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Abstract. Byzantine Broadcast is crucial for many cryptographic pro-
tocols such as secret sharing, multiparty computation and blockchain
consensus. In this paper we apply gossiping (propagating a message by
sending to a few random parties who in turn do the same, until the mes-
sage is delivered) and propose new communication-efficient protocols,
under dishonest majority, for Single-Sender Broadcast (BC) and Parallel
Broadcast (PBC), improving the state-of-the-art in several ways.
As our warm-up result, we present a randomized protocol for BC which
achieves O(n2κ2) communication complexity from plain public key setup
assumptions. This is the first protocol with subcubic communication in
this setting, but operates only against static adversaries.
Using ideas from our BC protocol, we move to our central contribution
and present two protocols for PBC that are secure against adaptive ad-
versaries. To the best of our knowledge we are the first to study PBC
specifically : All previous approaches for Parallel Broadcast naively run n
instances of single-sender Broadcast, increasing the communication com-
plexity by an undesirable factor of n. Our insight of avoiding black-box
invocations of BC is particularly crucial for achieving our asymptotic
improvements. In particular:
1. Our first PBC protocol achieves Õ(n3κ2) communication complexity

and relies only on plain public key setup assumptions.
2. Our second PBC protocol uses trusted setup and achieves nearly

optimal communication complexity Õ(n2κ4).
Both PBC protocols yield an almost linear improvement over the best
known solutions involving n parallel invocations of the respective BC
protocols such as those of Dolev and Strong (SIAM Journal on Comput-
ing, 1983) and Chan et al. (Public Key Cryptography, 2020). Central to
our PBC protocols is a new problem that we define and solve, which we
name “Converge”. In Converge, parties must run an adaptively-secure
and efficient protocol such that by the end of the protocol, all honest
parties that remain possess a superset of the union of the initial honest
parties’ inputs.
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1 Introduction

Since its formalization by Lamport et al. [19], the broadcast problem has been
studied in many works and lies at the core of many cryptographic protocols
such as secret sharing, multiparty computation, and blockchain consensus pro-
tocols (e.g., [23]). In its single-sender version, BC involves a designated sender
s that distributes a value v such that (1) all parties output the same value v′
(consistency); (2) all parties output v in case s is honest (validity). Parallel BC
(PBC) (also known as interactive consistency [26]) is a generalization of the
single-sender setting where all parties act as designated senders, and in the end
each party outputs values, satisfying the above conditions, from every sender.
PBC comprises a central component of protocols like verifiable secret sharing and
multiparty computation (e.g., [2,20]), where whenever broadcast is used in these
protocols, it is always a parallel broadcast. Any improvement in PBC therefore
yields an improvement in these protocols as well.

A crucial distinction among broadcast protocols is which implementation
model they use: In the bulletin PKI model, no trusted setup is required, all
parties register their public keys to a public bulletin board before the start of
the protocol and no assumption is made on how parties generate their keys.
In the stronger trusted PKI model, trusted setup is required: A trusted party
generates all keys honestly and distributes them to the parties prior to protocol
execution. An important efficiency metric for broadcast protocols, which is the
focus of this paper, is their communication complexity, i.e., how many bits are
exchanged during the protocol. Often, it depends on the implementation model
and directly affects the efficiency of the underlying protocols using BC or PBC.

Contributions. In this work, we revisit the communication complexity of both
BC and PBC (See Table 1.) We focus on the dishonest majority setting with both
a static and an adaptive adversary. Our first (warm-up) result provides the first
statically-secure BC protocol with subcubic communication in the bulletin PKI
model. We then continue with our central contributions comprising two new PBC
protocols. Our main observation is that no results exist on the communication
complexity of PBC specifically. In particular, all protocols for PBC, to the best of
our knowledge, are implemented via simultaneous calls to n BC instances, leading
to increased communication complexity. Leveraging this insight, we use ideas of
our first warmup BC protocol to build the first adaptively-secure PBC protocol
with cubic communication complexity in the bulletin PKI model (Again, one
defining feature of our PBC protocol is that it is non-black-box, in that it does
not use n simultaneous calls to BC.) Our final PBC result shows how to improve
the PBC complexity to quadratic, by switching to the trusted PKI model. To
the best of our knowledge, all three results comprise significant improvements
(i.e., by a linear factor) in the communication complexity of the state-of-the-art.

Message Propagation.We achieve our improvements by optimizing one of the
fundamental aspects of BC protocols: their message propagation. When an hon-
est party sends out a message at some round, propagation ensures that all honest
parties receive this message soon. In most protocols, this is implemented via an
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expensive SEND-ALL instruction delivering the message in a single round [8,10].
Such instructions might not always be needed. For example, it might not be
crucial to deliver the message strictly in the next round. Our proposed protocols
minimize the use of SEND-ALL instructions via gossiping, eventually yielding
much better communication. In particular, in message propagation via gossip-
ing, a party first sends the message M only to a small random set of parties,
who in turn do the same, until M is delivered. Somewhat surprisingly, the effect
of this technique on the complexity of broadcast has not been explored before.
Our current protocols are for the binary case only and might become inefficient
when messages become longer.

Table 1. Comparison of BulletinBC, BulletinPBC and TrustedPBC, in terms
of communication complexity in bits (CC) and round complexity (RC), to existing work.
Number of parties is n. Also ε < 1.

protocol model CC RC adversary dishonest type

Abraham et al. [1] trusted PKI Õ(n · κ) O(1) adaptive < n/2 BC
Momose and Ren [25] bulletin PKI Õ(n2 · κ) O(n) adaptive < n/2 BC

Chan et al. [8] trusted PKI O(n2 · κ2) O(κ) adaptive < (1− ε) · n BC
Dolev and Strong [10] bulletin PKI O(n3 · κ) O(n) adaptive < n BC

BulletinBC §3 bulletin PKI O(n2 · κ2) O(n) static < (1− ε)n BC
BulletinPBC §5 bulletin PKI Õ(n3 · κ2) O(n logn) adaptive < (1− ε)n PBC
TrustedPBC §6 trusted PKI Õ(n2 · κ4) O(κ logn) adaptive < (1− ε)n PBC

1.1 Communication-Efficient BC in the Bulletin PKI Model

In our first contribution (Section 3) we use gossiping to achieve communication-
efficient BC protocols in the bulletin PKI model. When using bulletin PKI, it is
known that BC can be solved for arbitrary t < n malicious parties with O(n3 ·κ)
bits of communication using the seminal result of Dolev and Strong [10] (Here κ
is the security parameter and represents the size of a digital signature.) However,
to the best of our knowledge no protocol with better communication complexity
exists. We resolve this question by introducing BulletinBC (see Figure 2), the
first BC protocol that achieves communication complexity of Õ(n2 · κ2) bits in
the bulletin PKI model. Our protocol is randomized and works for t < (1− ε) ·n
corrupted parties where ε ∈ (0, 1) is a constant. On the downside, we assume a
static model of corruption where the adversary must decide which t parties to
corrupt before the execution—but the corrupted parties are byzantine.

Technical Highlights. Our protocol follows a similar framework with the
Dolev-Strong protocol [10]. Recall that in Dolev-Strong, for all rounds r < n,
whenever an honest party p has observed r signatures on a bit b for the first
time, p adds her signature and sends a message x of r + 1 signatures to all par-
ties, using a SEND-ALL(x) instruction. Our proposed protocol just replaces the
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SEND-ALL(x) instruction with a SEND-RANDOM(m,x) instruction and runs for
an additional O(log n) rounds. Our SEND-RANDOM(m,x) instruction is imple-
mented by sending message x to party i (for all i ∈ [n]) with probability m/n for
some fixed m = Θ(κ). It is important to note, however, that our protocol does
not merely implement SEND-ALL(x) via a sequence of SEND-RANDOM(m,x) in-
structions as this would still lead to cubic communication complexity—again, it
just replaces the instructions directly. We remark that while the resulting changes
in the protocol are minimal and only cause the protocol to run for roughly an
additional log n many steps, the security proof is affected substantially. In partic-
ular, our gossiping technique does not protect against adaptive adversaries who
can simply wait and corrupt all recipients of particular SEND-RANDOM(m,x)
commands during the protocol. Still, this is not fundamental: We show next that
gossiping, when used in PBC can (quite surprisingly) overcome this issue.

1.2 Communication-Efficient PBC for Bulletin and Trusted PKI

Recall that in PBC all n parties simultaneously act as a sender and wish to con-
sistently distribute their message. As we mentioned before, all PBC protocols in
the literature are derived trivially by calling BC multiple times in a black-box
fashion, which leads to a multiplicative n-factor in the communication complex-
ity. For example, deriving PBC for t < (1 − ε) · n via n parallel executions of
the Dolev-Strong protocol [10], would yield Õ(n4) communication complexity.
Instead, we do not use a BC protocol as a black-box but we instantiate protocols
specifically for PBC. This leads to our next contributions (Sections 5, 6).

TheM-Converge Problem. Central to our PBC protocols is theM-Converge
problem (Section 4) that we define for the first time and could be of independent
interest. In the M-Converge problem, there is a fixed message set M and all
initial honest parties p ∈ H begin with a set of messages Mp ⊆ M and a
constraint set of messages Cp ⊆ M. In the end, all remaining honest parties q
(we consider an adaptive adversary) should output a set Sq that is a superset of⋃
pMp −

⋃
p Cp. (We consider superset since the adversary can inject messages

as well.) Clearly, there is a simple protocol that solves theM-Converge problem
in the presence of an adaptive adversary and in a single round: Have all honest
parties send their sets Mp and Cp to all other n parties—however this protocol
leads to O(n2|M|) communication since both Mp and Cp are subsets of M.
Instead, in our M-ConvergeRandom protocol (see Figure 6), every honest
party runs in a few more rounds (around O(log n)) and in every round sends
every message in her local set to a randomly-chosen subset of parties and not to
all of them. This reduces the communication to Õ(n|M| + n2), which, for the
case of |M| = Ω(n) (as in our applications), leads to a much improved worst-case
communication complexity! The main idea of our protocol is as follows.
1. In round 1, honest party p, for every message x ∈Mp−Cp, picks i ∈ [n] as a

recipient with probability m/n (Again, m is Θ(κ).) Then p constructs lists
Lj (for j = 1, . . . , n) containing messages x ∈ Mp − Cp that were assigned
to recipient j. Each list Lj is first padded to at most 2md|M|/ne elements
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(which is enough to ensure no overflows by Chernoff) and then encrypted to
ensure an adaptive adversary does not gain any advantage. Then Lj is sent
out to party j for j = 1, . . . , n.

2. In rounds i = 2, . . . , dlog ε · ne, every honest party p adds to her constraint
set Cp all messages sent in the previous round i− 1, collects all lists Lp from
round i − 1 into a new set Mp and performs the same task as in round 1
(random assigning of elements inMp−Cp, compilation into lists and sending).

We prove that with overwhelming probability, the above gossiping protocol deliv-
ers every element contained in the sets of the initially-honest parties (except the
ones in the initial constraint sets) to all remaining honest parties, see Lemma 9.
The communication complexity is indeed Õ(n|M|+n2) since in every round all
n parties send to all n parties a message of size 2md|M|/ne ≤ 2|M| ·m/n+ 2.

