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Abstract. Fault Template Attack (FTA) is a recently proposed class
of fault attacks, which exploits the fact that activation and propagation
of a fault through combinational logic is data-dependent. Even at the
presence of masking and state-of-the-art fault countermeasures, FTA can
perform key recovery even at the middle rounds of block ciphers without
any access to the ciphertexts. The templates can combine information
from different fault locations and cipher executions. This capability of
templates is quite powerful and may lead to stronger attacks.

In this paper, we enhance the FTA attacks by considering side-channel in-
formation during fault injection. Some of the recently proposed combined
countermeasures against Statistical Ineffective Fault Analysis (SIFA) and
Side-Channel Attack (SCA) fall prey against FTA after this enhance-
ment. The success of the proposed attacks stem from some non-trivial
fault propagation properties of S-Boxes, which remained unexplored in
the original FTA proposal. We also relax the fault model to some extent
from that of the original FTA. The proposed attacks are validated on
the hardware implementation of a masked x3 S-Box through gate-level
power trace simulation, establishing its practicality and efficacy.

Keywords: Fault Attack - Side-channel - Masking.

1 Introduction

Implementation-centric attacks on cryptographic primitives are one of the great-
est practical threats to secure communication. The core idea behind such attacks
is to exploit the physical properties of implementations, which often correlate
with the secret. Especially for embedded and IoT devices, such physical prop-
erties are easily accessible to an adversary. Most of the implementation attacks
are quite challenging to prevent, and there is a continuous effort for building
suitable countermeasures against such exploits.

Side-Channel Attacks (SCA) [1-3] and Fault Attacks (FA) [4,5] are the two
most established classes of implementation attacks. An SCA adversary exploits
the fact that the power consumption or electromagnetic (EM) radiation from
a cryptographic implementation is correlated with the computation. Passive
eavesdropping on these signals may lead to the recovery of the secret. An FA
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adversary, on the other hand, actively perturbs the computation and exploit the
faulty responses to derive the secret. Controlled transient perturbation of the
computation, as required for FA, is feasible for both hardware and software im-
plementations. Some popular means of injecting such controlled faults include
clock/voltage glitching [6], EM radiation [7], and laser injection [8]. Over the
years, the injection mechanisms have improved significantly, which allows an
adversary to perform injection even at a bit-level precision with very high re-
peatability of the same fault [7,8].

Over the years several countermeasures have been proposed for both SCA
and FA prevention. In the context of SCA, the most prominent class of counter-
measures is the masking [9-12]. Loosely speaking, masking aims to remove the
dependency between the power/EM signals and the cryptographic computation
by randomizing each execution. This randomization is achieved by realizing se-
cret sharing at the circuit-level. More precisely, masking schemes randomly split
each variable z into multiple variables z', z2, - - -, z%t! called shares of x, which
satisfies the invariant 2! xz2%---x 291 = 2. Here % denotes some field operation.
A function f() operating on = (and maybe some other variables y, z, - -) is also
split into multiple component functions f1, fo,- - - f;, such that x combination
of the outcomes from these functions matches with the actual outcome of f.
In order to perform the SCA on such an implementation, the adversary must
combine the information from all d 4+ 1 shares of a variable. No proper subset
of the shares of a target variable leak information about the variable. Breaking
such schemes thus requires a statistical analysis with d-th order moment and
the data complexity (i.e. the number of encryptions required) of the attacks
increases almost exponentially with the statistical order d.

Most of the FA countermeasures use some form of redundancy in computa-
tion to detect the presence of a fault. Upon detection of a fault, the cipher output
is either muted or randomized. The redundancy is realized either in time/space
or as information redundancy in the form of Error-Correcting Codes (ECC) [6].
Furthermore, the fault detection operation is either applied at the end of each
round, or the end of the complete encryption operation. Such countermeasures
are found to be effective for many of the fault models with an exception for
so-called ineffective faults. Ineffective faults are those faults which may or may
not corrupt the output depending upon the value(s) of some intermediate vari-
able(s). The Statistical Ineffective Fault Attacks (SIFA) and Fault Template
Attacks (FTA), which exploit the data-dependency of ineffective faults, can suc-
cessfully bypass most of the detection-based countermeasures [13,14]. To prevent
SIFA, fine-grained error correction on shares is suggested [15], so that the data-
dependency of fault ineffectivity is mitigated. Another alternative is to apply
certain modifications to the S-Box implementations so that every fault becomes
effective [16]. In such cases, error detection at the end of computation becomes
sufficient for SIFA prevention.

Most of the (if not all) unprotected cryptographic primitives (without loss
of generality, in this work we consider symmetric key primitives only) are vul-
nerable against SCA and FA. It is thus desirable that such primitives include
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countermeasures for both the attack classes. Recently, there have been multiple
proposals which combine masking with some FA countermeasure to prevent both
SCA and FA [15-17]. However, an interesting question still remains — do these
schemes provide protection while both SCA and FA are applied simultaneously?
While many of these proposals already show vulnerability for SIFA, there exist
some recent proposals [15,16,18,19] which successfully prevents SIFA.

The aim of this work is to show that certain implementations containing
both SCA and FA countermeasures are still insecure, even if they explicitly in-
clude SIFA protection. In order to show this, we enhance the recently proposed
FTA attacks by considering side-channel leakage in the presence of faults. More
precisely, we exploit side-channel leakage from the detection and correction op-
erations in the presence of faults. The key cause behind the success of SCA
enhanced FTA (referred as SCA-FTA in this work) is that output differentials of
an S-Boz leak information about the input of the S-Box, if the fault location is
fixed (that means the input differential is fized.). Using this fact, we can expose
intermediate states of a symmetric key primitive, even if it includes FA, SCA
and certain SIFA countermeasures. Our contributions are as follows:

1.1 Owur Contributions:

We propose SCA-FTA which constructs fault templates using side-channel leak-
age during fault injection. Exploiting the fact that fault propagation through
non-linear functions such as S-Boxes is data-dependent, we target implemen-
tations containing both FA and SCA countermeasures. The proposed attacks
exploit SCA leakage from the error detection/correction operations, and thus
raises an important question — how to perform error detection/correction with-
out causing new vulnerabilities? We discuss a potential way to address this issue
at the end of the paper.

The fault model exploited in SCA-FTA attack is single bit-flip faults, which
has also been exploited in SIFA [14] and FTA [7]. Similar to the original FTA
proposal, we also require multiple fault locations with only one fault location
exploited per encryption. One important difference with SIFA and FTA (while
attacking masked implementations) is that we do not always require fault injec-
tions at intermediate points or specific combinational paths of an S-Box com-
putation. Rather injections at S-Box input registers work in our case, which
provides greater flexibility from an attacker’s perspective.! However, it is worth
mentioning that our fault model is a superset of SIFA and FTA fault models.

SCA leakage plays an important role in the proposed attack. Loosely speak-
ing, while in original FTA, the templates are created based on whether an output
s faulty or not, in SCA-FTA the templates are constructed with SCA leakage
traces under the influence of fault injections. In some sense, this combines fault
templates with SCA templates. However, while performing attacks on masked

! Note that both FTA and the proposed SCA-FTA attacks can work by inducing faults
in registers and does not require corrupting gates.
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implementations, one has to be careful about the statistical order of the leak-
age. Any attack involving SCA leakage, having a statistical order beyond the
claimed SCA security order, is considered as trivial. We carefully take this issue
into consideration and show that the proposed attacks do not violate the SCA
security margins. We designate an attack on a first-order secure implementation
as efficient, only if the attack is also first order in terms of SCA analysis.

As an interesting outcome of SCA-FTA, we found that the non-completeness
property of masking schemes plays an important role behind the success and
failure of the attacks. This observation is crucial as it may help in construct-
ing potential countermeasures. However, in this paper, we do not explore the
countermeasures in detail and only present a short guideline in this context.

In order to validate our ideas, we utilize different masked S-Boxes. To val-
idate the attacks against SIFA secure implementations we choose one example
presented in [16] on x3 S-Box [20]. Furthermore, We validate one of our attack
over a hardware implementation of the SIFA secure y3 S-Box [16] through fault
simulation and power-trace simulation. Our setup uses commercial tools such
as VCS, Design Compiler, and PrimeTime-PX from Synopsys? for power trace
simulation which is fairly close the actual ones as shown in [21].

It is worth mentioning that previous work has also proposed combined SCA
and FA attacks on protected implementations. Notable among them are [22-24],
where the error detection operation at the last round was targeted for extracting
the fault differential through SCA. However, none of these attacks works for the
cases where the error detection is performed on masked data. SCA-FTA works
in such a context. Furthermore, no fault templates were constructed to exploit
information leakage from different fault locations in these attacks, which is also
new in SCA-FTA. Finally, unlike previous attacks, our attacks are applicable
to the middle rounds not requiring any ciphertext access (if there are error
detection/correction at the middle rounds such as in [15]).

