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Abstract. Protection against Side-Channel (SCA) and Fault Attacks
(FA) requires two classes of countermeasures to be simultaneously em-
bedded in a cryptographic implementation. It has already been shown
that a straightforward combination of SCA and FA countermeasures
are vulnerable against FAs, such as Statistical Ineffective Fault Analysis
(SIFA) and Fault Template Attacks (FTA). Consequently, new classes
of countermeasures have been proposed which prevent against SIFA,
and also includes masking for SCA protection. While they are secure
against SIFA and SCA individually, one important question is whether
the security claim still holds at the presence of a combined SCA and
FA adversary. Security against combined attacks is, however, desired, as
countermeasures for both threats are included in such implementations.
In this paper, we show that some of the recently proposed combined
SIFA and SCA countermeasures fall prey against combined attacks. To
this end, we enhance the FTA attacks by considering side-channel infor-
mation during fault injection. The success of the proposed attacks stems
from some non-trivial fault propagation properties of S-Boxes, which re-
mains unexplored in the original FTA proposal. The proposed attacks
are validated on an open-source software implementation of Keccak with
SIFA-protected χ5 S-Box with laser fault injection and power measure-
ment, and a hardware implementation of a SIFA-protected χ3 S-Box
through gate-level power trace simulation. Finally, we discuss some mit-
igation strategies to strengthen existing countermeasures.

Keywords: Fault Attack · Side-channel · Masking.

1 Introduction

Implementation-centric attacks on cryptographic primitives are one of the great-
est practical threats to secure communication. The core idea behind such attacks
is to exploit the physical properties of implementations, which often correlate
with the secret. Especially for embedded and IoT devices, such physical prop-
erties are easily accessible to an adversary. Most of the implementation attacks

? This is an extended version of the paper with the same title appearing in Asiacrypt
2021.
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are quite challenging to prevent, and there is a continuous effort for building
suitable countermeasures against such exploits.

Side-Channel Attacks (SCA) [1–3] and Fault Attacks (FA) [4, 5] are the two
most established classes of implementation attacks. An SCA adversary exploits
the fact that the power consumption or electromagnetic (EM) radiation from
a cryptographic implementation is correlated with the computation. Passive
eavesdropping on these signals may lead to the recovery of the secret. An FA
adversary, on the other hand, actively perturbs the computation and exploit the
faulty responses to derive the secret. Controlled transient perturbation of the
computation, as required for FA, is feasible for both hardware and software im-
plementations. Some popular means of injecting such controlled faults include
clock/voltage glitching [6], EM radiation [7], and laser injection [8]. Over the
years, the injection mechanisms have improved significantly, which allows an ad-
versary to inject even at a bit-level precision with very high repeatability [7, 8].

Several countermeasures have been proposed for both SCA and FA preven-
tion. In the context of SCA, the most prominent class of countermeasures is
the masking [9–12]. Loosely speaking, masking aims to remove the dependency
between the power/EM signals and the cryptographic computation by random-
izing each execution. This randomization is achieved by realizing secret sharing
at the circuit-level. More precisely, masking schemes randomly split each vari-
able x into multiple variables x1, x2, · · ·, xd+1 called shares of x, which satisfies
the invariant x1 ?x2 ? · · ·?xd+1 = x. Here ? denotes some operations. A function
f() operating on x (and maybe some other variables y, z, · · ·) is also split into
multiple component functions f1, f2, · · ·fm such that ? combination of the out-
comes from these functions matches with the actual outcome of f . In order to
perform the SCA on such an implementation, the adversary must combine the
information from all d + 1 shares of a variable. No proper subset of the shares
of a target variable leak information about the variable. Breaking such schemes
thus requires a statistical analysis with d-th order moment and the data com-
plexity (i.e. the number of encryptions required) of the attacks increases almost
exponentially with the statistical order d.

FA countermeasures use some form of redundancy in computation to detect
the presence of a fault. Upon detection of a fault, the cipher output is either
muted or randomized. The redundancy is realized either in time/space or as
information redundancy in the form of Error-Correcting Codes (ECC) [6]. Fur-
thermore, the fault detection operation is either applied at the end of each round,
or the end of the complete encryption operation. Such countermeasures are found
to be effective for many of the fault models with an exception for so-called in-
effective faults. Ineffective faults are those faults which may or may not corrupt
the output depending upon the value(s) of some intermediate variable(s). The
Statistical Ineffective Fault Attacks (SIFA) [13,14] and Fault Template Attacks
(FTA) [7], which exploit the data-dependency of ineffective faults, can success-
fully bypass most of the detection-based countermeasures. To prevent SIFA, fine-
grained error correction on shares is suggested [15], so that the data-dependency
of fault ineffectivity is mitigated. Another alternative is to modify the S-Box
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implementations so that every fault becomes effective [16]. In such cases, error
detection at the end of computation becomes sufficient for SIFA prevention.

Most of the (if not all) unprotected cryptographic primitives (without loss
of generality, in this work we consider symmetric key primitives only) are vul-
nerable against SCA and FA. It is thus desirable that such primitives include
countermeasures for both the attack classes. Recently, there have been multi-
ple proposals which combine masking with some FA countermeasure to prevent
both SCA and FA [15–17]. However, an interesting question still remains – do
these schemes provide protection while both SCA and FA are applied simultane-
ously? This question is important as both SCA and FA countermeasures incur
significant cost in terms of area and timing, and a user would expect protection
from both threats (even simultaneously) if countermeasures for both are present.
While many of the existing countermeasure proposals already show vulnerability
to SIFA, there exist some recent proposals [15,16,18,19] preventing SIFA.

1.1 Our Contributions:

The aim of this work is to show that certain implementations (more precisely,
those described in [16] and [15]) containing both SCA and FA countermeasures
are still insecure against combined SCA-FA attacks, even if they explicitly in-
clude SIFA protection. In order to show this, we enhance the recently proposed
FTA attacks by considering side-channel leakage in the presence of faults, and
constructing fault templates based on that leakage. More precisely, we exploit
side-channel leakage from the detection and correction operations in the presence
of faults. The main cause behind the success of SCA enhanced FTA (referred
as SCA-FTA in this work) is that output differentials of an S-Box leak informa-
tion about the input of the S-Box, if the fault location is fixed (that means the
input differential is fixed.). Using this fact, we can expose intermediate states of
a symmetric key primitive, even if it includes FA, SCA and certain SIFA coun-
termeasures1. Such exploitation of detection and correction operations raises an
important question – how to perform error detection/correction without causing
new vulnerabilities? We discuss a potential way to address this issue at the end.

While performing attacks on masked implementations, one has to be careful
about the statistical order of the leakage. Any attack involving SCA leakage,
having a statistical order beyond the claimed SCA security order, is considered as
trivial. We carefully take this issue into consideration and show that the proposed

1 It is worth noting that SIFA and FTA break certain countermeasures which directly
combine masking and detection/infection. SCA-FTA can also break them by mea-
suring the SCA leakage while computing the correctness of the ciphertext. However,
in this paper, we only discuss some SIFA countermeasures, which are secure against
SIFA and classical FTA.
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attacks do not violate the SCA security margins of the targets. For example, we
designate an attack on a first-order secure implementation as efficient, only if
the attack is also first order in terms of SCA analysis. SCA-FTA can efficiently
attack the target implementations even if they have higher-order masking, with
single-bit fault along with SCA leakage of an order lower than the masking.

As an interesting outcome of this work, we found that the non-completeness
property present in certain masking schemes plays an important role behind the
success and failure of the attacks. This observation is crucial as it may help in
constructing countermeasures. However, in this paper, we do not explore the
countermeasures in detail and only present a short guideline in this context.

In order to validate our ideas, we utilize different masked S-Boxes. To theo-
retically validate the attacks against SIFA-secure implementations we choose one
example presented in [16] on χ3 S-Box [20]. To practically validate our idea, we
choose the open-source SIFA-protected Keccak implementation with χ5 S-Box
(an extension of the χ3 S-Box) due to [16], and target this using laser fault in-
jection and power measurements. Furthermore, to understand the impact of the
attack on a hardware-level SCA-leakage scenario, we validate one of our attack
over a hardware implementation of the SIFA secure χ3 S-Box [16] through fault
simulation and power-trace simulation. Our trace simulation flow uses commer-
cial tools such as VCS, Design Compiler, and PrimeTime-PX from Synopsys2.

It is worth mentioning that previous works have also proposed combined SCA
and FA attacks on protected implementations. Notable among them are [21–23],
where the error detection operation at the last round was targeted for extracting
the fault differential through SCA. However, none of these attacks works for the
cases where error detection is performed on masked data3. SCA-FTA works in
such a context. Moreover, SIFA countermeasures combined with masking were
never been analyzed in such combined attack contexts. No fault templates were
constructed to exploit information leakage from different fault locations in these
attacks, which is also new in SCA-FTA. Finally, unlike previous attacks, our
attacks are applicable to the middle rounds not requiring any ciphertext access
(if there are error detection/correction at the middle rounds such as in [15]).
Appendix. E (ref. supplementary material) presents a comparative discussion on
SCA-FTA and the related attacks.

The rest of the paper is organized as follows. We begin with presenting the
preliminary ideas of fault-induced SCA leakage in Sec. 2. The SCA-FTA attack
is proposed next with application to unmasked implementations in Sec. 3. Sec 4
presents attacks on masked implementations and two recently proposed SIFA
countermeasures. We summarize the practical evaluations in Sec. 5, with details

2 These tools are under registered trademarks of Synopsys Inc.
3 We note that the combined attack in [21] exploits the fact that error detection is often

performed on unmasked data even if the rest of the computation is masked. They
extracted the Hamming weight (HW) of unmasked ciphertext differentials through
side-channel and exploited it. It was pointed out in [21] that this attack can be
mitigated if the detection is performed on masked data. In this paper, we show that
SCA-FTA works even while the detection/correction is performed on masked data.
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Fig. 1: Fault activation and propagation with stuck-at-0 fault: (a) No fault acti-
vation; (b) Fault activation and propagation for XOR ; (c) Fault activation but
no propagation for AND; (d) Fault activation and propagation for AND.

given in the supplementary material (Appendix. F). A brief discussion on a
candidate countermeasure strategy is presented in Sec. 6. Finally, we conclude in
Sec. 7. A discussion on the impact of SCA-FTA on some other countermeasures
is presented in Appendix. G in the supplementary material4.

2 Fault-Induced SCA Leakage
2.1 Faults and Combinational Circuits
A faulty outcome in a combinational circuit is a result of two consecutive events,
namely, Fault Activation and Fault Propagation. Given an internal net5 i in a
combinational circuit C, fault activation event assigns i with a value x such that
i carries complement of x (i.e. x) in the presence of a fault in i, and x, otherwise.
On the other hand, fault propagation is an event which takes place when the
impact of an activated fault is observed at some output net of the circuit C. The
goal of an Automatic Test Pattern Generation (ATPG) algorithm is to figure
out test vectors which can activate and propagate a fault happening at some
internal net i to the output, leading to the detection of that fault. Detection of
a fault depends on the test vector and the location of the faulty net in C.

The most important observation in this context is the location and input-
dependency of fault detection for a given combinational circuit. This data-
dependency has also been utilized in the original FTA and SIFA. The data
dependency stems from the fact that fault propagation through basic gates is
data-dependent. To further explain this, we consider the XOR and the AND
gates shown in Fig. 1. The activation of the fault in any of the inputs of these
gates depends upon the current value assigned to the input. For example, if we
consider a stuck-at-0 fault, the target input net must be assigned to a value 1 in
order to activate the fault (ref. Fig. 1(b), (c), (d)). However, in the case of bit-flip
faults, the fault activation happens with certainty and does not depend on the
value in the net. The fault propagation depends on the type of the gate. In the
case of an XOR gate, the fault propagation happens whenever there is a fault
activation in one of the input nets6 (Fig. 1(b)). In contrast, fault propagation
in an AND gate is dependent on the fault activation, and the values assigned to
the other non-faulty input nets of the gate. More precisely, fault propagation re-
quires all the other input nets to have a value 1 (also called the non-controlling

4 Code for validating the attacks has been published at
https://github.com/sayandeep-iitkgp/SCA-FTA

5 In this paper, we use the terms wire and net interchangeably.
6 Note that here we restrict ourselves to the cases where only one input net is faulty.
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value for an AND gate; Fig. 1(d)). Similar impacts can be observed for OR
gates where the non-controlling value is 0. To summarize, our observations are
as follows:
1. Stuck-at faults at an input net of an XOR gate only leak the value at the

faulty net by means of fault activation. Fault propagation in XOR gate
happens with certainty whenever there is a fault at an input.

2. Bit-flip faults at an XOR gate input does not leak the input value as the
activation is not data-dependent.

3. Both stuck-at and bit-flip faults leak input values of an AND gate through
fault propagation, except the value of the faulty net in case of bit-flip faults.