We emphasize that constraint sets used inM-ConvergeRandom are cru-
cial in reducing the communication complexity of our M-ConvergeRandom
protocol, in particular when M-ConvergeRandom has to be called a large
number of times by another protocol. This is because any message m that is sent
by party p in round 1 ofM-ConvergeRandom enters p’s constraint set and is
therefore never sent again by p. A protocol can thus avoid resending messages
during future calls of M-ConvergeRandom, by initializing future constraint
sets to contain already sent messages. We finally note that one of our proto-
cols presented in this paper (TrustedPBC) invokesM-ConvergeRandom a
small number of times, so for simplicity we do not use constraint sets.

While the above protocol achieves the desired communication complexity
bounds, the crucial question is whether it achieves adaptive security (It does.)
Recall that the danger with picking a few random parties to send the message
in an adaptive setting (as in our statically secure broadcast protocol) was that
the adversary can corrupt the specific set of recipients for the sent message. This
cuts off the propagation and leaves the sender as the only honest party who has
the message! Our protocol avoids that because it never reveals which are the
true recipients of the message by padding each list Lj to the same size and then
encrypting it (Secure state erasures are required as well for adaptive security.)
More intuitively, this can be understood as having the (different) messages that
are sent by a sender in a particular round of this process pose as “cover traffic" for
one another. This cover traffic hides to whom a particular message is being sent
(since all the recipients of a single sender obtain the same amount of encrypted
information), and hence makes it impossible to trace the path of that message.

Technical Highlights for BulletinPBC (Section 5). This protocol fol-
lows a similar framework as the Dolev-Strong protocol [10]. Recall that in Dolev-
Strong, for all rounds r < n, whenever an honest party p has observed r signa-
tures on a bit b for the first time, p adds bit b to the a local set (which we call
Extracted), adds her signature and sends a message x of r + 1 signatures to all
parties, using a SEND-ALL(x) instruction. As r goes to n, this instruction incurs
O(n3 ·κ) communication complexity, since all parties potentially send O(n) sized
lists of signatures to all. Combining n of these protocols naively would yield a
PBC protocol with prohibitive communication complexity of O(n4 · κ).
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To overcome this issue, we observe that the main communication overhead
in this naive protocol comes from steps where all parties send lists of O(n)
signatures for the same designated sender. For example, it could be possible
that all parties hold the same list of r signatures in some round r that made
them accept a message s for some slot i in that round. Clearly, it is extremely
wasteful for all honest parties to send all of these signatures to all parties via
SEND-ALL(x) (after appending their own respective signatures), since there is a
large amount of redundancy among these lists.

Our proposed protocol deals with this situation by viewing it as an instance
of the M-Converge problem, where input sets consist of the signatures in the
parties’ lists and the constraint sets ensure that signatures which were already
sent will not be repeated. Hence, we use ourM-ConvergeRandom protocol to
propagate lists in that case much more efficiently, namely with O(n2 · κ2) com-
plexity (rather than naively within O(n3 · κ)). However, in the above discussion
we focused on only a single slot i. Yet, there is an issue when applying this strat-
egy to a single instance of Dolev-Strong BC: since there are O(n) rounds where
parties might callM-ConvergeRandom, the total communication complexity
is O(n3 · κ2), even worse than the original DS protocol! It is here that we once
again leverage the inherent parallel structure of PBC. Namely, in our protocol,
we use M-ConvergeRandom to propagate messages for all slots simultane-
ously, regardless of what slot they belong to. Moreover, we run one instance
of M-ConvergeRandom per step of the protocol, for a total of O(n) many
instances. While it is possible that for some of these instances, the complexity
increases to O(n3 · κ2), thanks to the constraint sets we bound the number of
such instances by O(1). This results in a total of O(n3 · κ2) complexity, or an
amortized O(n2 · κ2) complexity per slot.

Technical Highlights for TrustedPBC (Section 6). Our starting point
for this protocol is the recent protocol by Chan et al. [8] that solves BC in
the trusted PKI model with O(n2 · κ2) communication complexity. We call this
protocol ChBC from now on. ChBC is essentially a Dolev-Strong protocol run
among a random committee of κ parties—for the rest of honest parties to agree
with the committee, a distribution phase takes place. More concretely, ChBC at
round r < κ instructs parties to perform the following.
1. (Voting) Whenever an honest committee party p has observed r signatures

on a bit b for the first time, p adds her signature and sends a message of r+1
signatures to all parties, using a SEND-ALL instruction. This step is executed
only by the committee and the message’s size is at most κ signatures of κ
bits each; hence the induced communication complexity is O(n · κ3);

2. (Distribution) When an honest party p observes r signatures on a bit b for
the first time, p just forwards the r signatures to all parties, using a SEND-
ALL instruction. Note that this step is executed by all parties and therefore
induces O(n2 · κ2) communication complexity (It is n2 · κ2 since every party
sends once to all n parties a list of at most κ signatures of κ bits each.)

We then observe that if we naively use the ChBC protocol for the parallel case,
the communication complexity of the distribution phase grows to O(n3 ·κ2), since
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the SEND-ALL instruction would have to be used at most 2 · n times (instead
of twice), for each bit b and for each sender slot p. To overcome this issue we
once again observe that we can abstract each step (there are κ many) of the
protocol as an instance of theM-Converge problem to improve communication
complexity. This leads to the final version of our TrustedPBC protocol, with
amortized linear complexity O(n · κ4) per sender slot.

1.3 Related Work

The problem of BC was originally introduced in the celebrated work of Lamport,
Shostak, and Pease [19]. Their work also gave the first (setup-free) protocol for
t < n/3 and showed optimality of their parameters. However, their solution re-
quired an exponential amount of communication and was soon improved upon
by protocols requiring only polynomial amounts of communication [11,14]. More
recently, a line of work initiated by King et al. [5,17,18] gave setup-free proto-
cols for the case of t < n/3 that require Õ(n3/2) communication and Momose
and Ren [25] provide a protocol in the bulletin PKI model with Õ(n2 · κ) com-
munication complexity but in the honest majority setting. For the setting of
t < n corruptions, Dolev and Strong [10] gave the first protocol with polynomial
efficiency. Their protocol uses a bulletin board PKI, requires O(n3 · κ) bits of
communication, and solves BC for any t < n. Much more recently, the work of
Chan et al. [8] gives a protocol that requires Õ(n2 · κ) bits of communication
and requires trusted setup. What can be seen as a statically secure version of
Chan et al.’s protocol was suggested by Buterin [6] and gives a protocol with
O(n · κ) communication complexity and also requires trusted setup (to elect a
random committee at the onset of the protocol). In the range of t < n/3 and
t < n/2, the works of Micali [23], Micali and Vaikuntnathan [24], and Abraham
et al. [1] present solution with subquadratic communication complexity using
trusted setup. Somewhat surprisingly, in the setting with setup (for t < n), any
efficiency improvement to the early work of Dolev and Strong has been aimed
exclusively at improving the round complexity rather than the communication
complexity. This has been the subject of several works [8,12,13,27]. Finally, the
problem of interactive consistency or parallel broadcast was originally introduced
by Pease et al. [26]. Another line of works studies the round complexity of BC,
e.g., [8,13,27]. See Table 1 for overview of communication-efficient protocols.

Gossip protocols (also known as flooding protocols) are a simple, efficient
type of information propagation and are used as a background layer in many
infrastructures (e.g., blockchain protocols). Loosely speaking, they are based on
the principle of exponential graph expansion: a party sends its message to a small
random sample of its neighbours who in turn do the same. It is well-known [9]
and easy to see that within O(log(n)) rounds, all n parties learn the message.
Some works [16] consider more refined versions of data dissemination, where
parties keep sending until they hear from a certain number of their neighbours.
These protocols work well in the presence of random, benign (i.e., crash) faults,
but fail completely in the presence of malicious (byzantine) faults. This was
addressed in a line of works such as [4,21]. However, as recently noticed by [22],
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none of these protocols work in the presence of a fully adaptive adversary that
can corrupt parties based on the propagation of a specific message. It is easy to
see why: an adaptive adversary can simply corrupt all the (randomly elected)
neighbours an honest party sent to and inhibit further propagation of a message
in this manner. Such attacks are sometimes referred to as “eclipsing attacks” in
the cryptocurrency space. Hence, in [22] they considered flooding protocols in
the presence of an adaptive adversary who dynamically chooses who to corrupt,
but whose corruptions take a while to become active. This gives the nodes time
to propagate the messages as necessary. An example of gossip used in a byzantine
consensus protocol is [15]: this work shows how to obtain, using gossip, a reliable
broadcast protocol with quasi-linear (in n) communication for an asynchronous
network. Being asynchronous, their protocol heavily relies on the fact that fewer
than n/3 parties are corrupted.

2 Preliminaries and Notation

We denote as X ← Π the random variable X output by probability experiment
Π. Our protocols are run among a set of n parties out of which t = (1−ε) ·n can
be malicious, for constant ε < 1. We use κ to indicate the security parameter.
Bulletin PKI vs. Trusted PKI. We briefly recall the difference between Bul-
letin PKI and Trusted PKI here. For the first part of our work, we assume that
parties share a public key infrastructure (Bulletin PKI). That is, each party i
has a secret key ski and a public key pki, where pki is known to all parties.
The secret key ski and the public key pki are not assumed to be computed in
a trusted manner. Instead, we assume only that each party i generates its keys
(ski, pki) locally and then makes pki known by using a public bulletin board.
For the final result of this work, we use the Trusted PKI setting, where a trusted
party computes and distributes secret/public key pairs to the protocol partic-
ipants, enabling the use use of more powerful cryptographic primitives in our
constructions, such as verifiable random functions.
Signatures. Party i computes a signature σ on a messagem via σ ← sig(ski,m).
Later σ can be verified via ver(pki, σ,m). As is standard for this line of work,
we assume signatures are idealized in the sense that it is impossible, without
ski, to create a signature σ on a message m such that ver(pki, σ,m) = 1. We
also assume perfect correctness, i.e., for any m, ver(pki, sig(ski,m),m) = 1. We
write sigi(m) to indicate sig(ski,m) and veri(σ,m) to indicate ver(pki, σ,m).
Communication Model.We consider the standard synchronous model of com-
munication. In this model, parties are assumed to share a global clock that pro-
gresses at the same rate for all parties. Furthermore, they are connected via
pairwise, authenticated channels. Any message that is sent by an honest party
at time T is guaranteed to arrive at every honest party at time T + ∆, where
∆ is the maximum network delay. In particular, this means that messages of
honest parties can not be dropped from the network and are always delivered.
It is assumed that all parties know the parameter ∆. As such we consider pro-
tocols that execute in a round based fashion, where every round in the protocol
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is of length ∆ and parties start executing the r-th round of a protocol at time
(r − 1) · ∆. Let M be a set of messages and P be a set of parties. When a
party i calls Send(M,P) at round r, then the set of messagesM is delivered to
parties in P by round r+1. When a party i calls Receive() in round r, then all
messages that were sent to i in round r − 1 via Send commands are stored in
i’s local storage. Finally, we assume secure erasures, namely a party p can safely
erase her state so that the adversary cannot access it whenever the adversary
corrupts p (after the state has been erased), e.g. [3,17].
t-Secure Broadcast and t-Secure Parallel Broadcast. We now provide the
definitions of t-Secure Broadcast and t-Secure Parallel Broadcast which are the
focus of the paper’s main body.

