW13], one application of witness encryption is to build a
public key encryption scheme where public keys are extremely short and generated by a lightweight

5

process. In particular, given a PRG G, the secret key will be a seed s and the public key will be
the output x = G(s). To encrypt a message m, simply witness encrypt m to the statement “x
has a pre-image under G”. Correctness is immediate, and security follows from a simple two-step
hybrid: first replace x with a random string, which with overwhelming probability will not be
in the image of G. Then invoke witness encryption security to show that m is hidden. Under a
stronger assumption of extractable witness encryption due to [GKP+13], G can even be taken to
be an arbitrary one-way function.

We show how to optimize our witness encryption candidate for use with Goldreich’s one-way
function, which is a very simple one-way function where every output bit depends on only 5 input
bits. Thus, public-key generation is linear-time in the secret key length. For a plausible setting of
parameters, we obtain 300-bit public keys, and 50 megabyte ciphertexts. We note that while our
ciphertexts are too large for any practical use, they are well within the realm of implementability. In
contrast, existing approaches to building witness encryption using multilinear maps are extremely
impractical and their concrete efficiency has never even been estimated, to the best of our knowledge.

Indistinguishability Obfuscation. We now turn to the task of using ADPs to build general-
purpose indistinguishability obfuscation (iO). We note that this case is much more challenging
than witness encryption. First, there is the obvious question of converting general computations
into ADPs. Second, the security requirements for witness encryption are much weaker: it only
needs security to hold in the evasive setting, where the adversary cannot find accepting inputs, and
the adversary is allowed to know almost the entire program, save for a single message bit.

Fortunately, there are multiple ways to convert a circuit in NC1 into an ADP, outlined in
Section 4, and iO for NC1 can be bootstrapped into iO for all circuits following known tech-
niques [GGH+13b]. However, simply taking such a program and adding an all-accept program as
in our witness encryption construction is insufficient, as doing so leads to various attacks, which
we outline in Section 9.

As mentioned earlier, the common approach starting with [GGH+13b] to obfuscating circuits
in NC1 first applies Barrington’s theorem [Bar86] to obtain a representation of the circuit as a
polynomial-size branching program. Then, the branching program is represented as a matrix
branching program, and the matrix entries are encoded in the exponent of a multilinear map.

In this work, we still make use of branching programs as the underlying computational model,
but instead appeal to the works of [IK02, AIK04], which give a representation of any deterministic
branching program as an ADP (A,B1, . . . ,Bn). In particular, this representation has the property
that for any binary input x ∈ {0, 1}n, det(A +

∑
i xiBi) = 1 if x induces an accepting path in the

branching program, and det(A +
∑

i xiBi) = 0 otherwise.
We argue that this ADP representation of branching programs has several qualitative advantages

over the matrix branching program approach. Notably, the earlier matrix branching program
approach gives rise to so-called “mixed input” attacks, since multiple matrices are associated with
each input bit. In contrast, the ADP encoding associates a single matrix with each input bit.

In this work, we initiate a systematic study of various randomization strategies that can be
applied to ADPs that encode branching programs, in the hope that such safeguards will lead to a
secure obfuscation scheme. As a first attempt, we left- and right-randomize with matrices R,S over
Fp such that det(R) ·det(S) = 1, preserving the correctness property of the ADP, while scrambling
the individual matrix entries. However, this safeguard is not sufficient, due to the existence of
“polynomial extension attacks,” discussed in Section 9.1. Thus, we consider methods of scrambling

6

the underlying ADP encoding first, before applying the left and right randomization as a final step.
In particular, we make use of the fact that on honest evaluation, the determinant will always be

in {0, 1}. This motivates the possibility of adding random even-valued noise to the matrices in the
ADP, which shifts the determinant by an even value on every input. Correctness is then preserved
by simply having the evaluator compute the parity of the determinant. Parameters must be set
carefully so that the size of the field over which these determinant calculations are being carried
out is large enough so that determinants on honest inputs do not wrap around the modulus. This
is discussed in detail in Section 8.1.

Unfortunately, as we show in Section 9.3, this even-valued error does not yet give a secure
obfuscation scheme. In particular, there exist attacks on iO that use the fact that the adversary
may know the underlying structure of the branching program it is attacking to learn non-trivial
information about the random even-valued error. This in turn motivates the need to inject entropy
into the structure of the branching program itself, before encoding it as an ADP and applying
the safeguards described above. We term this process “random local substitution,” where each
individual “step” of the branching program is randomized, and discuss one concrete method of
doing this in Section 8.1.1. However, we stress that there is a vast space of transformations to
explore here, and our proposal is only the first of many simple possibilities to explore.

In summary, we present the following generic recipe for obfuscating a deterministic branching
program BP :

• Apply random local functionality-preserving transformations to BP , producing BP ′.

• Represent BP ′ as an ADP, following [IK02, AIK04].

• Add random even-valued error to each matrix in ADP, fixing the evaluation function to
compute the parity of the determinant.

• Left- and right-randomize with matrices R,S such that det(R) · det(S) = 1.

In the body, we give an instantiation of the above recipe, resulting in a candidate iO scheme
for all circuits (noting that it suffices to obfuscate the class NC1, which can be simulated by
polynomial-size branching programs). However, we view the recipe itself as the main contribution
of this section, and hope that it will motivate other candidates and more cryptanalysis, with the
eventual goal of obtaining efficient and secure obfuscation without the use of multilinear maps.

2 Preliminaries

Let Z,N be the set of integers and positive integers respectively. For n ∈ N, we let [n] denote the
set {1, . . . , n}. For p ∈ N, denote Z/pZ by Zp, and denote the finite field of order p by Fp. A vector
v ∈ Fnp (represented in column form by default) is written as a bold lower-case letter and we denote
its ith element by vi ∈ Fp. A matrix A ∈ Fn×mp is written as a bold capital letter and we denote
the entry at position (i, j) by (A)i,j . For any set of matrices A1, . . . ,An of potentially varying
dimensions, let diag(A1, . . . ,An) be the block diagonal matrix with the Ai on the diagonal, and
zeros elsewhere.

We use the usual Landau notations. A function f(n) is said to be negligible if it is n−ω(1) and
we denote it by f(n) := negl(n). A probability p(n) is said to be overwhelming if it is 1−n−ω(1). We
write D1 ≈S D2 if there exists a negligible function negl(n) such that the statistical distance between

7

D1 and D2, denoted SD(D1, D2), is bounded above by negl(n). Recall for any two distribution D1

and D2 taking values in some set S the statistical distance or SD(D1, D2) is defined as:

SD(D1, D2) = 1/2
∑
x∈S
|Pr[D1 = x]− Pr[D2 = x]|

We write D1 ≈C D2 if no computationally-bounded adversary can distinguish between D1 and
D2 except with advantage negl(n).

2.1 Randomized Encodings

A randomized encoding of the function f(x) is a function f̂(x, r) such that a sample from the
output distribution of f̂(x, r) for a uniformly chosen r reveals f(x) and no additional information
about x. We formalize and generalize this below.

Definition 1 (Randomized Encodings [AIK07]). Let f : {0, 1}n → {0, 1}` be a function. We say
that f̂ : {0, 1}n×{0, 1}m → {0, 1}s is a δ-correct, ε-private randomized encoding of f , if it satisfies
the following:

• δ-correctness. There exists an algorithm B, called a decoder, such that for any input
x ∈ {0, 1}n,

Pr[B(f̂(x, Um)) 6= f(x)] ≤ δ.

• ε-privacy. There exists a randomized simulator algorithm Sim such that for any x ∈ {0, 1}n,

SD(Sim(f(x)), f̂(x, Um)) ≤ ε.

2.2 Witness Encryption

The following definition is taken almost verbatim from [GGSW13].

Definition 2. A witness encryption scheme for an NP language L (with corresponding witness
relation R) consists of the following two polynomial-time algorithms:

• Encrypt(1λ, x,m) takes as input a security parameter 1λ, an unbounded-length string x, and
a message m ∈ {0, 1}, and outputs a ciphertext ct.

• Decrypt(ct, w) takes as input a ciphertext ct and an unbounded-length string w, and outputs
a message m or the symbol ⊥.

These algorithms satisfy the following two conditions:

• Correctness. For any security parameter λ, for any m ∈ {0, 1}, and for any x ∈ L such that
R(x,w) holds, we have that

Pr[Decrypt(Encrypt(1λ, x,m), w) = m] = 1.

• Soundness Security. For any PPT adversary A, there exists a negligible function negl(·)
such that for any x 6∈ L, we have:

|Pr[A(Encrypt(1λ, x, 0)) = 1]− Pr[A(Encrypt(1λ, x, 1)) = 1]| < negl(λ).

8

We also consider an “extractable” version of witness encryption, introduced by [GKP+13]. In
extractable witness encryption, if an adversary that can break semantic security for an instance
x, an extractor can extract the witness for x. Formally, in an extractable witness encryption,
the following definition (taken verbatim from [GKP+13]) replaces the standard soundness security
notion.

• Extractable Security. A witness encryption scheme for a language L ∈ NP is secure if for
all PPT adversary A and all polynomials q, there exists a PPT extractor E and a polynomial
p(·) such that for all auxiliary inputs z and for all x ∈ {0, 1}∗, the following holds:

Pr[m← {0, 1}; ct←WE.Encrypt(1λ, x,m) : A(x, ct, z) = b] ≥ 1

2
+

1

q(|x|)

=⇒ Pr[E(x, z) = w : (x,w) ∈ RL] ≥ 1

p(|x|)
.

2.3 Indistinguishability Obfuscation

Definition 3 (Indistinguishability Obfuscator [BGI+01]). A uniform PPT machine iO is an indis-
tinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• (Strong Functionality Preservation) For all security parameters λ ∈ N, for all C ∈ Cλ,

Pr
C′←iO(λ,C)

[∀x, C ′(x) = C(x)] ≥ 1− negl(λ).

• For any non-uniform PPT distinguisher D, there exists a negligible function α such that
the following holds: for all λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if
C0(x) = C1(x) for all inputs x and |C0| = |C1| (where |C| denotes the size of a circuit), then

|Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ α(λ).

3 Affine Determinant Programs: Syntax and Definitions

An affine determinant program (ADP) : {0, 1}n → {0, 1} is parameterized by an input length n,
a width k, and a finite field Fp. An ADP is comprised of an affine function M : {0, 1}n → Fk×kp

along with an evaluation function Eval : Fp → {0, 1}. The affine function M is specified by an
(n+ 1)-tuple of k × k matrices M = (A,B1, . . . ,Bn) over Fp so that

M(x) := A +
∑
i∈[n]

xiBi.

On input x ∈ {0, 1}n, ADPM,Eval(x) is computed as

Eval(det(M(x))).

We will typically use one of the following Eval functions.

• Eval0(y) =

{
1 if y = 0

0 if y 6= 0
.

9

• Eval6=0(y) =

{
1 if y 6= 0

0 if y = 0
.

• Evalparity(y) = y mod 2.

3.1 Encoding Functions as ADPs

We will consider a randomized procedure ADP-Encode which takes as input a description 〈f〉 of
a function f : {0, 1}n → {0, 1} and produces ADPM,Eval such that ADPM,Eval ≡ f . Formally, the
algorithm works as follows.

• ADP-Encode(1λ, 〈f〉) : This algorithm takes in a security parameter 1λ and a canonical descrip-
tion 〈f〉 of a function f ∈ Fn. It outputs width-k ADPM,Eval over Fp where k = poly(λ, |〈f〉|)
and p = 2poly(λ).

In this work, Eval will be fixed as part of the description of ADP-Encode and will be independent
of the particular input 〈f〉. We will therefore view ADP-Encode as an algorithm outputting M =
(A,B1, . . . ,Bn) where A,B1, . . . ,Bn ∈ Fk×kp .

3.2 One-time Security.

We say that ADP-Encode satisfies one-time security if the matrix M(x) can be simulated given only
f(x).

Definition 4 (One-time Security). ADP-Encode is one-time secure for Fn if there exists a PPT
simulator Sim such that for any f ∈ Fn and any x ∈ {0, 1}n,

M(x) ≈S Sim(f(x))

where M← ADP-Encode(1λ, 〈f〉).

We stress that while M = (A,B1, . . . ,Bn), the simulator is only required to simulate a single
evaluation of M(x) = A +

∑
i∈[n] xiBi.

Theorem 1 ([IK02]). There exists an algorithm ADP-Encode which satisfies correctness and one-
time security for all branching programs.

Remark 1. One-time security implies that M(x) is a randomized encoding [IK00] of f(x).

Achieving One-time Security Generically. When the evaluation function is Eval0 or Eval6=0,
there is a simple generic transformation that turns any functionality-preserving ADP-Encode pro-
cedure into one that additionally satisfies one-time security.

We first import the following lemma from [IK97].