The rest of the paper is organized as follows. We begin with presenting the
preliminary ideas of fault-induced SCA leakage in Sec. 2. The SCA-FTA attack
is proposed next with application to unmasked implementations in Sec. 3. Sec 4
presents the attacks on masked implementations and two recently proposed SIFA
countermeasures. We summarize the practical evaluations in Sec. 5, details of
which will follow in the supplementary material (in the extended version of this
work to be released later). A brief discussion on a probable countermeasure
strategy is presented in Sec. 6. Finally, we conclude in Sec. 7.

2 Fault-Induced SCA Leakage

2.1 Faults and Combinational Circuits

A faulty outcome in a combinational circuit is a result of two consecutive events,
namely, Fault Activation and Fault Propagation. Given an internal net® 4 in a
combinational circuit C, fault activation event assigns ¢ with a value x such that

2 These tools are under registered trademarks of Synopsys Inc.
3 In this paper, we use the terms wire and net interchangeably.
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Fig. 1: Fault activation and propagation with stuck-at-0 fault: (a) No fault acti-
vation; (b) Fault activation and propagation for XOR ; (c¢) Fault activation but
no propagation for AND; (d) Fault activation and propagation for AND.

i carries complement of z (i.e. T) in the presence of a fault in 4, and x, otherwise.
On the other hand, fault propagation is an event which takes place when the
impact of an activated fault is observed to some output net of the circuit C. The
goal of an Automatic Test Pattern Generation (ATPG) algorithm is to figure
out test vectors which can activate and propagate a fault happening at some
internal net ¢ to the output, leading to the detection of that fault. Detection of
a fault depends on the test vector and the location of the faulty net in C.

The most important observation in this context is the location and input-
dependency of fault detection for a given combinational circuit. This data-
dependency has also been utilized in the original FTA and SIFA. The data
dependency stems from the fact that fault propagation through basic gates is
data-dependent. To further explain this, we consider the XOR and the AND
gates shown in Fig. 1. The activation of the fault in any of the inputs of these
gates depends upon the current value assigned to the input. For example, if we
consider a stuck-at-0 fault, the target input net must be assigned to a value
1 in order to activate the fault (ref. Fig. 1(b), (c), (d)). However, in the case
of bit-flip faults, the fault activation happens with certainty and does not de-
pend on the value in the net. The fault propagation depends on the type of
the gate. In the case of an XOR gate, the fault propagation happens whenever
there is a fault activation in one of the input nets 4 (Fig. 1(b)). In contrast,
fault propagation in an AND gate is dependent on the fault activation, and the
values assigned to the other non-faulty input nets of the gate. More precisely,
fault propagation requires all the other input nets to have a value 1 (also called
the non-controlling value for an AND gate; Fig. 1(d)). Similar impacts can be
observed for OR gates where the non-controlling value is 0. To summarize, we
have the following observations:

1. Stuck-at faults at an input net of an XOR gate only leak the value at the
faulty net by means of fault activation. Fault propagation in XOR gate
happens with certainty whenever there is a fault at an input.

2. Bit-flip faults at an XOR gate input does not leak the input value as the
activation is not data-dependent.

3. Both stuck-at and bit-flip faults leak input values of an AND gate through
fault propagation, except the value of the faulty net in case of bit-flip faults.

Most of the fault-induced leakages in combinational circuits are caused by the
three abovementioned conditions. In the next subsection, we analyse the impact

4 Note that here we restrict ourselves to the cases where only one input net is faulty.
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Fig. 2: Fault propagation through ys S-Box for a bit-flip fault at xg. The wires
through which the fault propagates without data dependency are shown in red.

The data-dependent propagation is shown in blue. For each AND gate, the input
controlling the propagation is shown in green.
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of them for multi-output combinational circuits. Without loss of generality, we
shall mostly use bit-flip faults.

2.2 Fault Propagation in Multi-Output Combinational Circuits

Combinational circuits, in general, contain fan-outs® as well as multiple outputs.
Depending on the structure of the circuit, the fault location, and the input value
an injected fault may corrupt one or multiple of these outputs. Interestingly,
there exists a data and fault location-dependent pattern of output corruption
for a given multi-output circuit. To explain this we consider the circuit shown
in Fig. 2 which is the y3 S-Box from [20]. Note that we specifically consider an
S-Box here as they are going to be the primary attack targets in the rest of the
paper. The logic expressions corresponding to each output of x3 are given as:

Yo = To + T17T2
Y1 = 21 + T2Xo (1)

Y2 = T2 + Tox1

Here xg, x1, x2 denote the input bits of the S-Box and g, y1, y» represent the
output bits. 2 and yo denote the Most Significant Bits (MSB) of the input and
output, respectively. Without loss of generality, we consider a bit-flip fault at
the input xg. The fan-outs allow the fault to propagate to all three output logic
expressions. However, the propagation patterns depend on the inputs. One may
observe that the fault always propagates to the output yg irrespective of the
inputs. This is because the fault model is bit-flip and z( exists linearly in the
expression of yg (i.e. xg is the input of an XOR gate). However, y; gets corrupted
only if x5 = 1. Similarly, ys if faulty only if ; = 0.

The fault patterns corresponding to each input pattern of the S-Box is shown
in Table 1 for the above-mentioned fault location. The patterns leak the values

5 A fan-out is a structure where one net drives the input of multiple gates. The driver
net is called the fan-out stem and the inputs driven by the fan-out stem are called
fan-out branches.
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Table 1: Inputs and Corresponding Table 2: Distinct fault patterns

Fault Patterns for y3 S-Box for a bit- and the inputs causing them for
flip fault at x bit-flip fault at zq of x3
[zoz1 [22]]yo ys [ys] Yo |y |y2 | Input
000 [FIC[F FC |F [(04)
o et F [F [T [(15)
0 [1 |o [[F]C]|C F [C[C(2,6)
011 ][F[F][C F|[F [C (3,7
100 [[FIC|F
1[0 L [F|F|F
11 [0 [F[C]|C
111 [[F[F]|C

of 1 and x5, hence resulting in an entropy reduction of 2 bits for the S-Box
input. No information is leaked for xy. As a result of 2-bit entropy loss, there are
only two inputs corresponding to each fault pattern (ref. Table 2). Choosing any
other fault injection point, (say 1) would leak the value of zy. Data-dependent
output fault patterns exist for most of the existing S-Box constructions. The
key reason behind this data-dependency is the non-linearity which is essential
for any S-Box. However, the amount of entropy loss may vary depending on the
S-Box structure. To illustrate this, we consider the 4 bit S-Box from the block
cipher PRESENT [25] given as follows:

Yo = TT1T3 + ToT2T3 + To + T1T2T3 + T1%2 + T2 + 23 + 1

Y1 = Tox1T3 + ToT2T3 + o2 + ToT3 + i) +x1 + Tol3 -+ 1

(2)

Y2 = XoT123 + Tox1 + ToX2T3 + XoT2 + To + T1X2T3 + X2

Ys =To +T1T2 +T1 + T3

Here xg, x1, w2, x3 are the inputs and yo, y1, Y2, y3 are outputs. xg and yo are
the Most Significant Bits (MSB) of the input and output, respectively. A fault in
xo in this case propagates to yo only if 125+ xox3+1 =1 (x125 + 2223+ 1 =0,
otherwise). Similarly, y; gets corrupted if z1x3 + zoxs + 22+ 23+ 1 =1, and yo
gets corrupted if z1x3 4+ 21 + z2x3 + 2+ 1 = 1. Simplification of these equations
results in the exposure of x1, xo and x3 if (x1 + x2) = 1 (that is an entropy
reduction of 3 bits). If (x1 + x2) = 0, an entropy reduction of 2 bits happen for
X1, T2, 23 with constraints (z1 + z2) = 0 and (z2 + z3) = 0 (or (z2 + x3) = 1).
Table. 3 shows the distinct fault patterns at the output and inputs causing them.

The entropy losses due to data-dependency of output differentials can also be
explained by means of the Differential Distribution Table (DDT) of an S-Box.
Let us consider the DDT of PRESENT S-Box depicted in Table. 4. Referring
to the fault location z( from the previous paragraph (which is the MSB), the
input differential between the correct input nibble X and faulty input nibble
X becomes ¢; = X + Xy = 8. The output differentials (J,) corresponds to the
fault patterns at the output (“F” denotes 1 and “C” denotes 0). In the §;-th
row of the DDT, there are only 6 non-zero cells indicating only 6 distinct output
differentials are possible if a fault is injected at xy. Furthermore, there are 4 cells
with value 2 indicating that for 4 of the possible output differentials there are
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Table 4: DDT for PRESENT
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Table 3: Distinct fault pat- [0 [[16]0 [0 [0 [0 [0 [0 [0 [0 [0 [0 [0 [0 [0 [0 [0
. . T [[0 |00 |4 [0 ]0 0|4 [0 4]0 [0]0 |4 |00

terns and the inputs causing sToto o 2 to a2 oo To T To oo To
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T ToaToa Toput 5020020000 2224|200
FICTFIF 1(1.6.90) 6002 ]0]0]0]2]0]2]0]0 |4 |20 [0 |4
o (112) 702000202000 2004
T 15.13) 800020002020 (4]0 [2 0 |4
FIF I [F (07 8.15) 9 (002040 ]2]0 2000 [2]0 |40
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2 T2([0 [0 [2 [0 |0 |4 [0 |2 |2 |2 |2 ]0 |0 |0 |2 |0

13([0 [2 [4 [2 |2 |0 [0 |2 |0 |0 |2 ]2 |0 |0 |0 |0

TZ[0 [0 [2 [2 [0 [0 [2 ]2 |2 |2 [0 10 |2 |2 |0 |0

15([0 |4 [0 [0 |4 [0 [0 |0 |0 |0 [0 |0 [0 |0 |4 |4

only 2 possible input values (that is an entropy loss of 3 bits for a 4-bit S-Box
input). Finally, there are 2 cells with 4 input values indicating an entropy loss
of 2 bits corresponding to those output differentials. The output differentials
are directly linked with the constraints we derived in the last paragraph using
the concept of fault propagation (i.e. output differentials decide the right-hand
side of each constraint equation). Even though we link the data-dependency
of output differentials with DDT, in the rest of the paper, we shall continue
giving explanations in terms of fault propagation only as it seems more intuitive.
However, it is worth mentioning that similar (albeit complex) explanations can
be given in terms of DDT as well.