Definition 1 (t-Secure Broadcast). A protocol Π executed by n parties,where
a designated party s ∈ [n] (the sender) holds an input v and all parties terminate
upon output, is a t-secure broadcast protocol if the following properties hold with
probability 1− negl(κ) whenever at most t parties are corrupted:

t-validity: if the sender is honest, all honest parties output v.
t-consistency: all honest parties output the same value v′.

Definition 2 (t-Secure Parallel Broadcast). A protocol Π executed by n
parties, where each party i holds an input vi and terminates upon outputting an
n-value vector Vi, is a t-secure parallel broadcast protocol if the following prop-
erties hold with probability 1− negl(κ) whenever at most t parties are corrupted:

t-validity: If party s is honest, then all honest parties i have Vi(s) = vs.
t-consistency: all honest parties output the same vector V′.

We define a “slot” s to denote in PBC the equivalent of the execution of a
single sender BC, if party ps was the designated sender. Thus, the output bit of
a party pi for a slot s is Vi(s). A slot s is honest, if ps is honest.
Adversary Model. In general for all our protocols we consider a polynomial-
time adversary that can corrupt up to t parties in a malicious fashion. The
adversary can make them deviate from the protocol description arbitrarily. Our
adversary is also rushing, being able to observe the honest parties’ messages in
any synchronous round r of a protocol, and delay them until the end of that
round. In this way, it can choose its own messages for that round before deliv-
ering any of the honest messages. For Section 3, we consider a static adversary,
who chooses all the parties to corrupt before the execution of the protocol. For
Sections 4 to 6, we consider an adaptive adversary, able to corrupt up to t par-
ties, each at any point during the execution of the protocol, learning its internal
state which consists of any longterm secret keys and ephemeral values that have
not been deleted at that point. However, we do not consider strongly adaptive
adversaries that could, after corrupting a party, observe what message that party
attempted to send during that round and then replace its message with another
one (or simply delete it). Moreover, we assume atomic sends [3] : an honest party
p can send to multiple parties simultaneously, without the adversary being able
to corrupt p in between sending to two parties.
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MPC Model. One part of our parallel broadcast protocol is modeled using the
ideal functionality Fprop (See Figure 4.) To show that a specific implementation
realizes Fprop, we are using the definition of synchronous MPC in the standalone
model by Canetti [7] which we briefly recall here. Let f be a (possibly random-
ized) function that takes n inputs. In the real world execution of a protocol Π
for computing f , party Pi initially holds 1κ and an input xi. The adversary holds
1κ and an auxiliary input z. The goal of running Π is for all honest parties Pi to
learn output yi, where [y1, . . . , yn] ← f(x1, . . . , xn). During the execution, the
adversary A can corrupt any party adaptively, upon which it learns the internal
state of this party. At the end of the execution, each honest party outputs its
local output (as instructed by Π) and the adversary A outputs its entire view.
We write RealΠ,A(1

κ,x, z) to denote the distribution over the vector of out-
puts of honest parties and the set of corrupted parties in the above (real-world)
experiment. We define security of Π relative to an ideal world where a trusted
party securely computes f and outputs the result to all parties. Parties hold in-
puts as above; the adversary in the ideal world is denoted as S. The ideal-world
execution now works as follows.

Initial corruptions. S adaptively corrupts parties and learns their inputs.
Evaluation by trusted party. The inputs x of honest parties are sent to
the trusted party. The ideal-world adversary S can specify the inputs on
behalf of any of the parties it has corrupted. The trusted party evaluates the
function f and returns the computed outputs yi to the respective party i.
Additional corruptions. At any point in time (after output has been pro-
vided by the trusted party), S may adaptively corrupt additional parties i.4
Output. The honest parties output their view.
Post-execution corruptions. S may corrupt additional parties and output
(any function of) its view.

Idealf,S(1
κ,x, z) denotes the distribution over the vector of outputs of honest

parties and the set of corrupted parties in the above (ideal-world) experiment.

Definition 3 (Secure Computation). Π t-securely computes f if for all PPT
adversaries A corrupting at most t parties, there exists a PPT simulator S such
that {RealΠ,A(1

κ,x, z)}κ∈N,x,z∈{0,1}∗ ≈ {Idealf,S(1κ,x, z)}κ∈N,x,z∈{0,1}∗ .

3 Single-Sender Broadcast

We are now ready to describe our proposed communication-efficient BC protocol
in detail. As we mentioned in the introduction, our protocol replaces Dolev-
Strong’s SEND-ALL instruction with a SEND-RANDOM instruction. We model
SEND-RANDOM with a randomized procedure that we call AddRandomEdges
(see Figure 1) that simulates the propagation of messages from honest nodes
to the rest of the network in our protocol, between two consecutive rounds.
Aanalyzing it seperately, allows us to argue about the consistency and validity
of our protocol BulletinBC in a structured manner.
4 Since we assume erasure, the adversary learns nothing new from such corruptions.
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1: procedure G← AddRandomEdges(V, S2, S3, S,m)
Input: Set of n nodes V ; disjoint subsets of V : S2, S3;
S ⊆ V − (S2 ∪ S3); Integer m ≤ n.
Output: A graph G.

2: Let G be an empty graph with node set V ;
3: for every node v ∈ S do
4: for every node u ∈ V do
5: Add an edge (v, u) to G with probability m

n
;

6: return G;

Fig. 1. The AddRandomEdges procedure.

3.1 The Procedure AddRandomEdges

AddRandomEdges works over a graph G whose n vertices V are partitioned
into three disjoint sets and which is initially empty, i.e., has no edges. Given
an arbitrary partition of V into three disjoint sets S1, S2, S3, and a set S ⊆ S1,
AddRandomEdges adds the edge (v, u) to the graph G with probability m/n
for every pair of nodes v ∈ S and u ∈ V . Note that S1 is fully defined by S2, S3

and V as S1 = V −(S2∪S3), therefore S1 is not an input to AddRandomEdges.
The procedure outputs the resulting graph G (i.e., with all the added edges).
Looking ahead, S represents the set of parties that send a message q at a specific
round r and S2 represents the set of parties that have not received q in a previous
round. An edge from v ∈ S to u ∈ V represents that party v sends q to party
u in round r. We want to compute how many parties in S2 receive q (for the
first time) during round r, so we study the degree of nodes in S2. We define the
following indicator random variables.

Definition 4. Let G← AddRandomEdges(V, S2, S3, S,m). For all u ∈ S2 let
Zu ∈ {0, 1} such that Zu = 1 if and only if u has nonzero degree in G.

In Lemma 1 we show that the number of nodes in S2 that acquire an edge in
G is at least twice the number of nodes in S. Intuitively, this allows us to show
that messages propagate very quickly in our broadcast protocol.

Lemma 1. Let (S1, S2, S3) be a partition of n nodes into disjoint sets with τ =
|S1| ≤ ε ·n/3, |S2| = ε ·n−|S1|, |S3| = n−ε ·n, where ε ∈ (0, 1) is a constant. Let
also S ⊆ S1 with |S| ≥ 2 · τ/3 and let {Zu}u∈S2

be the random variables defined
by AddRandomEdges(V, S2, S3, S,m) per Definition 4. Then for m ≥ 15/ε,

Pr

[∑
u∈S2

Zu ≥ 2 · τ

]
≥ 1− p, where p = max

{
ε · n · e−ε·m/9,

(e
2

)−ε·m/4}
.

3.2 The Protocol BulletinBC

We now describe our protocol BulletinBC. For simplicity, we describe our
protocol for the case where values agreed upon are from the binary domain.
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Intuition: From SEND-ALL to Gossiping. As we mentioned in the intro-
duction, our protocol is inspired by the protocol of Dolev and Strong [10] that
achieves O(n3 · κ) communication complexity in the bulletin board PKI model.
We give a detailed description of the Dolev-Strong protocol here. Each party
i ∈ [n] maintains a set Extractedi that is initialized as empty. The protocol pro-
ceeds in t+1 rounds as follows (Again, t < n is the number of corrupted parties.)
In the first round, the designated sender s signs her input bit and sends the sig-
nature to all n − 1 parties. In rounds 2 ≤ r ≤ t, for each bit b ∈ {0, 1}, if an
honest party i has seen at least r signatures on b (including a signature from the
designated sender) and b is not in her extracted set, then party i adds b to her
local extracted set, signs b and sends the r+1 signatures to all n− 1 parties. In
the final round t+ 1, i accepts a bit b iff b is the only bit in Extractedi.

What makes the above protocol work is the fact that when party i sends the
r+ 1 signatures, all honest parties see these signatures in the next round, since
these signatures are sent to all other n − 1 parties. In the final round, it is not
necessary to send again, since holding t+ 1 signatures on b means that at least
one honest party has sent r + 1 signatures upon receiving r signatures on b in
round r < t + 1. Hence, all parties must have received these r + 1 signatures
in round r + 1 and added b to their extracted sets in that round. In terms of
communication complexity, note that all honest parties send an O(t · κ)-sized
message to n− 1 parties (κ is due to the size of the signature), which results in
O(n2 · t · κ) communication. Given that t = O(n), this is O(n3 · κ).

Our protocol does away with the SEND-ALL instructions, and introduces a
form of gossiping: it does not require an honest party to send the r+1 signatures
to all n − 1 parties. Instead, an honest party sends the r + 1 signatures to
each other party with probability m

n . The hope is that after a certain number
of rounds, enough honest parties see these messages. As expected, the total
number of rounds must now increase. Fortunately, our protocol requires just
an additional R = O(log n) rounds, yielding a communication complexity of
O(n2 ·m · κ) = O(n2 · κ2) and a round complexity of O(n).

Formal Description and Proof of BulletinBC. Figure 2 contains the
pseudocode of our protocol from the view of an honest party p (i.e., this is the
algorithm that runs at each distributed (honest) node p). It takes as input an
initial bit b in the case of the designated sender (no input else) and returns the
final bit b′. Note three major differences from the Dolev-Strong protocol [10]: (1)
we increase the number of rounds from t to t+R (Line 5); (2) instead of sending
to all parties we send to each party randomly with probabilitym/n (Line 12); (3)
for all rounds r ≥ t+1 we do not require r+1 signatures to add to the extracted
set but just t+1—that is why we use the expression min{r, t+1} in Line 9. We
now continue with the proof of consistency and validity of BulletinBC. We
first define, using notation consistent with AddRandomEdges, the following
sets of parties (w.r.t. a bit b and a round r):
1. S(b, r): honest parties i that added b to their Extractedi set at round r;
2. S1(b, r): honest parties i that added b to their Extractedi set by round r;
3. S2(b, r): honest parties i that have not added b to their Extractedi set by r.



Gossiping for Communication-Efficient Broadcast 13

1: procedure b′ ← BulletinBCp()
Input: A bit b if p = s, no input otherwise.
Output: Decision bit b′.

2: Extractedp = Localp = ∅;
3: if p is the designated sender s then
4: Send(sigs(b), [n]);
5: for round r = 1 to t+R do
6: Localp ← Localp ∪Receive();
7: for bit x ∈ {0, 1} do
8: S ← DistinctSigs(x, Localp, s);
9: if |S| ≥ min{r, t+ 1} ∧ x /∈ Extractedp then
10: Extractedp = Extractedp ∪ x;
11: for party i = 1 to n do
12: Send(sigp(x) ∪ S, i) with probability m

n
;

13: return b′ ∈ Extractedp if |Extractedp| = 1, otherwise return canonical bit 0;

Fig. 2. Our BulletinBCp protocol for party p. DistinctSigs(x, Localp, s) returns the
set of valid signatures from distinct signers on x contained in Localp if this set includes
a signature from s, otherwise it returns ∅. Note that only the designated sender receives
an input bit in the protocol.