Most of the fault-induced leakages in combinational circuits are caused by the
three abovementioned conditions. In the original FTA proposal, a gate input
(during some intermediate computation of a cipher) is exposed to the adversary
based on whether the ciphertext is correct or faulty. Knowledge of correctness
does not require the adversary to have the ciphertexts explicitly. Moreover, de-
pending on the underlying fault propagation patterns in the target implementa-
tion, the FTA adversary forms fault templates over a device under her control.
Later it can use these templates to target a similar device with an unknown
key. In contrast, SIFA attacks require access to the correct ciphertexts. The
SIFA countermeasures we are going to analyze, however, prevents such data-
dependent fault propagations to the ciphertexts. Attacking them thus requires
some more properties of fault propagations to be taken into consideration. In
the next subsection, we analyse the impact of fault propagation for multi-output
combinational circuits, which is important for developing the SCA-enhanced
FTA. Without loss of generality, we shall mostly use bit-flip faults.

x0 x2x1

y0

y1

y2

Fig. 2: Fault propagation through χ3 S-Box for a bit-flip fault at x0. The wires
through which the fault propagates without data dependency are shown in red.
The data-dependent propagation is shown in blue. For each AND gate, the input
controlling the propagation is shown in green.

2.2 Fault Propagation in Multi-Output Combinational Circuits

Combinational circuits, in general, contain fan-outs7 as well as multiple outputs.
Depending on the structure of the circuit, the fault location, and the input value

7 A fan-out is a structure where one net drives the input of multiple gates. The driver
net is called the fan-out stem and the inputs driven by the fan-out stem are called
fan-out branches.
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an injected fault may corrupt one or multiple of these outputs. Interestingly,
there exists a data and fault location-dependent pattern of output corruption
for a given multi-output circuit. To explain this we consider the circuit shown
in Fig. 2 which is the χ3 S-Box from [20]. Note that we specifically consider an
S-Box here as they are going to be the primary attack targets in the rest of the
paper. The logic expressions corresponding to each output of χ3 are given as:

y0 = x0 + x1x2 , y1 = x1 + x2x0 , y2 = x2 + x0x1 (1)

Here x0, x1, x2 denote the input bits of the S-Box and y0, y1, y2 represent the
output bits. x0 and y0 denote the Most Significant Bits (MSB) of the input and
output, respectively. Without loss of generality, we consider a bit-flip fault at
the input x0. The fan-outs allow the fault to propagate to all three output logic
expressions. However, the propagation patterns depend on the inputs. One may
observe that the fault always propagates to the output y0 irrespective of the
inputs. This is because the fault model is bit-flip and x0 exists linearly in the
expression of y0 (i.e. x0 is the input of an XOR gate). However, y1 gets corrupted
only if x2 = 1. Similarly, y2 is faulty only if x1 = 0.

The fault patterns corresponding to each input pattern of the S-Box is shown
in Table 1 for the above-mentioned fault location. The patterns leak the values
of x1 and x2, hence resulting in an entropy reduction of 2 bits for the S-Box
input. No information is leaked for x0. As a result of 2-bit entropy loss, there are
only two inputs corresponding to each fault pattern (ref. Table 2). Choosing any
other fault injection point, (say x1) would leak the value of x0. Data-dependent

Table 1: Inputs and Corresponding
Fault Patterns for χ3 S-Box for a bit-
flip fault at x0. ‘F’ denotes faulty and
‘C’ denotes correct output bit.

x0 x1 x2 y0 y1 y2

0 0 0 F C F
0 0 1 F F F
0 1 0 F C C
0 1 1 F F C
1 0 0 F C F
1 0 1 F F F
1 1 0 F C C
1 1 1 F F C

Table 2: Distinct fault patterns
and the inputs causing them for
bit-flip fault at x0 of χ3

y0 y1 y2 Input
F C F (0,4)
F F F (1,5)
F C C (2,6)
F F C (3,7)

output fault patterns exist for most of the existing S-Box constructions. The
key reason behind this data-dependency is the non-linearity which is essential
for any S-Box. However, the amount of entropy loss may vary depending on the
S-Box structure. To illustrate this, we consider the 4-bit S-Box from the block
cipher PRESENT [24] given as follows:

y0 = x0x1x3 + x0x2x3 + x0 + x1x2x3 + x1x2 + x2 + x3 + 1

y1 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0 + x1 + x2x3 + 1

y2 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0 + x1x2x3 + x2

y3 = x0 + x1x2 + x1 + x3

(2)
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Here x0, x1, x2, x3 are the inputs and y0, y1, y2, y3 are outputs. x0 and y0 are
the Most Significant Bits (MSB) of the input and output, respectively. A fault in
x0 in this case propagates to y0 only if x1x3 +x2x3 +1 = 1 (x1x3 +x2x3 +1 = 0,
otherwise). Similarly, y1 gets corrupted if x1x3 + x2x3 + x2 + x3 + 1 = 1, and y2

gets corrupted if x1x3 +x1 +x2x3 +x2 + 1 = 1. Simplification of such equations
results in the exposure of x1, x2 and x3 if (x1 + x2) = 1 (that is an entropy
reduction of 3 bits). If (x1 + x2) = 0, an entropy reduction of 2 bits happen for
x1, x2, x3 with constraints (x1 + x2) = 0 and (x2 + x3) = 0 (or (x2 + x3) = 1).
Table 3 shows the distinct fault patterns at the output and inputs causing them.

Table 3: Distinct fault pat-
terns and the inputs causing
them for bit-fault at x0 in
PRESENT S-Box

y0 y1 y2 y3 Input
F C F F (1,6,9,14)
F F C F (4,12)
C F F F (5,13)
F F F F (0,7,8,15)
F C C F (2,10)
C C F F (3,11)

Table 4: DDT for PRESENT

δi

δo 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
10 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
11 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
12 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
13 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
14 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
15 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

The entropy losses due to data-dependency of output differentials can also be
explained by means of the Differential Distribution Table (DDT) of an S-Box.
Let us consider the DDT of PRESENT S-Box depicted in Table 4. Referring
to the fault location x0 from the previous paragraph (which is the MSB), the
input differential between the correct input nibble X and faulty input nibble Xf

becomes δi = X+Xf = 8. The output differentials (δo) corresponds to the fault
patterns at the output (“F” denotes 1 and “C” denotes 0). In the δi-th (shaded)
row of the DDT, there are only 6 non-zero cells indicating only 6 distinct output
differentials are possible if a fault is injected at x0. Furthermore, there are 4 cells
with value 2 indicating that for 4 of the possible output differentials there are
only 2 possible input values (that is an entropy loss of 3 bits for a 4-bit S-Box
input). Finally, there are 2 cells with 4 input values indicating an entropy loss
of 2 bits corresponding to those output differentials. The output differentials
are directly linked with the constraints we derived in the last paragraph using
the concept of fault propagation (i.e. output differentials decide the right-hand
side of each constraint equation). Even though we link the data-dependency
of output differentials with DDT, in the rest of the paper, we shall continue
giving explanations in terms of fault propagation only as it seems more intuitive.
However, it is worth mentioning that similar (albeit complex) explanations can
be given in terms of DDT as well.
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Table 5: HW of fault patterns
and inputs causing them (for
bit-flip fault at x0 in χ3)

HW State

1 (2,6)
2 (0,4,3,7)
3 (1,5)

Table 6: HW of fault pat-
terns and inputs causing them
(for bit-flip fault at x0 in
PRESENT S-Box)

HW State

2 (2, 10, 3, 11)
3 (1, 6, 9, 14, 4, 12, 5, 13)
4 (0,7, 8, 15)

2.3 The Role of SCA Leakage

It is clear from the last subsection that the knowledge of the output fault patterns
of an S-Box leads to the leakage of its inputs. However, an important question
still remains – how to track down the output fault patterns in a cipher imple-
mentation. In case of an unprotected implementation, it is straightforward for
several Substitution-Permutation Network (SPN) constructions (such as AES or
PRESENT) if the faults are injected at the inputs of the last round S-Boxes. This
is because the attacker can obtain both correct and the faulty ciphertexts in this
case. However, in this paper, we are mainly interested in protected implementa-
tions. For simplicity, let us first consider only FA protected implementations. Al-
most every FA-protected implementation incorporates time/space/information
redundancy to detect the injected faults. Without loss of generality, we con-
sider simple time/space redundancy where the cryptographic computation is
performed at least two times and the end results are checked for mismatch. In
the case of mismatch, no ciphertext (or maybe a randomized ciphertext) is re-
turned. The check can also be incorporated in a per-round manner [25]. Such
checks are usually performed by computing bitwise XOR between the actual
and the redundant states followed by a bitwise OR to detect a nonzero XOR
compuation in case of a fault.

2.3.1 SCA Leakage from Detection

The bitwise XOR operation performed in several detection-based countermea-
sures leak information about the fault differential at the S-Box output. Referring
to Table 2 and Table 3, a faulty (“F”) output bit implies that the XOR outcome
is 1, and a correct bit implies the XOR outcome is 0. An adversary capable of
observing SCA leakage during fault injection can obtain some function of this
output differential through the traces. More precisely, the adversary can obtain
a L = HW (δo) +N where L is the observed SCA leakage, HW is the Hamming
weight, and N denotes a Gaussian noise. Although the leakage of HW results in
some information loss from δo, some entropy reduction for the S-Box input still
takes place. To understand this, once again we refer to the fault patterns and
the corresponding S-Box inputs from Table 2 and Table 3. In case of Table 2, a
HW value 1 indicates that the input is in the set (2, 6), HW value 2 indicates
that the input belongs to the set (0, 4, 3, 7), and HW value 3 indicates the input
is in (1, 5). This is consolidated in Table 5. Similar mappings can be constructed
for Table 3 (ref. Table 6). Clearly, even in the absence of faulty ciphertexts, the
S-Box inputs can be exposed, which may lead to key or state recovery attacks.
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3 SCA-FTA: The SCA-Enhanced FTA

The last section motivates the importance of output differentials of S-Boxes and
how they can be observed through SCA leakage. In this section, we exploit this
observation for constructing practical attacks on block ciphers or other symmet-
ric key primitives like hash functions. The proposed SCA-FTA attack is more
powerful than original FTA in the sense that it can work even if information
leakage due to fault ineffectivity does not reach the ciphertexts. We assume an
adversary who can inject a fault and measure the power traces at the
same time, but not necessarily in the same clock cycles. Moreover, the
adversary has full control over a test device for profiling which he can
study extensively, and decide his fault-positions, injection-parameters,
and build templates. Finally, the number of injections and the count
of wires probed (through SCA leakage) in a specific clock cycle must
be less than the defined security orders of the target with respect
to faults and SCA8. For the sake of explanation, we first describe the attack
on an unmasked implementation with FA countermeasure. In Sec. 4, we apply
SCA-FTA on SCA-SIFA countermeasures.

3.1 The Template Attack

The main assumption behind template attacks (whether side-channel template
or fault template) is that an attacker can extensively profile a device similar to
the target device. Such attacks consist of two phases:

3.1.1 Offline Phase (Template Building)

In the offline phase the adversary gathers information from a device (similar to
the target), for which it has the complete knowledge and control of the secrets.
The main idea is to construct an informed model, which can be utilized to derive
the secret from a target device during the actual attack. Formally, a template
in SCA-FTA can be described as a mapping T : SF → X , where an s ∈ SF is
a tuple described as s = 〈G1(Ofl1),G2(Ofl2), · · ·,GM (OflM )〉. Each Ofli denotes
a set of SCA traces (power or EM) under the influence of fault injections at
location fli and each Gi is a function extracting some statistic values according
to some leakage model from these traces. The range set X represents a part of
the secret intermediate state (for example, value of a byte/nibble).

At this point, it is important to compare the templates of SCA-FTA to the
templates of original FTA. In original FTA proposal, the observables were the
correctness of the computation at the end. In contrast, we use the side-channel
leakage from the computation under the influence of faults. Similar to the FTA,
SCA-FTA also compiles information from multiple fault locations. For both the
attacks, only one fault location is excited per encryption. However, a key dif-
ference between the two attacks is that while original FTA can only exploit the

8 That is, for an implementation claiming protection against single-fault, not more
than one fault is injected in each encryption. Similarly, for a first-order SCA secure
implementation, only first-order attacks are performed.
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Table 7: Template (noise-free) for unmasked FA-protected PRESENT consider-
ing average HW values as leakages.

fl1 fl2 fl2 fl3 State

2.0 3.0 2.0 3.0 (10)
4.0 2.0 2.0 2.0 (0, 15)
3.0 3.0 2.0 2.0 (12, 14)
4.0 2.0 3.0 3.0 (7)
2.0 2.0 3.0 3.0 (3)
3.0 2.0 2.0 2.0 (4, 13)
4.0 3.0 2.0 3.0 (8)
3.0 2.0 3.0 2.0 (1,5)
3.0 2.0 2.0 3.0 (6, 9)
2.0 2.0 2.0 3.0 (2, 11)

information whether an encryption is faulty or not at the end of computation,
SCA-FTA can utilize fault information even from internal computation through
SCA leakage. The difference with SCA template attacks is that while SCA tem-
plates are usually formed on the intermediate state values, templates in SCA-
FTA are formed on the leakage from error-handling logic. Further, as we show
for the masked implementations, SCA-FTA does not construct any template on
the masks. In contrast, SCA template attacks result in higher-order attacks that
leak information through templates built on higher-order-moments (hardware)
or thought templates on both the mask and the state values (software).