2.3 The Role of SCA Leakage

It is clear from the last subsection that the knowledge of the output fault patterns
of an S-Box leads to the leakage of its inputs. However, an important question
still remains — how to track down the output fault patterns in a cipher imple-
mentation. In case of an unprotected implementation, it is straightforward for
several Substitution-Permutation Network (SPN) constructions (such as AES or
PRESENT) if the faults are injected at the inputs of the last round S-Boxes. This
is because the attacker can obtain both correct and the faulty ciphertexts in this
case. However, in this paper, we are mainly interested in protected implementa-
tions. For simplicity, let us first consider only FA protected implementations. Al-
most every FA-protected implementation incorporates time/space/information
redundancy to detect the injected faults. Without loss of generality, we con-
sider simple time/space redundancy where the cryptographic computation is
performed at least two times and the end results are checked for mismatch. In
the case of mismatch, no ciphertext (or maybe a randomized ciphertext) is re-
turned. The check can also be incorporated in a per-round manner [26]. Such
checks are usually performed by computing bitwise XOR, between the actual and
the redundant states followed by a bitwise OR.
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Table 6: HW of fault pat-
terns and inputs causing them
(for bit-flip fault at zp in
PRESENT S-Box)

Table 5: HW of fault patterns
and inputs causing them (for
bit-flip fault at zg in x3

[HW]State |

T 120) [HW]State |

7 1(0.4,3.7) 2 [(2, 10, 3, 11)

3 1(1.5) 3 [(1, 6,9 14, 4, 12, 5, 13)
1_[(0,7, 8, 15)

2.3.1 SCA Leakage from Detection:

The bitwise XOR operation performed in several detection-based countermea-
sures leak information about the fault differential at the S-Box output. Referring
to Table. 2 and Table. 3, a faulty (“F”) output bit implies that the XOR outcome
is 1, and a correct bit implies the XOR outcome is 0. An adversary capable of
observing SCA leakage during fault injection can obtain some function of this
output differential through the traces. More precisely, the adversary can obtain
a L= HW(d,)+N where L is the observed SCA leakage, HW is the Hamming
weight, and A denotes a Gaussian noise. Although the leakage of HW results in
some information loss from d,, some entropy reduction for the S-Box input still
takes place. To understand this, once again we refer to the fault patterns and
the corresponding S-Box inputs from Table. 2 and Table. 3. In case of Table. 2,
a HW value 1 indicates that the input is in the set (2,6), HW value 2 indicates
that the input belongs to the set (0,4,3,7), and HW value 3 indicates the input
isin (1,5). This is consolidated in Table. 5. Similar mappings can be constructed
for Table. 3 (ref. Table. 6). Clearly, even in the absence of faulty ciphertexts, the
S-Box inputs can be exposed, which may lead to key or state recovery attacks.

3 SCA-FTA: The SCA-Enhanced FTA

The last section motivates the importance of output differentials of S-Boxes and
how they can be observed through SCA leakage. In this section, we exploit this
observation for constructing practical attacks on block ciphers or other symmet-
ric key primitives like hash functions. The attacks described in this section rely
on the construction of templates in an offline phase, which is then utilized for
recovering intermediate states of symmetric-key primitives.

3.1 The Template Attack

The main assumption behind template attacks (whether side-channel template
or fault template) is that an attacker can extensively profile a device similar to
the target device. Such attacks consist of two phases:

3.1.1 Offline Phase (Template Building):

In the offline phase the adversary gathers information from a device (similar to
the target), for which she has the complete knowledge and control of the secrets.



10 S. Saha et al.

The main idea is to construct an informed model, which can be utilized to derive
the secret from a target device during the actual attack. Formally, a template
in SCA-FTA can be described as a mapping 7 : Sy — X, where an s € Sx is
a tuple described as s = (G1(Oy1, ), G2(Os1,), - - -, Gm(Oy1,,))- Each Oy, denote
a set of SCA traces (power or EM) under the influence of fault injections at
location fI; and each G; is a function extracting specific information from these
traces. The range set X’ represents a part of the secret intermediate state (for
example, value of a byte/nibble).

At this point, it is important to compare the templates of SCA-FTA from
the templates of original FTA. In original FTA proposal, the observables were
the correctness of the computation at the end. In contrast, we use the side-
channel leakage from the computation under the influence of faults. Similar to
the FTA, SCA-FTA also compiles information from multiple fault locations. For
both the attacks, only one fault location is excited per encryption. However, a
key difference between the two attacks is that while original FTA can only exploit
the information whether an encryption is faulty or not at the end of computation,
SCA-FTA can utilize fault information even from internal computation through
SCA leakage. This, in turn, helps us to relax the fault model of SCA-FTA to some
extentS. The difference with SCA template attacks is that while SCA templates
are usually formed on the intermediate state values, templates in SCA-FTA
are formed on the leakage from error-handling logic. Further, as we show for
the masked implementations, SCA-FTA does not construct any template on
the masks. In contrast, SCA template attacks need to construct templates on
both the mask and the state values (hence resulting in higher-order attacks) for
breaking masked implementations [3].

3.1.2 Attack Phase (Template Matching):

In the online phase, the adversary injects faults at the predefined locations (from
the template building phase) (fl1, fla,- - -, flar) on a target device with an un-
known secret. The secret is recovered by first constructing an s € Sz from the
observables, and then using the mapping defined in 7.

In the next few subsections, we continue describing the SCA-FTA attacks on
unmasked implementations.

3.2 Attacking Unmasked FA-Secure Implementations

Exploiting the ideas developed in the previous sections, here we present the first
concrete realization of SCA-FTA. We consider an unmasked implementation of
PRESENT with fault detection at the end of encryption. Since the detection
step is present at the end of the computation, we target the last round S-Box
computation with faults. The plaintext is kept fixed in this attack. The

5 The FTA proposal demands certain restrictions over the fault propagation for which
one needs to inject faults at intermediate computation of the S-Box. While it is
practically feasible, it requires better control during fault injection. In contrast, SCA-
FTA only requires single-bit corruptions at S-Box inputs. Nevertheless, SCA-FTA
can also utilize the fault models of FTA.
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Table 7: Template (noise-free) for unmasked FA-protected PRESENT

lflllflglflzlfl_glstate l

2.0[3.0]2.0[3.0[(10)
1.0[2.0]2.0[2.0(0, 15)
3.0[3.0]2.0|2.0|(12, 14)
4.0[2.0[3.0[3.0(7)
2.0[2.0[3.0[3.0|(3)
3.0]2.0]2.0[2.0|(4, 13)
1.0[3.0|2.0[3.0|(8)
3.0|2.0[3.0]2.0|(1,5)
3.0|2.0(2.0]3.0](6, 9)
2.0[2.0]2.0[3.0[(2, 11)

aim of the attacker here is to extract the inputs to the last round S-Box layer
of PRESENT. We also assume that the correct ciphertext corresponding to the
plaintext is available to the attacker.

3.2.1 Template Building:

It has already been shown in Sec. 2.3.1 that HW of output differential leaks
information for a given fault location. However, the entropy loss may not be
sufficient with a single fault location for efficiently recovering the S-Box inputs
via template matching. The trick for further entropy reduction is to com-
bine information from multiple fault locations, with only one location
excited per encryption. The fault locations chosen in this specific experiment
on PRESENT are fl; = xg, flo = z1, fl3 = x2 and fly = x3. In all the cases,
we inject bit-flip faults.