Lemma 1 ([IK97]). For any fixed A ∈ Fk×kq and uniformly random invertible R,S ← Fk×kq , the
distribution of R ·A · S depends only on rank(A).

Let ADP-Encode be an encoding procedure which uses Eval0 or Eval6=0, and outputs

M = (A,B1, . . . ,Bn) ∈ (Fk×kp)n+1.

10

Claim 1 (One-Time Security for Eval0,Eval6=0). Suppose ADP-Encode has the property that when
det(M(x)) = 0, then rank(M(x)) = k′ for some fixed k′ < k. Furthermore, ADP-Encode uses Eval0
or Eval6=0. Let ADP-Encode′ be an algorithm which runs ADP-Encode, samples uniformly random
invertible R,S← Fk×kp , and outputs

R ·M · S := (R ·A · S,R ·B1 · S, . . . ,R ·Bn · S).

Then ADP-Encode′ has identical functionality to ADP-Encode, and is additionally one-time secure.

Proof. Identical functionality holds since det(M(x)) = 0 implies det(R · M(x) · S) = 0, and
det(M(x)) 6= 0 implies det(R ·M(x) · S) 6= 0 since R,S are invertible.

One-time security follows from the fact that given f(x), R ·M(x) ·S can be simulated by either
drawing a random matrix of rank k′ or of rank k (by Lemma 1)

3.3 iO Security.

In contrast to one-time security, iO security holds even if the adversary is free to evaluate M on
as many inputs x of its choosing. In particular, we ask that M = (A,B1, . . . ,Bn) be an iO of the
input program f .

Definition 5. ADP-Encode is iO-secure for Fn if for any two functions f1, f2 ∈ Fn such that
f1 ≡ f2 and |〈f1〉| = |〈f2〉|, then

M1 ≈C M2

where M1 ← ADP-Encode(1λ, 〈f1〉) and M2 ← ADP-Encode(1λ, 〈f2〉).

4 Constructing ADPs

4.1 Obfuscating Simple Functionalities with ADPs

In this section we describe simple ADP-based obfuscations of point functions and conjunctions.
These constructions have appeared before in the literature, but we recast them in the language of
our ADP framework.

Point Functions. Consider the class of point functions {Iy}y over {0, 1}n, where for any x ∈
{0, 1}n, Iy(x) outputs 1 if and only if x = y, and outputs 0 otherwise. There exists a simple ADP
encoding scheme for point functions due to [BKM+18] where each ADP matrix is 1 × 1 (i.e. a
scalar).

On input point y, the ADP encoding of Iy is generated as follows. Fix a superpolynomial-size
modulus p, draw uniformly random b1, . . . , bn ← Zp, and set

a = −
∑

i∈[n]:yi=1

bi.

The resulting scalar ADP is M = (a, b1, . . . , bn). To evaluate M on input x ∈ {0, 1}n, compute the
scalar sum M(x) = a+

∑
i∈[n] xibi and output 1 if and only if the resulting scalar is 0. Correctness

holds with high probability on any input since the modulus p is superpolynomial. Observe that

11

this ADP construction fits into the more general framework of taking a determinant of an affine
combination of matrices, since the determinant is simply the identity for 1× 1 matrices.

If the accepting point y is chosen from a distribution with sufficient entropy, this ADP information-
theoretically hides y (this follows immediately from the Leftover Hash Lemma).

Conjunctions. Point functions can be naturally extended to conjunctions, a more expressive class
of functionalities that allow for “wildcard” positions (which we denote by ∗) indicating locations
where the input bit can be either 0 or 1. Formally, a conjunction Cpat is parameterized by a
pattern string pat ∈ {0, 1, ∗}n. On input x ∈ {0, 1}n, Cpat = 1 if and only if x matches pat at all
indices i where pati ∈ {0, 1}. Bartusek et al. [BLMZ19] give a simple ADP-based obfuscation for
conjunctions, which we recall here.

For pat ∈ {0, 1, ∗}n, the corresponding ADP will consist of square matrices of width n over Fp
where p is a superpolynomial-size prime. We use the notation colspan(M) to denote the linear
subspace spanned by the columns of M.

1. Sample a uniformly random rank-(n− 1) matrix L ∈ Fn×np .

2. For each index i ∈ [n] where pati ∈ {0, 1}, sample a uniformly random rank-one matrix
Bi ∈ Fn×np .

3. For each index i ∈ [n] where pati = ∗, sample a uniformly random rank-one matrix Bi

conditioned on colspan(Bi) ⊆ colspan(L). Since a rank-one Bi can be written as uiv
>
i , this

is equivalent to sampling vi uniformly at random from Fnp , sampling wi uniformly at random
from Fnp , and setting ui := Lwi.

4. Set A = L−
∑

i∈[n],pati=1 Bi, and output

M = (A,B1, . . . ,Bn)

To evaluate the ADP M on input x ∈ {0, 1}n, compute

M(x) = A +
∑

i∈[n]:xi=1

Bi

and accept (output 1) if and only if det(M(x)) = 0.
Correctness follows since for any input x that agrees with pat on all 0/1 positions, colspan(M(x)) ⊆

colspan(L). Since L is rank-(n − 1), det(M(x)) will be 0. On any input x that disagrees with pat
on a 0/1 position, M(x) is the sum of a random rank-(n− 1) matrix and at least one independent
random rank-one matrix, which yields a full-rank with overwhelming probability.

Bartusek et al. [BLMZ19] prove that this construction statistically hides pat assuming that
pat has sufficient entropy on its 0/1 entries. The entropy of pat is used to argue that A = L −∑

i∈[n],pati=1 Bi is statistically close to a uniformly random matrix. This means L is statistically
hidden, and so for all i ∈ [n], Bi is statistically close to uniformly random rank-one matrix. At this
point, the distribution of (A,B1, . . . ,Bn) is independent of pat.

12

4.2 ADPs for Log-depth Boolean Formulas

We now give a simple construction that directly converts any log-depth formula into a functionally
equivalent ADP. In contrast to the point function and conjunction setting, we have been unable to
prove that this ADP encoding achieves any meaningful notion of obfuscation security. Nevertheless,
this encoding procedure will be useful for one of our candidate witness encryption constructions
(see Section 5), as well as to develop general intuition for the ADP framework.

We describe the construction recursively, associating an ADP with each wire in the formula and
demonstrating how to construct an output ADP given two input ADPs to either an OR gate or an
AND gate.

Fix a superpolynomial-size prime p. For this ADP construction, evaluation is done by computing
the determinant of M(x) := A +

∑
i∈[n]:xi=1 Bi over Fp and accepting if and only if the result is 0.

Throughout this construction, we maintain the invariant that (with overwhelming probability)
on an accepting input M(x) will be rank-deficient by 1, and on a rejecting input M(x) will be
full-rank.

• Positive Input Wire: An ADP for the (positive) input wire f(x1, . . . , xn) = xj consists of n+1
scalars (i.e. a width-1 ADP) (a, b1, . . . , bn) set as follows. Sample a uniformly random r ← Fp
and set a = −r and bj = r. For all i 6= j, set bi = 0.

• Negated Input Wire: An ADP for the (negated) input wire f(x1, . . . , xn) = ¬xj consists of
n+ 1 scalars (a, b1, . . . , bn) set as follows. Sample a uniformly random r ← Fp and set bj = r.
Set a = 0 and bi = 0 for all i 6= j.

For any input x ∈ {0, 1}n, correctness of the input wire ADP constructions holds with high
probability over the randomness of r.

The ADP M that computes the AND of two n-bit input ADPs M1,M2 with widths w1, w2

respectively is constructed as follows. Define k := k1 + k2. Sample a uniformly random matrix

R← F(k−1)×k
q and a uniformly random matrix S← Fk×(k−1)q . Output

M(x) = R ·
(

M1(x) 0
0 M2(x)

)
· S.

We briefly sketch correctness of the AND construction.

• (Both input wires accept) If det(M1(x)) = 0 and det(M2(x)) = 0, then(
M1(x) 0

0 M2(x)

)
is a k×k matrix which is rank-deficient by 2. Left- and right-multiplying by random matrices

R ← F(k−1)×k
q ,S ← Fk×(k−1)q yields M(x) which is rank deficient by 1 with overwhelming

probability.

• (Some input wire rejects) If either of det(M1(x)) 6= 0 or det(M2(x)) 6= 0 holds, then(
M1(x) 0

0 M2(x)

)
is a k×k matrix which is rank-deficient by at most 1. Left- and right-multiplying by random

matrices R ← F(k−1)×k
q ,S ← Fk×(k−1)q yields M(x) which is full-rank with overwhelming

probability.

13

An ADP M which computes the OR of two n-bit input ADPs M1,M2 with widths w1, w2 re-
spectively can be constructed as follows. Define k := k1 + k2. Sample a uniformly random matrix
R← Fk×kq and a uniformly random matrix S← Fk×kq . Sample a uniformly random affine function

T : {0, 1}n → Fk1×k2q . Output

M(x) = R ·
(
M1(x) T(x)

0 M2(x)

)
· S.

We briefly sketch correctness of the OR construction.

• (Either input wire accepts) If det(M1(x)) = 0 or det(M2(x)) = 0, then(
M1(x) T(x)

0 M2(x)

)
is a k× k matrix which is rank-deficient by 1; even if both det(M1(x)) = 0 and det(M2(x)) =
0 hold, the random T(x) will ensure the rank is only deficient by 1 with overwhelming
probability. Left- and right-multiplying by random matrices R ← Fk×kq ,S ← Fk×kq yields
M(x) which is still rank deficient by 1 with overwhelming probability.

• (Both input wires reject) If both det(M1(x)) 6= 0 and det(M2(x)) 6= 0 hold, then(
M1(x) T(x)

0 M2(x)

)
is a full-rank k × k matrix. Left- and right-multiplying by random matrices R← Fk×kq ,S←
Fk×kq still yields a full-rank M(x) with overwhelming probability.

4.3 Encoding Branching Programs as ADPs

In this section we describe a way to represent branching programs as ADPs. This representation is
implicit in [IK02] (see also [AIK04]). Different notions of branching programs (e.g., deterministic
vs. non-deterministic vs. counting) correspond to different choices of the field and evaluation Eval.

We start by defining the most expressive notion and then specialize it to the weaker notions on
which we will rely.

Definition 6 (Counting Branching Programs [IK02]). A Z-arithmetic branching program com-
puting f : {0, 1}n → Z is specified by a directed acyclic graph G = (V,E) and a labeling φ(·, ·)
where each edge (u, v) is labeled with a literal φ(u, v) = xi or φ(u, v) = ¬xi, or the constant 1.
Two of the vertices are labeled s, t. Its size is |V | − 1. Any input x induces a subgraph Gx limited
to edges consistent with x (i.e. edges that evaluate to 1 on x). An accepting path on input x
is a directed s − t path in Gx. A Z-arithmetic branching program (ABP) computes the function
f : {0, 1}n → Z such that f(x) is the number of accepting paths. It computes a boolean function
f : {0, 1}n → {0, 1} if the number of accepting paths is equal to f(x) ∈ {0, 1}.

Lemma 2 ([IK02, AIK04]). Suppose there is a Z-arithmetic branching program (ABP) of size `
computing a boolean function f . Suppose L(x) satisfies the following

• L(x) has −1 along the second diagonal (right below the main diagonal).

14

• L(x) is 0 below the second diagonal.

• Each entry of L(x) is a degree (at most) 1 polynomial in a single input variable xi.

More precisely, L(x) is defined as follows. Fix a topological ordering of the vertices in V ,
and label the columns / rows (from left to right / top to bottom) according to this ordering of
vertices. In particular we want s labeled 1 and t labeled `. We first define a matrix A(x) of
dimension `×`. For entry (i, j) of A(x), write φ(i, j) if (i, j) is an edge in G and 0 otherwise.
Note that A(x) will be 0 on and below the main diagonal. Now consider A(x)− I, and delete
its first column and last row to obtain the (`− 1)× (`− 1) dimensional matrix L(x).

Then for all x ∈ {0, 1}n, we have det(L(x)) = f(x). (If f is boolean, we say f(x) accepts if
det(L(x)) is non-zero.)

This immediately gives us an ADP for Z-arithmetic branching programs. Namely, M = L and
Eval is simply the identity function (if f is boolean). This ADP can also be implemented over a
finite field Fp if the number of accepting paths is at most p− 1. Simply compute f(x) = det(L(x))
mod p.

Example. Suppose we have vertices in the order s, v1, v2, t. We can write a point function that
accepts on x = 010 with an edge from s to v1 labeled with 1 − x1, an edge from v1 to v2 labeled
with x2, and an edge from v2 to t labeled with 1−x3. So the resulting A(x)− I and L(x) matrices
are

A(x) =

−1 1− x1 0 0
0 −1 x2 0
0 0 −1 1− x3
0 0 0 −1

 ,

L(x) =

1− x1 0 0
−1 x2 0
0 −1 1− x3

 .