3.1.2 Attack Phase (Template Matching)

In the online phase, the adversary injects faults at the predefined locations (from
the template building phase) 〈fl1, f l2, · · ·, f lM 〉 on a target device with an un-
known secret. The secret is recovered by first constructing an s ∈ SF from the
observables, and then using the mapping defined in T .

In the next few subsections, we continue describing the SCA-FTA attacks on
unmasked implementations.

3.2 Attacking Unmasked FA-Secure Implementations

Exploiting the ideas developed in the previous sections, here we present the first
concrete realization of SCA-FTA. We consider an unmasked implementation of
PRESENT with fault detection at the end of encryption. Since the detection
step is present at the end of the computation, we target the last round S-Box
computation with faults. The plaintext is kept fixed in this attack. The
aim of the attacker here is to extract the inputs to the last round S-Box layer
of PRESENT. We also assume that the correct ciphertext corresponding to the
plaintext is available to the attacker.

3.2.1 Template Building

It has already been shown in Sec. 2.3.1 that HW of the output differential leaks
information for a given fault location. However, the entropy loss may not be
sufficient with a single fault location for efficiently recovering the S-Box inputs
via template matching. The trick for further entropy reduction is to com-
bine information from multiple fault locations, with only one location
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Algorithm 1 BUILD TEMPLATE

Input: Target implementation C, Faults fl1, fl2, ..., flM , numob
Output: Template T
T := ∅
w := GET SBOX SIZE() . Get the width of the S-Box
for (0 ≤ x ≤ 2w) do . The key is known and fixed here and x = p+ k

s := ∅
for each fl ∈ {fl1, fl1,..., flM} do
Ofl := ∅
for numob observations do

yf := C(x)fl . Inject fault in one copy of the S-Box for each execution
yc := C(x)
Ofl := Ofl∪ SCA LEAKAGE(yf , yc) . Leakage from the fault detection operation

end for
s := s ∪ G(Ofl) . We consider the same function G for all trace sets.

end for
T := T ∪ {(s, x)}

end for
Return T

faulted per encryption. The fault locations chosen in this specific experiment
on PRESENT are fl1 = x0, fl2 = x1, fl3 = x2 and fl4 = x3, where xis are
inputs to the PRESENT S-Box (Eq. (2)). In all the cases, we inject bit-flip faults.

For the sake of explanation, we illustrate the attack here for a noise-free
case, where the HW of the detection operation is considered as the SCA leakage.
However, the algorithms will be described considering the actual noisy scenario
(and they do not vary significantly from the noise-free cases). The template
building algorithm is described in Algorithm 1 for a single S-Box. For each
input value and fault location, the output differential is observed through SCA
leakage. For the noise-free case, we represent this information as HW of the
output differentials, which is obtained from the XOR operations of the detection
step. Hence, each s ∈ SF is a tuple s = 〈G1(Ofl1),G2(Ofl2),G3(Ofl3),G4(Ofl4)〉,
with Ofli containing traces corresponding to the fault location fli. Each Gi here
corresponds to the mean and standard deviation (or mean vector and covariance
matrix if multiple-points are considered for template building) over some leaky
points at the traces from a Ofli set (that is all Gis are the same and denoted as
G). For the noise-free cases, we store the average HW values only.9 The range
set X in the templates consists of suggestions for a nibble value. The template
corresponding to the noise-free case is shown in Table 7. However, such noise-free
templates are just for illustration purposes and actual templates consider both
fault injection and SCA noise (Algorithm 1, 2, 4 and 5).

3.2.2 Template Matching

In the online phase of the attack, the fault injections are performed at fl1,
fl2, fl3 and fl4. The attacker acquires traces Ofli corresponding to each fault
location. However, the template matching here is not a simple table lookup
(except for the noise-free case). Here we consider each s ∈ SF and check which
one of them is statistically closest to the traces obtained in the online phase.

9 Note that, in order to perform template construction in a noisy environment, we
might need to store the covariance matrix of the traces as well. However, using the
covariance matrix for template building and matching does not mean that the attack
is second-order. Clear evidence of this fact is that in a noise-free case here, we can
construct the template on mean values of leakage.
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Algorithm 2 MATCH TEMPLATE

Input: Protected cipher with unknown key Ck, Faults fl1, fl2, ..., flM , Template T , numob
Output: Set of candidate correct states xcand

xcand := ∅ . Set of candidate states
w := GET SBOX SIZE()
s′ := ∅
for each fl ∈ {fl1, fl2, · · ·flM} do
Ofl := ∅
for numob observations do

yf := C(x)fl . Inject fault in one copy of the S-Box for each execution
yc := C(x)
Ofl := Ofl∪ SCA LEAKAGE(yf , yc) . Leakage from the fault detection operation

end for
s′ := s′ ∪ arg max

s[fl];s∈SF
L(s[fl],Ofl)

end for
xcand := xcand ∪ {T (arg min

s∈SF
Dist(s, s′))} . Dist implies Euclidean distance

Return xcand

For the traces corresponding fault location fli (1 ≤ i ≤ M), we perform a
log-likelihood-estimation (LLE) considering each si (s = 〈si〉i=Mi=1 ) as follows:

L(si,Ofli) =

j=|Ofli
|∑

j=0

log(P[Ofli [j]; msi , σsi ]) (3)

Here L denotes the log-likelihood function, Ofli [j] denote traces from the set
Ofli . P is the Gaussian probability density function. msi and σsi denote the mean
(resp. mean vector) and standard deviation (resp. covariance matrix) stored in
si. They are the outcomes of Gi during template building. The si having the
highest log-likelihood value is considered to be the correct one for the obtained
traces. After finding out the highest si for every fault location fli, we construct
an s′ combining all si suggestions, which should match with exactly one s ∈ SF .
Note that, in some cases, an exact match for s′ may not be obtained due to noise.
In those cases, we select an s from the template for which the maximum number
of si have matched. One way of doing this matching is to compute Euclidean
distance between s′ and each s ∈ SF . The s with minimum distance gives the
correct answer. Algorithm 2 presents the template matching. An alternative
template matching algorithm is given in Appendix. A (supplementary material).

Key Recovery: The template building and matching steps described above,
target one S-Box at a time. In order to extract a complete round key, one needs
to extract the complete intermediate state of the cipher under consideration.
In the present context, the attack requires 4 distinct fault locations per S-Box
and hence 16 × 4 = 64 distinct fault locations. For serialized hardware imple-
mentations and software implementations, where one S-Box is called multiple
times, finding out injection locations for a single S-Box is sufficient. To cover all
S-Boxes, it is sufficient to change the timing (i.e. clock cycles) of injections. Fur-
thermore, considering the ciphertext as known, recovering the S-Box inputs of
the penultimate round may result in complete key recovery. However, referring to
the templates shown in Table 7, the recovered keys are not unique as for half of
the patterns we get multiple suggestions. Even considering this we found that the
round key complexity after attacks vary roughly from 28 to 29 for an entire round
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of PRESENT, which is fairly reasonable. The required number of injections (and
thus the number of traces per location) also depends upon the noise incurred
during experiments. One may note that noise can come from two distinct sources
here – the fault injection and the SCA measurements. Noise in fault injections
may occur due to injections at undesired locations and missed injections. We
used a fault noise probability of around 0.38–0.40 for simulation. For
SCA noise, we found that the standard deviation values (covariance,
while multiple points are considered together) of measurements may
vary up to 3.061 in practical setups with hardware targets. We deliber-
ately add noise with the HW values according to these noise parameters. The
attack roughly requires 105−180 traces per fault location. Roughly 11, 000 traces
were sufficient for recovering the last round state of PRESENT.

Middle Round Attacks: The proposed SCA-FTA attack works equally well
for middle-round attacks like the original FTA. However, in this case, the ci-
pher must perform redundancy checks in a per-round manner, which is true
for several countermeasure implementations such as [25]. Moreover, some of the
recently proposed countermeasures against SIFA performs error correction in a
per-round manner [15]. However, for all these cases, the attacker must recover
two consecutive states in order to extract the key. The number of fault locations
gets doubled in this case.

From the next section onward, we shall focus on attacks on masked im-
plementations with FA countermeasures. In SCA-FTA, where there is an SCA
component in the attack, evaluation against masking becomes crucial. Moreover,
any SCA and FA secure implementation is supposed to be protected against a
combined adversary as well, which increases the relevance of the study we are
going to make in the following sections.

4 Analyzing Combined SCA and SIFA Countermeasures

We begin this section with a brief (informal) overview of masking schemes and
their security. Subsequently, we present the SCA-FTA attacks on implementa-
tions having both SCA and SIFA countermeasures. We note that the original
FTA proposal already covers implementations having masking and FA coun-
termeasures without SIFA protection only with faults. It is worth mentioning
that SCA-FTA would also work for those SIFA and FTA vulnerable cases, as
they have no protection against data-dependent fault propagation to the out-
put. However, SIFA countermeasures try to prevent data-dependency
of fault propagation to the ciphertexts. We, thus, specifically focus
on two recently proposed SIFA countermeasures [16] and [15], which
also include masking. The goal is to verify whether the mechanisms
implemented in these countermeasures for preventing SIFA are also
sufficient in terms of SCA-FTA, or not.

4.1 A Brief Overview of Masking:

Masking is the most popular and well-studied countermeasure against SCA at-
tacks. The main idea behind Boolean masking is to split the data into multiple
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random shares such that their addition over GF (2n) returns the actual value.
Every function which processes over the data is also split into multiple compo-
nent functions. The basic requirement of masking is the statistical independence
of each intermediate signal from the unshared inputs and outputs.

Security of a masking scheme is often formalized in terms of the probing model
introduced in [26]. The main idea behind probing model is that an adversary
is allowed to probe only a fixed number of wires (denoted as protection order
d) at a time within the circuit. A circuit is called d-th order probing secure
if the adversary gains no information about an unshared value even while it
probes up to d wires, simultaneously. In masking schemes d-th order security is
ensured if the adversary cannot gain any information even by probing d shares
corresponding to a single (unshared) bit. It was demonstrated in [27] that there
indeed exists a relationship between the probing model and the statistical order
of Differential Power Analysis (DPA). In fact, it was shown in [28], that there
exists an exponential relationship between the protection order and the number
of leakage traces required for revealing the secret.

Splitting (we also denote it as sharing) a function into multiple components
for operating over input shares is the most critical part of masking. While sharing
linear functions over GF (2n) is trivial, sharing nonlinear functions require special
care. This is because implementations of shared nonlinear functions may result
in (unwanted) combining of input shares causing leakage. As a simple example of
how nonlinear functions are shared, we consider a 2-share AND gate as follows:

q0 = x0y0 + (x0y1 + (x1y0 + (x1y1 + z))), q1 = z (4)

Here q = q0 + q1 = xy, x = x0 + x1 and y = y0 + y1. x0, x1, y0, y0 denote
the input shares, z denotes a random bit, and q0 and q1 denote the output
shares. This basic gate should be secure against first-order attacks under the
d-probing model (in order to know x0, x1, y0, y0 or q0, q1 the adversary must
simultaneously probe two shares of any of the unshared bit). However, in the
presence of physical defaults such as glitches, this shared AND gate shows first-
order leakage [29]. This is due to the fact that the extra power consumption of
XOR gates due to glitches indirectly combines the input shares.

Over the years, several masking schemes have been proposed to alleviate
the problems with glitches. The most prominent among them are the Thresh-
old Implementations (TI) [9], which introduces four fundamental properties for
ensuring security, namely correctness, uniformity (or input uniformity), non-
completeness, and output uniformity. In particular, the non-completeness prop-
erty ensures security against glitches. The main idea of non-completeness is that
none of the output share expressions (i.e. component functions) contains all the
input shares of a bit. While this provides protection against glitches, it also causes
a rapid increase in the number of shares. The output uniformity property ensures
that while cascading multiple TI sub-blocks, each sub-block can have a uniformly
random sharing it its input. The uniformity of input is essential for security.
Maintaining output uniformity is, however, not straightforward (especially for
higher-order TI) as it depends on the function to be shared as well as the sharing
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that has been adopted. In the Consolidated Masking Schemes (CMS) [10], the
issue with output uniformity was alleviated by introducing refreshing gadgets at
the output of each S-Box which requires extra fresh randomness. XORing some
of the output shares also work in some cases for maintaining uniformity. The
requirement of extra randomness, however, increases the randomness complex-
ity. Since the last couple of years, there has been a constant effort for reducing
the randomness complexity of masking. Some notable mentions are the Domain-
Oriented Masking (DOM) [11] and Unified-Masking Scheme (UMA) [12]. In the
rest of the paper, we shall mainly give examples based on TI and DOM imple-
mentations. However, our observations would also extend to other derivatives
of these schemes such as UMA and PINI [30]. All of our attacks consider
the masks to be unknown and varying randomly, while the plaintext
is held fixed. Moreover, we consider an attack to be efficient only if it can be
performed by respecting the probing security bounds of the target implementation
while exploiting the SCA traces. For example, for a first-order secure implemen-
tation, we only consider a first-order SCA-FTA attack as efficient (first-order
SCA-FTA means that the statistical analysis on the SCA traces is first-order).