For the sake of explanation, we illustrate the attack here for a noise-free
case, where the HW of the detection operation is considered as the SCA leakage.
However, the algorithms will be described considering the actual noisy scenario
(and they do not vary significantly from the noise-free cases). The template
building algorithm is described in Algorithm. 1 for a single S-Box. For each
input value and fault location, the output differential is observed through SCA
leakage. For the noise-free case, we represent this information as HW of the
output differentials, which is obtained from the XOR operations of the detection
step. Hence, each s € Sr is a tuple s = (G1(Oyy,),G2(011,), G3(O1,), Ga(Of1,))
with Oy, containing traces corresponding to the fault location fI;. Each G; here
corresponds to the mean and standard deviation (or mean vector and covariance
matrix if multiple-points are considered for template building) over some leaky
points at the traces from a Oy, set (that is all G;s are the same and denoted as
G). For the noise-free cases, we store the average HW values only.” The range
set X' in the templates consists of suggestions for a nibble value. The template

ing to the noise-free case is shown in Table. 7.

7 Note that, in order to perform template construction in a noisy environment, we
might need to store the covariance matrix of the traces as well. However, using the
covariance matrix for template building and matching does not mean that the attack
is second-order. Clear evidence of this fact is that in a noise-free case here, we can
construct the template on mean values of leakage.
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Algorithm 1 BUILD_TEMPLATE

Input: Target implementation C, Faults fl1, flo, ..., flyp, numey
Output: Template T
T:=0

w := GET_SBOX_SIZE() > Get the width of the S-Box
for (0 <z <2%) do > The key is known and fixed here and x = p + k
5=
for each fl € {fly, fl1,..., flm} do
Oy =
for num,yp obse;rvations do
Yy = C(:r)fl’ > Inject fault in one copy of the S-Box for each execution
ye 1= C(z)
Oy := Oy U SCA_LEAKAGE(y, yc) > Leakage from the fault detection operation
end for
s:=sU Q(Oﬂ) > We consider the same function G for all trace sets.
end for
T:=TU{(s,x)}
end for
Return 7

3.2.2 Template Matching:

In the online phase of the attack, the fault injections are performed at fly,
fla, fl3 and fls. The attacker acquires traces Oy, corresponding to each fault
location. However, the template matching here is not a simple table lookup
(except for the noise-free case). Here we consider each s € Sy and check which
one of them is statistically closest to the traces obtained in the online phase.
For the traces corresponding fault location fI; (1 < i < M), we perform a

log-likelihood-estimation (LLE) considering each s; (s = (s;)1=M) as follows:

jzloflil

L(si70fl7:) = Z IOg(P[OﬂiU};mSUO—SiD (3)
=0

Here L denotes the log-likelihood function, Oy, [j] denote traces from the set
Oy, mg, and oy, denote the mean (resp. mean vector) and standard deviation
(resp. covariance matrix) stored in s;. They are the outcomes of G; during tem-
plate building. The s; having the highest log-likelihood value is considered to be
the correct one for the obtained traces. After finding out the highest s; for every
fault location fI;, we construct an s’ combining all s; suggestions, which should
match with exactly one s € S. Note that, in some cases, an exact match for s’
may not be obtained due to noise. In those cases, we select an s from the tem-
plate for which the maximum number of s;s have matched. One convenient way
of doing this matching is to compute Euclidean distance between s’ and each
s € Sg. The s with minimum distance gives the correct answer. The template
matching algorithm is outlined in Algorithm. 2.

Key Recovery: The template building and matching steps described above,
target one S-Box at a time. In order to extract a complete round key, one needs
to extract the complete intermediate state of the cipher under consideration.
In the present context, the attack requires 4 distinct fault locations per S-Box
and hence 16 x 4 = 64 distinct fault locations. For serialized hardware imple-
mentations and software implementations, where one S-Box is called multiple
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Algorithm 2 MATCH_TEMPLATE

Input: Protected cipher with unknown key C}, Faults fl1, fla, ..., flar, Template T, numgyp
Output: Set of candidate correct states cqna
Zeand = 0 > Set of candidate states

w := GET_SBOX_SIZE()
’
=0

s =
for each fl € {fl1, flz2, - -flm} do

Op =10
for num,p observations do
Yy = C(x)fl > Inject fault in one copy of the S-Box for each execution
ye 1= C(z)
Oy := OfU SCA_LEAKAGE(Y ¢, yc) > Leakage from the fault detection operation
end for
s’ :=s' U argmax L(s[fl],Oy)
s[fll;seSx
end for
ZTeand ‘= Teand U {T (arg min Dist(s, s’))} > Dist implies Euclidean distance
sE€SE

Return = .44

times, finding out injection locations for a single S-Box is sufficient. To cover all
S-Boxes, it is sufficient to change the timing (i.e. clock cycles) of injections. Fur-
thermore, considering the ciphertext as known, recovering the S-Box inputs of
the penultimate round may result in complete key recovery. However, referring
to the templates shown in Table. 7, the recovered keys are not unique as for half
of the patterns we get multiple suggestions. Even considering this we found that
the round key complexity after attacks vary roughly from 22 to 2° for an entire
round of PRESENT, which is fairly reasonable. The required number of injec-
tions (and thus the number of traces per location) also depends upon the noise
incurred during experiments. One may note that noise can come from two dis-
tinct sources here — the fault injection and the SCA measurements. Noise in fault
injections may occur due to injections at undesired locations and missed injec-
tions. Although such noise strongly depends upon the injection instrumentation,
we found for practical setups like EM injection we can have a noise probability
of around 42% [7]. For SCA noise, we found that the standard deviation val-
ues (covariance, while multiple points are considered together) of measurements
may vary up to 4.086 in our practical setup. We deliberately add noise with
the HW values according to these noise parameters. The attack roughly requires
420 — 635 traces per fault location. Overall, roughly 34, 000 traces were sufficient
for recovering an entire last round state of PRESENT.
Middle Round Attacks: The proposed SCA-FTA attack works equally well
for middle-round attacks like the original FTA. However, in this case, the ci-
pher must perform redundancy checks in a per-round manner, which is true
for several countermeasure implementations such as [26]. Moreover, some of the
recently proposed countermeasures against SIFA performs error correction in a
per-round manner [15]. However, for all these cases, the attacker must recover
two consecutive states in order to extract the key. The number of fault locations
gets doubled in this case.

From the next section onward, we shall focus on attacks on masked im-
plementations with FA countermeasures. In SCA-FTA, where there is an SCA
component in the attack, evaluation against masking becomes crucial. Moreover,
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any SCA and FA secure implementation is supposed to be protected against a
combined adversary as well, which increases the relevance of the study we are
going to make in the following sections.

4 SCA-FTA on Combined SCA and FA Countermeasures:

We begin this section with a brief (informal) overview of masking schemes and
their security. Subsequently, we present the SCA-FTA attacks on implementa-
tions having both SCA and FA countermeasures. We note that the original FTA
proposal already covers implementations having masking and FA countermea-
sures. However, recently proposed SIFA countermeasures were not evaluated in
the FTA proposal. We therefore, specifically focus on two recently proposed SIFA
countermeasures [16] and [15] which also include masking.

4.1 A Brief Overview of Masking:

Masking is the most popular and well-studied countermeasure against SCA at-
tacks. The main idea behind Boolean masking is to split the data into multiple
random shares such that their addition over GF(2") returns the actual value.
Every function which processes over the data is also split into multiple compo-
nent functions. The basic requirement of masking is the statistical independence
of each intermediate signal from the unshared inputs and outputs.

Security of a masking scheme is often formalized in terms of the probing model
introduced in [27]. The main idea behind probing model is that an adversary
is allowed to probe only a fixed number of wires (denoted as protection order
d) at a time within the circuit. A circuit is called d-th order probing secure
if the adversary gains no information about an unshared value even while she
probes up to d wires, simultaneously. In masking schemes d-th order security is
ensured if the adversary cannot gain any information even by probing d shares
corresponding to a single (unshared) bit. It was demonstrated in [28] that there
indeed exists a relationship between the probing model and the statistical order
of Differential Power Analysis (DPA). In fact, it was shown in [29], that there
exists an exponential relationship between the protection order and the number
of leakage traces required for revealing the secret.

Splitting (we also denote it as sharing) a function into multiple components
for operating over input shares is the most critical part of masking. While sharing
linear functions over GF'(2") is trivial, sharing nonlinear functions require special
care. This is because implementations of shared nonlinear functions may result
in (unwanted) combining of input shares causing leakage. As a simple example of
how nonlinear functions are shared, we consider a 2-share AND gate as follows:

¢° = 2%+ (2%" + (z"y° + (2'y" + 2))) @
1

g ==z

Here ¢ = ¢° +¢' = zy, v = 20 + 2! and y = 3y + y'. 2, 2!, 4°, y° denote the
input shares and ¢° and ¢! denote the output shares. This basic gate should be
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secure against first-order attacks under the d-probing model (in order to know
20, 21, 49, 40 or ¢°, ¢! the adversary must simultaneously probe two shares of
any of the unshared bit). However, in the presence of physical defaults such as
glitches, this shared AND gate shows first-order leakage [30]. This is due to the
fact that the extra power consumption of XOR gates due to glitches indirectly

combines the input shares.