Thus the resulting ADP is of the following form:

A =

 1 0 0
−1 0 0
0 −1 1

 ,B1 =

−1 0 0
0 0 0
0 0 0

 ,

B2 =

0 0 0
0 1 0
0 0 0

 ,B3 =

0 0 0
0 0 0
0 0 −1

 .

Then, as done in [AIK04] and described above, the resulting program can be “re-randomized”
by left- and right-multiplying by uniformly random matrices R,S such that det(R) = det(S) = 1.

5 Witness Encryption

5.1 Definitions

In this section we will use ADPs to construct witness encryption [GGH+13c]. Since our focus will
not be on encoding functions as ADPs, we will ignore the Eval part of our ADP formalism. For

15

the remainder of this section, a width-k ADP M over Fp will refer to a tuple of n + 1 matrices
(A,B1, . . . ,Bn), where each matrix is in Fk×kp . Since we will not have a dedicated Eval function,
the evaluation of M(·) on an input x ∈ {0, 1}n will refer to the matrix

M(x) := A +
∑
i∈[n]

xiBi.

Consider the NP-complete subset sum problem (or more generally, vector subset sum).

Definition 7. The VECTOR-SUBSET-SUM language consists of instances (H, `) where H ∈
Zd×n, ` ∈ Zd, such that there exists w ∈ {0, 1}n satisfying H ·w = ` (over the integers).

We refer to d as the dimension of the instance. When d = 1, we simply refer to this as
SUBSET-SUM.

Vector Subset Sum Encoding. A dimension d = 1 instance (h, `) can be represented as an
ADP of arbitrary width k as follows. Sample a uniformly random matrix R ← Fk×kp and set
A = −`R and Bi = hiR for all i ∈ [n]. This ADP accepts on input w ∈ {0, 1}n if and only if

det(A +
∑
i∈[n]

wiBi) = det((−`+
∑
i∈[n]

wihi)R) = 0.

We can generalize this approach to any instance (H, `) of dimension d ≥ 1 as follows. We define
the procedure VSS.Encode, which takes an instance (H, `) of VECTOR-SUBSET-SUM instance and
outputs a width-k ADP over Fp.

• VSS.Encode((H ∈ Zd×n, ` ∈ Zd), p, k) : Interpret each entry of H and ` as the corresponding
element over Fp; for correctness we will require p > maxx∈{0,1}n ||H · x||∞. For each j ∈ [d],

draw uniformly random Rj ← Fk×kp . Set A := −
∑

j∈[d] `jRj and Bi :=
∑

j∈[d]Hj,iRj for
each i ∈ [n]. Output

MH,` = (A,B1, . . . ,Bn).

An Insecure Witness Encryption. Consider the following insecure construction of witness
encryption for VECTOR-SUBSET-SUM. To “encrypt” a bit b with respect to an instance (H, `):

1. Fix a width k and a prime p > maxx∈{0,1}n ||H ·x||∞ such that p is at least super-polynomial
in the security parameter.

2. Sample

MH,` ← VSS.Encode((H, `), p, k).

3. Sample uniformly random S← Fk×kp and output the ciphertext

MH,`,b := MH,` + (bS,0, . . . ,0).

16

To decrypt a ciphertext of the form (A,B1, . . . ,Bn) using a witness w ∈ {0, 1}n, we compute

det(A +
∑
i∈[n]

wiBi).

If this determinant is a non-zero element in Fp, then b = 1 and if the result is zero then b = 0.
Correctness holds since if w ∈ {0, 1}n is a witness for (H, `) ∈ VECTOR-SUBSET-SUM, then

H ·w = `, so

A +
∑
i∈[n]

wiBi = bS.

Since S is a random matrix in Fp, where p is super-polynomial in the security parameter, its
determinant is nonzero with overwhelming probability.

However, this construction is insecure; given an instance (H, `) 6∈ VECTOR-SUBSET-SUM, an
adversary can potentially find x ∈ Fnp (where x 6∈ {0, 1}n) such that H · x = ` . The same
correctness argument used for valid witnesses w ∈ {0, 1}n will also imply that for such an x ∈ Fnp ,
the “encrypted” bit b can be recovered as

b = Eval6=0(det(MH,`,b(x))).

Preventing Invalid Evaluations. For this approach to have any hope for security, we will
need to modify the ciphertext MH,`,b so that det(MH,`,b(x)) does not leak the value of b on inputs
x 6∈ {0, 1}n.

Our approach is to add “noise” to MH,`,b which will prevent the adversary from gaining infor-
mation on non-binary inputs. This noise will take the form of another ADP Mnoise which will satisfy
the following properties:

• (Zero on binary inputs) For all x ∈ {0, 1}n, det(Mnoise(x)) = 0,

• (Non-zero on non-binary inputs): For all x ∈ Fnp \ {0, 1}n, Pr[det(Mnoise(x)) = 0] = negl(n),

where the probability is taken over the randomness used to generate Mnoise. In the construction, we
will simply add Mnoise to MH,`,b, so the “non-zero on non-binary inputs” property will intuitively
block the attack described above. We set Mnoise to be the result of sampling from an “All-Accept”
encoding scheme, defined as follows.

An All-Accept ADP encoding scheme AllAcc.Gen is a randomized procedure that takes an input
length n and field Fp, and outputs M of width k with the following properties:

• (Correctness) For all x ∈ {0, 1}n,

Pr[det(M(x)) = 0 : AllAcc.Gen(n,Fp)→ (M, k)] = 1.

• (Rejection of Invalid Inputs) For all non-binary x, i.e. x ∈ Fnp \ {0, 1}n,

Pr[det(M(x)) = 0 : AllAcc.Gen(n,Fp)→ (M, k)] = negl(n).

17

An All-Accept ADP from a Boolean Formula Encoding. A natural attempt to construct
such an encoding scheme would be to use the formula encoding scheme described in Section 4.2
to encode any formula that accepts all boolean inputs x ∈ {0, 1}n. Unfortunately, this does not
in general guarantee rejection of invalid inputs. However, it turns out that encoding the simple
boolean formula

f(x1, . . . , xn) = (x1 ∨ ¬x1) ∧ · · · ∧ (xn ∨ ¬xn)

via the procedure described above does guarantee rejection of invalid inputs. This sampling proce-
dure is equivalent to the concrete procedure given here.

AllAcc.GenFORM(n,Fp) :

• Draw uniformly at random 4 sets of n vectors of dimension n+ 1:

{ui}i∈[n], {vi}i∈[n], {si}i∈[n], {ti}i∈[n],

along with n2 scalars {c(i)j }i,j∈[n] over Fp.

• Let

A =
∑
i∈[n]

uiv
>
i ,

Bi = −uiv
>
i + sit

>
i +

∑
j∈[n]

c
(j)
i ujt

>
j ,

and output M = (A,B1, . . . ,Bn).

Correctness and security follow by fixing the field size p = ω(poly(n)) and rewriting an evaluation

on input x ∈ Fnp as follows, setting ki :=
∑

j∈[n] xjc
(i)
j :

A +
∑
i∈[n]

xiBi =
∑
i∈[n]

(
(1− xi)uiv>i + xisit

>
i + kiuit

>
i

)

=
∑

i∈[n]:xi=0

ui

(
v>i + kit

>
i

)
+

∑
i∈[n]:xi=1

(
si + kiui

)
t>i

+
∑

i∈[n]:xi /∈{0,1}

ui

(
(1− xi)v>i + kit

>
i

)
+ xisit

>
i .

Thus when x is binary, A+
∑

i∈[n] xiBi can be written as a sum of n rank one matrices (recall the
dimension is n+1). Otherwise, it can be written as a sum of at least n+1 rank one matrices which
do not share column or row spans (with overwhelming probability over the sampling randomness).
Since the field size is p = ω(poly(n)), the resulting matrix will be full rank except with probability
negligible in the input length n.

We now describe a slight generalization of the above sampling procedure, which will help with
security of the eventual witness encryption candidate. We replace the vectors ui,vi, si, ti with
matrices Ui,Vi,Si,Ti of width q(n) (where q(·) is now a parameter for the encoding procedure).
In the sampling procedure given above, q(n) is implicitly set to always output 1. In general, the
resulting dimension of the output program will be set to k = nq(n)+1. This more general sampling
procedure is used in the concrete candidate we give in Section 5.2.

18

An All-Accept ADP from “Nearly Skew Symmetric” Matrices. To state our next con-
struction of an all-accept ADP, it will be helpful to define a “nearly-skew-symmetric” matrix.

Definition 8 (Nearly Skew Symmetric Matrices). A matrix N ∈ Fk×kp is nearly-skew-symmetric
(NSS) if Ni,j = −Ni,j for all i, j > 1 such that i 6= j, and Ni,1 + N1,i + Ni,i = 0 for all i.

Observe that any nearly-skew-symmetric matrix will have N1,1 = 0. Furthermore, the bottom-
right (k−1)×(k−1) supmatrix of any NSS matrix is skew-symmetric. Setting n = k−1, note that it
is easy to sample a random NSS by choosing uniformly random field elements a1, . . . , an, d1, . . . , dn,
as well as a uniformly random width-n skew-symmetric matrix B, and outputting

0 0 · · · 0
0
... B
0

+

0 a1 · · · an

−a1 − d1 d1 · · · 0
...

...
. . .

...
−an − dn 0 · · · dn

 .

The above formulation makes it clear that for any finite field Fp and matrix width k, the
set of all NSS matrices lies in a known linear subspace. Let NSS.Sample(p, k) be the procedure
that produces a uniformly random sample from this subspace, i.e. outputs a random nearly-skew-
symmetric matrix N of width k over Fp.

We define the following all-accept encoding procedure.

AllAcc.GenNSS(n,Fp) :

• Let k = n+ 1, and draw a uniformly random full rank matrix T← Fk×kp .

• For each i ∈ [k], draw Ni ← NSS.Sample(k) and set Ci = T−1 ·Ni.

• Let A be the k × k matrix obtained by concatenating the first column of each of the Ci

matrices, and let Bi be the k × k matrix obtained by concatenating the i + 1st columns of
each of the Ci matrices. Output M = (A,B1, . . . ,Bn).

To show correctness, fix any x ∈ {0, 1}n, and let x′ = [1 | x>]>. Denote the jth column of a
matrix M by (M)j . Then for all j ∈ [n+ 1],

T · (A +
∑
i∈[n]

xiBi)j = T ·Cj · x′ = Nj · x′.

Now we claim that for all j,x′> · Nj · x′ = 0, which implies that x′> · T is in the kernel of
A +

∑
i∈[n] xiBi, and thus that det(M(x)) = 0. In fact, for any NSS matrix N, and any vector

x′ = [1 | x>]>, where x ∈ {0, 1}n, it holds that x′> ·N ·x′ = 0. To see this, treat each entry of x as a
distinct formal variable, and expand out the expression as a quadratic polynomial over x1, . . . , xn.
Since x is binary, we know that x2i = xi. Thus, the coefficient on xi is equal to N1,i+Ni,1+Ni,i = 0,
and the coefficient on xixj for i 6= j is equal to Ni,j + Nj,i = 0, which establishes the claim.

To argue security, we take n to be the security parameter, and fix the field size to be p =
ω(poly(n)). Fix any x /∈ {0, 1}n and again let x′ = [1 | x>]>. We want to bound the probability

19

that there exists some vector v 6= 0 such that v> · (A +
∑

i xiBi) = 0. Setting w′> = v> ·T−1, we
have that

v> · (A +
∑
i

xiBi) = 0⇔ w′> ·Ni · x′ = 0 ∀i ∈ [n+ 1].

We will union bound over all vectors w′> to show that there does not exist such a vector with
high probability. Note that it suffices to union bound over all w′ with first entry equal to 0 or 1,
for a total of 2pn vectors.

First consider the case where w′> = [0 | w>] for some w ∈ Fnp . Recall that each Ni is generated
by choosing random values a1, . . . , an, d1, . . . , dn and a skew-symmetric B and arranging in a matrix
as described above. Now treat these values as formal variables, and consider the linear polynomial
over these variables induced by the expression [0 | w>]·Ni ·[1 | x>]>. We argue that this polynomial
must not be identically zero. The coefficient on the variable ai is exactly −wi. Since w′ 6= 0, it
must be the case that w 6= 0, so there must be some i such that wi 6= 0.

Now consider the case where w′> = [1 | w>] for some w ∈ Fnp . The coefficient on ai is exactly
wi(xi − 1) and the coefficient on di is exactly xi(wi − 1). But by assumption, there must be some
i such that xi /∈ {0, 1}, implying that the coefficient on either ai or di is non-zero. Thus, for each
of the 2pn vectors w′ that we consider, the probability that w′> ·Ni · x′ = 0 is at most 1/p over
the randomness of sampling Ni. This holds simultaneously for each i ∈ [n+ 1] with probability at
most 1/pn+1. So by a union bound, there exists a w′ orthogonal to each Ni ·x′ with probability at
most 2/p = negl(n).