4.2 Leakage from Masking and Error Detection

We begin our discussion with DOM AND gates. There exists two variants of
DOM AND gates, namely DOM-independent (abbreviated DOM-indep) and
DOM-dependent (abbreviated DOM-dep). We analyze both of these variants.
We also consider that each DOM AND is instantiated two times. The end re-
sults of them are unmasked and XOR-ed together for correctness check. If the
XOR returns 1, it indicates an incorrect computation10.

Without loss of generality, we first consider the DOM-indep gate with first-
order protection. The construction is depicted in Fig. 3(a) with the fault location.
We also present the test construction used for error detection in Fig. 3(b). The
faults considered here are bit-flip faults in the input registers of the DOM gate.
Let us consider the Boolean expression for the DOM-indep as follows:

q0 = a0b0 + (a0b1 + z), q1 = a1b1 + (a1b0 + z) (5)

Here each input bit a and b is shared as a = a0 + a1 and b = b0 + b1. z
denotes a random bit. The output shares are denoted as q0 and q1 (actual output
q = q0 + q1). Given a fault is injected at a0, it can be observed that the fault
affects the computation of two AND gates. For a0b0, the fault only propagates
to the AND gate output only if b0 = 1 (else there is no fault propagation).
Similarly, the fault in a0b1 propagates only if b1 = 1. The XORing of z does
not have any impact on fault propagation. On the other hand, the last XOR
operation before the output of q0 propagates the fault to q0 if only one of a0b0

or a0b1 has a faulty outcome. Otherwise, if both a0b0 and a0b1 are faulty, the

10 Note that, unmasking can be dangerous if error-checking is performed in the middle
rounds. It is often adopted while error checking is performed at ciphertext-level to
reduce the number of check operations [16].
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fault gets cancelled at this XOR gate. Overall, the output bit q0 becomes faulty,
only if (b0 + b1) = b = 1. Otherwise, there is no fault at q0. One should also
note that no fault propagation happens at q1. Therefore, during error check, the
detection circuit results in an outcome 1 only if the input b = 1. Hence, the value
of b gets exposed even while the adversary is allowed to inject a single bit-flip
at a shared value. A similar situation occurs when we inject the fault at b0 (or
at any other input share except z). However, in this case, the value of bit a is
exposed. Another important observation for fault injection at b0 is that the fault,
in this case, propagates to both q0 and q1. However, the combined outcome (i.e.
q = q0 + q1) only becomes faulted if a = 1. In this case, either q0 or q1 is faulted
depending on the mask.

The observation regarding the DOM-indep AND is valid for higher-order
cases as well. To illustrate this, we consider the expression for higher-order DOM-
indep gates as follows:

q0 = a0b0 + (a0b1 + z0) + (a0b2 + z1) + (a0b3 + z3) + · · ·
q1 = (a1b0 + z0) + a1b1 + (a1b2 + z2) + (a1b3 + z4) + · · ·
q3 = (a2b0 + z1) + (a2b1 + z2) + a2b2 + (a2b3 + z5) + · · ·

...
...

...

(6)

Here each input bit a and b is shared as a = a0 + a1 + a2 + · · · and b =
b0 + b1 + b2 + · · · . Each zi, on the other hand, denotes a random bit. It can
be observed that for a fault injection at a0, the fault propagates to q0 only if
(b0 + b1 + b2 + · · · ) = 1. No fault propagation happens at other output bits.
Hence, our attacks remain valid even for higher-order DOM-indep AND gates,
as the resulting leakage in this case is first-order. More precisely, we
need to probe only one output wire q0 (even though the DOM gate can
be of any arbitrary masking order). The observations can also be extended
for DOM-dep constructions (see Appendix. B in the supplementary material).

One interesting observation in this context is the difference between the fault
propagation patterns for the inputs a and b. As described in the previous exam-
ples, an injection at a0 reveals b only through the output q0. No other output
bit gets corrupted in this case. This is true if the fault is injected at any share
of a. However, if a share of b is corrupted, the fault propagation happens to all
the outputs qi. In other words, to gain information regarding a, all the output
shares qi must be combined. Although for the error checking construction we are
considering here (the outputs are unmasked before check) fault propagation to
all output shares is not an issue for SCA-FTA, it will become critical for attack
efficiency in certain other cases as we show in the next section.

4.3 Leakage from Detection on Shared Values

It is an interesting question whether the attacks proposed in the previous sub-
section also work if the detection operation is performed before unmasking. The
construction under consideration is shown in Fig 3(c). One consideration, in this
case, is that the sharing in both the main and redundant copies should be equal
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Fig. 3: (a) DOM-indep; (b) DOM-indep with error detection after unmasking.
Two copies of the DOM gate use different randomness.; (c) DOM-indep with
error detection on shares. Two copies of the DOM gate use same randomness.

(that is the masks are equal in the main and the redundant copies). Such redun-
dancy in masking has been considered in many recent works such as [15,19].

Loosely speaking, the main idea behind the proposed attacks is to monitor
wires in the error detection (or correction as we show later) unit for information
leakage. If the detection operation is performed on masked values, the error may
potentially propagate to multiple shares of the same output bit. For example,
considering the first-order DOM-indep AND gate form the previous subsection,
if the fault is injected in b0, it propagates through both the output shares q0 and
q1 leaking a. a can only be recovered while fault information from both q0 and
q1 are combined. Note that shares are never combined internally by construction
until the ciphertext. In the present case, while the check operation is performed
per share, combining the information of both q0 and q1 by the attacker essentially
indicates probing two wires corresponding to different shares of a single bit in
a first-order implementation. This is undesired as it violates the SCA security
assumptions of first-order secure implementations. The attack is not efficient.

However, a different situation occurs for the other case, while a fault is in-
jected in any share of a (say a0) of the DOM-indep AND gate. As already pointed
out in the previous subsection, the fault here only propagates through one of the
qis leaking b. Probing only a single share (i.e. the detection corresponding to a
share) of the actual output q here leaks the information about the unshared bit
b. This is clearly an efficient attack as we can still extract information while
being restricted within the security bound of the masking scheme. Moreover, we
corrupt only a single redundant branch of computation in this case. Hence, the
attack works as it is, even while the degree of redundancy is increased.

One observation here is that while b can be retrieved with a single fault and
single wire probe, a cannot be retrieved in this way. However, it is not of serious
concern in SCA-FTA attacks which can combine information from different fault
locations (injected at different executions). For practical applications such as S-
Boxes, a single bit may have fan-out to multiple gate inputs. Hence, if it is
not possible to recover a bit from a specific gate due to the aforementioned
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restrictions, it might become possible with high probability from another gate.
Indeed it depends on the structure of the circuit under consideration. However,
as we shall show later in Sec. 4.5, it is practically feasible to recover every input
bit of an S-Box even with all the restrictions. In the next subsection, we discuss
the consequence of using bit-level error correction on the leakage.

4.4 Leakage from Correction on Shares
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Fig. 4: (a) Construction for error correction on share values (i.e. before unmask-
ing); Leakage from majority voting based error correction: (b) Wire values for
correct inputs; (c) Wire values for faulty inputs. Faulty input bits are shown in
red. Correct inputs are in blue. Intermediate bits are shown in green.

Recently, error correction has been considered in multiple proposals as a
potential countermeasure against SIFA [15, 18, 19]. The main intuition behind
using error correction is that correcting every error (possibly with some bound
in the number of corrected bits) removes the dependency between intermediate
data and the correct ciphertexts, hence preventing SIFA. Here we show that in
the presence of SCA and faults, some correction circuits may leak information.

Fig. 4(a) depicts the configuration we consider in this case. The error correc-
tion here is considered on each share of a bit [15]. For single-bit correction, we
thus need to maintain 3 copies of the same bit. The logic diagram of the correc-
tion circuit is shown in Fig. 4(b),(c). The attack described in the last subsection
(detection on shared values) applies here directly if this error correction circuit
leaks. In order to show the leakage from error correction circuit we consider the
situations depicted in Fig. 4(b),(c), where the first copy of a bit is carrying the
fault. There can be two correct input configurations for this circuit – (0, 0, 0)
or (1, 1, 1) (ref. Fig. 4(b)). Similarly, in the presence of a fault in the first copy,
there are two faulty input configurations – (1, 0, 0) or (0, 1, 1) (ref. Fig. 4(c)).
Now consider probing the output of the AND gate computing q0

1q
0
3 (shown with a

probe in the figures). In the presence of a fault, this output never toggles and re-
mains stuck at a value 0 (ref. Fig. 4(c)). In contrast during correct computation,
this wire toggles randomly Fig. 4(b). This creates an exploitable first-order SCA
leakage for a first-order implementation by distinguishing when error correction
happens from when it does not happen.

It is worth mentioning that the attack described here on DOM-indep AND
also applies to its higher-order variants and all variants of DOM-dep AND gates.
While this is tempting, it is still important to see whether these attacks also apply
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to more complex constructions like S-Boxes. In the next subsection, we show that
the attacks apply equally well for S-Boxes, and it has a strong consequence on
some recently proposed SIFA countermeasures.

4.5 Leakage from SIFA Countermeasures

Several countermeasures have been proposed in recent past to protect against
SIFA attacks. SIFA attacks also exploit the fact that activation and propagation
of faults through digital circuits are data-dependent. As a result, a fault may
remain ineffective (i.e. does not corrupt output) for certain data values and may
become effective (i.e. corrupts output) for some other values. The ineffectivity
of faults result in correct ciphertexts, which are used by SIFA for key extrac-
tion. The aim of SIFA countermeasures is to break this dependency between
ineffective faults and ciphertexts. This can be achieved in two different ways –
1) either by ensuring that every fault propagates to the output; or 2) by letting
no fault propagation to the output at all. The first approach has been adopted
in [16] using error detection, and the second approach has been utilized in [15] by
means of error correction in each share. Below we briefly describe both of these
approaches. Note that both of these schemes also include masking and hence, are
supposed to provide combined security. Masking also helps in preventing SIFA
while the faults do not corrupt the intermediate computation of the S-Boxes [15].

4.5.1 Analysis of the Countermeasure in [16]

SIFA Protection with Error Detection [16]: The idea of this protection
mechanism is to ensure that a fault at any of the shares at any point (i.e. even at
intermediate locations) of computation surely propagates to at least one of the S-
Box outputs. There are two different ways proposed in [16] for implementing this
philosophy. The first one uses Toffoli gates for implementing the entire S-box,
while the second one modifies the S-Box construction itself. Both constructions
ensure that whenever there is a fault in any of the intermediate net (wire) of
the S-box, it propagates to at least one of the outputs with probability 1. This
mandatory fault propagation indeed prevents SIFA attacks as every fault (more
precisely, single-bit faults as considered in [16]) injected to the S-Box results in
a faulty outcome, which gets muted at the final detection phase. Moreover, the
final fault detection operation is performed by unmasking the ciphertexts (to
save the number of checks).

Leakage Due to Faults: Without loss of generality, we begin our discussion
with a DOM-based construction proposed in [16] (ref. Algorithm 3). The main
fact we utilize is that even though the construction ensures the corruption of at
least one S-Box output bit for any single-bit fault, there are other outputs for
which the fault still shows data-dependent ineffectivity. We show this referring to
the construction in Algorithm 3. This is a 2-shared version χ3 S-Box. The actual
input bits (a, b and c) are shared into (a0, a1), (b0, b1), and (c0, c1), respectively.
The output shares are given as (r0, r1), (s0, s1), and (t0, t1). Following the nota-
tions from [16], each variable with a “prime” (i.e. ‘′’) in its superscript denotes
the clone of the actual variable. For example, b0

′
denotes a clone of b0. Each

clone denotes a fan-out branch. Furthermore, the variables Rr and Rt denote
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random bits, and T0, T1, T2 and T3 denote temporary variables. Finally, each
variable v denotes the complement of variable v.