Over the years, several masking schemes have been proposed to alleviate
the problems with glitches. The most prominent among them are the Thresh-
old Implementations (TT) [9], which introduces four fundamental properties for
ensuring security, namely correctness, uniformity (or input uniformity), non-
completeness, and output uniformity. In particular, the non-completeness prop-
erty ensures security against glitches. The main idea of non-completeness is that
none of the output share expressions (i.e. component functions) contains all the
input shares of a bit. While this provides protection against glitches, it also causes
a rapid increase in the number of shares. The output uniformity property ensures
that while cascading multiple TT sub-blocks, each sub-block can have a uniformly
random sharing it its input. The uniformity of input is essential for security.
Maintaining output uniformity is, however, not straightforward (especially for
higher-order TT) as it depends on the function to be shared as well as the sharing
that has been adopted. In the Consolidated Masking Schemes (CMS) [10], the
issue with output uniformity was alleviated by introducing refreshing gadgets at
the output of each S-Box which requires extra fresh randomness. XORing some
of the output shares also work in some cases for maintaining uniformity. The
requirement of extra randomness, however, increases the randomness complex-
ity. Since the last couple of years, there has been a constant effort for reducing
the randomness complexity of masking. Some notable mentions are the Domain-
Oriented Masking (DOM) [11] and Unified-Masking Scheme (UMA) [12].

In the rest of the paper, we shall mainly give examples based on TT and DOM
implementations. However, our attacks would also apply to other derivatives of
these schemes such as UMA. All of our attacks consider the masks to
be unknown and varying randomly, while the plaintext is held fixed.
Moreover, we consider an attack to be efficient only if it can be performed by re-
specting the probing security bounds of the target implementation while exploiting
the SCA traces. For example, in the case of a first-order secure implementation,
we only consider a first-order SCA-FTA attack as efficient (by first-order SCA-
FTA we mean that the statistical analysis on the SCA traces is first-order).

4.2 Leakage from Masking and Error Detection

We begin our discussion with DOM AND gates. There exists two variants of
DOM AND gates, namely DOM-independent (abbreviated DOM-indep) and
DOM-dependent (abbreviated DOM-dep). We analyze both of these variants.
We also consider that each DOM AND is instantiated two times. The end re-



16 S. Saha et al.

sults of them are unmasked and XOR-ed together for correctness check. If the
XOR returns 1, it indicates an incorrect computation®.

Without loss of generality, we first consider the DOM-indep gate with first-
order protection. The construction is depicted in Fig. 3(a) with the fault location.
We also present the test construction used for error detection in Fig. 3(b). The
faults considered here are bit-flip faults in the input registers of the DOM gate.
Let us consider the Boolean expression for the DOM-indep as follows:

q° = a®° + (a"b" + 2)
1 171 170 ()
¢ =ab +(ab +2)

Here each input bit a and b is shared as a = a® 4+ o' and b = b° + bl. 2
denotes a random bit. The output shares are denoted as ¢° and ¢' (actual output
q = ¢+ ¢'). Given a fault is injected at a’, it can be observed that the fault
affects the computation of two AND gates. For a®b°, the fault only propagates
to the AND gate output only if 5° = 1 (else there is no fault propagation).
Similarly, the fault in a®b' propagates only if b = 1. The XORing of z does
not have any impact on fault propagation. On the other hand, the last XOR
operation before the output of ¢° propagates the fault to ¢° if only one of a®°
or a’b' has a faulty outcome. Otherwise, if both a®b" and a’b' are faulty, the
fault gets cancelled at this XOR gate. Overall, the output bit ¢° becomes faulty,
only if (b° + bY) = b = 1. Otherwise, there is no fault at ¢°. One should also
note that no fault propagation happens at ¢'. Therefore, during error check, the
detection circuit results in an outcome 1 only if the input b = 1. Hence, the value
of b gets exposed even while the adversary is allowed to inject a single bit-flip
at a shared value. A similar situation occurs when we inject the fault at b° (or
at any other input share except z). However, in this case, the value of bit a is
exposed. Another important observation for fault injection at b° is that the fault,
in this case, propagates to both ¢° and ¢*. However, the combined outcome (i.e.
q = q° + ¢*) only becomes faulted if a = 1.

The observation regarding the DOM-indep AND is valid for higher-order
cases as well. To illustrate this, we consider the expression for higher-order DOM-
indep gates as follows:

qO — aObO 4 (a(]bl +ZO) + (a0b2 +Zl) 4 (a0b3 +23) 4

' = (a'° 4+ 20) + a'b' + (a'b? + 2) + (a0 + 24) +

¢® = (a®° + 21) + (a®b' + 22) + a®b® + (a®V® + 25) + -+ (6)
Here each input bit a and b is shared as a = a® +a' + a2+ -+ and b =
B+ bl +b2+ ---. Each z, on the other hand, denotes random bit. It can

8 Note that, unmasking can be dangerous if error-checking is performed in the middle
rounds. It is often adopted while error checking is performed at ciphertext-level to
reduce the number of check operations [16].
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Fig.3: (a) DOM-indep; (b) DOM-indep with error detection after unmasking.
Two copies of the DOM gate use different randomness.
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Fig. 4: Construction for error detection on share values (i.e. before unmasking)

be observed that for a fault injection at a®, the fault propagates to ¢° only if
(% + b + b2+ ---) = 1. No fault propagation happens at other output bits.
Hence, even for higher-order DOM-indep AND gates our attacks remain valid.
The observations can also be extended for DOM-dep constructions.

One interesting observation in this context is the difference between the fault
propagation patterns for the inputs a and b. As described in the previous exam-
ples, an injection at a® reveals b only through the output ¢°. No other output
bit gets corrupted in this case. This is true if the fault is injected at any share
of a. However, if a share of b is corrupted, the fault propagation happens to all
the outputs ¢*. In other words, to gain information regarding a, all the output
shares ¢' must be combined. Although for the error checking construction we
are considering here (the outputs are unmasked before check) fault propagation
to all outputs is not an issue for SCA-FTA, it will become critical for attack
efficiency in certain other cases as we show next.

4.3 Leakage from Detection on Shared Values

It is an interesting question whether the attacks proposed in the previous sub-
section also works if the detection operation is performed before unmasking. In
this subsection, we investigate this fact. The construction under consideration
is shown in Fig 4. One consideration, in this case, is that the sharing in both
the main and redundant copies should be equal (that is the masks are equal
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Fig. 5: (a) Construction for error correction on share values (i.e. before unmask-
ing); Leakage from majority voting based error correction: (b) Wire values for
correct inputs; (c) Wire values for faulty inputs. Faulty input bits are shown in
red. Correct inputs are in blue. Intermediate bits are shown in green.

in the main and the redundant copies). Such redundancy in masking has been
considered in many recent work such as [15] and [19].

Loosely speaking, the main idea behind the proposed attacks is to monitor
wires in the error detection (or correction as we show later) unit for information
leakage. If the detection operation is performed on masked values, the error may
potentially propagate to multiple shares of the same output bit. For example,
considering the first-order DOM-indep AND gate form the previous subsection,
if the fault is injected in b, it propagates through both the output shares ¢°
and ¢' leaking a. a can only be recovered while fault information from both ¢°
and ¢' are combined. In the present case, while the check operation is performed
per share, combining the information of both ¢° and q' essentially indicates
probing two wires corresponding to different shares of a single bit in a first-order
implementation. This is undesired as it violates the SCA security assumptions
of first-order secure implementations. We say that the attack is not efficient.

However, a different situation occurs for the other case, while fault is injected
in any share of a (say a”) of the DOM-indep AND gate. As already pointed out
in the previous subsection, the fault here only propagates through one of the
q's leaking b. Probing only a single share (i.e. the detection corresponding to a
share) of the actual output q here leaks the information about the unshared bit b.
This is clearly an efficient attack as we can still extract information while being
restricted within the security bound of the masking scheme. Moreover, we only
corrupt only a single redundant branch of computation in this case. Hence, the
attack works as it is even while the degree of redundancy is increased.

One observation here is that while b can be retrieved with a single fault and
single wire probe, a cannot be retrieved in this way. However, it is not of serious
concern in SCA-FTA attacks which can combine information from different fault
locations (injected at different executions). For practical applications such as S-
Boxes, a single bit may have fan-out to multiple gate inputs. Hence, if it is
not possible to recover a bit from a specific gate due to the aforementioned
restrictions, it might become possible with high probability from another gate.
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Indeed it depends on the structure of the circuit under consideration. However,
as we shall show later, it is practically feasible to recover every input bit of
an S-Box even with all the restrictions. In the next subsection, we discuss the
consequence of using bit-level error correction on the leakage.

4.4 Leakage from Correction on Shares

Recently, error correction has been considered in multiple proposals as a poten-
tial countermeasure against SIFA [15,18,19]. The main intuition behind using
error correction is that correcting every error (possibly with some bound in the
number of corrected bits) removes the dependency between intermediate data
and the correct ciphertexts, hence preventing SIFA. Here we show that in the
presence of SCA and faults, some correction circuits may leak information.