5.2 Candidate Witness Encryption Constructions

Generic Candidate. Given the above definitions, we can define a general paradigm for con-
structing witness encryption (encrypting a single bit b) for VECTOR-SUBSET-SUM. Instantiating
the framework with any AllAcc.Gen and VSS.Encode procedures will result in a correct witness
encryption.

• WE.Enc(b, (H, `)) : Let d× n be the dimension of H.

1. Choose a prime p > maxx∈{0,1}n ||H · x||∞. Additionally we require p = ω(poly(n)).

2. Sample (MAA, k)← AllAcc.Gen(n,Fp).
3. Sample MH,` ← VSS.Encode((H, `),Fp, k).

4. Sample S← Fk×kp .

5. Output MAA + MH,` + (bS,0, . . . ,0).

• WE.Dec(M, w) : output Eval6=0(det(M(w))).

Concrete Candidate. We now give a simple, self-contained instantiation of the general witness
encryption framework described above.

This candidate will be a witness encryption for SUBSET-SUM, with instances (h ∈ Zn, ` ∈
Z). Given an instance (h ∈ Zn, ` ∈ Z), define the instance (H ∈ Z(n+1)×2n, ` ∈ Zn+1) of
VECTOR-SUBSET-SUM where

20

H :=

h1 h2 · · · hn 0 0 · · · 0
1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1

 , ` :=

`
1
1
...
1

 .

As discussed in Section 7, this transformation will help with security. In particular, an instance
((h1, . . . , hn), `) 6∈ SUBSET-SUM could potentially have many hi = 0, so encoding without the
above transformation will leak many Bi of the all-accept encoding in the clear.

The following instantiation combines the VSS.Encode scheme described above with the all-
accept encoding AllAcc.GenFORM, with parameter q(n) = nε for some constant ε > 0. As discussed
in Section 7.1, setting q(·) to be a super-constant function of n will help defend against MQ-
style attack strategies. Note that the encryption scheme below takes as input a one-dimensional
SUBSET-SUM instance and first follows the above conversion to a VECTOR-SUBSET-SUM instance.
Then, it encrypts under this VECTOR-SUBSET-SUM instance following the generic paradigm above.

• WE.Enc(b, ((h1, . . . , hn), `)). Choose p > maxx∈{0,1}n |
∑

i xihi| such that p = ω(poly(n)), and
fix the field Fp.

1. For each i ∈ [2n], draw 4 uniformly random matrices

Ui,Vi,Si,Ti ← F(2n1+ε+1)×nε
p .

2. For each i, j ∈ [2n], draw a uniformly random scalar

c
(i)
j ← Fp.

3. Draw 2n uniformly random matrices

R0,R1, . . . ,Rn,S← F(2n1+ε+1)×(2n1+ε+1)
p .

4. Define

A :=
∑
i∈[2n]

UiV
>
i − `R0 −

∑
i∈[n]

Ri + bS.

For ` ∈ [n], define

B` := −U`V
>
` + V`T

>
` +

∑
j∈[2n]

c
(j)
` UjT

>
j + h`R0 + R`

For ` ∈ {n+ 1, . . . , 2n}, define

B` := −U`V
>
` + S`T

>
` +

∑
j∈[2n]

c
(j)
` UjT

>
j + R`.

5. Finally, output

M = (A,B1, . . . ,B2n).

• WE.Dec(M, w). Let ŵ be such that each ŵi = 1− wi. Output Eval6=0(det(M([w | ŵ]))).

21

6 Applications of ADP-Based Witness Encryption

6.1 Public-Key Encryption with Short Public Keys

In this section, we show how to use our witness encryption candidate to construct a public key
encryption scheme with extremely short public keys and with fast key generation.

6.1.1 A Generic Framework.

We recall from [GGSW13] the generic construction of public-key encryption from a witness encryp-
tion scheme WE and any pseudo-random generator g : {0, 1}λ → {0, 1}n(λ).

• PKE.Gen(1λ). Sample a uniformly random sk← {0, 1}λ, and set pk = g(sk). Output (pk, sk).

• PKE.Encrypt(pk,m ∈ {0, 1}). Define the boolean circuit C[g, pk](·), which on input x ∈
{0, 1}λ, outputs 1 if and only if g(x) = pk. Interpreting C[g, pk](·) as an instance of
CIRCUIT-SAT, apply a deterministic reduction from CIRCUIT-SAT to SUBSET-SUM and ob-
tain an instance (h, `). Output c←WE.Enc(1λ, (h, `),m).

• PKE.Decrypt(sk, (h, `), c). Run the reduction from CIRCUIT-SAT to SUBSET-SUM to trans-
form the witness sk for C[g, pk](·) to a subset-sum witness w for (h, `). Return m ←
WE.Dec(c,w).

Remark 2. The choice of g is fixed in the specification of the public-key encryption scheme and
is not included in pk. Notice that 1λ is an input to WE.Enc since there is no set-up/gen algorithm
in witness encryption, but it is not an explicit input to PKE.Encrypt; however, it can be easily
obtained by inspecting the length of pk.

The following claim captures the fact that security of this construction can be proved assuming
either the standard security notion for witness encryption [GGSW13], or the stronger extractable
security notion given by [GKP+13]; in the latter case the requirement on g can be weakened to
one-wayness.

Claim 2 (Security of Witness-Encryption-based PKE). The above public-key encryption scheme
satisfies CPA-security if

• WE is secure under the standard [GGSW13] security notion for witness encryption, and g :
{0, 1}λ → {0, 1}n(λ) is a pseudo-random generator with n(λ) ≥ 2λ, OR

• WE is secure under the stronger [GKP+13] security notion for extractable witness encryption,
and g : {0, 1}λ → {0, 1}n(λ) is a one-way function.

Proof. In the case where we use the standard [GGSW13] security notion for witness encryption,
an encryption with respect to pk which is not generated as the output of g computationally hides
the encrypted message. Therefore, an adversary that can distinguish encryptions of 0 and 1 also
distinguishes between outputs of g and uniformly random strings, breaking the pseudorandomness
of g.

If we rely on the [GKP+13] extractable security notion, then an adversary which can distinguish
encryptions of 0 and 1 implies the existence of an extractor which outputs a witness that pk is in
the image of g; this breaks the one-wayness of g.

22

6.1.2 A Concrete Instantiation from Goldreich’s PRG

For an arbitrary one-way function, the CIRCUIT-SAT to SUBSET-SUM reduction may be costly.
Thus, we give a concrete instantiation of the above approach using Goldreich’s PRG [Gol00, App16]
in place of g, along with a custom reduction to VECTOR-SUBSET-SUM. We first recall the con-
struction of Goldreich’s PRG.

Definition 9 (Goldreich’s PRG with locality k). Fix a boolean predicate P : {0, 1}k → {0, 1}, and
a list S1, . . . , Sm ∈ [n]k of k-tuples of indices. Write Si as (i1, . . . , ik). On input x ∈ {0, 1}n, the
jth bit of the output is set to P (xi1 , . . . , xik).

For this work, we will exclusively focus on the locality k = 5 setting with the TSA (“Tri-Sum-
And”) predicate, defined as

TSA(x1, x2, x3, x4, x5) = x1 + x2 + x3 + x4x5 mod 2.

Hereinafter, “Goldreich’s PRG” will refer to the instantiation with the TSA predicate. For a list
S = (S1, . . . , Sm) where each Si ∈ [n]5, let gS : {0, 1}n → {0, 1}m be Goldreich’s PRG instantiated
with the TSA predicate, parameterized by index sets S1, . . . , Sm.

Definition 10. The GOLDREICH language consists of instances (n,y, (S1, . . . , Sm)) such that each
Si ∈ [n]5, and y is in the image of gS where S = (S1, . . . , Sm).

Lemma 3 (GOLDREICH to VECTOR-SUBSET-SUM). There is a Karp reduction which takes
(n,y, (S1, . . . , Sm)) in GOLDREICH and outputs (H, `) in VECTOR-SUBSET-SUM, where H ∈
Zm×(n+2m) and ` ∈ Zm.

Proof. Given a list S = (S1, . . . , Sm) with corresponding Goldreich PRG gS : {0, 1}n → {0, 1}m,
along with a string y ∈ {0, 1}m, we construct an instance (H, `) where H ∈ Zm×(n+2m) and ` ∈ Zm
such that there exists w ∈ {0, 1}n+2m satisfying H · w = ` if and only there exists x ∈ {0, 1}n
satisfying GS(x) = y.

We define n + 2m variables by allocating 1 variable for each input position j ∈ [n], and 2
variables ai, bi for each output position i ∈ [m]. We generate m equations as follows. For each
i ∈ [m], write Si = (i1, i2, i3, i4, i5) and consider the pair (Si, yi).

• If yi = 0, the associated equation is

2xi1 + 2xi2 + 2xi3 − xi4 − xi5 − 4ai + bi = 0.

• If yi = 1, the associated equation is

2xi1 + 2xi2 + 2xi3 + xi4 + xi5 − 4ai − bi = 2.

Since each equation is a linear equation over n + 2m variables, writing the coefficients of each
of the m equations as a matrix yields the matrix H ∈ Zm×(n+2m). Correspondingly, ` ∈ Zm is
specified by the right-hand-side values of the m equations.

We can extend a pre-image x ∈ {0, 1}n into a vector w ∈ {0, 1}n+2m satisfying H · w = ` as
follows. For each i ∈ [m]:

• If yi = 0, set ai = 1 if and only if xi1 + xi2 + xi3 ≥ 2.

23

• If yi = 1, set ai = 1 if and only if xi1 + xi2 + xi3 + xi4xi5 ≥ 3.

• Regardless of yi, set bi = 1 if and only if xi4 + xi5 = 1.

It can be verified that if any constraint i is not satisfied, then there is no {0, 1} setting of the
ai, bi variables that can result in a satisfying VECTOR-SUBSET-SUM witness.

6.1.3 Optimizations and Parameter Size Estimates

In this section, we describe an extension of the above witness encryption candidate for one-bit
messages that allows for encoding an h-bit message in a single ADP. We will make use of the NSS
based all-accept, and will first generalize the AllAcc.GenNSS algorithm to output wide rectangular
matrices of dimension k× (k+ r). We include the parameter r in the input to the sampling proce-
dure, noting that the procedure given before implicitly set r = 0.

AllAcc.GenNSS(n, r,Fp) :

• Let k = n+ 1, and draw a uniformly random full rank matrix T← Fk×kp .

• For each i ∈ [k + r], draw Ni ← NSS.Sample(k) and set Ci = T−1 ·Ni.

• Let A be the k× (k+ r) matrix obtained by concatenating the first column of each of the Ci

matrices, and let Bi be the k × (k + r) matrix obtained by concatenating the i+ 1st column
of each of the Ci matrices. Output M = (A,B1, . . . ,Bn).

It is also straightforward to generalize the VSS.Encode procedure to take in an additional input
r and produce an ADP with matrices of width k × (k + r). Simply draw the random Ri matrices

over Fk×(k+r)p .
The optimized witness encryption algorithm will additionally take as input a parameter λ which

determines the correctness of the encryption, and the input message will now be m ∈ {0, 1}h. It
operates as follows.

• WE.Enc(1λ,m, (H, `)) : Let d× n be the dimension of H, and h be the bit length of m.

1. Choose a prime p > maxx∈{0,1}n ||H · x||∞.

2. Set t = dh/ log(p)e and r = λ+ t.

3. Sample (MAA, k)← AllAcc.GenNSS(n, r,Fp).
4. Sample MH,` ← VSS.Encode((H, `),Fp, k, r).
5. Encode m ∈ {0, 1}h as a vector m̂ ∈ Ftp. Let Xm̂ be the matrix of dimension k× (k+ r)

whose only non-zero entries consist of the vector m̂, placed in the last t positions of the
first row.

6. Output MAA + MH,` + Xm̂.

• WE.Dec(M,w) : Compute Aw = A+
∑

iwiBi. If the first k+λ columns of Aw do not form a
matrix of rank exactly k− 1, abort. Otherwise, find a rank k− 1 submatrix A′w of dimension
k × (k − 1) among the first k + λ columns of Aw. Let X be the matrix of all zeros except

24

for a formal variable x in the top right corner. Now, for each i ∈ [t], let m̂i be the solution
to the linear equation det([A′w | (Aw)k+λ+i]−X) = 0 over the variable x. Assemble the m̂i

into a vector m̂ ∈ Ftp and recover the message m ∈ {0, 1}h.

To argue correctness of decryption on input a valid witness w, first note that since A′w has full
rank k− 1, each equation det([A′w | (Aw)k+λ+i]−X) = 0 will be linear with a non-zero coefficient
on variable x. Hence, each element of m̂ can easily be recovered. It is left to argue that the
decryption function aborts with negligible probability. Let Aw be the first k + λ columns of Aw.
We claim that the rank of Aw is k − 1, except with negligible probability. We know it is not full
rank, since by the properties of the NSS all-accept scheme, the vector [1 | w] ·T must be in its left
kernel. Similar to the proof of security of the original NSS all accept, we can union bound over all
other possible vectors, concluding that Aw is rank deficient by at least 2 with probability at most
1/pλ, which is negligible in λ, even for constant size fields.