Algorithm 3 SIFA-PROTECTED χ3 [16]

Input: (a0, a1, b0, b1, c0, c1)

Output: (r0, r1, s0, s1, t0, t1)

1: Rs ← R
′
r + R

′
t

2: T0 ← b0′c1
′

; T2 ← a1
′
b1
′

3: T1 ← b0′c0′ ; T3 ← a1
′
b0
′

4: r0 ← T0 + R
′
r ; t1 ← T2 + R

′
t

5: r0 ← r0 + T1 ; t1 ← t1 + T3

6: T0 ← c0′a1′ ; T2 ← b1
′
c1
′

7: T1 ← c0′a0′ ; T3 ← b1′c0′

8: s0 ← T0 + R
′
s ; r1 ← T2 + Rr

9: s0 ← s0 + T1 ; r1 ← r1 + T3

10: T0 ← a0′b1
′

; T2 ← c1
′
a1
′

11: T1 ← a0′b0
′

; T3 ← c1
′
a0
′

12: t0 ← T0 + Rt ; s1 ← T2 + Rs

13: t0 ← t0 + T1 ; s1 ← s1 + T3

14: r0 ← r0 + a0 ; t1 ← t1 + c1

15: s0 ← s0 + b0 ; r1 ← r1 + a1

16: t0 ← t0 + c0 ; s1 ← s1 + b1

17: Return(r0, r1, s0, s1, t0, t1)

Table 8: Template (noise-
free) for masked χ3 S-
Box (error detection on un-
masked value)

fl1
= c0

fl2
= b0

fl3
= a1

State

2.0 2.0 2.0 (0,7)
2.0 3.0 1.0 (1)
3.0 2.0 1.0 (5)
1.0 3.0 2.0 (3)
3.0 1.0 2.0 (4)
2.0 1.0 3.0 (6)
1.0 2.0 3.0 (2)

Let us assume that the input c0 has been chosen as a fault location and
we consider bit-flip fault model. It can be observed that this fault corrupts 4
expressions of Algorithm 3 involving AND gates – the first expression in line 3,
the first expression in line 6, and the first and the second expression in line 7. c0

is also directly XOR-ed with t0 in the first expression of line 16. Furthermore,
the AND operations c0′a1′ (line 6) and c0′a0′ (line 7) are combined in s0 as

s0 = (c0′a1′ + R
′

s) + c0′a0′ (line 8, 9). Since s0 is an output bit and s0 does
not combine with any other faulty bit in the rest of the S-Box computation,
the output bit s0 becomes faulty only if a1′ + a0′ = a1 + a0 = a = 1. One
should also note that the same fault also propagates to the outputs r0 and r1

leaking b. However, in this case the value of b can be recovered only when error
information of r0 and r1 are combined. To summarize, leakage of a does not
require combination of error information because the fault only affects s0, while
leakage of b requires combination of error information for both r0 and r1 because
fault propagates to both shares. Finally, there is a mandatory fault propagation
to t0 as c0 is XOR-ed with this bit at the end of computation. In a similar
fashion, fault injections at input b0 reveals the value of c through the output
bit r0, and the value of a through the bits t0 and t1. Finally, a last injection
location at a1 reveals b through t1 and c through s0 and s1. One should note that
for each fault location there is an output bit for which the fault propagation is
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mandatory. However, the location of this bit changes with the fault location. For
example, location c0 induces mandatory propagation at t0, and location b0 results
in mandatory propagation at s0. Each of the output bits can have mandatory
fault propagation depending on the fault location for this implementation.

As described in [16], we first consider that the ciphertext outputs are un-
masked before the error checking operation. Constructing a template based on
the above-mentioned fault locations results in the leakage of the input. In the
actual attack (and in all subsequent attacks described in this paper),
we keep the plaintext fixed during the template matching phase. How-
ever, the masks vary randomly. One should note that we corrupt only
a single location per execution of the cipher and combine the outcomes
from multiple executions together to build and match the templates.
The template building and matching algorithms, in this case, are very similar to
that of Algorithm 1 and Algorithm 2 and we do not repeat it here. The noise-free
template based on HW values from the detection operation is shown in Table 8.
In the presence of both SCA and fault injection-related noise, the attack requires
roughly 170−235 injections per fault location (hence those many traces) during
template matching, and roughly 400− 510 injections for an entire S-Box.

One interesting observation, in this case, is that for single fault injection, an
adversary can gain information regarding both of the (unmasked) input bits it
leaks. For example, if fault is injected at c0, adversary can extract a through s
and b through r. This is because the output bits are unmasked before check, so
the information in r0 and r1 are combined by construction. From the probing
model perspective, another injection at b0 (which leaks c and a) thus should
be sufficient for revealing the entire unmasked input of the S-Box. However, in
our attack, we consider a situation where the HW of all the XOR computations
in the detection circuit is leaked simultaneously. This seems more practical in
hardware implementations due to the parallelization present there. So far the
probing security is concerned, only two fault locations seem sufficient for this
case. However, due to the information loss caused by the HW computation, the
first template in Table 8 returns two value suggestions.
Attack on Error Detection on Shares: A tempting question in the present
context is whether or not error detection on masked data would prevent the
proposed attack, or make it inefficient in terms of probing security. As we see,
the answer is negative. To elaborate, we consider the masked χ3 S-Box once
again, now with error detection at each share. One important consequence of
such error checking is that the masks in the original and redundant computation
have to be the same. Respecting the probing security, we consider that only a
single wire can be probed. More precisely, we allow the attacker to only probe a
single specific wire from the XOR gate outputs in the error detection circuit.

Let us, for illustration, consider the case when the fault location is at c0. It
can be observed that the adversary can only extract the value of a by probing the
error detection logic corresponding to the bit s0. Notably, it cannot extract b as
it requires probing of both the shares r0 and r1 (i.e. their error detection logic).
Probing two shares of a wire in a first-order implementation violates probing
security. Nevertheless, considering the two other fault locations (b0 and a1),
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Algorithm 4 BUILD TEMPLATE

Input: Target implementation C, Faults fl1, fl2, ..., flM , numob
Output: Template T
T := ∅
w := GET SBOX SIZE() . Get the width of the S-Box
for (0 ≤ x ≤ 2w) do . The key is known and fixed here and x = p+ k

s := ∅
for each fl ∈ {fl1, fl1,..., flM} do
Ofl := ∅
for numob observations do . Masks vary randomly

yf := C(x)fl . Inject fault in one copy of the S-Box for each execution
yc := C(x)
Ofl := Ofl∪ SCA LEAKAGE(yf , yc) . Leakage from the fault detection operation

end for
Ofl := CAL Group AVG(Ofl) . Divide the trace set into groups and calculate average trace

per group.

s := s ∪ G(Ofl) . We consider the same function G for all trace sets.
end for
T := T ∪ {(s, x)}

end for
Return T

Algorithm 5 MATCH TEMPLATE

Input: Protected cipher with unknown key Ck, Faults fl1, fl2, ..., flM , Template T , numob
Output: Set of candidate correct states xcand

xcand := ∅ . Set of candidate states
w := GET SBOX SIZE()
s′ := ∅
for each fl ∈ {fl1, fl2, · · ·flM} do
Ofl := ∅
for numob observations do . Masks vary randomly

yf := C(x)fl . Inject fault in one copy of the S-Box for each execution
yc := C(x)
Ofl := Ofl∪ SCA LEAKAGE(yf , yc) . Leakage from the fault detection operation

end for
Ofl := CAL Group AVG(Ofl) . Divide the trace set into groups and calculate average trace

per group

s′ := s′ ∪ arg max
s[fl];s∈SF

L(s[fl],Ofl)

end for
xcand := xcand ∪ {T (arg min

s∈SF
Dist(s, s′))} . Dist implies Euclidean distance

Return xcand

the adversary can extract all the (unmasked) S-Box input bits without violating
the probing security restrictions. Hence, the proposed construction is not secured
even while error detection on masked data is considered. The noise-free template
corresponding to this attack is described in Table 9. One interesting observation
here is that the template in Table 9 is better than the template in Table 8 in
the sense that it can uniquely determine each input value. This, however, does
not contradict the probing security and the attack described is still first-order.
An explanation for this is given in the supplementary material (Appendix. D).

The template building and template matching algorithms for detection on
masked values are similar to Algorithm 1 and 2 with some subtle changes. The
changes are driven by the fact that corresponding to a fault injection, the output
fault patterns may partially vary (ref. Appendix. D). In other words, we may
have multiple HW values corresponding to a single fault location and input value.
This is not problematic in a noise-free situation as we consider the average HW
values in templates. However, for noisy situations with real traces, in many
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Table 9: Template (noise-free) for
masked χ3 S-Box (error detection on
shares)

fl1
= c0

fl2
= b0

fl3
= a1

State

3.0 3.0 3.0 (7)
2.0 2.0 2.0 (0)
2.0 3.0 2.0 (1)
3.0 3.0 2.0 (5)
2.0 3.0 3.0 (3)
3.0 2.0 2.0 (4)
3.0 2.0 3.0 (6)
2.0 2.0 3.0 (2)

Table 10: Template (noise-free) for
masked χ3 S-Box (error correction
on shares)

fl1
= c0

fl2
= b0

fl3
= a1

State

7.0 6.0 6.0 (3)
6.0 6.0 7.0 (5)
7.0 6.0 7.0 (1)
6.0 6.0 6.0 (7)
7.0 7.0 7.0 (0)
6.0 7.0 6.0 (6)
7.0 7.0 6.0 (2)
6.0 7.0 7.0 (4)

cases, the template matching requires multiple SCA traces corresponding to
the same intermediate value for a high-confidence decision. In case there are
multiple fault patterns (occurring randomly with the variation of masks), such
matching becomes challenging. Fortunately, the variation in fault patterns for a
given input value is not very high (corresponding to a given fault location). As
a result, the mean value of the traces (over different fault patterns) for different
input values remain fairly distinguishable. Accordingly, we modify the template
building and matching algorithms. During template matching, we gather several
traces corresponding to a fault location and divide them into multiple small
groups (subsets). Next, the averaged traces are computed for each group. During
the log-likelihood estimation step in template matching, these averaged traces
are utilized (as the group averages should be almost identical for each input value
and fault location). The modified template building and matching algorithms are
shown in Algorithm 4 and Algorithm 5, respectively.

The number of encryptions required for the proposed attack varies with the
amount of noise present in the experiment. Similar to the other cases described
previously, here we consider a FA noise with noise probability 0.38 − 0.40. The
SCA noise is considered up to covariance value of 3.061. In the presence of
such noise, the attack requires roughly 360− 520 traces per fault location (that
is those many fault injections per location) during template matching. Some
other variants of SIFA protections were also proposed in [16]. For the sake of
completeness, we discuss them in the supplementary material (Appendix. G).
The next subsection describes attacks on another SIFA countermeasure proposed
recently using error correction.

4.5.2 Analysis of the SIFA Countermeasure in [15]

SIFA Protection with Error Correction: The proposal in [15] describes
two different models for SIFA faults. In the first model (SIFA-1), a biased bit-
flip fault is assumed to be injected in the state. As it was shown, masking is a
potential countermeasure for SIFA in this case. However, masking cannot provide
any protection against SIFA if the faults corrupt the intermediate computations
of S-Boxes. Bit-flip faults (not necessarily biased) inside the masked S-Boxes are
termed as SIFA-2 faults. As a protection against such faults, the work in [15]
proposed bit-level error correction at the end of each S-Box. The overall scheme,
which is called Transform-and-Encode maintains 3 copies of each share and per-
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forms a majority-voting based error correction for achieving single-bit SIFA se-
curity. It was also claimed that the combination of any masking scheme and
error correction mechanism would work for preventing SIFA.

Leakage Due to Faults: Without loss of generality, we construct an instance
of Transform-and-Encode with the same masked χ3 S-Box we have considered
so far. Instead of error detection, we now use error correction for each share. It
has already been shown in Sec. 4.4, that majority-vote based error correction
circuits leaks information on whether any correction has happened or not. With
this property of error correction logic, the attack becomes a straightforward
extension of the attack described in the previous section for error detection
on shared values. The attack algorithms remain similar to Algorithm. 4 and
Algorithm 5. Instead of HW of all the XOR outputs in detection step, in this
case we consider the HW of all the output wires of the AND gates in the error
correction stage to abstract the leakage (ref. Fig. 4(b)(c) & Table 10). In the
presence of noise the attack requires roughly 880 − 1085 encryptions per fault
location. Another important observation for this countermeasure construction
is that it also enables middle round attacks given the correction operations are
present at each round.

So far, in this paper, we have only considered masked S-Boxes based on DOM
principle. A natural question is whether the attacks still apply on other masking
paradigms such as TI [9]. In the next subsection, we present examples on TI
implementations which are found vulnerable against the SCA-FTA strategy.

4.6 Leakage from TI S-Boxes:

The TI constructions require that each component function (i.e. output share)
of any given nonlinear function should be non-complete. In order to achieve
non-completeness, it ensures that no component function contains all the shares
of a single variable. The cost of strictly imposing non-completeness is a rapid
increase in the share count for increasing degree of nonlinearity and security
order. More precisely, the number of input shares for higher-order security is
given as sin ≥ t×d+1, where t is the degree of the function under consideration,
d is the security order, and sin is the count of input shares. The number of output
shares (that is the count of component functions) sout ≥

(
sin
t

)
. However, later

work on TI, such as Consolidated Masking Scheme (CMS) [10] has shown that
these share requirements can be reduced to d+ 1 shares for d-th order security.
They proposed careful selection of component functions with more computation
steps, and, most importantly, the introduction of registers between different
computation steps to avoid the accidental combination of shares.

One important step in TI implementations is compression of shares [10].
In many cases, the number of output shares become larger than the number
of input shares, and in order to maintain composability some of the output
shares are XOR-ed together to reduce the number of shares (keeping the number
of input and output shares equal). This is also useful in maintaining output
uniformity, which is also an essential property of TI. Before combining the shares,
it is important to add a register layer to prevent the propagation of glitches.
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Further, as proposed in CMS [10], a refreshing layer is also required before
share compression in many cases in order to maintain the output uniformity.