Fig. 5(a), depicts the configuration we consider in this case. The error correc-
tion here is considered on each share of a bit [15]. For single-bit correction, we
thus need to maintain 3 copies of the same bit. The logic diagram of the correc-
tion circuit is shown in Fig. 5(b),(c). The attack described in the last subsection
(detection on shared values) applies here directly if this error correction circuit
leaks. In order to show the leakage from error correction circuit we consider the
situations depicted in Fig. 5(b),(c), where the first copy of a bit is carrying the
fault. There can be two correct input configurations for this circuit — (0,0, 0) or
(1,1,1) (ref. Fig. 5(b)). Similarly, in the presence of a fault in the first copy, there
are two faulty input configurations — (1,0, 0) or (0,1, 1) (ref. Fig. 5(c)). Now con-
sider probing the output of the AND gate computing ¢{q3. In the presence of a
fault, this output never toggles and remains stuck at a value 0 (ref. Fig. 5(c)). In
contrast during correct computation, this wire toggles randomly Fig. 5(b). This
creates an exploitable first-order SCA leakage for a first-order implementation
by distinguishing when error correction happens from when it does not happen.

It is worth mentioning that the attack described here on DOM-indep AND
also applies to its higher-order variants and all variants of DOM-dep AND gates.
While this is tempting, it is still important to see whether these attacks also apply
to more complex constructions like S-Boxes. In the next subsection, we show that
the attacks apply equally well for S-Boxes, and it has a strong consequence on
some recently proposed SIFA countermeasures.

4.5 Leakage from SIFA Countermeasures

Several countermeasures have been proposed in recent past to protect against
SIFA attacks. SIFA attacks also exploit the fact that activation and propagation
of faults through digital circuits are data-dependent. As a result, a fault may
remain ineffective (i.e. does not corrupt output) for certain data values and may
become effective (i.e. corrupts output) for some other values. The ineffectivity
of faults result in correct ciphertexts, which are used by SIFA for key extrac-
tion. The aim of SIFA countermeasures is to break this dependency between
ineffective faults and ciphertexts. This can be achieved in two different ways —
1) either by ensuring that every fault propagates to the output; or 2) by letting
no fault propagation to the output at all. The first approach has been adopted
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in [16] using error detection, and the second approach has been utilized in [15]
by means of error correction in each share. Below we briefly describe both of
these approaches. Note that both of these schemes also include masking and
hence, provides combined security. Masking also helps in preventing SIFA while
the faults do not corrupt the intermediate computation of the S-Boxes [15].

4.5.1 Analysis of the Countermeasure in [16]:

SIFA Protection with Error Detection [16]: The idea of this protection
mechanism is to ensure that fault at any of the shares at any point (i.e. even at
intermediate locations) of computation surely propagates to at least one of the S-
Box outputs. There are two different ways proposed in [16] for implementing this
philosophy. The first one uses Toffoli gates for implementing the entire S-box,
while the second one modifies the S-Box construction itself. Both constructions
ensure that whenever there is a fault in any of the intermediate net (wire) of
the S-bozx, it propagates to at least one of the outputs with probability 1. This
mandatory fault propagation indeed prevents SIFA attacks as every fault (more
precisely, single-bit faults as considered in [16]) injected to the S-Box results in
a faulty outcome, which gets muted at the final detection phase. Moreover, the
final fault detection operation is performed by unmasking the ciphertexts (to
save the number of checks).

Algorithm 3 SIFA-PROTECTED xs
Input: (ao, a', b0, b, O, cl)

Output: (ro, rt, 50, st ¢, tl)

1: R, « R, +R,

2: Ty + Wcl/ ;o To «— allbll

3T b9 Ty et

4:° « Ty+ R, ; t' « Th+R, Table 8: Template (noise-free)
5rr® 04Ty ; #l et 4T for masked x5 S-Box (error
6: To — ¥t ; Ty bt'c detection on unmasked value)
7T ecvao/ ;o T3 +— bllco, illco ibbo ilaal State

8 s« To+R, ; r'«Ty+R, 2.0 [2.0 [2.0 [(0,7)

0: 0 4Ty el 4Ty 3020 L0 [6)

10: Tp «— a®bY Ty« cat 1.0 [3.0 [2.0 [(3)

11: 71 a8 T3 cVa” 2;8 1:8 3:8 gé;

12: 9« To + Ry ; s' « To+ R, 1.0 [2.0 [3.0 [(2)

13: t0<—t0+T1 ; 51<—81+T3

14: r0<—7‘0+a0 H t1<—t1+cl

15: 59 « s + 80 H rl !l 4l

16: tOHtOJrcO H 51<—51+b1

17: Return(r®,rt,s%, s, 0 t1)

Leakage Due to Faults: Without loss of generality, we begin our discussion
with a DOM-based construction proposed in [16] (ref. Algorithm 3). The main
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fact we utilize is that even though the construction ensures the corruption of at
least one S-Box output bit for any single-bit fault, there are other outputs for
which the fault still shows data-dependent ineffectivity. We show this referring to
the construction in Algorithm 3. This is a 2-shared version y3 S-Box, for which
we presented the unmasked version in Sec. 2.2. The actual input bits (a, b and
¢) are shared into (a°,al), (b°,b'), and (c°, ct), respectively. The output shares
are given as (r°,r!), (s s!), and (¢°,¢!). Following the notations from [16],
each variable with a “prime” (i.e. ’) in its superscript denotes the clone of the
actual variable. For example, b°" denotes a clone of b°. Each clone denotes a
fan-out branch. Furthermore, the variables R, and R; denote random bits, and
Ty, T1, T and T3 denote temporary variables. Finally, each variable T denotes
the complement of variable v.

Let us assume that the input c® has been chosen as a fault location and
we consider bit-flip fault model. It can be observed that this fault corrupts 4
expressions of Algorithm. 3 involving AND gates — the first expression in line 3,
the first expression in line 6, and the first and the second expression in line 7. ¢°
is also directly XOR-ed with t% in the first expression of line 16. Furthermore,
the AND operations ¢¥a!" (line 6) and ¢a® (line 7) are combined in s° as
O = (Va' + R,) + a” (line 8, 9). Since s° is an output bit and s° does
not combine with any other faulty bit in the rest of the S-Box computation,
the output bit s° becomes faulty only if a' +a =al4+a° =a = 1. One
should also note that the same fault also propagates to the outputs r° and r'
leaking b. However, in this case the value of b can be recovered only when error
information of r° and r' are combined. To summarize, leakage of a does not
require combination of error information because the fault only affects s°, while
leakage of b requires combination of error information for both r° and r' because
fault propagates to both shares. Finally, there is a mandatory fault propagation
to t% as ? is XOR-ed with this bit at the end of computation. In a similar
fashion, fault injections at input b° reveals the value of ¢ through the output
bit 7%, and the value of a through the bits t° and ¢!. Finally, a last injection
location at a' reveals b through ¢! and c through s° and s'. One should note that
for each fault location there is an output bit for which the fault propagation is
mandatory. However, the location of this bit changes with the fault location. For
example, location ¢ induces mandatory propagation at t°, and location b° results
in mandatory propagation at s°. Each of the output bits can have mandatory
fault propagation depending on the fault location for this implementation.

As described in [16], we first consider that the ciphertext outputs are un-
masked before the error checking operation. Constructing a template based on
the above-mentioned fault locations results in the leakage of the input. In the
actual attack (and in all subsequent attacks described in this paper),
we keep the plaintext fixed during the template matching phase. How-
ever, the masks vary randomly. One should note that we corrupt only
a single location per execution of the cipher and combine the outcomes
from multiple executions together to build and match the templates.
The template building and matching algorithms, in this case, are very similar to
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that of Algorithm 1 and Algorithm 2 and we do not repeat it here. The noise-free
template based on HW values from the detection operation is shown in Table. 8.
In the presence of both SCA and fault injection-related noise, the attack requires
roughly 850 — 1000 injections per fault location (hence those many traces) during
template matching, and roughly 2600 — 2900 injections for an entire S-Box.

One interesting observation, in this case, is that for single fault injection, an
adversary can gain information regarding both of the (unmasked) input bits it
leaks. For example, if fault is injected at ¢, adversary can extract a through s
and b through r. This is because the output bits are unmasked before check, so
the information in 7% and r! are combined by construction. From the probing
model perspective, another injection at b° (which leaks ¢ and a) thus should
be sufficient for revealing the entire unmasked input of the S-Box. However, in
our attack, we consider a situation where the HW of all the XOR computations
in the detection circuit is leaked simultaneously. This seems more practical in
hardware implementations due to the parallelization present there. So far the
probing security is concerned, only two fault locations seem sufficient for this
case. However, due to the information loss caused by the HW computation, the
first template in Table. 8 returns two value suggestions.

Attack on Error Detection on Shares: A tempting question in the present
context is whether or not error detection on masked data would prevent the
proposed attack, or make it inefficient in terms of probing security. As we see,
the answer is negative. To elaborate, we consider the masked y3 S-Box once
again, now with error detection at each share. One important consequence of
such error checking is that the masks in the original and redundant computation
have to be the same. Respecting the probing security, we consider that only a
single wire can be probed. More precisely, we allow the attacker to only probe a
single specific wire from the XOR gate outputs in the error detection circuit.