Now we estimate the ciphertext size of the public key encryption scheme that results from
combining the optimized witness encryption scheme with our reduction from GOLDREICH to
VECTOR-SUBSET-SUM. We will set λ = 80 to be the security and correctness parameter. Note
that for any public key encryption scheme, it suffices to encrypt a security parameter number of
bits and then appeal to key encapsulation to encrypt arbitrarily long messages. We set p = 11
to be the smallest prime satisfying p > maxx∈{0,1}n ||H · x||∞ for H output by the reduction from
GOLDREICH.

We will make use of Goldreich’s PRG3 with input length n = 300 and output length m = 300
[CDM+18]. Plugging in these parameters, the optimized witness encryption will output n+ 2m =
900 matrices of dimension 900 × 1007 over the field of size 11. Assuming 4 bits per field element,
this comes to a ciphertext of size about 400 MB. Again, the public key size will be extremely small:
300 bits. Perhaps even more impressively, the key generation can be done by a Boolean circuit
with 300 AND gates and 900 XOR gates. This can be useful for fast distributed generation of keys
via secure multiparty computation. We are not aware of any other (practically feasible) public-key
encryption schemes whose key generation is nearly as efficient.

7 Cryptanalysis of the Witness Encryption Candidate

Recall that in our generic witness encryption framework of Section 5, we encrypt a bit b with
respect to an instance (h, `) by sampling the following 3 ADPs.

• An instance-encoding ADP

Mh,` = (A(h,`),B
(h,`)
1 , . . . ,B(h,`)

n).

• A bit-encoding ADP

Mb = (bS, 0, . . . , 0).

3This function is conjectured to be one-way when the output length is equal to the input length. Here we use it
as a one-way function, which by Claim 2 suffices if our WE candidate is extractable. The latter assumption is only
sufficient but not necessary; in fact, the security of this PKE candidate is a relatively clean and falsifiable assumption
that can serve as a good target for cryptanalysis.

25

• An all-accept ADP

MAA = (A(AA),B
(AA)
1 , . . . ,B(AA)

n)← AllAcc.Gen(n,Fp).

The ciphertext is the ADP

Mh,` + Mb + MAA = (A(h,`) + bS + A(AA),B
(h,`)
1 + B

(AA)
1 , . . . ,B(h,`)

n + B(AA)
n).

A described in Section 5, Mh,` + Mb on its own would be insufficient for security, since given
any vector w ∈ Fnp such that h ·w = `, it is possible to recover b. For security, recovering b should
only be possible when the vector w additionally satisfies w ∈ {0, 1}n.

We therefore include the “all-accept” ADP MAA such that for any x 6∈ {0, 1}n, det(MAA(x)) 6= 0
with overwhelming probability, and for any x ∈ {0, 1}n, det(MAA(x)) = 0. We note that both
Mh,`+Mb and MAA on their own are “insecure” in the sense that we can show randomness recovery
attacks on the procedures used to sample them. However, security relies on the idea that adding
these ADPs to each other may block such attacks.

First, we show how to mount a randomness recovery attack on MAA. On its own, this will not
constitute an attack on the witness encryption ciphertext. However, we will show that this attack
strategy can be extended to a full attack on a simplified version of our concrete witness encryption
candidate, without the additional safeguards.

Indeed, to obtain secure witness encryption for VECTOR-SUBSET-SUM, we need semantic
security of ciphertexts to hold for any instance (h, `) that is not in the language. A toy NO
instance to consider is

h = (0, . . . , 0, 1), ` = 2.

Intuitively, such an instances is particularly vulnerable since the resulting Mh,` + Mb + MAA will
give out all but 2 of the matrices of MAA in the clear.

Attacks on this instance motivate the concrete candidate given in Section 5, in which we first
encode the instance (h, `) into a VECTOR-SUBSET-SUM instance (H, `) where H consists of many
linearly independent rows.

7.1 Formula-Based All-Accept

We will consider two attacks on the AllAcc.GenFORM sampling procedure, where the width of each
ui,vi, si, ti is set to 1. The second attack in particular will motivate the need to consider a more
general width parameter q(·).

7.1.1 Correlated Span Attack

We first show a polynomial-time algorithm that given M = (A,B1, . . . ,Bn) ← AllAcc.Gen(n,Fp),
recovers all 4n vectors {ui,vi, si, ti}i∈[n] up to scalings. The high-level intuition for the attack is
that for any x ∈ {0, 1}n, the matrix A +

∑
i xiBi is rank-deficient. Moreover, if we look at the

kernel of this matrix for many different choices of x ∈ {0, 1}n, correlations between these kernels
will allow us to recover the original randomness used to sample (A,B1, . . . ,Bn). We refer to this
as a correlated span attack.

More precisely, the algorithm proceeds in the following steps.

26

1. Observe that A is rank deficient by 1. Thus, we can find vectors α and β such that A ·α = 0
and β> ·A = 0.

2. Observe that with high probability α⊥vi for all i ∈ [n]. Similarly, β⊥ui for all i ∈ [n].

3. Now to recover ti up to a scalar, compute β> · Bi. Since β is perpendicular to ui for all
i ∈ [n], β> ·Bi = (β> · si) · ti.

4. Now find a vector γ that is perpendicular to ti for i ∈ [n]. Then, one can compute Bi · γ to
find a vector that is a scalar multiple of ui. Continuing this way, one can recover all vectors
ui,vi, si, ti for i ∈ [n] up to scalar multiples.

Note that this attack crucially relies on access to the rank deficient matrix A +
∑

i xiBi for
various choices of x ∈ {0, 1}n. In the witness encryption candidate, it appears difficult to recover
such a matrix when the instance is not in the language SUBSET-SUM, which is crucial for security.

7.1.2 Linearization Attack

Next we discuss linearization-style attacks [KS99, CP02]. At a high level, a linearization attack
first models the problem to be solved as a system of non-linear equations. Then, it attempts to find
certain structures within the equations that enable solving them with just linear algebra. Generally,
one derives new variables and re-expresses the system as a larger system of linear equations. Note
that in general, systems of quadratic equations are difficult to solve. However, certain systems may
be vulnerable to this style of attack.

For concreteness, we give a particular witness encryption instance that we are interested in
attacking. We describe the output of encrypting a bit b under the SUBSET-SUM NO instance
(h, `) = ((0, . . . , 0, 1), 2), without first applying the transformation to VECTOR-SUBSET-SUM in-
stance (H, `).

• WE.Enc(b, ((0, . . . , 0, 1), 2)). Fix a large enough field Fp and draw at random 4 sets of n vectors

of dimension n+1: {ui}i∈[n], {vi}i∈[n], {si}i∈[n], {ti}i∈[n], along with n2 scalars {c(i)j }i,j∈[n] over

Fp. Also draw uniformly random matrices R,S ∈ F(n+1)×(n+1)
p . Let

A =
∑
i∈[n]

uiv
>
i − 2R + bS,

B1 = −u1v
>
1 + s1t

>
1 +

∑
j∈[n]

c
(j)
1 ujt

>
j ,

...

Bn−1 = −un−1v
>
n−1 + sn−1t

>
n−1 +

∑
j∈[n]

c
(j)
n−1ujt

>
j ,

Bn = −unv
>
n + snt

>
n +

∑
j∈[n]

c(j)n ujt
>
j + R.

Output

M = (A,B1, . . . ,Bn).

27

First, observe that A and Bn are masked by R, so we will attempt to extract information only
from B1, ...,Bn−1. Our goal is to recover vectors (u1, ...,un, s1). In the end, we will be left with
Ω(n6) equations of degree 3 over the the O(n2) variables that constitute these vectors. As discussed
at the end of the section, these asymptotics fall in the range where successful linearization attacks
may be mounted. Thus, we view this as evidence that the above simplified scheme requires the
safeguards described in Section 5.2.

The idea can now be described as follows.

1. Compute Mi = B1 ·B−1i for i ∈ {2, . . . , n − 1}. Denote matrix P = [u1, ...,un, s1] and Q =

[t1, ..., tn,−v1]
>. In this notation, B1 can be written as P ·D1 ·Q where D1 ∈ F(n+1)×(n+1)

p

is:

D1 =

c
(1)
1 0 . . . 0 1

0 c
(2)
1 . . . 0 0

...
...

. . .
...

...

0 0 . . . c
(n)
1 0

1 0 . . . 0 0

2. Now for i ∈ {2, . . . , n−1}, Bi can be expressed as P ·Di ·Q+LowRanki. Here, Di is described

below, and LowRanki is a matrix with rank at most 2.

Di =

c
(1)
i 0 . . . 0 0

0 c
(2)
i . . . 0 0

...
...

. . .
...

...

0 0 . . . c
(n)
i 0

0 0 . . . 0 0

3. Calculate D′i := D−11 ·Di as

D′i =

0 0 . . . 0 0

0 (c
(2)
1)−1c

(2)
i . . . 0 0

...
...

. . .
...

...

0 0 . . . (c
(n)
1)−1c

(n)
i 0

0 0 . . . 0 0

4. Now, define Mi := B−11 ·Bi. Note that the attacker can compute all Mi for i ∈ {2, . . . , n−1}

in the clear. Observe that

Q ·Mi = Q ·B−11 ·Bi = Q ·Q−1 ·D′i ·Q + Q · LowRanki = D′i ·Q + LowRank′i,

where LowRank′i is a matrix of rank at most 2.

28

5. Defining Q′i := D′i ·Q, we have that Q ·Mi −Q′i has rank at most 2. Then, for any i, letting
Q and Q′i be matrices of formal variables, the attacker can set up O(n6) degree 2 equations
over 2n2 variables. These arise by setting the determinant of each of the O(n6) submatrices
of size 3× 3 in Q ·Mi −Q′i equal to zero.

We also have more equations that arise from the fact that Q′i has the following structure:

Q′i =

0 0 . . . 0

(c
(2)
1)−1c

(2)
i Q2,1 (c

(2)
1)−1c

(2)
i Q2,2 . . . (c

(2)
1)−1c

(2)
i Q2,n+1

...
...

...

(c
(n)
1)−1c

(n)
i Qn,1 (c

(n)
1)−1c

(n)
i Qn,2 . . . (c

(n)
1)−1c

(n)
i Qn,n+1

0 0 . . . 0

Thus, for every i1, i2 ∈ [2, . . . , n− 1] and j1, j2 ∈ [n+ 1],Q′i,j1 ·Qi,j2 = Q′i,j2 ·Qi,j1 . Similarly,
one can set up new equations for every i ∈ [n]. We can further impose that

∑
i Qi,i = 1 to

ensure non-triviality.

6. It is not immediately clear that there are enough linearly independent equations to mount
an attack. As long as we have a unique solution, Kipnis and Shamir [KS99] suggest that
(heuristically) it should be possible to solve for Q and D′i (up to scaling factors).4 This
argument can be generalized to any constant degree d. For a degree 3 system with n2 variables,
we need 0.1 ·n6 equations. A rudimentary counting argument suggests that if Bi are random,
such a solution should not exist. We leave a more refined analysis of this attack to future
work.

This attack suggests that we should set parameters so that LowRank matrices have a super-
constant rank, or alternatively, that we do not allow the attacker to see many Bi matrices in the
clear. The construction in Section 5.2 incorporates safeguards that address both, generalizing the
width of the ui,vi, si, ti vectors via the parameter q(·), and encoding SUBSET-SUM instances into
VECTOR-SUBSET-SUM instances with many linearly independent vectors.

7.2 NSS-Based All-Accept

One potential advantage that the NSS-based construction has over the formula-based construction
is in the amount of randomness used to generate a sample. For dimension n, the formula-based
sampling procedure uses 4(n+ 1)n+n2 = O(n2) uniformly random field elements to produce n+ 1
matrices of dimension (n + 1) × (n + 1). On the other hand, the NSS-based sampling procedure
generates a fresh NSS matrix for each i ∈ [n], each of which requires about n2/2 fresh random
variables. Thus the sampling procedure overall uses O(n3) random field elements to produce n+ 1
matrices of dimension (n+ 1)× (n+ 1).

However, the NSS matrices are very structured, which leads to randomness recovery attacks in
certain settings, even when the attacker is not given the entire all-accept sample. Consider a sample
(A,B1, . . . ,Bn) ← AllAcc.GenNSS(n,Fp), recalling that the width k of each matrix is n + 1. The
goal will be to recover the random matrix T drawn during the sampling procedure. First assume

4More specifically, for a degree-2 system of equation over n variables, roughly 0.1·n2 linearly independent quadratic
equations suffice to recover an over-determined solution in polynomial time [KS99, TW12].