The issue that arises with TI is due to this share compression. In many
cases, the share compression does not explicitly maintain the non-completeness
any more. Rather the glitch resistance is achieved by introducing registers before
share compression [31]. While this does not create any problem for SCA security
as the register layer is suggested before share compression, it can be exploited by
SCA-FTA in certain cases. In order to elaborate this, we consider the function
d = ab+ c.11 A valid non-complete sharing for this function is given as follows:

d0 = a0b0 + c0, d1 = a0b1, d2 = a1b0 + c1, d3 = a1b1 (7)

The number of input shares in this case is 2 ((a0, a1) and (b0, b1)) and number of
output shares is 4 (d0, d1, d2, d3). In order to reduce the number of shares, a valid
compression option in this case is e0 = d0+d1 and e1 = d2+d3. This compression
also maintains the output uniformity. Further, this compensates the violation of
non-completeness by introducing a register layer before the compression. How-
ever, if a fault is induced in a0, it propagates to e0 only if b0 + b1 = b = 1. This
enables SCA-FTA attack if the error detection/correction is performed at the
output shares e0 and e1. A single probe to the detection/correction circuit at e0

would be sufficient for revealing b in this case.

Leakage in Higher-Order TI: One should note that the abovementioned
issue with share compression also persists for higher-order TI implementations.
In order to show this concretely, we consider the second-order secure SIMON
implementation from [31]. Once again, the function under consideration is d =
ab+ c. The TI equations in this case are:

d0 = c1 + a1b1 + a0b1 + a1b0, d1 = c2 + a2b2 + a0b2 + a2b0,

d2 = c3 + a3b3 + a0b3 + a3b0, d3 = c0 + a0b0 + a0b4 + a4b0,

d4 = c4 + a4b4 + a1b4 + a4b1, d5 = a1b3 + a3b1,

d6 = a1b2 + a2b1, d7 = a2b3 + a2b4 + a3b4,

d8 = a3b2 + a4b2 + a4b3

(8)

Here the inputs have 5 shares and output have 9 shares. The equations for share
compression are given as:

e0 = d0 + d5, e1 = d1 + d6, e2 = d2 + d7, e3 = d3 + d8, e4 = d4 (9)

In case of a fault injection at a4, if the attacker probes the error detection/correction
modules corresponding to e3 and e4 the outputs become faulted only if b0 + b1 +
b2 + b3 + b4 = b = 1. An adversary can easily combine the leakage of these two
wires (e3 and e4) and extract the information. In this case, the security of a
second-order secure implementation is violated only with two probes which indi-
cates an efficient attack according to our terminology. In a nutshell, SCA-FTA

11 this example is due to [10]
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Fig. 5: LLE variation for recovering one bit from the SIFA-protected χ5 S-Box.
Fault is injected at one of the shares (share e0) of the LSB of the S-Box input;
(a) detection on unshared values; (b)detection on shared values.

can violate many existing combined SCA and FA protection schemes, which are
based on detection/correction, and involves masking. Also, SCA-secure compos-
able gadgets, such as probe-isolating-non-interference (PINI) [30], falls prey to
SCA-FTA (ref. Appendix. C in the supplementary materiel).

5 Practical Validation
So far, in this paper, we have abstracted the SCA leakage as HW of multiple
wires in the error detection/correction circuits. However, practical validation is
also necessary in this regard. We practically validated the proposed attacks on an
open-source software implementation of SIFA-protected Keccak implementation
provided with [16]. To validate our claims we only add the error-detection circuits
at the end, and no other customization has been made. Two types of detection
operation were evaluated – detection on unshared (actual) values as suggested
in [16], and detection over shared values. The faults were injected using laser-
pulses, while the SCA leakages were measured through power consumption. It
was found that recovering each bit requires roughly 210–220 traces for detection
over unmasked values (shown through variation in LLE values in Fig. 5(a)), and
320 to 350 traces for detection over masked values (ref. Fig. 5(b)). Total 5 distinct
injection locations in the code were utilized while the clock cycle of injection
was varied for choosing different S-Boxes. Further, in order to understand the
feasibility of the attacks on hardware implementations, we performed a gate-level
power-trace simulation approach. The simulated faults were bit-flip. Experiments
were performed on a shared χ3 S-Box hardware with error correction12. Detailed
experiments are presented in the supplementary material (Appendix. F).

6 Discussion on Probable Fixes

In Sec. 4.6, we pointed out that the compression layer of TI is responsible for
the attack. In the context of faults, the compression of shares violates the non-
completeness property of TI. Compensating non-completeness violation with reg-

12 While attacks on hardware implementations are feasible and have been validated in
practice [32], the effort to attack will be much higher than microcontrollers due to
noise, required fault injection capability, and any present parallelism.
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isters does not work for faults13. Unlike glitches, a faulty value can propagate
through registers causing share combination which enables SCA-FTA. A natural
question, that arises in this context is – can we maintain security if there is no
compression layer? At least for some cases, we found that the answer is positive.
More precisely we found that if the error detection/correction is performed before
the compression operation, the security can still be maintained.

A Secure Instantiation of the Countermeasure in [15]: As an exam-
ple of the aforementioned claim, we refer to a concrete instantiation of the
Transform-and-Encode framework called AntiSIFA [15]. AntiSIFA proposes a
single-bit SIFA protected scheme along with first-order masking for PRESENT.
The masking was realized with the first-order TI for PRESENT in [33]. Al-
though the generic framework Transform-and-Encode is found to be insecure
against SCA-FTA, this specific construction is found to be secure. To under-
stand why this is secure, we need to consider the first-order TI implementation
of PRESENT S-Box [33]. The implementation first decomposes the S-Box S into
two quadratic sub-functions F and G such that S(x) = F (G(x)). Next, both F
and G are shared with 3 input and 3 shares each (no compression).

Let us consider a part of the shared F function which corresponds to a single
(unmasked) output bit if the S-Box. The corresponding equations are given as:

f10 = x2
1 + x2

2x
2
0 + x2

2x
3
0 + x3

2x
2
0

f20 = x3
1 + x3

2x
3
0 + x1

2x
3
0 + x3

2x
1
0

f30 = x1
1 + x1

2x
1
0 + x1

2x
2
0 + x2

2x
1
0

(10)

Here f10, f20 and f30 denote the output shares of S-Box output f0. Each xij
denote the i-th share of the jth input bit. Now let consider a fault at the bit
x2

0. While this indeed leaks information about x2 = x1
2 + x2

2 + x3
2 the leakage

happens through outputs f10 and f30 and error-correction is performed at the
end of both wires. Even for any other input bit, the leakage would always happen
through two wires and the correction operation is performed for both the wires.
Such fault propagation takes place as each of the output shares are non-complete.
As a result, one cannot attack this implementation without violating the first-
order probing security claims. A similar situation takes place for the combined
security schemes introduced in [19] (called NINA), where the error correction
is performed at the output of each product term of a masked AND gate (each
product term on shares is non-complete). These observations indicate that
even for TI implementations where share compression is essential,
performing error detection or correction on non-complete combina-
tional paths before share compression may provide security against
SCA-FTA. Further investigation and development of a generic and provable
countermeasure based on this observation is left as a future work. It is worth
mentioning that certain other countermeasures such as CAPA [34] and Friet [35]
also prevent SCA-FTA attacks for slightly different reasons. They have been dis-

13 It works for preventing glitch leakages, as glitch cannot propagate through registers.
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cussed in Appendix. G in the supplementary material. Re-keying [36] schemes
can also be useful if the key generation can be made attack resilient.

7 Conclusion

Modern cryptographic implementations utilize special algorithmic measures to
protect against SCA and FA attacks. A reasonable expectation is that implemen-
tations containing both countermeasures would also prevent against combined
attacks. In this paper, we show and practically validate that this is not the case,
even for some implementations which include both masking and SIFA counter-
measures. A novel combined attack strategy called SCA-FTA has been proposed
for exploiting these vulnerabilities. The proposed attacks can exploit information
leakage form the error detection/correction logic (though side-channel) even if
the detection/correction is performed over masked data. Finally, we note that
the non-completeness property of certain masking implementations can play a
crucial role in preventing the proposed attacks. A potential future work in this
regard can be further analysis of both the attack and the prevention approach.
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A Alternative Algorithm for Template Matching

Algorithm 6 MATCH TEMPLATE ALTERNATIVE

Input: Protected cipher with unknown key Ck, Faults fl1, fl2, ..., flM , Template T , numob
Output: Set of candidate correct states xcand

xcand := ∅ . Set of candidate states
w := GET SBOX SIZE()
s′ := ∅
for each fl ∈ {fl1, fl2, · · ·flM} do
Ofl := ∅
for numob observations do

yf := C(x)fl . Inject fault in one copy of the S-Box for each execution
yc := C(x)
Ofl := Ofl∪ SCA LEAKAGE(yf , yc) . Leakage from the fault detection operation

end for
end for

xcand := T (arg max
s∈SF

flM∑
fl=fl1

L(s[fl],Ofl)) . Maximize the sum of log-likelihood

Return xcand

Algorithm. 2 presented our basic approach for template matching, which
performs log-likelihood estimation for the traces corresponding to each fault
location separately, and then combines the information for template matching
by means of Euclidean distance. The convenience of this approach comes from
the fact that information recovery for each fault location (and its corresponding
probing location) can be performed independently, which eases the explanation
of attack principles (single-fault single-probe) in the paper. However, another
approach for performing template matching is to combine the information from
all fault locations directly by maximizing the sum of log-likelihood for the traces
corresponding to all fault locations. This approach is presented in Algorithm. 6.
We found that results for these two approaches are comparable with the second
approach performing slightly better in terms of trace count. However, we used
the first approach throughout the paper for its aforementioned advantage.

B Fault Propagation on DOM-dep Gates

In Sec. 4.2, we have explained how leakage happens for DOM-indep gates. For
the sake of completeness, here we show a similar result for DOM-dep construc-
tions. The advantage of DOM-dep construction over DOM-indep is that it does
not require its inputs to be independently shared if the (unmasked) inputs of
the AND are equal. The independence of shares may become crucial in certain
situations as equal shares might lead to leakage [11]. Instead of calculating ab
directly DOM-dep AND computes it as a(b + z) + (az), where z is random. It
also uses DOM-indep AND gates as sub-modules. The masked implementations
of this multiplier are given as follows:

q0 = {a0((b0 + z0) + (b1 + z1) + · · · )}+ {a0z0 + (a0z1 + t0) + (a0z2 + t1) + · · · }
q1 = {a1((b0 + z0) + (b1 + z1) + · · · )}+ {(a1z0 + t0) + a1z1 + (a1z2 + t2) + · · · }
q2 = {a2((b0 + z0) + (b1 + z1) + · · · )}+ {(a2z0 + t1) + (a2z1 + t2) + a2z2 + · · · }

...
...

...

(11)
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Here each ai and bi denote the input shares of a and b, respectively. Each zi

denotes the share of the random bit z. tis are also random bits. The output
shares are denoted as qi. A fault injection at any of the ai here reveals the b.
For example, considering fault injection at a0, the first part of the expression
(within the first {}) reveals b + z. The second part of the expression reveals z.
However, the fault propagations due to the shares of z in two parts cancel each
other. Finally, whether q0 is faulted or not depends solely on the value of bit b.
Also, all the observations made on DOM-indep gates regarding the pattern of
fault propagation is equally valid for the DOM-dep gates.

C Fault Propagation on PINI Gadgets

Algorithm 7 PINI1 multiplication gadget over d shares [30]

Input: Factors a, b ∈ Fq such that
∑
i
ai = a and

∑
i
bi = b

Output: (ci)d ∈ Fd
q such that

∑
i
ci = ab

1: for i = 0 to d− 1 do
2: for j = i+ 1 to d− 1 do

3: rij
$←− Fq ; rji ← rij

4: end for
5: end for
6: for i = 0 to d− 1 do
7: for j = 0 to d− 1 j 6= i do
8: sij ← bj + rij

9: pij0 ← (ai + 1)rij

10: pij1 ← aisij

11: zij ← pij0 + pij1 . zij := rij + aibj

12: end for
13: end for
14: for i = 0 to d− 1 do

15: ci ← aibi +
d−1∑

j=0,j 6=i

zij

16: end for
17: Return(ci)d

PINI [30] is a paradigm for designing and verifying masked gadgets which ensure
composable security against SCA attacks. Although PINI does not take FAs into
account, it is important to analyze whether or not the combination of a PINI
gadget and error detection/correction logic can prevent SCA-FTA. As it turns
out, PINI does not ensure security against SCA-FTA. To illustrate this, we
refer to the PINI1 multiplication gadget from [30] presented in Algorithm. 7. In
this algorithm, ai, bi and ci denote the input and output shares, and rij (resp.
rji) denote random values. Rest of the variables are intermediate variables. It
is easy to observe that final expressions of output shares take the form ci =

aibi +
d−1∑

j=0,j 6=i
rij + aibj , ∀i ∈ 0, 1, · · ·d− 1. This expression can be reformulated

as ci = ai(b0 + b1 + · · ·+ bd−1) +
d−1∑

j=0,j 6=i
rij = aib+

d−1∑
j=0,j 6=i

rij . Consequently, a
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fault injection on ai would only propagate to ci conditioned on the actual value
of b, which clearly indicates an exploit for SCA-FTA.