Let us, for illustration, consider the case when the fault location is at ¢®. It
can be observed that the adversary can only extract the value of a by probing the
error detection logic corresponding to the bit s°. Notably, she cannot extract b as
it requires probing of both the shares r” and r! (i.e. their error detection logic).
Probing two shares of a wire in a first-order implementation violates probing
security. Nevertheless, considering the two other fault locations (b° and a'), the
adversary can extract all the (unmasked) S-Box input bits without violating the
probing security restrictions. Hence, the proposed construction is not secured
even while error detection on masked data is considered.

The noise-free template corresponding to this attack is described in Table. 9.
One non-intuitive observation here is that the template in Table. 9 is better
than the template in Table. 8 in the sense that it can uniquely determine each
input value. Note that we have considered the HW of all the XOR outcomes
of the detection operation. In order to explain this observation we consider the
actual fault patterns of the xs S-Box corresponding to the inputs 0 and 7. For 0
the (unmasked) output fault patterns of the S-Box are (F,C, F), (F, F,C) and
(C, F, F) for fault locations c?, b° and a', respectively. The HW of all the cases
are 2. Similarly, for 7 the fault patterns are (F, F,C), (C,F,F) and (F,C, F),
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respectively. However, for detection over shares, the fault differentials over the
shares are computed. For input 0 they are given as:

1. (C,F,C,C,C,F) and (C, F,C,C, F,C) for fault location c°
2. (C,F,C,F,C,C) and (F,C,C, F,C,C) for fault location b°
3. (C,C,C,F,F,C) and (C,C, F,C, F,C) for fault location a'.

For all of these patterns the average HW is 2 for each fault location. Similarly,
for input 7 the patterns are given as:

1. (C,F,C,F,F,F) and (C,F,C, F,C,C) for fault location "
2. (F,F,C,F,C,F) and (C,C,C, F,C, F) for fault location °
3. (F,C,C,C,F,C) and (F,C,F,F,F,C) for fault location a'.

One may observe that the HWs are either 2 or 4, which results in an average
HW of 3 for each fault location. Clearly, 0 becomes distinguishable from 7 by
considering such HW patterns. For each fault location, there is a mandatory
fault propagation in the masked S-Box. Furthermore, there are always three data-
dependent fault propagations — one leaking the information of an unmasked input
through a single output share, the other leaking through both output shares of
a bit. For the bit leaking through two output shares, some extra information
gets added to the templates while we consider the HW patterns (this helps in
distinguishing 0 and 7). However, as we have already pointed out, even following
the probing model solely, a similar template can be constructed (as we can
extract each input bit separately). Hence, this observation does not contradict
probing security, and the proposed attack remains first-order.

The template building and template matching algorithms for detection on
masked values are similar to Algorithm 1 and 2 with some subtle changes. The
changes are driven by the fact that corresponding to a fault injection, the output
fault patterns may partially vary (as shown in the lists at the last paragraph.)
In other words, we may have multiple HW values corresponding to a single fault
location and input value. This is not problematic in a noise-free situation as we
consider the average HW values in templates. However, for noisy situations with
real traces, in many cases, the template matching requires multiple SCA traces
corresponding to the same intermediate value for a high-confidence decision. In
case there are multiple fault patterns (occurring randomly with the variation of
masks), such matching becomes challenging. Fortunately, the variation in fault
patterns for a given input value is not very high (corresponding to a given fault
location). As a result, the mean value of the traces (over different fault patterns)
for different input values remain fairly distinguishable. Accordingly, we modify
the template building and matching algorithms. During template matching, we
gather several traces corresponding to a fault location and divide them into
multiple small groups (subsets). Next, the averaged traces are computed for each
group. During the log-likelihood estimation step in template matching, these
averaged traces are utilized (as the group averages should be almost identical
for each input value and fault location). The modified template building and
matching algorithms are shown in Algorithm 4 and Algorithm 5, respectively.
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Algorithm 4 BUILD_TEMPLATE

Input: Target implementation C, Faults fl1, flo, ..., flyp, numey
Output: Template T
T:=0

w := GET_SBOX_SIZE() > Get the width of the S-Box
for (0 <z <2%) do > The key is known and fixed here and x = p + k
5=
for each fl € {fly, fl1,..., flm} do
Op =0
for num,, observations do > Masks vary randomly
Yf = C(z)ﬂ > Inject fault in one copy of the S-Box for each execution
ye = C(x)
Oy := OfU SCA_LEAKAGE(y ¢, yc) > Leakage from the fault detection operation
end for

Oy := CAL_Group_AVG(Oy;) > Divide the trace set into groups and calculate average trace
per group.

s:=sUG(Of) > We consider the same function G for all trace sets.
end for
T :=TU{(s,2)}
end for
Return 7

Algorithm 5 MATCH_TEMPLATE

Input: Protected cipher with unknown key Cj, Faults fl1, fla, ..., flar, Template T, numgyp
Output: Set of candidate correct states .qna
Zeand = 0 > Set of candidate states

w := GET_SBOX_SIZE()
’

S =
for each fl € {fl1, flz, - -flm} do

Ofl = @
for num,, observations do > Masks vary randomly
Yy = C(a:)fl > Inject fault in one copy of the S-Box for each execution
ye = C(z)
Oy := OfU SCA_LEAKAGE(y s, yc) > Leakage from the fault detection operation
end ffor
Oy := CAL_Group_AVG(Oy;) > Divide the trace set into groups and calculate average trace
per group
s’ :=s"U argmax L(s[fl],O)
s[fliseSy
end for
Zeand ‘= Teand U {T (arg min Dist(s,s’))} > Dist implies Euclidean distance
SESF

Return z.qnd

The number of encryptions required for the proposed attack varies with the
amount of noise present in the experiment. Similar to the other cases described
previously, here we consider a FA noise with noise probability 0.42. The SCA
noise is considered up to covariance value of 4.086. In the presence of such noise,
the attack requires roughly 3500 — 5000 traces per fault location (that is those
many fault injections per location) during template matching. We also note that
although the trace complexity of the attack seems high, it may not be the case for
every practical situation. Our leakage (and noise) profiles consider that leakage
of all the detection operations happens simultaneously (that is why we consider
HW of the entire detection step). Also, we consider high noise situations. In
practice, for software implementations the noise can be much lower, which may

9 The sequence of bits are taken as (t',t°, s, 5%, 71, 79)
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Table 9: Template (noise-free)  Table 10: Template (noise-
for masked xs S-Box (error  free) for masked y3 S-Box (er-

detection on shares) ror correction on shares)
o 72|75 | [state T 72017 [state
3.0 [3.0 [3.0 [(7) 70 (6.0 |6.0 [(3)
2.0 2.0 [2.0 [(0) 6.0 (6.0 |7.0 [(5)
2.0 [3.0 2.0 |(1) 7.0 (6.0 |7.0 [(1)
3.0 [3.0 |20 [(5) 6.0 |6.0 |6.0 [(7)
2.0 [3.0 [3.0 [(3) 7.0 |7.0 |7.0 [(0)
3.0 2.0 2.0 [(4) 6.0 |7.0 |6.0 [(6)
3.0 2.0 [3.0 [(6) 7.0 |7.0 |60 [(2)
2.0 (2.0 [3.0 [(2) 6.0 (7.0 |7.0 [(4)

reduce the trace requirement significantly. The next subsection describes attacks
on another STFA countermeasure proposed recently using error correction.

4.5.2 Analysis of the SIFA Countermeasure in [15]:

SIFA Protection with Error Correction: The proposal in [15] describes
two different models for SIFA faults. In the first model (SIFA-1), a biased bit-
flip fault is assumed to be injected in the state-matrix. As it was shown, masking
is a potential countermeasure for SIFA in this case. However, masking cannot
provide any protection against SIFA if the faults corrupt the intermediate com-
putations of S-Boxes. Bit-flip faults (not necessarily biased) inside the masked
S-Boxes are termed as SIFA-2 faults. As a protection against such faults, the work
in [15] proposed bit-level error correction at the end of each S-Box. The overall
scheme, which is called Transform-and-Encode maintains 3 copies of each share
and performs a majority-voting based error correction for achieving single-bit
SIFA security. It was also claimed that the combination of any masking scheme
and error correction mechanism would work for preventing SIFA.

Leakage Due to Faults: Without loss of generality, we construct an instance
of Transform-and-Encode with the same masked x3 S-Box we have considered
so far. Instead of error detection, we now use error correction for each share. It
has already been shown in Sec. 4.4, that majority-vote based error correction
circuits leaks information on whether any correction has happened or not. With
this property of error correction logic, the attack becomes a straightforward
extension of the attack described in the previous section for error detection
on shared values. The attack algorithms remain similar to Algorithm. 4 and
Algorithm 5. Instead of HW of all the XOR outputs in detection step, in this
case we consider the HW of all the output wires of the AND gates in the error
correction stage to abstract the leakage (ref. Fig. 5(b)(c) & Table. 10). In the
presence of noise the attack requires roughly 4200 — 6500 encryptions per fault
location. Another important observation for this countermeasure construction
is that it also enables middle round attacks given the correction operations are
present at each round.