Define S3 be the set of malicious parties (|S3| = n− εn). We show (roughly)
that the number of parties that receive a message at round r′ that was sent at
round r < r′ increases exponentially with r′ − r with overwhelming probability.

Lemma 2 (Gossiping bounds). For a specific bit b, let r be the first round of
BulletinBC where an honest party i adds b to Extractedi. Let R = dlog3(ε ·n)e.
Let p be the probability defined in Lemma 1. Then:
1. For all rounds ρ such that r ≤ ρ ≤ r+R and |S1(b, ρ−1)| ≤ ε ·n/3, we have

that with probability at least (1− p)ρ−r:

|S(b, ρ)| ≥ (2/3) · |S1(b, ρ)| and |S1(b, ρ)| ≥ 3ρ−r.

2. Let r∗ > r be a round such that |S1(b, r
∗−1)| > ε·n/3. Then, |S1(b, r

∗)| = ε·n
with probability at least (1− p∗) · (1− p)r∗−r−1, where p∗ = ε · n · e−2ε·m/9.

Lemma 3 (t-consistency: BulletinBC). Let R = dlog3(εn)e, m = Θ(κ).
BulletinBC satisfies t-consistency (Definition 7), with probability 1− negl(κ).

Proof. Suppose an honest party i adds bit b to Extractedi at some round r.
We prove that by the end of the protocol all honest parties j add b to their
Extractedj sets with probability 1− negl(κ)—this means that all honest parties
have identical Extracted sets by the end of the protocol, which is equivalent to
consistency. We distinguish the two cases:
Case r < t+ 1: We distinguish two cases. If S1(b, r) > ε · n/3, then by Item (2)
of Lemma 2, all ε · n honest parties add bit b in their extracted set by the next
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round with probability at least 1−ε ·n ·e−2ε·m/9 = 1−negl(κ), since n = poly(κ).
Now, if S1(b, r) ≤ ε · n/3, let r be the round r +R− 1. If S1(b, r) > ε · n/3, the
previous case applies. Otherwise, Item (1) of Lemma 2 applies, meaning that at
round r+ 1 = r +R we have S1(b, r +R) ≥ 3R = 3dlog3(ε·n)e ≥ 3log3(ε·n) = ε · n,
with probability at least (1−p)R ≥ 1−R ·p, by Bernoulli’s inequality5 and since
−p ≥ −1, R ≥ 1. Note that for m = Θ(κ), R · p is negl(k), since n = poly(κ).
Case r ≥ t+ 1: Suppose an honest party i adds bit b to Extractedi at some round
r ≥ t+ 1. Then, i has received valid signatures on b from t+ 1 distinct parties.
Thus, an honest party j added bit b to Extractedj at some round r′′ < t+1. So,
case r′′ < t+ 1 applies to honest party j. Thus all honest parties add b to their
Extracted sets by the end of the protocol, with probability 1− negl(κ).

Lemma 4 (t-validity: BulletinBC). Let R = dlog3(ε · n)e, m = Θ(κ).
BulletinBC satisfies t-validity, per Definition 7, with probability 1− negl(κ).

Proof. Follows from the proof of consistency in Lemma 3. After R = dlog3(ε ·
n)e rounds, all honest parties have received the bit of the honest sender, with
probability 1− negl(κ).

Theorem 1 (Communication complexity: BulletinBC). Let m = Θ(κ)
and R = dlog3(εn)e. The total number of bits exchanged by all parties in Bul-
letinBC is O(n2 · κ2), with probability 1− negl(κ).

Proof. Every honest party sends at most one time for each bit to a number of
O(m) = O(κ) parties with overwhelming probability in κ, a message of at most
t signatures. Since there are O(n) honest parties, t = O(n) and the size of each
signature is κ, the total number of bits exchanged is O(n2 ·m·κ) = O(n2 ·κ2).

4 The M-Converge Problem

In this section we introduce the M-Converge problem, an efficient solution of
which is used as a black box in our parallel broadcast protocols. Informally, in
the M-Converge problem, honest parties begin with individual subsets (of a
fixed set M) as inputs and in the end of the protocol all honest parties must
have a superset of the union of all the initial honest-owned subsets. We want to
designM-Converge protocols in the presence of an adversary that can corrupt
at most t parties, adaptively. We now define theM-Converge problem formally.

Definition 5 (t-secure M-Converge problem). Let M ⊆ {0, 1}∗ be an
efficiently recognizable set (This is a set for which membership can be effi-
ciently decided.) A protocol Π executed by n parties where every honest party
p initially holds input set Mp ⊆ M and constraint set Cp ⊆ M is a t-secure
M-Converge protocol if all remaining honest parties upon termination, with
probability 1− negl(κ), output a set Sp s.t.

Sp ⊇
⋃
p∈H

Mp −
⋃
p∈H
Cp ,

5 For every x, r ∈ <, x ≥ −1, r ≥ 1 it holds that (1 + x)r ≥ 1 + rx.
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whenever at most t parties are corrupted and where H is the set of honest parties
in the beginning of the protocol.

We note that the trivial solution of outputtingM does not work: We cannot
necessarily enumerate the elements ofM since we only assume that membership
can be efficiently decided. An example of such a setting is whereM consists of
signatures of n parties on a bit b, computed with the parties’ secret keys. In
such a setting, PPT parties can easily verify membership in M but cannot
enumerate M, even if M is polynomial-sized (Note that the latter could be
true depending on the signature scheme.) As we already noted in the introduc-
tion, there is a very simple t-secure M-Converge protocol: All honest parties
just send their local sets Mp to all other parties, in one round. Unfortunately,
the communication complexity of this protocol is Ω(n2 · minp∈H{|Mp − Cp|}),
which would be prohibitively expensive. In this section we propose a protocol,
M-ConvergeRandom (see Figure 6) that uses gossiping to reduce communica-
tion to Õ(n · |M|+n2). First, we introduce some tools necessary for the analysis
and clear exposition of our protocol, the functionality Fprop and the procedure
AddRandomEdgesAdaptive, required for analyzing Fprop.

4.1 The Procedure AddRandomEdgesAdaptive

Here we face an adaptive adversary and introduce the respective standalone ran-
domized procedure which we call AddRandomEdgesAdaptive(Figure 3). An-
alyzing this process helps with proving the security ofM-ConvergeRandom.

In AddRandomEdgesAdaptive, a set of honest senders S ⊆ H (H is the
set of initial honest nodes) are sending a message x to the rest of the parties, by
picking each party independently to be a recipient of the message with proba-
bility m/n. The set of malicious nodes are not fixed a priori and the adversary
A decides who to corrupt after the edges have been placed. We define a specific
set of honest parties S2 ⊆ H as the target set which does not contain any of the
senders in S (The meaning of target set will depend on our application.) Our
goal is to prove that after the adversary has finished with the adaptive corrup-
tions, still a good amount (in particular 2 · |H−S2|) among the remaining honest
nodes of S2 is receiving message x with overwhelming probability. Clearly if we
do not confine the view of the adversary, we cannot prove anything meaningful
since the adversary can go ahead and corrupt exactly the nodes that received
x. For this reason, in AddRandomEdgesAdaptive we strategically allow the
adversary to access just the list RevealedEdges (see Line 8) before making the
next corruption—these are the edges that correspond to nodes that have already
been corrupted (Note that this restriction of the adversary is enforced by the
implementation of our protocol later.) We formalize this intuition in Lemma 5.

Definition 6. Let (G,H ′)← AddRandomEdgesAdaptiveA(V, S,H,m). Let
S2 ⊆ H. Then for all u ∈ S2 define random variables Zu ∈ {0, 1} such that
Zu = 1 if and only if u has nonzero degree in G and u ∈ H ′.



16 Tsimos et al.

procedure (G,H ′)← AddRandomEdgesAdaptiveA(V, S,H,m)
Input: Set of n nodes V ; sets S and H with S ⊆ H ⊆ V ; Integer m ≤ n.
Output: A graph G a set of nodes H ′ ⊆ H.

Let G be an empty graph with node set V ;
for every node v ∈ S do

for every node u ∈ V do
Add a directed edge (v, u) to G with probability m/n;

Initialize RevealedEdges to be all edges incident to nodes in v ∈ V −H;
while |H| ≥ ε · n do

vi ← A(V,H,RevealedEdges) such that vi ∈ H;
if vi 6= null then

Add {(u, vi) : u ∈ in_neighbor(vi)} to RevealedEdges;
H = H − vi;

else break;
Set H ′ = H;
return (G,H ′);

Fig. 3. The experiment with an adaptive adversary, AddRandomEdgesAdaptive.

Lemma 5. Let ε ∈ (0, 1), S2 ⊆ H with |H − S2| ≤ ε · n/3 and S ⊆ H − S2 with
|S| ≥ 2|H − S2|/3. Let (G,H ′)← AddRandomEdgesAdaptiveA(V, S,H,m).
Then for m ≥ 19/ε,

Pr
[∑

u∈S2
Zu ≥ 2|H − S2|

]
≥ 1− p,

where p = max{n · e−4ε·m/45, ( e2 )
−ε·m/2}.

Proof. For any set H∗, define EH∗ to be the event that AddRandomEdge-
sAdaptiveA(V, S,H,m) outputs (·, H∗). Also, supp(E) = {H ′ : Pr[EH′ ] > 0}.
Fix H∗ ∈ supp(E) such that

Pr

[∑
u∈S2

Zu ≥ 2|H − S2|
∣∣∣ EH′] ≥ Pr

[∑
u∈S2

Zu ≥ 2|H − S2|
∣∣∣ EH∗] ,

for all H ′ ∈ supp(E). Therefore

Pr

[∑
u∈S2

Zu ≥ 2|H − S2|

]
=
∑

H′∈supp(E)

Pr

[∑
u∈S2

Zu ≥ 2|H − S2|
∣∣∣ EH′]Pr[EH′ ]

≥
∑

H′∈supp(E)

Pr

[∑
u∈S2

Zu ≥ 2|H − S2|
∣∣∣EH∗]Pr[EH′ ] ≥ Pr

[ ∑
u∈S2∩H∗

Zu ≥ 2|H − S2|
∣∣∣ EH∗] ,

since S2 ∩ H∗ ⊆ S2. The remaining proof lower-bounds the probability
Pr[
∑
u∈S2∩H∗ Zu ≥ 2|H − S2| | EH∗ ]. This is done in three steps.

Step 1: Computing the probabilities Pr [Zu = 1 | EH∗ ] for all u ∈ S2 ∩H∗.
For u ∈ S2 ∩H∗ let Yu be a random variable such that Yu = 1 iff u has nonzero
degree in G. By definition of Zu (Zu = (Yu = 1)∩ (u ∈ H ′), for u ∈ S2) we have
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that, for all u ∈ S2 ∩H∗: Pr[Zu = 1 | EH∗ ] = Pr[Yu = 1 | EH∗ ].
Suppose now H∗ = H − {v1, . . . , v`}, where v1, . . . , v` are nodes chosen by the
adversary in Line 8 of the experiment. Because the adversary, in his picking
v1, . . . , v`, never accesses information related to nodes in H∗ (his access is con-
fined to information in V −H∗ through the RevealedEdges list), it follows that
EH∗ (the event of the adversary picking v1, . . . , v`) and Yu (for every u ∈ S2∩H∗)
are independent events. Therefore for all u ∈ S2 ∩H∗ it is

Pr[Zu = 1 | EH∗ ] = Pr[Yu = 1 | EH∗ ] = Pr[Yu = 1] = 1− (1−m/n)|S| .