29

that just B1 and B2 are given in the clear. This means we have the 2nd and 3rd column of each
Ci matrix for i ∈ [k], where Ni = T ·Ci and each Ni is NSS. The symmetric properties of each
Ni immediately give us k linear equations over the 2k variables comprising the 2nd and 3rd row of
T. Generalizing, if we started with s matrices Bi in the clear, we could form

(
s
2

)
linear equations

over 2s variables of T and eventually the linear system will be over-determined.
We can use this structure to attack the (h, `) = ((1, 0, . . . , 0), 2) instance of SUBSET-SUM as

follows (note this is the same instance considered above but relabeled for convenience). Encryp-
tion of the bit 0 results in the set of matrices A′ = A + 2R,B′1 = B1 + R,B2, . . . ,Bn, where
(A,B1, . . . ,Bn) ← AllAcc.GenNSS(n,Fp) and R is a uniformly random matrix. Using B2, . . . ,Bn,

recover all but the first two rows of T as described above, and call this matrix T̃ ∈ F(k−2)×k
p . We

will be interested in solving for the first and second rows of T, denoted t(1) and t(2), using T̃ and
the matrices A′ and B′1.

Note that T̃ and B2, . . . ,Bn reveal the bottom right (k−2)× (k−2) submatrix of each Ni, and
in particular the diagonal entries of each of these submatrices. Now let di be the column vector
that consists of the final k − 2 elements on the diagonal of Ni, and arrange the k columns di into
a matrix Ñ of dimension (k − 2) by k. Using the symmetries present in the Ni, we see that

T̃ ·A =

−t(1) ·B2
...

−t(1) ·Bn

− Ñ := T̃(1) − Ñ and T̃ ·B1 =

−t(2) ·B2
...

−t(2) ·Bn

 := T̃(2),

and we can then compute

T̃(A′ + 2B′1) = T̃(A− 2R + 2B1 + 2R) = T̃(A + 2B1) = T̃(1) − 2T̃(2) − Ñ.

This gives k2 linear equations over the 2k variables comprising t(1) and t(2).
This attack again highlights the danger of giving the adversary many Bi matrices in the clear.

This motivates the need for encoding the SUBSET-SUM instance (h, `) into a VECTOR-SUBSET-SUM
instance (H, `) where H contains many linearly independent rows, as described in the concrete
candidate above. Now an adversary attacking the (h, `) = ((1, 0, . . . , 0), 2) instance can recover
matrices B1 − Bn/2+1, . . . ,Bn/2 − Bn in the clear, and about half the information in T, but it
is unclear how to use this limited information to mount a full randomness recovery or message
distinguishing attack.

8 Candidate Obfuscation for Branching Programs

As discussed in Section 4.3, the ADP model is powerful enough to capture different types of branch-
ing programs. In this section, we describe a general paradigm for taking an arbitrary deterministic
branching program BP and producing an ADP that is plausibly an indistinguishability obfuscation
(iO) of BP. Since polynomial-size deterministic branching programs are powerful enough to sim-
ulate the class NC1 (by Barrington’s theorem) or even log-space computations, our construction
directly yields a candidate iO for NC1 and log-space. As shown in [GGH+13b], this suffices to
obtain a candidate iO for all polynomial-size circuits.

30

8.1 Functionality-Preserving Transformations

In this section, we describe three generic transformations that can be applied to affine determinant
programs satisfying specific conditions. Our candidate NC1 obfuscation will be the result of applying
these three transformations in sequence to an ADP encoding of [IK02, AIK04].

8.1.1 Transformation 1: Random Local Substitutions

Recall the ADP encoding of counting branching programs described in Section 4.3. Consider any
such branching program, specified by a directed acyclic graph G = (V,E), and fix a topological
ordering on the vertices v1, . . . , v|V |. Each pair of ordered vertices (vj , vk), for j < k, is labeled by
a function xi, ¬xi, 1, or 0 (no edge). Given such a branching program, our first transformation
will perform what we term a random local substitution for each vertex pair (vj , vk). We describe
in Section 9.3 an attack strategy that motivates the need for random local substitutions.

Viewing the branching program as ADP = (M,Eval), where M = (A,B1, . . . ,Bn), we see that
each vertex pair (vj , vk), for j < k, defines a width-1 ADP. For concreteness, these matrices can
be thought to be over some finite field Fp and Eval is just the identity function. In particular,
each pair gives rise to the (j, k − 1)th entry of each matrix A,B1, . . . ,Bn, which we denote by

a(j,k), b
(j,k)
1 , . . . , b

(j,k)
n , as follows. If the label is the bit 0 or 1, then a(j,k) is equal to the bit, and all

b
(j,k)
i = 0. If the label is xi, then a(j,k) = 0, b

(j,k)
i = 1, and b

(j,k)
i′ = 0 for i′ 6= i. If the label is ¬xi,

then a(j,k) = 1, b
(j,k)
i = −1, and b

(j,k)
i′ = 0 for i′ 6= i.

We will inject entropy into the branching program by replacing each of these width-1 ADPs
with a random width-2 ADP computing the same function. There are many possible such local
substitution operations and generalizations, but we present here a particularly simple realization,
which maintains the property that the resulting matrices have all entries in {−1, 0, 1}.

In the graph representation of the original branching program, the effect of replacing each each
width-1 ADP with a width-2 ADP amounts to adding a vertex vj,k for each pair (vj , vk). Thus, if

the width of the original ADP was `, the width of the resulting ADP A′,B′1, . . . ,B
′
n will be `+

(
`+1
2

)
.

With this view it is easy to see what transformations are possible. For any pair (vj , vk), we consider
the set of 2 × 2 submatrices of A′,B′1, . . . ,B

′
n with rows indexed by vj , vj,k and columns indexed

by vj,k, vk. Denote this set of 2× 2 matrices as A′(j,k),B
′(j,k)
1 , . . . ,B

′(j,k)
n . If the label of (vj , vk) was

0, we set all B
′(j,k)
i = 0, and have the following possibilities for A′(j,k):

A
(0)
1 =

[
0 0
−1 0

]
,A

(0)
2 =

[
1 0
−1 0

]
,A

(0)
3 =

[
0 0
−1 1

]
.

If the label of (vj , vk) was 1, we set all B
(j,k)
i = 0, and have the following possibilities for A(j,k):

A
(1)
1 =

[
0 1
−1 0

]
,A

(1)
2 =

[
1 1
−1 0

]
,A

(1)
3 =

[
0 1
−1 1

]
,A

(1)
4 =

[
1 0
−1 1

]
.

If the label of (vj , vk) was xi, we can set A′(j,k) to be A
(0)
c for some c ∈ {1, 2, 3}, and B

′(j,k)
i

to be A
(1)
d −A

(0)
c for some d ∈ {1, 2, 3, 4}. This gives a total of 12 possible substitutions. Finally,

if the label of (vj , vk) was 1 − xi, we again obtain 12 possible substitutions by fixing A′(j,k) to be

A
(1)
c for some c ∈ {1, 2, 3, 4}, and B

′(j,k)
i to be A

(0)
d −A

(1)
c , for some d ∈ {1, 2, 3}.

31

The operation we perform will, for each vertex pair, pick uniformly at random from the set of
possibilities described above. For convenience, we denote this random local substitution operation
by ADP′ = RLS(ADP).

We stress that our particular method of performing random local substitutions is only one
potential candidate, and there are many possible transformations to explore. Our candidate was
designed specifically to thwart attacks on iO described in Section 9.3, which take advantage of the
fact that the structure of the underlying branching program is known.

8.1.2 Transformation 2: Small Even-Valued Noise

Our next transformation assumes the following about the input ADP = (M,Eval).

• M = (A,B1, . . . ,Bn) is such that each entry of A,B1, . . . ,Bn is in {−1, 0, 1}.

• Eval = Eval6=0, and furthermore, on any input x ∈ {0, 1}n, det(A +
∑

i xiBi) ∈ {0, 1}.

Note that any ADP output by the [IK02, AIK04] encoding and then subjected to the random
local substitution above satisfies these properties.

AddNoise(ADP):

• Let ` be the width of the matrices in ADP and n be the input length. Based on n, `, fix a
prime modulus p and error distribution χ as explained below. Consider each matrix A,Bi as
now being over F`×`p .

• Sample matrices U,V randomly in F`×`p such that det(U) · det(V) = 1.

• Sample matrices Erri ← χ`×`.

• Set A′ = U · (A + 2 · Err0) ·V and B′j = U · (Bj + 2 · Errj) ·V for all j ∈ [n].

• Finally, in the resulting ADP, set M = (A′,B′1, ...,B
′
n) and set Eval = Evalparity.

Parameters. We set χ to be the distribution that samples uniformly from the range [−B(`),+B(`)],
where B(`) = `ω(1). We set p to be a prime modulus such that p is Θ((n ·B(`) ·

√
`)`). This can

be done by setting the bit length of p as `1+ε for any constant ε > 0, assuming ` > n.

Correctness. Let x be any input in {0, 1}n and let L(x) := A +
∑

i xiBi be the branching
program that is being obfuscated. Observe that

det(M(x)) = det(U · (L(x) + 2 · Err0 +
∑
i

xi · 2 · Erri) ·V)

= det(U) det(V) det(L(x) + 2 · Err0 +
∑
i

xi · 2 · Erri)

= det(L(x) + 2(Err0 +
∑
i

xi · Erri)).

Correctness follows from the following observations.

32

• The value of det(L(x) + 2(Err0 +
∑

i xi · Erri)) over the integers is of the form L(x) + 2z for
some z ∈ Z.

• The number of monomials in the degree ` polynomial defined by the determinant is (loosely)
bounded by ``.

• Each entry in L(x) + 2(Err0 +
∑

i xi · Erri) is bounded by n · B(`) + 1 in absolute value, so
the determinant is smaller than (n ·B(`) + 1)` · `` in absolute value. If p > (n ·B(`) + 1)` · ``,
correctness holds.

One can also carry out a more refined calculation as follows. For a boolean input x, let Qx =
L(x) + 2(Err0 +

∑
i xi · Erri). With overwhelming probability over the choice of x, Qx has entries

bounded by n1/2+δB(`) in absolute value for any δ > 0. This can be shown using a Chernoff bound.
The signs of the entries of this matrix Qx, are random and independent, so one can use the matrix
Bernstein inequality (see for example, Theorem 6.6.1 [Tro15]) to bound the maximum eigenvalue
and hence the determinant (as determinant is the product of eigenvalues), to be (n1/2+δ · B(`) ·
`1/2+δ)`. This implies that p can be a Θ(`1+ε) bit prime for any ε > 0.

8.1.3 Transformation 3: Block-Diagonal Matrices

Ideally, the obfuscation of a circuit over n bits should not leak anything other than its input/output
behavior on x ∈ {0, 1}n. However, consider evaluating the ADP that results from the above
transformation on a short but non-binary input x. Due to the setting of parameters necessary for
correctness, the determinant of the matrix A+

∑
i xiBi will not be large enough to wrap around the

modulus. Intuitively, the even-valued noise should ensure that the only useful information gained
from this determinant is the evaluation of the circuit on input x mod 2. However, the fact that the
determinant does not wrap around p is nevertheless worrisome, and we present a simple method
to potentially block any attacks that might make use of short non-binary evaluations, such as the
polynomial extension attacks described in Section 9.1.

The idea will be to post-process any M = (A,B1, . . . ,Bn) in a way that forces the determinant
on non-binary inputs to be large and random. This can be accomplished using 2n random matrices
{Gi,Hi}i∈[n] of determinant 1. We will append each Gi to A along the diagonal, and then append
Hi −Gi to Bi in the ith slot along the diagonal. After appending, we rerandomize as before with
U and V. The determinant on any binary input will be the product of the determinant of the
original ADP times the product of the determinant of Gi or Hi for each i, which are both 1. On
any non-binary input, some block diagonal will be a linear combination of Gi and Hi that results
in a large and random determinant. The following transformation also takes as input a parameter
d, which determines the size of the random Gi,Hi matrices. In our obfuscation construction, it is
reasonable to set d = 2.

AddBlockDiagonals(ADP, d):

• Let ` be the width of the matrices in ADP and n be the input length.

• Sample 2n matrices {Gi,Hi}i∈[n] uniformly from Fd×dp conditioned on their determinant being
equal to 1.

• Sample U,V uniformly from F(`+nd)×(`+nd)
p conditioned on det(U) · det(V) = 1.

33

• Set A′ = U · diag(A,G1, . . . ,Gn) ·V, and B′i = U · diag(Bi,0, . . . ,0,Hi −Gi,0, . . . ,0) ·V,
and return the resulting ADP, consisting of M = (A′,B′1, . . . ,B

′
n) and Eval = Evalparity.

In summary, to obfuscate a deterministic (alternatively, F2 counting) branching program, we
first convert it into an ADP as described in Section 4.3. We then output AddBlockDiagonals(AddNoise(RLS(ADP)), 2)
as the final obfuscation.