So far, in this paper, we have only considered masked S-Boxes based on DOM
principle. A natural question is whether the attacks still apply on other masking
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paradigms such as TI [9]. In the next subsection, we present examples on TI
implementations which are found vulnerable against the SCA-FTA strategy.

4.6 Leakage from TI S-Boxes:

The TI constructions require that each component function (i.e. output share)
of any given nonlinear function should be non-complete. In order to achieve
non-completeness, it ensures that no component function contains all the shares
of a single variable. The cost of strictly imposing non-completeness is a rapid
increase in the share count for increasing degree of nonlinearity and security
order. More precisely, the number of input shares for higher-order security is
given as s;, > t xd—+1, where t is the degree of the function under consideration,
d is the security order, and s;;, is the count of input shares. The number of output
shares (that is the count of component functions) s, > (‘S‘t“) However, later
work on TI, such as Consolidated Masking Scheme (CMS) [10] has shown that
these share requirements can be reduced to d 4+ 1 shares for d-th order security.
They proposed careful selection of component functions with more computation
steps, and, most importantly, the introduction of registers between different
computation steps to avoid the accidental combination of shares.

One important step in TI implementations is compression of shares [10].
In many cases, the number of output shares become larger than the number
of input shares, and in order to maintain composability some of the output
shares are XOR~ed together to reduce the number of shares (keeping the number
of input and output shares equal). This is also useful in maintaining output
uniformity, which is also an essential property of T1. Before combining the shares,
it is important to add a register layer to prevent the propagation of glitches.
Further, as proposed in CMS [10], a refreshing layer is also required before
share compression in many cases in order to maintain the output uniformity.

The issue that arises with TI is due to this share compression. In many
cases, the share compression does not explicitly maintain the non-completeness
any more. Rather the glitch resistance is achieved by introducing registers before
share compression [31]. While this does not create any problem for SCA security
as the register layer is suggested before share compression, it can be exploited by
SCA-FTA in certain cases. In order to elaborate this, we consider the function
d = ab+ c. 19 A valid non-complete sharing for this function is given as follows:

d® = a®b° + ¢° d' = a’' d? =a'b’ + ¢! d*=a'vt  (7)

The number of input shares in this case is 2 ((a”, a!) and (b°, b)) and number of
output shares is 4 (d°, d*, d?, d®). In order to reduce the number of shares, a valid
compression option in this case is €? = d°+d' and e! = d?>+d>. This compression
also maintains the output uniformity. Further, this compensates the violation of
non-completeness by introducing a register layer before the compression. How-
ever, if a fault is induced in a°, it propagates to €® only if b® + b = b = 1. This
enables SCA-FTA attack if the error detection/correction is performed at the

10 the example is due to [10]
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output shares €’ and e!. A single probe to the detection/correction circuit at e°
would be sufficient for revealing b in this case.

One should note that the abovementioned issue with share compression also
persists for higher-order TT implementations. In order to show this concretely, we
consider the second-order secure SIMON implementation from [31]. Once again,
the function under consideration is d = ab+ c. The TT equations in this case are:

d’ =ct + a'bt +a®t +a't?,  dt =2 + a?b? + a®b® 4 a?1°,

& =+ a0 +a’b® + a®°, @ =+ a®° + a%b* + a*t?,

d* = c* + a'v? + o' + ',  d° = a'b® + ddb, (8)
d’ = a'b?® + a2b*, d” = a®b® + a®b* + a®b?,

d® = a®b* + 't + a'b?

Here the inputs have 5 shares and output have 9 shares. The equations for share
compression are given as:

e =d+d° e=d'+d5 eE=+d, o)
E=d*+d e =d

In case of a fault injection at a*, if the attacker probes the error detection/correction
modules corresponding to e? and e* the outputs become faulted only if 6 4+ b' 4
b2 +b% + b* = b = 1. An adversary can easily combine the leakage of these two
wires (e? and e*) and extract the information. In this case, the security of a
second-order secure implementation is violated only with two probes which indi-
cates an efficient attack according to our terminology. In a nutshell, SCA-FTA
can violate many existing combined SCA and FA protection schemes.

5 Practical Validation

So far, in this paper, we have abstracted the SCA leakage as HW of multiple
wires in the error detection/correction circuits. However, the proposed attack
algorithms are independent of this assumption. Although the leakage assumption
of this form is valid for several practical implementations, it is also important to
validate if the attacks still work without any such concrete assumptions. In order
to validate this experimentally, we present a gate-level power-trace simulation
approach similar to one proposed in [21]. It was shown that such power-trace
simulation approaches closely resembles the real scenarios [21]. For power-trace
simulation, we used commercial tools such as Synopsys PrimeTime PX, Synopsys
VCS and Synopsys, Design Compiler. The simulation also takes into account the
gate level delay properties and the impact of glitches. The simulated faults were
bit-flip. Experiments performed on a hardware implementation the shared y3 S-
Box with error correction practically validates the results presented in this paper.
Details on this experimentation will be presented in the extended version.
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6 Discussion on a Probable Countermeasure

In the discussion regarding the security of TI against SCA-FTA (ref. Sec. 4.6),
we pointed out that the compression layer of TI is responsible for the attack.
In the context of faults, the compression of shares violates the non-completeness
property of TI. Compensating non-completeness violation with registers does not
work for faults''. Unlike glitches, a faulty value can propagate through registers
causing share combination which enables SCA-FTA. A natural question, that
arises in this context is — can we maintain security if there is no compression
layer? At least for some cases, we found that the answer is positive. More pre-
cisely we found that if the error detection/correction is performed before the
compression operation, the security can still be maintained.

As an example of the aforementioned claim, we refer to a concrete instanti-
ation of the Transform-and-Encode framework called AntiSIFA [15]. AntiSIFA
proposes a single-bit SIFA protected scheme along with first-order masking for
PRESENT. The masking was realized with the first-order TI for PRESENT
n [32]. Although the generic framework Transform-and-Encode is found to be
insecure against SCA-FTA, this specific construction is found to be secure. To
understand why this is secure, we need to consider the first-order TT implemen-
tation of PRESENT S-Box [32]. The implementation first decomposes the S-Box
S into two quadratic sub-functions F' and G such that S(z) = F(G(z)). Next,
both F' and G are shared with 3 input and 3 shares each (no compression).

Let us consider a part of the shared F' function which corresponds to a single
(unmasked) output bit if the S-Box. The TT equations corresponding to this part
are given as follows:

2, 22, 23 329
Jio = a7 + wyap + wyx + 231

3,33 13 31
Jao = @7 + wyay + 29xh + a1 (10)

1 11 1.2, 2.1
f30 =z + 2325 + 2375 + 237

Here f19, foo and f3p denote the output shares of S-Box output fy. Each scz
denote the i-th share of the jth input bit. Now let consider a fault at the bit
x3. While this indeed leaks information about xo = x3 + 2% + x3 the leakage
happens through outputs fio and fs3o. Even for any other input bit, the leakage
would always happen through two wires. Such fault propagation takes place as
each of the output shares are mon-complete, and there is no share compression
required in this specific example. As a result, one cannot attack this implementa-
tion without violating the first-order probing security claims. A similar situation
takes place for the combined security schemes introduced in [19], where the error
correction is performed at the output of each product term of a masked AND
gate (each product term on shares is non-complete). These observations in-
dicate that even for TI implementations where share compression is
essential, performing error detection or correction on non-complete

11 While it works for preventing glitch-related leakages, as glitch cannot propagate
through registers.
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combinational paths before compression may provide security against
SCA-FTA. However, this claim is still required to be extensively evaluated for
different fault locations, fault models and masking implementations. Develop-
ment of a generic and provable countermeasure is left as a future work.

7 Conclusion

Modern cryptographic implementations utilize special algorithmic measures to
protect against SCA and FA attacks. In this paper, we present a novel combined
attack strategy which can bypass several combined SCA and FA countermea-
sures. The attack, called SCA-FTA, is an enhancement of recently proposed
FTA strategy by the incorporation of side-channel information leakage in the
presence of faults. The key idea behind the attacks is that the output differen-
tial of an S-Box leaks information about the input value if the input differen-
tial is kept fixed. Even partial leakage of this output differential from the error
detection/correction logic (through side-channel) may lead to an attack. Fur-
ther, we have shown that even performing the detection/correction on masked
values causes leakage, which results in successful attacks for some recently pro-
posed SIFA countermeasures. One of the proposed attacks has been validated
on a hardware implementation through power-trace simulation with commercial
VLSI design tools. Finally, we note that the non-completeness property of mod-
ern masking implementations can play a crucial role in preventing the proposed
attacks. A potential future work in this regard can be further analysis of both
the attack and the prevention approach briefly described here. Enhancement of
SCA-FTA for public-key implementations can be another potential work.
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