Step 2: Showing {Zu}u∈S2∩H∗ , conditioned on EH∗ , are independent. By using
the above findings and by the independence of Yu we have that for all bu ∈ {0, 1}

Pr

[( ⋂
u∈S2∩H∗

Zu = bu

) ∣∣ EH∗] = Pr

[( ⋂
u∈S2∩H∗

Yu = bu

) ∣∣ EH∗]

= Pr

[ ⋂
u∈S2∩H∗

Yu = bu

]
=

∏
u∈S2∩H∗

Pr[Yu = bu] =
∏

u∈S2∩H∗
Pr[Zu = bu | EH∗ ]

and therefore {Zu}u∈S2∩H∗ are independent conditioned on EH∗ .
Step 3: Applying a Chernoff bound. We consider two cases, one for |S| > 4ε·n/45
and one for |S| ≤ 4ε · n/45. For |S| > 4ε · n/45, we have that for u ∈ S2 ∩H∗

Pr[Zu = 0 | EH∗ ] = (1−m/n)|S| < (1−m/n)4ε·n/45 ≤ e−4ε·m/45 ,

where the last step is derived from the inequality (1 − x) ≤ e−x,∀x ∈ R and
the fact that (1 −m/n) > 0 and 4ε · n/45 > 0. Note that we have |H∗ − S2| ≤
|H−S2| ≤ εn/3 and |H∗| ≥ εn. So, by using the set equalityA = (A−B)∪(A∩B),
for A = H∗ and B = S2, we get that |S2∩H∗| ≥ 2εn/3. Also, |H−S2| ≤ ε ·n/3,
so it is |S2 ∩H∗| ≥ 2|H − S2|. Therefore

Pr

[ ∑
u∈S2∩H∗

Zu ≥ 2 · |H − S2| | EH∗
]
≥ Pr

[ ∑
u∈S2∩H∗

Zu = |S2 ∩H∗| | EH∗
]

= Pr

[ ⋂
u∈S2∩H∗

Zu = 1 | EH∗
]
= 1− Pr

[ ⋃
u∈S2∩H∗

Zu = 0 | EH∗
]

≥ 1−
∑

u∈S2∩H∗
Pr [Zu = 0 | EH∗ ] > 1− |S2 ∩H∗| · e−4ε·m/45

> 1− n · e−4ε·m/45, since |S2 ∩H∗| < n .

For the case |S| ≤ 4ε · n/45, since Zu (u ∈ S2 ∩ H∗) are independent random
variables conditioned on EH∗ we can use the lower tail Chernoff bound for Z =∑
u∈S2∩H∗ Zu, i.e.,

Pr[Z < (1− δ)µ | EH∗ ] <
(

e−δ

(1− δ)1−δ

)µ
.
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Now µ = E [Z | EH∗ ] =
∑
u∈S2∩H∗ Pr[Zu = 1 | EH∗ ] ≥ 2ε·n·(1−(1−m/n)|S|)/3,

since |S2 ∩H∗| ≥ 2ε · n/3. Also, since |S| ≥ 1 we have

µ ≥ 2ε · n · (1− (1−m/n)|S|)/3 ≥ 2ε · n · (1− (1−m/n)) /3 = 2ε ·m/3 .

For δ = 1/2 this yields Pr[Z < µ/2 | EH∗ ] <
(

e−0.5

(0.5)0.5

)2ε·m/3
=
(
e
2

)−ε·m/3.
Recall however that we must bound the probability Pr[Z < 2|H − S2| | EH∗ ].
Therefore it is enough to also show that µ ≥ 4 · |H − S2|. Recall that |S| ≥
2|H − S2|/3 and since |S| ≤ 4εn/45, then |H − S2| ≤ 2εn/15. From µ ≥ 2ε · n ·(
1− (1−m/n)|S|

)
/3 and by 1 + x ≤ ex and m ≤ n we have that

µ ≥ 2

3
ε · n · (1− e−mn |S|) ≥ 5 · |H − S2| ·

(
1− e

−2m·ε|S|
15|H−S2|

)
,

since (n ≥ 15|H − S2|/2ε and for α > 0, f(n) = n
(
1− e−αn

)
↗ in n)

≥ 5 · |H − S2| ·
(
1− e

−4m·ε
45

)
, (since |S|/|H − S2| ≥ 2/3)

> 4 · |H − S2|, (since m ≥ 19/ε >
45 ln 5

4ε
) .

4.2 The ideal functionality Fprop

To facilitate the exposition of our M-ConvergeRandom protocol, we use an
ideal functionality Fprop—see Figure 4. In summary, Fprop enables a party i to
send a set of messages M to, on average, m out of n randomly selected parties
without leaking which those parties are to the adversary. (We stress that each
message in M is sent to different parties.) In our protocol Fprop is called, via
(SendRandom,M), by all honest parties i in the beginning of every round β and
returns a set Oi, in the end of round β, which contains messages sent from other
parties to i in the beginning of round β. The adversary in Fprop gets a special
interface to the functionality via the instruction (SendDirect,x, J) by which it
can send messages in x to parties specified in the vector J directly rather than
randomly. We also assume that the adversary learns the input set of an honest
party to Fprop. Finally the adversary gets access to all the sets Oi for the parties
i that have been corrupted. We note here that Fprop does not maintain state
across calls and therefore all Oi = ∅, in the beginning of every round.
Implementing the ideal functionality Fprop with Propagate(). In Fig-
ure 5 we define the process that instantiates Fprop and give it the fitting name
Propagate(). As usual, we describe the protocol Propagate() from the view
of a party p. Consistent with the interface of Fprop, Propagate() takes as input
a set of messages Mp (that are to be sent out to other parties) and returns a
set of messages Op that were sent to p. In the first step of Propagate(), every
party creates a fresh pair of secret and public keys.
Next, note that Propagate() does not send a message x ∈ Mp directly to
party j (with probability m/n) since this would reveal the recipient of x to the
adversary. Instead, before sending, it locally computes a list Lj , for every party
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Functionality: Fprop

Let n be the number of parties and m = 10/ε+κ. For every party i ∈ [n], Fprop

keeps a set Oi which is initialized to ∅. Let Mi be party i’s input messages’ set.
On input (SendRandom,Mi) by honest party i:
– For all x ∈ Mi and for all j ∈ [n] add (i, x) to Oj with probability
m/n;

– return Mi to adversary A;
– return Oi to party i.

On input (SendDirect,x, J) by adversary A (for a corrupted party i):
– Add (i, x[j]) to Oj for all j ∈ J ;
– return Oi to adversary A.

Fig. 4. Functionality Fprop.

j ∈ [n], and adds x to Lj with probabilitym/n. All lists Lj are padded to the size
of the maximum sized list for the current call of Propagate by the party (say
party p), which we call Λp and are encrypted using the fresh public keys (Recall
that M is the fixed set of the M-Converge problem.) Then the plaintext lists
are erased from memory and only after erasure the encrypted lists are sent out.
In the end, the fresh secret key is also erased from memory. Intuitively, security
is guaranteed because (i) the communication pattern of each sender does not
reveal anything (irrespectively of who the recipient of x is, the adversary just
sees equally-sized encrypted lists sent to all parties from each sender); and (ii)
even if the adversary adaptively corrupts a party, no information about who
that party sent to is revealed (because of erasure of plaintext lists and secret
key)—the only information that is revealed is from whom that party received,
which is harmless. We show that the lists Lj constructed by Propagatep() is of
the same order as the message list Mp of party p with overwhelming probability.

Lemma 6. IfMp is the input set of party p, the number of elements added to list
Lj at Line 7 of Propagate() is ≤ |Mp| ·2m/n ≤ Λp with probability 1−negl(κ).

Lemma 7. Let s be the length in bits of a message in M. The communication
complexity of Propagate() for party p with inputMp, is O(max {n, |Mp|}·m·s).

Security of Propagate(). The lemma below proves that Propagate() se-
curely instantiates Fprop. The key property that we leverage is that each sender
sends the same amount of information to every other party, regardless of their
inputs. This trivializes the simulation of honest parties’ communication in the
protocol, since it is independent of the actual values they input to Propagate().

Lemma 8. Assuming a CPA-secure PKE scheme (KeyGen,Enc,Dec) and secure
erasure, Propagate() t-securely computes Fprop according to Definition 3.
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1: procedure Propagatep(SendRandom,Mp)
Input: A set of of messages Mp.
Output: A set of messages Op.

2: Set (skp, pkp)← KeyGen(1κ); . at time 0
3: Send(pkp, [n]);
4: Receive(); . at time ∆
5: for all x ∈Mp do
6: for j = 1 to n do
7: Add x to list Lj with probability m/n;
8: Let Λp = 2m

⌈
|Mp|
n

⌉
;

9: for j = 1 to n do
10: Pad list Lj to maximum size Λp;
11: ctj ← Enc(pkj ,Lj);
12: Erase Lj from memory;
13: for j = 1 to n do
14: Send(ctj , j);
15: C ← Receive(); . at time 2∆
16: for all ct ∈ C do
17: Decrypt ct using skp and output a list L;
18: Add L to Op;
19: Erase skp from memory;
20: return Op;

Fig. 5. Propagate(), a secure instantiation of Fprop. We note that the secret and public
keys that are generated in Line 2 are one-time and are never used again.

4.3 Our M-ConvergeRandom Protocol

We now analyze the M-ConvergeRandom protocol, depicted in Figure 6,
solving the M-Converge problem with improved communication. Our protocol
proceeds in dlog(ε · n)e rounds. In each round, every honest party p uses Fprop

to send messages in their local set that are not in their constraint set, to a few
randomly selected parties (Line 3). To decide what to send in the next round,
p takes the union of the received messages (Line 4), and from the resulting set
of messages, keeps only the ones that belong in set M (Line 6) and are not in
p’s constraint set. For example, messages m /∈M, sent by the adversary can be
safely discarded and so can any message m ∈ Cp.

The proof of Lemma 9 requires defining and proving some properties of
the standalone probabilistic experiment AddRandomEdgesAdaptive (Fig. 3),
which encapsulates howM-ConvergeRandom works.

Lemma 9 (Propagation in presence of an adaptive adversary). Fix an
initially-honest party p and a message m∗ ∈ Mp −

⋃
h∈H Ch. Then, with prob-

ability 1 − negl(κ), all remaining honest parties after M-ConvergeRandom
terminates have received m∗.
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1: procedure Sp ←M-ConvergeRandomp(Mp, Cp)
Input: Sets Mp ⊆M, Cp ⊆M
Output: A set Sp.

2: for round β = 1 to dlog(ε · n)e do
3: ReceiveFprop ← Fprop(SendRandom,Mp − Cp);
4: Localp ← Localp ∪ReceiveFprop ;
5: Cp = Cp ∪Mp;
6: Mp = Localp ∩M;
7: return Mp;

Fig. 6. OurM-ConvergeRandomp protocol.