8.2 Extensions of the Basic Construction

8.2.1 Obfuscating Affine F2 Counting Branching Programs

Motivated by the goal of improved concrete efficiency, we extend the branching program model to
allow labeling of edges by any affine function over the input bits. This is captured by the following
notion of Affine F2 Counting Branching Programs.

Definition 11 (Affine Counting Branching Programs [IK02]). An Affine F2 Counting Branching
Program computing f : {0, 1}n → {0, 1} is specified by a directed acyclic graph G = (V,E) and a
labeling φ(·, ·) where each edge (u, v) ∈ E is labeled with an affine function φ(u, v) = fu,v(x), and
two special source and sink vertices are labeled s and t respectively. fu,v has the form

fu,v(x) =
∑
i∈Su,v

xi + cu,v mod 2,

where cu,v ∈ F2. Its size is |V | − 1. Any input x ∈ {0, 1}n induces a sub-graph Gx limited to
edges consistent with x (i.e. edges that evaluate to 1 on x). An accepting path on input x is
a directed s − t path in Gx. An Affine F2 Counting Branching Program computes the function
g : {0, 1}n → {0, 1} such that g(x) is the number of accepting paths in Gx mod 2.

We now import the following theorem.

Lemma 4 ([IK02, AIK04]). Suppose there is an Affine F2 Counting Branching Program of size `
computing a boolean function f . Suppose L(x) satisfies the following

• L(x) has −1 along the second diagonal (right below the main diagonal).

• L(x) is 0 below the second diagonal.

• Each entry of L(x) is a degree (at most) 1 polynomial in a single input variable xi.

More precisely, L(x) is defined as follows. Fix a topological ordering of the vertices in V ,
and label the columns / rows (from left to right / top to bottom) according to this ordering
of vertices. In particular we want s labeled 1 and t labeled `. We first define a matrix A(x)
of dimension ` × `. For entry (i, j) entry of A(x) write affine function φ(i, j) (written as a
degree one polynomial over the reals) if (i, j) is an edge in G and 0 otherwise. Note that A(x)
will be 0 on and below the main diagonal. Now consider A(x)− I, and delete its first column
and last row to obtain the (`− 1)× (`− 1) dimensional matrix L(x).

Then for all x ∈ {0, 1}n, we have det(L(x)) mod 2 = f(x).

34

Observe that this class of branching programs contain Z branching programs, since the eval-
uation of a Z branching program is exactly its evaluation modulo 2. What we observe is that in
this case, our obfuscation scheme described in Section 8 is already capable of obfuscating affine F2

counting branching programs. The idea is that we can apply transformation 2 given in Section 8
to the matrix L(x) representing an Affine F2 Counting Branching Program as follows: Each edge
in L(x) is an affine function of the form f(x) =

∑
i∈S xi + c mod 2. We construct a new matrix

L′(x) where the edge is replaced by f ′(x) =
∑

i∈S xi+ c, and the computation is now over integers.
The range of this new affine function is [0, n+ 1]. If the parameters are chosen appropriately, what
we end up computing by the evaluation procedure is det(L′(x)) mod 2. We set p so that this can
be computed without a wrap-around. Note that det(L(x)) mod 2 = det(L′(x)) mod 2 as the error
that is added to the matrices is even. This ensures correctness.

In the next section, we refine the notion of random local substitution and propose another
alternative safeguard that relies on the ideas developed in this section.

8.2.2 Using Embedded Affine F2 Branching Programs

In Section 8.1.1, we discussed the notion of random local substitutions, which is our safeguard
for preventing attacks such as the one described in Section 9.3. However, that solution incurs a
quadratic blow up in the size of the branching program. In this section, we propose an alternate
safeguard. Let BP : {0, 1}n → {0, 1} be a Z branching program with ` vertices, including source s
and target t. First, sample a BP′ : {0, 1}n → {0, 1} as follows:

• Fix ` vertices, and select two vertices s′, t′ among these ` vertices to act as the source vertex
and target vertex of BP′.

• Induce a random directed acyclic graph among these vertices. This is done by connecting all
vertices i ∈ [`] to vertices j where j ≥ i + 1. In this numbering, the starting vertex s′ is the
1st vertex and t′ is the `th vertex. For every edge u, v sample a random affine function fu,v(x)
which is used to label the edges.

We now combine BP and BP′ into the final transformed BP′′ as follows. BP′′ consists of 2`+ 2
vertices: the ` vertices of BP, the ` vertices of BP′, and a new source s′′ and target t′′. Form edges
from s′′ to s, from s′′ to s′, and from t to t′′, all with label 1. Note that there will be no edge
between t′ and t′′. Observe that BP′′ computes the same function as BP′. Indeed, any additional
paths that go via BP′ are never connected to the target vertex t′′. There can be either 0 or 1 path
going via BP since we started with a deterministic Z branching program. This resulting new BP′′

can now be input to transformations 2 and 3 outlined in Section 8.

9 Cryptanalysis and Parameter Estimation for the Branching Pro-
gram Obfuscation Candidate

9.1 Polynomial Extension Attacks

As an instructive example, consider the ADP obfuscation of a point function Iv, without the even-
valued error. Recall that on input x ∈ {0, 1}n, Iv outputs 1 if x = v and 0 otherwise. A simple
branching program computing Iv contains n+ 1 vertices, with a single edge from each vertex i to
vertex i+ 1 that is either set to vi or 1− vi. Thus, L(x) can be written as the following matrix:

35

1 + 2v1x1 − v1 − x1 0 0
−1 1 + 2v2x2 − v2 − x2 0

0 −1
. . .

. . . 0
...

...
. . .

. . .
...

0 0 . . . −1 1 + 2vnxn − vn − xn

Hence, for x ∈ {0, 1}n, det(L(x)) is 1 if x = v and 0 otherwise. Writing

L(x) = L0 + x1L1 + . . .+ xnLn,

we see that an attacker given

ADP = (A = U · L0 ·V,B1 = U · L1 ·V, ...,Bn = U · Ln ·V),

can evaluate

det(A +
∑
i

xiBi) = det(U · L(x) ·V) = det(L(x)).

Thus, the attacker has input-output access to the polynomial det(L(x)) over the field Fp, and is
not restricted to evaluation on binary inputs x ∈ {0, 1}n. This leads to the following attack.

1. Observe that det(A +
∑

i xiBi) is the unique multilinear polynomial over Fnp agreeing with∏
i∈[n](1 + 2vixi − vi − xi) on inputs from {0, 1}n. This implies

det(A +
∑
i

xiBi) =
∏
i∈[n]

(1 + 2vixi − vi − xi)

over Fnp .

2. To recover v1, compute

det(A + x1 ·B1 +
∑
i≥2

2−1Bi) = (1− 2−1)n−1(1 + 2v1x1 − v1 − x1).

We can find x1 = 1−v1 by equating this quantity to 0. This recovers the first bit of the point
function, and the others can be computed in the same way.

The reason that this particular attack succeeds is that the polynomial extending the boolean
function det(L(x)) is multilinear. Read-once branching programs give rise to such polynomials.
More generally, Klivans and Shpilka [KS03] showed that any read-once, oblivious branching pro-
gram can be learned efficiently. In their model, the attacker is given membership and equivalence
query access to an unknown polynomial P computed by a read once branching program over a field
Fp. This means the attacker is able to evaluate the program on any input x ∈ Fnp , as well as submit
a hypothesis H and learn that either H is equal to P or receive a point y on which H(y) 6= P (y).
In our setting, we just argued that the attacker has membership query access to the polynomial
computed by the branching program, and equivalence queries can be simulated by evaluation on
random points and appealing to Schwartz-Zippel.

36

For our construction to satisfy the security notion of indistinguishablity obfuscation, we need
to be able to successfully obfuscate simple classes of functions computable by read once branching
programs. Thus, we have to include some noise in the obfuscation procedure that destroys the
read once nature of any such program. One can view the random even-valued error as adding an
edge between every pair of vertices in the branching program, labeled with a random, small, even
linear combination of the entire input vector. The resulting program is very far from read-once,
as evaluating every edge requires reading the entire input. Thus, learning results that apply to
restricted classes on branching programs will not apply. As an example, [KS03] state that their
techniques would not apply to a polynomial as simple as f(x1, . . . , xn) =

∏n
i=2(x1 + xi).

9.2 The Need for Super-polynomial Error and Modulus

Now we present a contrived example consisting of two ADPs which will motivate the need for super-
polynomial noise for transformation 2. While these specific ADPs will not arise from the [IK02]
transformation, we will set our error-size to err on the side of caution.

The attack works as follows. Suppose we have an ADP A,B1, . . . ,Bn that is in one of the two
following forms.

• In the first form, A,B1, . . . ,Bn = 0.

• In the second form, A = 0, and Bi for i ∈ [n] is the matrix
1 1 . . . 1
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 .

Now consider applying the AddNoise operation to one of the ADPs, hoping that the choice
of ADP is masked by this operation. Assume that the even-valued error added by the AddNoise
operation is actually chosen in {−2, 2}, so that each entry of the matrices Err0,Err1, . . . ,Errn is
uniform in {−1,+1}. Observe that in both cases det(A +

∑
i xiBi) = 0 for all x ∈ {0, 1}n, so the

parity of the determinant will not reveal which ADP was chosen. A relevant result of [TV06] states
that the determinant of a matrix where the entries are chosen uniformly at random from {−1,+1}
concentrates in absolute value around

√
n!. This fact can be used to estimate the determinant of

the matrix A +
∑

i Bi in both cases, which is the ADP evaluated on input x = [1, . . . , 1].

Case 1: The value det(A +
∑

i Bi) is exactly det(2(Err0 +
∑

i xi · Erri)), whose entries are in-
dependently signed, with standard deviation about

√
n. Thus, the determinant will concentrate

around
√
n! · (
√
n)n in absolute value.

Case 2. To estimate the value det(A +
∑

i Bi) in this case, we apply a Chernoff bound and find
that the elements in the top row are typically in the range [n −

√
n log2 n, n +

√
n log2 n]. If we

divide the top row by
√
n, we are left with a matrix whose entries are distributed as the matrix in

case 1, with the only difference being that the top row is positively signed. Heuristically, this will
result in det(A +

∑
i Bi) being a

√
n factor larger.

37

Thus, the magnitude of the determinant on input [1, . . . , 1] will give a distinguisher. Note
however that neither ADP considered here is a valid [IK02, AIK04] encoding of a branching program.
We chose these particular ADPs for simplicity, to illustrate the need for super-polynomial error;
similar attacks can be carried out on ADPs that result from encodings of real branching programs.

Setting the Modulus. Once we fix the noise bound B(`), we can choose p in a more refined
manner as follows. Let L = (L0, ..., Ln) be the branching program to obfuscate. We would like
to add noise to the matrices of L to form an ADP (A,B1, . . . ,Bn), in such a way that for all
y0, y1, ..., yn ∈ {0, 1},(

det(y0A +
∑
i

yiBi) mod p

)
mod 2 = det(y0L0 +

∑
i

yiLi) mod 2.

Let t = poly(`) be a parameter, and set p = Θ(t` ·B(`)` ·
√
`! · `). Then we observe the following:

• If t ≥ n2, then with overwhelming probability we can correctly evaluate any boolean com-
bination y0, y1, ..., yn ∈ {0, 1}n+1. To see this, first note that the entries of y0A +

∑
i yiB

are randomly signed, and typically lie in [−2 ·
√
n+ 1 log2 n · B(`),+2 ·

√
n+ 1 log2 n · B(`)]

due to a Chernoff bound. Then, we can appeal to Theorem 1.1 from [TV06], stating that
the determinant of any matrix M of dimension `, with entries chosen uniformly at randomly
from {−1,+1}, satisfies

√
`! · e−c

√
` log ` ≤ |det(M)| ≤

√
`! · `,

with overwhelming probability. Here c > 0 is any constant. In this case, the determinant will
thus heuristically satisfy

|det(y ·A +
∑
i

yi ·Bi)| ≤ (2 ·B(`) ·
√
n+ 1 log2 n)`

√
`! · ` ≤ p.

• Now, consider more general (non-binary) linear combinations (y0, y1, . . . , yn). If the `1 norm
of the combination satisfies |y0|+

∑
i |yi| > t3, then it holds that

|det(y0A +
∑
i

yiBi)| ≥ p.

This overflow will hopefully help with security against attacks that evaluate the ADP on non-
binary inputs. We can again observe heuristically from theorem 1.1 in [TV06]. If the weight
is greater than t3, then typically we expect each entries of the matrix to be randomly signed
and having values larger than t1.4 ·B(`). Thus with high probability,

| det(y0A +
∑
i

yiBi)| ≥ (t1.4 ·B(`))`
√
`! · e−c

√
` log ` ≥ p.