D Comments on the Attack in Sec. 4.5.1 for Error
Detection on Shared Values

In this section we illustrate the observation that the the template in Table 9
is better than the template in Table 8 in the sense that it can uniquely deter-
mine each input value. More precisely, here we establish that even though the
templates slightly improve for detection on masked values (with respect to the
templates for detection on unmasked values), it does not cause violation to the
claim that the attack is first-order. Note that we have considered the HW of all
the XOR outcomes of the detection operation. In order to explain this obser-
vation we consider the actual fault patterns of the χ3 S-Box corresponding to
the inputs 0 and 7. For 0 the (unmasked) output fault patterns of the S-Box are
(F,C, F ), (F, F,C) and (C,F, F ) for fault locations c0, b0 and a1, respectively.
The HW of all the cases are 2. Similarly, for 7 the fault patterns are (F, F,C),
(C,F, F ) and (F,C, F ), respectively. However, for detection over shares, the fault
differentials over the shares are computed. For input 0 they are given as14:

1. (C,F,C,C,C, F ) and (C,F,C,C, F,C) for fault location c0

2. (C,F,C, F,C,C) and (F,C,C, F,C,C) for fault location b0

3. (C,C,C, F, F,C) and (C,C, F,C, F,C) for fault location a1.

For all of these patterns the average HW is 2 for each fault location. Similarly,
for input 7 the patterns are given as:

1. (C,F,C, F, F, F ) and (C,F,C, F,C,C) for fault location c0

2. (F, F,C, F,C, F ) and (C,C,C, F,C, F ) for fault location b0

3. (F,C,C,C, F,C) and (F,C, F, F, F,C) for fault location a1.

One may observe that the HWs are either 2 or 4, which results in an average
HW of 3 for each fault location. Clearly, 0 becomes distinguishable from 7 by
considering such HW patterns. For each fault location, there is a mandatory
fault propagation in the masked S-Box. Furthermore, there are always three data-
dependent fault propagations – one leaking the information of an unmasked input
through a single output share, the other leaking through both output shares of
a bit. For the bit leaking through two output shares, some extra information
gets added to the templates while we consider the HW patterns (this helps in
distinguishing 0 and 7). However, as we have already pointed out in Sec. 4.5.1
(ref. the attack description for error detection on shares), even following the
probing model solely, a similar template can be constructed (as we can extract
each input bit separately). Hence, this observation does not contradict probing
security, and the proposed attack remains first-order.

14 The sequence of bits are taken as (t1, t0, s1, s0, r1, r0)
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E Comparison of SCA-FTA with Existing Attacks

The main aim of the paper is to evaluate certain SCA-SIFA countermeasures
for combined leakage. However, the proposed SCA-FTA attack is also distinct
in several aspects with respect to the existing attacks. SCA-FTA builds fault
templates based on power traces. It is thus important to compare this attack
with the classical FTA technique. It has already been pointed out that SCA-FTA
recovers exploitable information leakage (though side-channel) which is not di-
rectly available to a classical FTA or SIFA adversary in the form of ciphertexts or
its correctness information. As an example, for both the SIFA countermeasures
discussed in this work, the information leakage caused by data-dependent fault
ineffectivity never reaches the ciphertexts. However, the information leakage in-
deed gets captured at the detection/correction units, which can be utilized by
SCA-FTA, but not by FTA. It is worth mentioning that SCA-FTA can work even
for the cases which are vulnerable against FTA or SIFA. For example, the cor-
rectness information of the ciphertext required in FTA can be obtained through
SCA leakage as well. However, such cases are considered trivial as less power-
ful adversary models (i.e. FTA/SIFA) can break these constructions. A recent
work in this line is due to [37], which injects SIFA-faults and uses SCA-leakage
from correct unmasked ciphertexts to attack implementations having masking
and error-detection (similar target to that of FTA/SIFA). However, this attack
does not work for SIFA countermeasures [15,16], as no (unmasked) intermediate-
value-dependent correct ciphertext is generated for these countermeasures.

Since the proposed template attack involves SCA leakage along with faults,
it is interesting to discuss the classical SCA template attacks [2, 3] in this con-
text. Indeed for unprotected implementations (without SCA countermeasure),
it is always feasible to run the SCA template attack. In fact, SCA template
attack would be easier for the unprotected implementations as it does not re-
quire any fault to be injected. However, we note that the SCA templating is
done on the key or state bytes, whereas SCA-FTA performs it on the fault
differentials. SCA-FTA provides a way to exploit information leakage from de-
tection/correction operation. The advantage of SCA-FTA over SCA template
attacks would become more prominent while we consider SCA-FTA on schemes
including masking. In order to break a first-order secure implementa-
tion, SCA template attacks would require to construct templates on
each mask and actual state value, hence performing a second-order
attack. In contrast, SCA-FTA can perform a first-order attack on a
first-order secure implementation due to the presence of faults. Fur-
thermore, the observations are not limited to first-order secure schemes only and
also applies to masking schemes of arbitrary order.

Another competing attack in this context is the combined attack described
in [21] and [23]. In a nutshell, they perform DFA by extracting the output cipher-
text differential entirely through SCA. However, as it has already been pointed
out in the introduction, these attacks rely on the fact that the detection opera-
tion is performed on unmasked data. In fact, masking the detection was proposed
as countermeasure in some cases [21] (and [23]). The countermeasures we consid-
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ered in this work use redundancy in masks for detection/correction of errors on
masked values. In other words, error check is performed on each share indepen-
dently, and there is no chance of unmasking during such comparisons. Clearly,
there is no way for unmasked ciphertext differentials getting exposed for such
error checks, and thus the attacks in [21] and [23] cannot work. However, SCA-
FTA clearly shows that even such masked detection/correction is not a sound
solution. Even in the cases of SIFA countermeasures, it is possible to exploit
leakage resulting in successful attacks. If the masked detection is performed with
an extra multiplicative mask (as proposed in [22]), and combined with the SIFA
countermeasure [16], it can still be defeated with one extra fault at the end of the
S-Box to cancel out the mandatory fault propagation happening. In such cases,
only data-dependent faults propagate to the masked comparison block, and just
an absence/presence of fault during comparison leaks information (the attacker
do not explicitly need to know the ciphertext differential). In other words, the
presence of the multiplicative mask does not create any significant difference for
SCA-FTA. Furthermore, increasing the order of redundancy does not increase
the required number of fault injections in this case. Even for n redundant com-
parisons happening, faulting only one share at the beginning and cancelling the
fault impact only for one redundant branch suffice. Hence, the attack remains
practical. Note that such is not the case for attacks in [21] and [23] as they have
only three options in this case: 1) To bypass the redundancy check and output
faulty ciphertexts. This can be made difficult by increasing the order of redun-
dancy; 2) To bypass the multiplications of each share with the multiplicative
mask so that redundancy check is performed over unmasked value. This can
be made difficult by increasing the number of shares. 3) The third option is to
change the random multiplicative mask to unity, which requires a very complex
multi-bit fault model.

Finally, we point out that there exist combined attacks which exploits a
fault to create bias in the input mask and then performs a successful SCA
analysis of order lower than the prescribed security order to recover the key.
One example is to set the masks zero altogether for a first-order implementation
which may eventually result in a first-order attack. We note that this takes the
attack beyond the boundary of the cipher as the randomness source needs to be
corrupted in this case. Instead, our goal in this paper is to investigate flaws in
existing countermeasure designs by using SCA-FTA as a tool.

F Details of Practical Experiments

In this section, we present the results of our practical validation in detail. As
already pointed out in Sec. 5, validation experiments were performed for both
software and hardware implementations. For the former case, we choose the
open-source Keccak implementation provided by the authors of [16]15, which
implements the SIFA-protected χ5 S-Box. We only added the error-detection

15 https://github.com/sifa-aux/countermeasures
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operations (both detection on un-shared and shared values) at the end of com-
putation. Our hardware validation is performed on a hardware implementation
of the χ3 S-Box with error correction. Both the experiments are detailed in the
following subsections.

F.1 SCA-FTA with Laser Faults and EM measurement

Fig. 6: Laser setup for practical experiment

Target Implementation: The open-source software in [16] implements Keccak-
f[200] with two shares and a SIFA-protected 5-bit χ5 S-Box. The S-Box inputs
are denoted as (a0, a1, b0, b1, c0, c1, d0, d1, e0, e1) and the outputs are collected in
the same registers as the inputs. The S-Box is implemented entirely in assembly
targeting 8-bit AVR platforms using 13 general-purpose registers. For realizing
the proposed attacks, we repeat the computation two-times (denoted as origi-
nal and redundant computation) for enabling error-detection. For the first case,
where error-detection was performed over unmasked values, we can use different
masks for original and redundant computation. The outputs are unmasked, and
then XOR-ed with each other to detect if there is any error. Upon detection of
error, an output suppression module suppresses the outcome. Note that our
experimentation considers practical noise induced due to both fault
injection and SCA measurements, simultaneously. Our second test sce-
nario performs error-detection on shared values. In this case, the masks in both
redundant and cipher computation must be equal. The rest of the code remains
unchanged from their original version.

Attack Setup: In order to validate our claims, we run the target implementation
on an Atmel ATmega328P microcontroller running at 16 MHz. The microcon-
troller was de-packaged and mounted on an Arduino UNO board. We target
this microcontroller with a 8W diode pulse laser for fault injection. The board
has been modified to enable power measurement through an external port (refer
Fig 6). We even verified that electromagnetic (EM) measurements are possible
by using probes similar to Langer RF-2 Near-field Probes. As the EM probe
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Fig. 7: Example traces for the target masked χ5 S-Box (software implementa-
tion).

is not required to measure directly on the chip, it does not interfere with laser
injection. For this chip we found that measurement near the VDD pin also pro-
vides a good signal to carry side-channel analysis. The injection of laser does
cause some perturbation in the SCA measurements, but these disturbances were
only limited to up to 8 clock cycles after the injection (≈ 500ns) in our setup16.
SCA measurements after this settling period has no effect of the high-
energy laser injection. For the target implementation, the measurement point
is several clock cycles (≈ 190 clock cycles or ≈ 12µs ) away for the laser injection
cycle. Therefore, it will not affect the Signal-to-Noise Ratio (SNR) of the SCA
trace due to laser-injection.

In the first step of the experiments, we perform the profiling of the target
for finding the best location for injecting faults. This refers to the offline phase
of the attack. We target the instructions where the share is being loaded just
before the S-Box computation for fault injection. One of the critical issue is the
repeatability of the fault. After profiling, it was observed that with sufficient laser
power (even as low as 10% laser power), the fault can be repeated 100% (only
2 failed instance out of 30,000 trials), with the resulting faults being equivalent
to a stuck-at-0 fault at the target bit.

The SCA traces for two executions in our experiments are depicted in Fig. 7.

Template Attacks: As already pointed out, we have evaluated two cases with
the aforementioned setup– detection on unshared values, and detection on shares.
For each of the cases we have acquired 5000 traces with randomly varying masks.
For template building, the input of the S-Boxes were assumed to be known and
for matching they were assumed to be unknown. For the target 5-bit S-Box
(having total 10 inputs and output bits due to 2-sharing), total 5 fault locations
were required for completely exposing the S-Box input (same number of locations
would be required for higher-order masking too). Note that, only one location
is corrupted at a time. The LLE values for determining the correct bit value for
fault location e0 is shown in Fig. 5(a) (Sec. 5) for the unmasked detection case.
One may observe that around 210 − 220 traces are sufficient for distinguishing

16 This perturbation depends upon the laser setup and can be fine-tuned further in
many cases.
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Fig. 8: The masked χ3 S-Box.

the correct bit value. After these many traces, the LLE corresponding to the
correct bit remains consistently higher than the LLE of the wrong bit. Similarly,
for the detection over shares, roughly 320−350 traces are sufficient for extracting
the correct bit (ref. Fig. 5(b) in Sec. 5).

F.2 Details of the Power-Trace Simulation Experiments

In this subsection, we present the experimental validation of the proposed attacks
for a hardware implementation. As already pointed out in Sec. 5, we perform
gate-level power trace simulation for a hardware implementation of the χ3 S-Box
with error correction. Here we first present the details of the simulation method-
ology. Subsequently, we discuss our observations on the target implementation.

F.2.1 Target Implementation

Fig. 8 presents a basic architecture of the target χ3 S-Box, which has been im-
plemented in Verilog. For this experiment, we developed a non-pipelined archi-
tecture following the design in [16]. Each output share of the S-Box was subject
to majority voting-based error correction following (we consider single-bit error
correction, and hence maintain 3 redundant copies per share) [15]. During the
gate-level synthesis of this design, we apply flags like Keep Hierarchy and Don’t

Touch to ensure that there is absolutely no unwanted design optimization, which
may lead to SCA leakage. The fault-free design does not show any leakage. The
faults in our experiments are also simulated. To enable fault simulation, we add
XOR gates at each input of the S-Box. In order to generate fault at a specific
input bit, one of the inputs of the corresponding XOR gate is set to 1, which
flips the other input.

F.2.2 Gate-Level Power Simulation

The overall flow of power-trace simulation is presented in Fig. 9. Our methodol-
ogy mainly estimates dynamic power based on the total toggle count of gates at
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Fig. 9: The power-trace simulation toolflow.

Fig. 10: Example traces for the masked χ3 S-Box. The shaded area shows the
expected region of leakage

a specific time instant during the simulation. Toggle count denotes the number
of times a gate switches from 0 → 1 or 1 → 0. It is well-known that dynamic
power consumption of a gate is proportional to its toggle count.