Proof. Let hβ ≥ ε ·n be the set of parties that remain honest after the adversary
has performed corruptions for round β ofM-ConvergeRandom. Thus, for all
β ≥ 0, hβ+1 ⊆ hβ . Also, let Rβ denote the set of parties that i. remain honest
after the adversary has performed corruptions for round β; and ii. receive m∗

for the first time during round β. Let

ωβ =

(
β⋃
i=1

Ri

)
∩ hβ = (Rβ ∩ hβ) ∪ (

(
β−1⋃
i=1

Ri

)
∩ hβ)

= Rβ ∪ (

(
β−1⋃
i=1

Ri

)
∩ hβ−1 ∩ hβ) = Rβ ∪ (ωβ−1 ∩ hβ)

We shall use the above notation for sets interchangeably with the notation for
their cardinality, which will be clear depending on the context of the operations.
We first prove that with probability 1− negl(κ), for all rounds β ≤ dlog(ε · n)e:
1. If ωβ−1 ≤ ε · n/3, then Rβ ≥ (2/3) · ωβ and ωβ ≥ 2β

2. If ωβ−1 > ε · n/3, then ωβ = hβ ≥ ε · n
(1.) In M-ConvergeRandom, a message m∗ at round β is propagated in a
randomized fashion using Fprop. So, the adversary does not see which party
receives the message unless this party is already corrupted—this is exactly what
is modeled by AddRandomEdgesAdaptive with the use of RevealedEdges.
Thus, since hβ ≥ ε · n, we can compute the number of “new” honest receivers
Rβ of message m in the end of round β by (almost) directly applying Lemma 5,
with S2 being hβ − ωβ−1 (the set of honest parties that have never received m∗

by that round of the protocol) and Rβ−1 being S, i.e. the set of honest senders
of m∗ for round β. Also R0 = ω0 ≥ 1, since there is at least one honest sender
for m∗ (namely p) for round 1. We use induction. For β = 1, if R0 ≤ εn/3, by
applying Lemma 5:

Pr[R1 ≥ 2ω0] = Pr[R1 ≥ 2R0] ≥ 1− p = 1− negl(κ) ,

where p = max{n · e−4ε·m/45, ( e2 )
−ε·m/2} and since m = Θ(κ) and κ = poly(n).

Then, we have that ω1 = R1 +ω0 ≥ 3ω0 ≥ 2, with probability 1− negl(κ). Also,
ω1

R1
=
R1 + ω0 ∩ h0

R1
=
R1 + ω0

R1
≤ R1 +R1/2

R1
= 3/2,
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thus R1 ≥ (2/3)ω1 with probability 1− negl(κ). Therefore, the base case holds.
Let us assume the claim holds for round β−1 ≤ dlog(ε ·n)e−1. Then, if ωβ−1 ≤
εn/3, we prove that Rβ ≥ (2/3) · ωβ and ωβ ≥ 2β . ByM-ConvergeRandom,
all honest receivers in round β − 1 become senders in round β. So, for applying
Lemma 5,we match the sets as follows: hβ−1 − ωβ−1 := S2, hβ−1 := H,hβ :=

H ′, Rβ−1 := S. Notice that the u ∈ S2 s.t. Z(β)
u = 1 are exactly the u ∈ Rβ and

thus
∑
u∈S2

Z
(β)
u = Rβ . Also, notice that

H − S2 = hβ−1 − (hβ−1 − ωβ−1) = hβ−1 ∩ ωβ−1 = ωβ−1,

meaning: |H − S2| = ωβ−1 ≤ εn/3 and S = Rβ−1 ≥ 2ωβ−1/3 ≥ 2|H − S2|/3.
Finally, we have m = Θ(κ) ≥ 19/ε = Θ(1). Therefore, we can use Lemma 5 for
round β: Thus, Pr[Rβ ≥ 2|H − S2|] = Pr[Rβ ≥ 2ωβ−1] ≥ 1 − p = 1 − negl(κ).
Therefore, ωβ ≥ Rβ ≥ 2ωβ−1 ≥ 2 ·2β−1 = 2β , with probability 1−negl(κ). Also,

ωβ
Rβ

=
Rβ + ωβ−1 ∩ hβ

Rβ
≤ Rβ + ωβ−1

Rβ
≤ Rβ +Rβ/2

Rβ
= 3/2,

thus Rβ ≥ (2/3)ωβ , with probability 1− negl(κ), which completes the proof.
(2.) For every party pi : i = 1, . . . , n we define Bernoulli R.V.s Z(β)

i = 1 if and
only if party pi received m∗ at round β. If β = 1 and ω0 > εn/3, then from the
first round there are ≥ εn/3 honest senders for m∗. We bound the probability

Pr[

n⋃
i=1

{Z(1)
i = 0}] ≤

n∑
i=1

Pr
[
Z

(1)
i = 0

]
= n ·

(
1− m

n

)R0

≤ n ·
(
1− m

n

)εn/3
= n ·

[(
1− m

n

)n/m]εm/3
≤ n · e−εm/3 = negl(κ).

Now, if β > 1, then there was some round β∗ ≤ β s.t. β∗ def
= argmini≥0{ωi >

εn/3}. If β∗ = 0, we already showed that all parties receive m∗ in the first
round. Thus, for all subsequent rounds i, ωi = hi. Else, if β∗ > 0, by definition
ωβ∗−1 ≤ εn/3. So, we can apply (1.), meaning that Rβ∗ ≥ 2ωβ∗/3 ≥ 2εn/9.
Accordingly, for round β∗, we can again bound the probability

Pr[

n⋃
i=1

{Z(β∗)
i = 0}] ≤ n ·

[(
1− m

n

)n/m]2εm/9
≤ n · e−2εm/9 = negl(κ),

So, for all subsequent rounds i ≥ β∗, ωi = hi.
The results from (1.),(2.) combined mean that, if the protocol runs for more than
dlog εn/3e rounds without reaching case (2.), it is definite that, after applying (1.)
for round β = dlog(εn/3)e, case (2.) will hold for the next round. Therefore, with
probability 1−negl(κ), all remaining honest parties afterM-ConvergeRandom
terminates have received the message m∗.

Theorem 2. Protocol M-ConvergeRandom from Figure 6 is an adaptively
t-secure M-Converge protocol for all t < (1 − ε) · n and fixed ε ∈ (0, 1). The
number of bits sent by one party is

O(n log n ·m · s+
dlog εne∑
i=1

|M (i)
p − C(i)p | ·m · s) ,
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where s is the length in bits of a message inM and M (i)
p − C(i)p denotes the set

given as input to the i-th call of Propagate.

Proof. Security follows by applying Lemma 9 for all initially-honest parties and
for all of their initial messages. Every message m∗ is delivered to all honest parties
that remain after the termination of the protocol, as required by Definition 5.
The communication complexity (CC) is dominated by the calls to Fprop. Each
call to Fprop is securely instantiated by executing Propagate with the same
input set (Lemma 8). By Lemma 7, the i-th such call to Propagate invokes
a total of O(max

{
n, |M i

p − Cip|
}
· m · s) = O(n · m · s + |M (i)

p − C(i)p | · m · s)
communication, where M i

p − Cip is the corresponding set of messages input to
Propagate at that call. Thus, the number of bits sent by one party is
dlog εne∑
i=1

O(n·m·s+|M (i)
p − C(i)p |·m·s) = O(n log n·m·s+

dlog εne∑
i=1

|M (i)
p − C(i)p |·m·s)

with probability 1− negl(κ).

4.4 An Extension: The M-DistinctConverge Protocol

Recall that theM-Converge problem was defined with respect to a message set
M. For achieving PBC with low communication complexity in the trusted PKI
setting (see Section 6), we need a slightly different version of the M-Converge
problem, namely the M-DistinctConverge problem, defined with respect to a
parameter k. Now, some elements of the set M, while different, are considered
the “same” because their k-bit prefixes are the same. Looking ahead, our set
M is the set of all possible valid r-batches (a valid r-batch is a set of at least
r signatures) on bit-slot pairs (b, s), denoted (b, s, r). In this set, two valid r-
batches with different set of signatures but on the same (b, s) are considered the
same. Our prior analysis applies as is toM-DistinctConverge.

Definition 7 (distinctk function). For any set M , distinctk(M) is a sub-
set of M that contains all messages in M with distinct k-bit prefixes.

E.g., for M = {01001, 01111, 11000, 10000} we have that distinct2(M) =
{01001, 11000, 10000}. Note that distinctk is an one-to-many function. For ex-
ample, distinct2(M) is also {01111, 11000, 10000}. We are now ready to present
theM-DistinctConverge problem.

Definition 8 (t-secure M-DistinctConverge protocol). Let M ⊆ {0, 1}∗
be an efficiently recognizable set. A protocol Π executed by n parties, where every
honest party p initially holds input set Mp ⊆ M and constraint set Cp ⊆ M,
is a t-secureM-DistinctConverge protocol if all remaining honest parties upon
termination, with probability 1− negl(κ), output a set

Sp ⊇ distinctk

⋃
p∈H

Mp −
⋃
p∈H
Cp

 ,
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1: procedure Sp ←M-DistinctCVp(Mp, Cp, k)
Input: Sets Mp ⊆M, Cp ⊆M and parameter k.
Output: A set Sp.

2: for round β = 1 to dlog(ε · n)e do
3: ReceiveFprop ← Fprop(SendRandom, distinctk(Mp − Cp));
4: Localp ← Localp ∪ReceiveFprop ;
5: Cp = Cp ∪Mp;
6: Mp = Localp ∩M;
7: return Mp;

Fig. 7. OurM-DistinctCVp protocol.

when at most t parties are corrupted and where H is the set of honest parties in
the beginning of the protocol.

Figure 7 showsM-DistinctCV, a modification ofM-ConvergeRandom.

Theorem 3. Let k > 0. Protocol M-DistinctCV from Figure 7 is an adap-
tively t-secure M-DistinctConverge protocol for all t < (1 − ε) · n and fixed
ε ∈ (0, 1). The total number of bits sent by all parties is

Õ(n ·max{n, |distinctk(M)|} ·m · s) .

5 Parallel Broadcast in the Bulletin PKI Model

We present a protocol to achieve PBC in the Bulletin PKI model. This lack of
trusted setup induces additional difficulty to the problem. Still, the proposed pro-
tocol uses communication cubic in n. We describe the high-level idea of the proto-
col. Each party internally maintains state for every signature. Each triplet (b, s, j)
(for b ∈ {0, 1}, s, j ∈ [n]) defines a specific signature, so there could be 2 · n2
signatures overall, each of size κ (where κ denotes the security parameter). The
propagation of a specific signature σj := sigj(b, s) is independent of whether b
was added to Extractedsi at that given round. Instead, whenever a party i observes
a new signature, i.e. sigj(b, s) for some (b, s, j) that i never observed before, they
proceed to propagate the signature exactly twice. If the signature was observed
during the subround of someM-ConvergeRandom, then they continue prop-
agating it only during the next subround (due to how M-ConvergeRandom
updates Cp). They also initiate the next round’s M-ConvergeRandom with
the signature being on their input set but not on their constraint set. Notice
thatM-ConvergeRandom is defined with respect to the setM. Here, we fix
M to consist of all of the parties’ valid signatures for messages [b, s], where b is
a bit and s a slot in [n]. Next, we prove the security of our protocol.

Lemma 10 (t-consistency: BulletinPBC). BulletinPBC satisfies con-
sistency (Def. 2) in the (Fprop)-hybrid world, with probability 1− negl(κ).
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1: procedure {b1, . . . , bn} ← BulletinPBCp(bp)
Input: Local bit bp.
Output: Decision bits b1, . . . , bn.