38

We set t to be n2 to allow correct evaluation of boolean inputs. The above describes that setting
the modulus appropriately can protect against attacks that involves evaluating programs on inputs
of large (polynomial) weight. If the weight of the combination is bounded by some polynomial t,
we claim the following.

Claim 3. Fix any ADP A,B1,,Bn of width ` with entries in {−1, 0, 1}. For any x = (x0, ..., xn) ∈
Zn+1, Let L(x) = x0A +

∑
i xiBi, and let ADP′ = AddNoise(ADP). Let Err0,Err1, . . . ,Errn be

the matrices drawn during the real AddNoise procedure (with a super-polynomial bound), and for
x ∈ Zn+1, let Err(x) := x0 · 2Err0 +

∑
i xi · 2Erri. Then for any x ∈ Zn+1 where ‖x‖1 < t,

Pr

[
| det(x0A

′ +
∑

i xiB
′
i)| − | det(L(x)) mod 2 + det(Err(x))|
| det(Err(x))|

≤ negl(`)

]
≥ 1− negl(`).

where the probability is taken over the randomness of generating Err0,Err1, . . . ,Errn.

This also shows that if the error is chosen from a super-polynomially large error distribution,
then a distinguishing attack which only uses the magnitude of det(M(x)) will not apply.

Proof. This follows from a result of Ipsen and Rehman [IR08] who showed that for any non-singular
matrices M1,M2 ∈ R`×`,

|det(M1 + M2)− det(M1)|/|det(M1)| ≤ ·
(
κ · ‖M2‖2
‖M1‖2

+ 1

)`
− 1,

where ‖M‖2 is the largest singular value of the matrix M and κ := ‖M1‖2 ·‖M−1
1 ‖2 (κ is sometimes

referred to as the condition number of M1). For a random matrix of size ` × `, the condition
number is around Θ(`) in expectation[CD]. Now, we can substitute M1 as Err(x), M2 as L(x).
The maximum singular value of Err(x) will be at least Ω(B(`)

√
`) (see Exercise 14, [Tao]). Since

branching programs have small entries, their singular values are also bounded by ‖x‖1 · O(`) =
O(t · `). Thus, the right-hand side of the previous equation is(

κ · ‖L(x)‖2
‖Err(x)‖2

+ 1

)`
− 1 =

(
O(`) · O(t · `)

Ω(B(`) ·
√
`)

+ 1

)`
− 1.

≈ O(`2 · t ·B(`)−1)

Since B(`) is super-polynomial in `, this concludes the argument.

9.3 The Need for Random Local Substitutions

Consider any fixed branching program L(x) = A+
∑

i xiBi of width `. Suppose we obfuscate L(x)

but skip the random local substitution step. Let Err(0),Err(1), . . . ,Err(n) be the n+ 1 error matrices

drawn by the AddNoise transformation. Write each Err
(i)
j,k = 2e

(i)
j,k. We can recover the parity of

each e
(i)
j,k as follows. Let A′,B′1, . . . ,B

′
n be the ADP after obfuscation. For any input x,

det(A′ +
∑
i

xiB
′
i) ≡ det(L(x)) +

∑
j,k

(
∑
i

xi2e
(i)
j,k) det(L(x)(j,k)) mod 4,

39

where L(x)(j,k) is the (j, k) minor of L(x). Note that everything is known except the parities

of e
(i)
j,k, so this gives a linear equation mod 2 over these (n+ 1)`2 parities. We have an exponential

number of equations of this form, and can eventually obtain (n+1)`2 linearly independent equations.
This readily gives an attack on iO. To distinguish between two known and functionally equiv-

alent branching programs L1, L2, simply run the above attack assuming the underlying BP is L1

and see if there exists a solution or not. Now, the random local substitution is meant to randomize
the underlying branching program L(x), so an attacker does not know all of the L(x)(j,k) values.
Without these, the attacker cannot set up and solve the above system of linear equations.

10 Applications and Future Work

In future work, we aim to explore applications of optimized variants of our candidates. We give
some of the more promising directions below. Since our focus here is on concrete efficiency, we
make a heuristic leap of faith of treating our iO candidates as ideal obfuscation schemes for the
purpose of these applications.

Concretely Efficient Obfuscation for Circuits. If the safeguards described are secure, then
in order to obfuscate a branching program of size `, we need about O(`4+ε) bits for any ε > 0.
In concrete terms, if the size of the branching program exceeds 213 vertices, the size is already
around 100 terabytes. This motivates the study of efficient bootstrapping mechanisms and simple
“obfuscation complete” families of branching programs. In particular, we would like to under-
stand if the SNARG-based bootstrapping approach from [BISW17] or the PRF-based approach
from [GIS+10, App14] are practically feasible for our candidates.

Obfuscating PRFs. Efficiently obfuscating PRFs and simple computations that employ them is a
highly desirable goal for both theoretical and practical applications. For instance, the bootstrapping
theorems of [GIS+10, App14] reduce the obfuscation of a circuit to multiple obfuscations of simple
functions that each use a constant number of PRF calls. This and other applications motivate
PRF candidates that have small affine branching programs, which can be efficiently handled by
our construction. One such candidate could be based on the work of [BIP+18]. They propose a
weak PRF5 candidate based on Learning With Rounding (LWR) modulo a constant-size composite,
which can be computed by a linear-size deterministic branching program. They also suggest a
heuristic for converting a weak PRF into a strong one by evaluating the weak PRF on a suitable
encoding of the input; for this particular weak PRF candidate, a linear encoding over a prime that
does not divide the LWR modulus seems like a natural choice. For instance, one could use a linear
code over F2 and LWR modulo 15 or linear code over F3 and LWR modulo 10. This approach
yields (strong) PRF candidates that can be evaluated by a linear-size affine branching program.

Optimally-Succinct Non-Interactive Arguments. The ability to efficiently obfuscate a PRF
would give several compelling applications. One example, due to Sahai and Waters [SW14], is a
succinct non-interactive argument (SNARG) with proof length that is the best one could hope for;
namely, an s-bit proof suffices to obtain (roughly) 2−s soundness error.

5A weak PRF is only guaranteed to be indistinguishable from a random function given its evaluation on uniformly
random points (as opposed to on adversarially chosen points, as in the usual definition of a PRF).

40

To give slightly more detail, we briefly recall the obfuscation-based SNARG of [SW14]. Given
a PRF and relation circuit RL for language L, the crs consists of the obfuscations of two programs
CP and CV . CP takes as input an instance witness pair (x,w) and outputs PRFk(x) (where k is
a hard-coded PRF key) if and only if RL(x,w) = 1. CV , which has the same k hard-coded, takes
as input (x, π) and outputs 1 if and only if PRFk(x) = π. A prover wishing to prove that x ∈ L
simply evaluates Obf(CP) on (x,w) to obtain π = PRFk(x). The verifier on input x and proof π
runs Obf(CV) on (x, π) and accepts if the output is 1.

If the obfuscation is an ideal obfuscation, then forging a proof on x 6∈ L requires predicting
PRF(k, x). If the PRF is exponentially-secure, then the SNARG soundness error is (within polyno-
mial factors of) 2−s.

Acknowledgments

YI was supported by ERC Project NTSC (742754), NSF-BSF grant 2015782, BSF grant 2018393,
and a joint Israel-India grant. MZ, FM, AS, and AJ were supported by the Defense Advanced
Research Projects Agency through the ARL under Contract W911NF-15-C- 0205. MZ and FM
were also supported under NSF grant 1616442. AS and AJ were also supported in part by a
DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF grant 1619348, BSF
grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. AJ was also supported by a Google
PhD Fellowship in Privacy and Security. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense, the National Science Foundation,
the U.S. Government or Google.

References

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175. IEEE Computer Society Press, October 2004.

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
92–110. Springer, Heidelberg, August 2007.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indis-
tinguishability obfuscation without multilinear maps: New paradigms via low degree
weak pseudorandomness and security amplification. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2019, Part III, LNCS, pages 284–332. Springer,
Heidelberg, August 2019.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, pages 162–172. Springer, Heidelberg, December 2014.

[App16] Benny Applebaum. Cryptographic hardness of random local functions - survey. Com-
putational Complexity, 25(3):667–722, 2016.

41

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC1. In 18th ACM STOC, pages 1–5. ACM Press,
May 1986.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg,
August 2001.

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring
crypto dark matter: New simple PRF candidates and their applications. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 699–729. Springer, Heidelberg, November 2018.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and
their application to more efficient obfuscation. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 247–277. Springer, Heidelberg, April / May 2017.

[BKM+18] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova, and
Kevin Shi. A simple obfuscation scheme for pattern-matching with wildcards. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 731–752. Springer, Heidelberg, August 2018.

[BLMZ19] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques
for obfuscating conjunctions. In Vincent Rijmen and Yuval Ishai, editors, EURO-
CRYPT 2019, Part III, LNCS, pages 636–666. Springer, Heidelberg, May 2019.

[CD] Zizhong Chen and Jack J. Dongarra. Condition numbers of gaussian random matrices.
SIAM J. Matrix Analysis Applications, 27(3):603–620.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella.
On the concrete security of Goldreich’s pseudorandom generator. In Thomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 96–124. Springer, Heidelberg, December 2018.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493. Springer, Heidelberg, August 2013.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of
LNCS, pages 267–287. Springer, Heidelberg, December 2002.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

42

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 479–499.
Springer, Heidelberg, August 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 467–476. ACM Press, June 2013.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, edi-
tor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer, Heidelberg, February
2010.

[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor prod-
ucts. Cryptology ePrint Archive, Report 2018/756, 2018. https://eprint.iacr.

org/2018/756.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
536–553. Springer, Heidelberg, August 2013.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Cryptology
ePrint Archive, Report 2000/063, 2000. http://eprint.iacr.org/2000/063.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with ap-
plications. In Proceedings of the Fifth Israeli Symposium on Theory of Computing and
Systems, pages 174–183. IEEE, 1997.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–304.
IEEE Computer Society Press, November 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo,
editors, ICALP 2002, volume 2380 of LNCS, pages 244–256. Springer, Heidelberg,
July 2002.

43

https://eprint.iacr.org/2018/756
https://eprint.iacr.org/2018/756
http://eprint.iacr.org/2000/063

[IR08] Ilse C. F. Ipsen and Rizwana Rehman. Perturbation bounds for determinants and
characteristic polynomials. SIAM J. Matrix Analysis Applications, 30(2):762–776,
2008.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 19–30. Springer, Heidelberg, August 1999.

[KS03] Adam Klivans and Amir Shpilka. Learning arithmetic circuits via partial derivatives.
volume 2777, pages 463–476, 01 2003.

[Sah19] Amit Sahai. New roads to cryptopia: A research agenda. New Roads to Cryptopia
Workshop at CRYPTO 2019, 2019.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Tao] Terrence Tao. Operator norm of a random matrix. Word-
press Bog. https://terrytao.wordpress.com/2010/01/09/

254a-notes-3-the-operator-norm-of-a-random-matrix/#utail-wigner.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1-2):1–230, 2015.

[TV06] Terence Tao and Van Vu. On random ±1 matrices: Singularity and determi-
nant. Random Struct. Algorithms, 28(1):1–23, January 2006.

[TW12] Enrico Thomae and Christopher Wolf. Solving underdetermined systems of multivari-
ate quadratic equations revisited. In Public Key Cryptography - PKC 2012 - 15th
International Conference on Practice and Theory in Public Key Cryptography, Darm-
stadt, Germany, May 21-23, 2012. Proceedings, pages 156–171, 2012.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467.
Springer, Heidelberg, April 2015.

44

https://terrytao.wordpress.com/2010/01/09/254a-notes-3-the-operator-norm-of-a-random-matrix/#utail-wigner
https://terrytao.wordpress.com/2010/01/09/254a-notes-3-the-operator-norm-of-a-random-matrix/#utail-wigner

	Introduction
	Technical Overview

	Preliminaries
	Randomized Encodings
	Witness Encryption
	Indistinguishability Obfuscation

	Affine Determinant Programs: Syntax and Definitions
	Encoding Functions as ADPs
	One-time Security.
	iO Security.

	Constructing ADPs
	Obfuscating Simple Functionalities with ADPs
	ADPs for Log-depth Boolean Formulas
	Encoding Branching Programs as ADPs

	Witness Encryption
	Definitions
	Candidate Witness Encryption Constructions

	Applications of ADP-Based Witness Encryption
	Public-Key Encryption with Short Public Keys

	Cryptanalysis of the Witness Encryption Candidate
	Formula-Based All-Accept
	NSS-Based All-Accept

	Candidate Obfuscation for Branching Programs
	Functionality-Preserving Transformations
	Extensions of the Basic Construction

	Cryptanalysis and Parameter Estimation for the Branching Program Obfuscation Candidate
	Polynomial Extension Attacks
	The Need for Super-polynomial Error and Modulus
	The Need for Random Local Substitutions

	Applications and Future Work