In our simulation flow, the Verilog design is first synthesized with Synop-
sis Design Compiler to a gate-level netlist. For synthesizing the design, we use
STMicroelectronics CMOS65 – a 65nm technology library due to STMicroelec-
tronics. The technology library also contains timing and power information for
each standard cell in it. The clock frequency was set to 50 MHz. After synthe-
sis, a post-synthesis simulation is performed, and the switching activities of the
entire design are logged in Value Change Dump (VCD) files. During the simula-
tion, we provide the randomly shared inputs to the design-under-test via a test
bench. The VCD file stores the timestamp and transition of each gate whenever
it toggles. In the next step, the VCD file is fed to the PrimeTime PX tool for
power trace generation. Additionally, PrimeTime also takes a design constraints
file (.sdc), and a parasitic file (.spef) file as inputs. The .sdc file is used to
estimate the transition time at the primary inputs, whereas the .spef file is
used for getting the capacitance estimates of the nets. Given all these inputs, we
perform a time-based power analysis with PrimeTime, which returns a power
trace file (.fsdb) corresponding to a given test vector. Fig. 10, presents examples
of the traces obtained in our flow. It also specifies the region (in red) where we
expect the leakage to happen.
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Fig. 11: Trace count vs. log-likelihood value for template matching. The fault, in
this case, is injected at the input c0 in the masked χ3 S-Box.

F.2.3 Template Building and Matching

In the next step, we perform template building and matching with the acquired
power traces. For each of the inputs of the S-Box (there are total 8 (unmasked)
input values), we collect 5000 traces corresponding to a fault location. The masks
are varied randomly during this trace acquisition. Next, we build separate tem-
plates corresponding to each input as described in Algorithm. 4. The fault lo-
cations corresponding to this attack are the same as described in Sec. 4.5. In
order to match the template, we further perform trace acquisition under the
influence of faults, but this time the input is assumed as unknown. The tem-
plate matching is performed by means of LLE as described in Algorithm. 5. The
template matching phase requires multiple traces. Fig. 11, shows the trend in
log-likelihood values with increasing number of traces when the fault location is
c0. The LLE value for the correct bit (at this fault location we recover a single
unmasked input bit of the S-Box) is shown in red. We also plot the LLE value for
the wrong bit value (shown in blue). As it can be observed from Fig. 11, the LLE
values are consistently maximum for the correct bit value after a certain number
of traces are provided. This fact clearly indicates the success of template build-
ing and matching in our experiments. Overall, we require roughly 1500 traces
per fault location for template matching.

G Discussion on Some other Countermeasures

Alternative Constructions from [16]: We have addressed the issues with
the SIFA countermeasure in [16] in the main section of this paper. However, [16]
also proposes two alternative constructions. For the first one, it was shown that
any S-Box can be implemented with masked Toffoli gates which ensures fault
propagation to at least one output bit whenever there is a fault in an input.
Here we consider one such basic construction shown in Fig. 12 (adopted from the
original paper). Here each vi denotes a share of the corresponding bit v. ⊕ and �
denotes XOR and AND gates, respectively. Now let us consider a bit-flip fault at
the input b0 of this construction. As claimed in [16], the fault always propagates
to the output b0 and the propagation does not depend upon any input value.
However, the fault also propagates to a0 only if c0+c1 = c = 1. Hence, SCA-FTA
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Algorithm 8 SIFA-Protected χ3 (Local Error Detection)

Input: (a0, a1, b0, b1, c0, c1)

Output: (r0, r1, s0, s1, t0, t1)

1: T0 ← b0′c1
′

; T2 ← a1
′
b1
′

2: T1 ← b0′c0
′

; T3 ← a1
′
b0
′

3: T0 ← T0 + a0
′

; T2 ← T2 + c1
′

4: r0 ← T0 + T1 ; t1 ← T2 + T3

5: T0 ← c0′a1
′

; T2 ← b1
′
c1
′

6: T1 ← c0′a0
′

; T3 ← b1
′
c0
′

7: T0 ← T0 + b0
′

; T2 ← T2 + a1
′

8: s0 ← T0 + T1 ; r1 ← T2 + T3

9: T0 ← a0′b1
′

; T2 ← c1
′
a1
′

10: T1 ← a0′b0
′

; T3 ← c1
′
a0
′

11: T0 ← T0 + c0
′

; T2 ← T2 + b1
′

12: t0 ← T0 + T1 ; s1 ← T2 + T3

13: Rs ← R
′
r + R

′
t; CHECKS

14: r0 ← r0 + R
′
r ; s0 ← s0 + R

′
s

15: t0 ← t0 + R
′
t ; r1 ← r1 + Rr

16: s1 ← s1 + Rs ; t1 ← t1 + Rt

17: Return(r0, r1, s0, s1, t0, t1)

should also work on this construction if there are error detection/correction logic
at the end of this S-Box computation. In fact, the one used for our laser fault
experiments is similar to this one.
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Fig. 12: Single-fault SIFA protected masked Toffoli gate [16].

The other construction proposed in [16] uses a bitwise error detection for
each S-Box computation in the cipher (thus, we call it local error detection; ref.
Algorithm. 8). Without letting the error propagate to the S-Box output (and
hence to the cipher output), the error detection here is performed before the
S-Box computation finishes. The corresponding algorithm is outlined in Algo-
rithm 8 and Fig. 13. The fault detections are performed on the input shares
a0, a1, b0, b1, c0, c1 after each of them has served as input to multiple gates (by
fanning out). In order to defeat this configuration, we need two faults at two
different clock cycles. Fig. 13 presents the exact locations of these two faults
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Fig. 13: Circuit representation of Algorithm 8 [16].
(the ⊗ symbol denotes an error detection block). If we corrupt an input share
(say c0) we have to cancel the fault with another fault (let us call it a cancelling
fault) before the error check on c0 is performed. This cancellation would let
the S-Box computation continue. The data-dependent faults will then continue
propagating to the S-Box outputs. The detection circuits in some S-Box of next
round will capture these faults, and the expected leakage would take place from
these detection operations. The countermeasure, however, only claims protec-
tion against single-bit faults. Hence, this attack violates the claimed security
assumptions and is not efficient.

However, the attack with two faults may become interesting for higher-order
fault protections. In [16] the protection order for faults was linked with the mask-
ing order. In other words, for an implementation with d + 1 shares, there must
be d+1 redundant copies for each share. The redundant copies are checked pair-
wise. Consider an implementation, where the error detection is implemented in a
manner that detection logic performs a pairwise check for d+ 1 bit redundancy.
So each redundant wire must fan-out to

(
(d+1)

2

)
detection blocks. If the canceling

fault can be injected before the fan-outs happen, the first fault (if propagated)
will be canceled for all the error check circuits. This would leak information
to reveal an unmasked bit. The leakage estimation could change depending on
the implementation of the check. We report it for the pairwise check, which is
commonly used.
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Comments on Code-based Redundancy [18]: So far, in this work, we have
mainly discussed countermeasures where the redundancy is implemented in time
or space. An alternative is to incorporate information redundancy in the form
of Error-Correcting Codes (ECC). Recently [18] has proposed SIFA-protected
schemes based on linear codes. The reason we do not directly consider this
countermeasure for combined attacks is that the current proposal do not include
any SCA countermeasure (but it can be incorporated as stated in [18]). One
advantage of using linear code is that it may not expose the differential of cor-
rect and faulty state explicitly through SCA. However, the leakage would still
be correlated with the actual differential, and in certain implementations, the
actual differential might still get exposed (for example, for error correction, [18]
proposes the reconstruction of the error vector. There may be leakage related to
this operation.).

Comments on CAPA [34]: CAPA is a recently proposed countermeasure
against combined attack based on the principles of secure multi-party computa-
tion. The main idea of CAPA is to maintain a tag variable for each data variable
in the cipher computation. The tag is computed based on some randomness α
(known as hash key) which is regenerated at each execution of the cipher. The
tags, hash keys as well as the actual variables are maintained in shares. Fur-
thermore, the shares are physically and logically separated from each other and
maintained in separate tiles. Computation over the shares never crosses the tile
boundary except for the non-linear operations. In case of non-linear operations
(e.g. AND computation), the shares are first blinded with a specially generated
random tuple known as beaver triple. Such blinding prevents the shared data
from getting accidentally combined while crossing the tile boundaries.

CAPA is found secure against the SCA-FTA attack proposed in this paper.
The security, once again, stems from how the error-detection is performed in this
scheme. During the non-linear operation, each variable taking part is first blinded
with beaver triples. The next step is broadcasting, while these blinded shares are
sent to all other tiles for performing the non-linear computation. CAPA checks
the correctness of the computation at this moment with the help of the tags
maintained for each variable. One should note that all the operations such as
blinding and broadcasting are typically linear. The only non-linear operations
(i.e. the AND/OR on blinded values) happen after the error-check. Furthermore,
this error-check is performed on blinded values. Hence, no information leakage
happens due to fault propagation through non-linear gates, or due to accidental
share combining during error-check. Hence, SCA-FTA cannot work on this class
of implementations, at least with the single-bit fault and single-probe attack
model followed in this work.

Comments on Friet [35]: Very recently, there has been another proposal for
SIFA-protected implementation called Friet [35]. The SIFA protection of Friet
follows the same principle as in [16], and an implementation with first-order
masking is presented in [35]. The error detection in Friet is performed by check-
ing an invariant at the end of each round, which stems from the parity-code
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embedded in its structure. More precisely, Friet permutation is a 512-bit struc-
ture divided in 4 limbs a, b, c and d. For error checking, Friet utilizes the invariant
d = a+b+c, which is only satisfied if there is no error. While instantiated with the
SIFA countermeasure, the computation of Friet permutation ensures that there
is a mandatory fault propagation to one output bit, for a single-bit fault at input
or intermediate points of computation. There is also some ineffective fault prop-
agation due to non-linear gates, but the same ineffective fault always propagates
to two (actual) output bits (i.e. to the shares of two output bits). Now, given
there is one mandatory fault and two same ineffective faults in the output bits,
during invariant computation both ineffective faults cancel each other and only
the mandatory fault remains. Therefore, the error detection unit does not leak
information in this case, and Friet remains resilient against SCA-FTA. How-
ever, the security mainly stems from the actual mathematical structure of Friet,
and such error check is not possible for many other permutations and block ci-
phers available. Also, we would like to point out that although an instance of
the framework proposed in [16] is found secure here, the framework itself still
does not provide sound protection against SCA-FTA in all cases. Moreover, if a
cancelling fault is used to stop the mandatory fault propagation in Friet before
error check, it becomes vulnerable to SCA-FTA, FTA and SIFA attacks. How-
ever, such attack goes beyond the single-bit fault protection claimed by Friet
and hence considered inefficient by us.

Comments on Re-keying: The main idea behind re-keying [36] schemes is to
shift the burden of SCA and FA protection from the actual block cipher to a
re-keying function. The re-keying function takes a fixed secret key and a public
nonce and generates session keys for the encryption/decryption. The idea of
using session keys is tempting for preventing SCA or any statistical fault attack
(e.g. SFA, SIFA, FTA, SCA-FTA) as it limits the number of observations an
adversary may gather. However, the frequency of re-keying becomes crucial here.
Furthermore, it is important to ensure the security of the re-keying function,
which processes over the fixed secret master key. The fact that the output of the
re-keying function is not visible does not limit the applicability of SIFA, FTA, or
SCA-FTA. Therefore, the threats from these attacks must be taken into account
even in a re-keying context.

Comments on Countermeasures based on Polynomial Masking: Poly-
nomial masking, which often utilizes Shamirs secret sharing [38], has been em-
ployed for providing combined security. An example of such protection is [39],
which utilizes the fact that the degree of a polynomial encoding a state changes
with fault injection. Faults can be detected by tracking this change in degree.
While this scheme claims security against both side-channel and faults, combined
analysis and ineffective faults have not been taken into account. However, the
multiplications in such schemes are significantly different from Boolean mask-
ing and it is not straightforward to apply SCA-FTA in its current form to this
protection scheme or its variants. We leave this as a future direction of research.
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Comments on Self-Destruct Countermeasures: The most aggressive ap-
proach for preventing against FAs is to destruct the device (or erase/alter the
key) after a certain number of faulty computations have been encountered. While
this approach is truly effective against all classes of attacks requiring a lot of
injections (e.g. SFA, SIFA, FTA, SCA-FTA and some DFAs), it is not easy
to implement for all classes of embedded devices. Especially, such self-destruct
mechanisms must be implemented in a tamper-resilient manner, so that the ad-
versary cannot bypass it easily. Ensuring tamper-resilience for such structures is
non-trivial. Moreover, there is always an issue with distinguishing the malicious
faults from naturally occurring random faults. Several embedded cryptographic
devices (such as RFID tags or smart cards) are deployed in the field, where they
have to work under random power-fluctuations or exposure to EM radiations.
Faults are very common in these scenarios, and it is extremely difficult to identify
malicious faults within the constrained resources of these devices. As a result,
large number of existing devices still do not implement such mechanisms. The
proposed attacks show that more research is required for reliably implementing
these mechanisms.