. Fix setM = {sigv([b, s]) such that b ∈ {0, 1}, s, v ∈ [n]}

2: Extractedip = ∅, for i = 1, . . . , n; . global variable
3: Localp = ∅; . global variable
4: Send(sigp([bp, p]), [n]);
5: for round r = 1 to t+ 1 do . t: bound on dishonest parties
6: AddMySignaturep(r);
7: ForwardSignaturesp(r);
8: for slot i = 1, . . . , n do
9: return bi ∈ Extractedip if |Extractedip| = 1, else return canonical bit 0;

1: procedure AddMySignaturep(r)

2: Localp ← Localp ∪Receive();
3: for all [b, s] such that b 6∈ Extractedsp do
4: if Localp contains ≥ r valid signatures on [b, s] (including sigs([b, s])) then
5: Add b to Extractedsp;
6: Add sigp([b, s]) to Localp;

1: procedure ForwardSignaturesp(r)

2: if r ≤ t then
3: Let Cp contain all signatures that p has propagated exactly twice via

ConvergeRandom;
4: Localp ←M-ConvergeRandom(Localp, Cp);

Fig. 8. The protocols for PBC in the Bulletin-PKI. The main PBC protocol Bullet-
inPBC invokes the procedures AddMySignature and ForwardSignatures. The
later calls aM-Converge protocol, i.e.M-ConvergeRandom, in order for each hon-
est party to convey its internal view to all other parties.

Proof. Suppose for some slot s, an honest party p adds bit b to Extractedsp at
some round r. We prove that by the end of the protocol, all honest parties j add
b to their Extractedsj sets with probability at least 1 − negl(κ). We distinguish
the following cases according to the round when p adds bit b to Extractedsp (We
sometimes omit “with probability 1−negl(κ)” when it is clear from the context.)

If r ≤ t, then p has at least r distinct, valid signatures for (b, s) and also p
creates its own signature. So, p observed each of these ≥ r + 1 signatures for
the first time at some round r− k where k ∈ {0, . . . , r− 1}. For every signature
σ with k ≥ 1, p called a M-ConvergeRandom with σ in its initial input set
Mp and not in its constraint set Cp. (Suppose not. Then σ is observed during
someM-ConvergeRandom by p, sent once with Propagate and never sent
again by p, a contradiction, since only signatures sent twice go in Cp.) For the
signatures with k = 0, p initiates a M-ConvergeRandom during round r.
From Theorem 2, by round r+1 every honest party j has ≥ r+1 valid signatures
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for (b, s) and adds b to their Extractedsj set during AddMySignaturej(r + 1).
Else, if r > t then, p observes t+ 1 valid signatures for (b, s). At least one of

the signatures comes from an honest party h. So, h has added b to Extractedsh
by some round r′ ≤ t. Thus, for honest party h the case r′ ≤ t can be applied,
and so all honest parties j add b to their Extractedsj sets by round r′ + 1.

Lemma 11 (t-validity: BulletinPBC). BulletinPBC satisfies validity
(Definition 2), in the (Fprop)-hybrid world with probability 1− negl(κ).

Proof. Follows directly from the proof of consistency (Lemma 10) and the ideal-
ized signature scheme. Every honest sender s with input bit bs, executes Line 4
and thus sends to all parties their signature for (bs, s) at the start of the pro-
tocol. So, all honest parties h add bs to their Extractedsh sets. By the idealized
signature scheme, no other bit b′ could bare a valid signature from honest sender
s, thus no other bit b′ could be in an h’s Extractedsh set.

Theorem 4 (Communication Complexity of BulletinPBC). The total
number of bits exchanged by all parties in BulletinPBC is Õ(n3 · κ2).

Proof. The communication complexity (CC) of BulletinPBC is dominated
by the CC of M-ConvergeRandom. By Theorem 2 each such call invokes
O(n log n ·ms+

∑dlog εne
i=1 |M (i)

p − C(i)
p | ·ms) communication for each party, where

M
(i)
p − C

(i)
p is the corresponding set of messages input to Propagate. The

sets input to Propagate by the protocol are sets containing signatures of size
κ each. During each super-round j of the protocol, M-ConvergeRandom is
called once, with input set M (j)

p −C(j)
p . Due toM-ConvergeRandom, when a

message is input by party p to Propagate at some subround, it is subsequently
added to Cp and thus won’t be input to Propagate again during that super-
round. Let for a fixed party p, I(j,i)p denote the input set Mp − Cp for its call
ofM-ConvergeRandom at subround i of round j. In BulletinPBC, parties
only propagate signatures they have propagated less than twice. Thus, each
message can be propagated by the same party at most twice meaning that, for
each party p, during all sub-rounds of all super-rounds of the protocol, it holds
that

∑(t+1)
j=1

∑dlog εne
i=1 |I(j,i)p | ≤ 2|M| = O(n2).

We can count the overall CC of each party during the protocol, so we have

CC(p) =

(t+1)∑
j=1

O(n log n ·mκ+

dlog εne∑
i=1

|I(j,i)p | ·mκ) = O(

(t+1)∑
j=1

dlog εne∑
i=1

|I(j,i)p | ·m · κ)

+O(n2 log n ·m · κ) = Õ(n2 · κ2),

where, we used the fact that
∑(t+1)
j=1

∑dlog εne
i=1 |I(j,i)p | = O(n2).Thus, the CC of

M-ConvergeRandom for all parties is Õ(n3 · κ2).

6 Parallel Broadcast in the Trusted PKI Model

In this section we use trusted setup to reduce the communication complexity of
PBC from cubic to quadratic. Our new protocol TrustedPBC uses protocol
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Functionality: Fmine

Fmine is parameterized by parties 1, . . . , n and “mining” probability pmine. Let
s ∈ [n] and b ∈ {0, 1}. Let call be vector of n entries initialized with −1.

On input (Mine, b, s) from party i:
– If calli = −1 output b = 1 with probability pmine or b = 0 with

probability 1− pmine and set calli = b;
– Else output calli.

On input (Verify, b, s, j) from party i output 1 if callj = 1 and 0 otherwise.

Fig. 9. Functionality Fmine.

M-DistinctCV from Section 4.4. To facilitate the exposition and our proof,
TrustedPBC in Figure 10 is given in a hybrid world where two functionalities
exist. The first one is Fprop which was presented and instantiated in Section 4.2.
The second functionality is Fmine (Figure 9), which was also presented in Chan et
al. [8] and was shown to be instantiable from standard assumptions (with setup)
by [1]. We assume that when a party calls Fmine then it returns instantaneously.
A party p in our protocol queries Fmine on input (Mine, b, s) in some round i,
where s ∈ [n] refers to one of the slots and b ∈ {0, 1}. If it receives response 1, it
considers itself a member of a randomly selected subset of all the parties, which
we refer to as the “(b, s)-committee”. More concretely, when Fmine receives such a
query, it flips a random coin to decide whether the party p is in that committee.
Fmine keeps the information and returns the same answer to all future identical
queries by any party. Next, we provide some definitions and necessary results.

Definition 9 ((b, s)-committee). For each pair of bit b and slot s, the (b, s)-
committee is a subset of parties such that for each party c in the (b, s)-committee,
whenever the Fmine is queried on input (Verify, b, s, c), Fmine outputs 1.

Lemma 12 (Honest Committees). Let R = 2κ/ε and let the probability of
success for Fmine be pmine = min {1, κ/(ε · n)}. Then, with probability 1−negl(κ),
for each bit b ∈ {0, 1} and slot s ∈ [n], the (b, s)-committee contains (i) at least
one honest party and (ii) at most R dishonest parties.

Definition 10 (Valid r-batch). A valid r-batch on pair (b, s) is the element
b||s||SIGr,

where SIGr is a set of at least r signatures on [b, s] consisting of one signature
from party s and at least r − 1 signatures from parties in the (b, s)-committee.

Definition 11. We define Mr to be a set that contains all possible valid r-
batches for all b ∈ {0, 1} and for all s ∈ [n].

Lemma 13. It is |distinctk∗(Mr)| = 2 · n, where k∗ is the number of bits
needed to represent b||s and where distinctk∗ is defined in Definition 7.

Proof. Follows from the fact thatMr contains exactly 2 ·n elements with unique
b||s prefixes, since b ∈ {0, 1} and s ∈ [n].
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1: procedure {b1, . . . , bn} ← TrustedPBCp(bp)
Input: Local bit bp.
Output: Decision bits b1, . . . , bn.

2: Extractedip = ∅, for i = 1, . . . , n; . global variable
3: Votedip = ∅, for i = 1, . . . , n; . global variable
4: Localp = ∅; . global variable
5: Send(sigp([bp, p]), [n]);
6: for round r = 1 to R+ 1 do . R is also a global variable
7: Distributep(r);
8: Votep(r);
9: for slot i = 1, . . . , n do
10: return bi ∈ Extractedip if |Extractedip| = 1 else return canonical bit 0;

1: procedure Distributep(r)

2: Localp ← Localp ∪Receive();
3: Let V = {vi} be valid r-batches (in Localp) on {[bi, si]} s.t. bi /∈ Extractedsip ;
4: for all vi ∈ V do Add bi to Extractedsip ;
5: if r ≤ R then Localp ←Mr-DistinctCVp(V, ∅, k∗);

1: procedure Votep(r)

2: if r ≤ R then
3: Let V = {vi} be valid r-batches (in Localp) on {[bi, si]} s.t. bi /∈ Votedsip ;
4: for all vi ∈ V s.t. Fmine(Mine, bi, si) = 1 do
5: Add bi to Votedsip ;
6: Add bi in Extractedsip if bi /∈ Extractedsip ;
7: Extend vi to a valid (r+1)-batch v′i by adding p’s signature on [bi, si];
8: Send(v′i, [n]);

Fig. 10. TrustedPBC calls two procedures, i.e. Distribute and Vote. During each
execution, Distribute calls the Mr-DistinctCV protocol, for each honest party to
convey its internal view to all other parties.Mr follows Def. 11.

Our protocol (see Figure 10) is inspired by the single-sender protocol of
Chan et al. [8] (ChBC protocol), of which we gave a detailed overview in the
introduction. In particular, our protocol works in R+1 rounds as follows (Round
R+1 is only used for updating the local sets and no sending takes place.) Every
party p maintains n Extractedps and Votedsp sets, s ∈ [n], that are initialized as
∅. Roughly speaking, a bit b ∈ Extractedps if p has observed a valid r-batch on
[b, s]; a bit b ∈ Votedps if it has already been revealed that p is part of the (b, s)-
committee (i.e., p has “voted”). In round 0, party i (for all i ∈ [n]) signs her input
bit bi, adds it to her Extractedii set and sends bi to all n − 1 parties along with
its signature on bi, sigi([bi, i]). Afterwards, the distribution and voting phases
follow, for every round r = 1, . . . , R. These are non-trivial modifications (for
many slots and using parallel gossiping) of the distribution and voting phases of
ChBC. Our new distribution/voting phases, for round r ≤ R, work as follows.
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1. (Distribution) An honest party p first collects the set V of valid r-batches
v1, . . . , vw on messages [b1, s1], . . . , [bw, sw] that are not in the respective p’s
Extracted sets. Instead of every node using a SEND-ALL to send each vi (as
ChBC would do), all nodes runMr-DistinctCV from Figure 7 (Mr defined
per Def. 11 ), with their initial constraint sets Cp empty.Mr-DistinctCV
assures that all parties eventually see the other parties’ inputs but since
there is overlap between input messages, it uses less communication.

2. (Voting) An honest party p checks which valid r-batches in their local set
correspond to pairs (b, s) : b /∈ Votedsp. For each such pair, they check whether
they are members of the respective committee via Fmine. If they are, they
add their own signature to extend the valid r-batch to a valid (r+1)-batch.

Lemma 14 (t-consistency). Let R = 2κ/ε. TrustedPBC satisfies t-consistency,
per Definition 2, in the (Fmine,Fprop)-hybrid world with probability 1− negl(κ).

Lemma 15 (t-validity). Let R = 2κ/ε. TrustedPBC satisfies t-validity, per
Definition 2, in the (Fmine,Fprop)-hybrid world with probability 1− negl(κ).

Theorem 5 (Communication). Let R = 2κ/ε. The total number of bits ex-
changed by all parties in TrustedPBC is Õ(n2 ·κ4) with probability 1−negl(κ).
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Supplementary Material

Chernoff Bound for independent random variables

Throughout some of the proofs, we use the Chernoff bounds of Lemma 16.

Lemma 16. Let X1, . . . , Xn be independent Bernoulli random variables, with

Pr[Xi = 1] = pi, for each i = 1, . . . , n. Also, let X =
n∑
i=1

Xi and µ = E [X] =

n∑
i=1

pi. Then, for any δ > 0, it holds that:

1. (Upper tail Chernoff Bound) Pr[X > (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
,

2. (Lower tail Chernoff Bound) Pr[X < (1− δ)µ] <
(

e−δ

(1−δ)1−δ

)µ
.

Deferred Proofs

Proof of Lemma 1. Denote E the set of edges in G (note that E is a random
variable). First, note that by definition of the propagation process, the random
variables Zu, (u ∈ S2) are independent and identically distributed with

Pr [Zu = 0] = Pr [∀v ∈ S : (v, u) 6∈ E] =
∏
v∈S

Pr [(v, u) 6∈ E] = (1−m/n)|S| .

The proof considers two cases, one for |S1| > ε · n/6 and one for |S1| ≤ ε · n/6.
Case |S1| > ε · n/6: For this case, we have that |S| ≥ 2 · τ/3 = 2 · |S1|/3 > ε ·
n/9 and therefore, according to the random process of AddRandomEdges,
the probability that Zu = 0 for a fixed u ∈ S2 is

Pr [Zu = 0] = (1−m/n)|S| < (1−m/n)ε·n/9 ≤ e−ε·m/9 ,
where the last step is due to 1+x ≤ ex. Since |S2| = ε ·n−|S1| ≥ 2 · ε ·n/3 ≥
2 · τ ,

Pr

[∑
u∈S2

Zu ≥ 2 · τ

]
≥ Pr

[∑
u∈S2

Zu = |S2|

]
= Pr

[ ⋂
u∈S2

Zu = 1

]

= 1− Pr

[ ⋃
u∈S2

Zu = 0

]
≥ 1− (ε · n− |S1|) · e−ε·m/9 > 1− ε · n · e−ε·m/9 .

Case |S1| ≤ ε · n/6:
Since variables Zu are i.i.d. we can use the lower tail Chernoff bound for
Z =

∑
u∈S2

Zu, or, Pr[Z < (1− δ)µ] <
(

e−δ

(1−δ)1−δ

)µ
. Note that µ = E [Z] =∑

u∈S2
Pr[Zu = 1] = (ε · n− |S1|)

(
1− (1−m/n)|S|

)
. Therefore

µ ≥ (5/6) · ε · n ·
(
1− (1−m/n)|S|

)
(since |S1| ≤ ε · n/6)

≥ (5/6) · ε · n · (1− (1−m/n)) (since |S| ≥ 1)

= (5/6) · ε · n · m
n

= (5/6) · ε ·m > 0.5 · ε ·m.
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For δ = 1/2 this yields

Pr[Z < µ/2] <

(
e−0.5

(0.5)0.5

)0.5·ε·m

=
(e
2

)−ε·m/4
.

Recall that we want to bound the probability Pr[Z < 2 · τ ]. Therefore it
is enough to show that µ ≥ 4 · τ . Indeed, starting with the expression µ =
(ε · n− |S1|)

(
1− (1− m

n )
|S|) we have that

µ ≥ (5/6) · ε · n ·
(
1− e−mn |S|

)
(by 1 + x ≤ ex)

≥ 5 · |S1| ·
(
1− e−

m·ε
6|S1|

|S|
)

(since n ≥ 6|S1|
ε

and for α > 0, n ·
(
1− e−αn

)
↗ in n)

≥ 5 · τ ·
(
1− e−m·ε6τ 2·τ/3

)
(since |S1| = τ and |S| ≥ 2 · τ/3)

= 5 · τ ·
(
1− e−m·ε/9

)
> 4 · τ (since m ≥ 15/ε) .

Proof of Lemma 2. We first prove (1) by induction on ρ. For the base case
where ρ = r, we have that by definition of S(b, r + 1) and S1(b, r + 1), for all
i : i ∈ S(b, r + 1) ⇔ i ∈ S1(b, r + 1). Therefore |S(b, ρ)| = |S(b, r)| ≥ 1 and
|S1(b, ρ)| = |S1(b, r)| ≥ 1, with probability 1, and the base case holds. For the
inductive step, assume the claim holds for some round ρ ≤ r +R − 1, i.e., with
probability at least (1− p)ρ−r:

|S(b, ρ)| ≥ (2/3)|S1(b, ρ)| and |S1(b, ρ)| ≥ 3ρ−r . (1)
Recall now that the protocol proceeds from round ρ to round ρ + 1 by having
parties in S(b, ρ) send a valid message on b to party i (i ∈ [n]) with probability
m/n. We define the events A : |S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)| and

B : |S(b, ρ)| ≥ (2/3)|S1(b, ρ)| and |S1(b, ρ)| ≥ 3ρ−r.

To figure out a bound on how many new honest parties receive this message in
the next round (which is the set S(b, ρ + 1)), and since |S1(b, ρ)| ≤ ε · n/3 by
hypothesis, it is enough to call AddRandomEdges(V, S2(b, ρ), S3, S(b, ρ),m)
from Figure 1. By applying Lemma 1 for τ = S1(b, ρ), we get that, assuming
m ≥ 15/ε, Pr[A|B] ≥ 1− p, and thus Pr[|S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)||B] ≥ 1− p.
By the inductive hypothesis in Equation 1 we know that Pr[B] ≥ (1 − p)ρ−r,
and therefore by the identity Pr[A] ≥ Pr[B] · Pr[A|B] we have that

|S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)| , (2)
with probability at least (1− p)ρ−r · (1− p) = (1− p)ρ+1−r. Now by Equation 2
we have |S(b, ρ+ 1)| ≥ 2 · |S1(b, ρ)| ≥ (2/3) · |S1(b, ρ+ 1)|, as required. The last
part is because, by definition of S1() and S() we have

|S1(b, ρ+ 1)| = |S(b, ρ+ 1)|+ |S1(b, ρ)| .
Finally, by Equation 2, the above can be written again as
|S1(b, ρ+ 1)| = |S(b, ρ+ 1)|+ |S1(b, ρ)| ≥ 3 · |S1(b, ρ)| ≥ 3 · 3ρ−r = 3(ρ+1)−r ,

as required.
For (2), take r∗ to be the first round with |S1(b, r

∗ − 1)| > ε · n/3. It has to be
the case that |S1(b, r

∗ − 2)| ≤ ε · n/3. Thus, we can apply Item (1) for round
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r∗−1 and we have that |S(b, r∗−1)| ≥ (2/3) · |S1(b, r
∗−1)| > (2/3) ·ε ·n/3, with

probability at least (1− p)r∗−r−1, where p = ε · n · e−ε·m/9. The set S(b, r∗ − 1)
contains all honest parties i who added b to Extractedi at round r∗−1. These are
all the parties who propagate b during round r∗. For each honest party 1, . . . , ε · n
(without loss of generality, we assume ε · n is an integer) we define an indicator
random variable Zi = 1, if party i adds b to Extractedi at round r∗, i.e., if i
receives a valid message of b within this round and Zi = 0 otherwise. We want
to bound the probability Pr

[⋃ε·n
i=1{Zi = 0}

]
, since this is the probability with

which at least one honest party i doesn’t add b to Extractedi at round r∗. From
the union bound of this probability we get that

Pr

[
ε·n⋃
i=1

{Zi = 0}

]
≤

ε·n∑
i=1

Pr[Zi = 0] = ε · n ·
(
1− m

n

)|S(b,r∗−1)|
≤ ε · n ·

(
1− m

n

) 2
3 ·
εn
3

= ε · n ·
((

1− m

n

) n
m

) 2
3 ·
εm
3

≤ ε · n · e−2ε·m/9 .

Therefore, all honest parties receive b at round r∗, i.e. |S1(b, r
∗)| = ε · n, with

probability at least (1−ε ·n ·e−2ε·m/9) · (1−p)r∗−r−1, as required. For any round
after r∗, the same holds with the same probability and it holds with certainty,
conditioned that it holds for r∗.

Proof of Lemma 6. Fix a recipient party j. For i = 1, . . . , |Mp|, let Xi be a
0-1 random variable such that Xi = 1 iff the i-th message in Mp is assigned
to list Lj . Note that Pr[Xi = 1] = m/n. Define X =

∑|Mp|
i=1 Xi. Note that

E [X] = µ = |Mp| ·m/n ≤ Λp/2. By Chernoff,

Pr [X > Λp] ≤ Pr [X ≥ 2 · µ] ≤ e−µ/3 ≤ e−c·m = negl(κ) ,

for some constant c and since µ = m · |Mp|
n and m = Θ(κ).

Proof of Lemma 7. When a party calls Propagate(), it first sends the fresh
public key to all parties and then it creates and sends n lists Li, each of size Λp ·s.
Thus, by Lemma 6, the communication complexity of one call of the process is
at most n · Λp · s = 2m · n d|Mp|/ne s = O(max {n, |Mp|} ·m · s).

Before we provide the proof of Lemma 8, we remind the definition of a PKE
scheme and the CPA-security for a PKE scheme.

Definition 12 (Computational Indistinguishability). Let {Dκ}κ∈N, {Eκ}κ∈N
be two distribution ensembles, for security parameter κ. We say that they are
computationally indistinguishable, denoted by {D}κ∈N ≈ {E}κ∈N, if for every
PPT algorithm A, there exists a function negl(·), negligible in κ, such that:∣∣∣ Pr

x←Dκ
[A(x) = 1]− Pr

x←Eκ
[A(x) = 1]

∣∣∣ ≤ negl(κ).

Definition 13 (Public Key Encryption (PKE) sceme). A public key en-
cryption (PKE) scheme is a 3-tuple of PPT algorithms (KeyGen,Enc,Dec) such
that:
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• The key generation algorithm KeyGen takes as input the security parameter
in unary 1κ and outputs a pair of keys (pk, sk), where pk is referred to as
the public key and sk as the secret (or private) key.

• The encryption algorithm Enc takes as input a public key pk and a message
x and outputs a ciphertext c, denoted as c← Encpk(x).

• The decryption algorithm Dec takes as input a secret key sk and a ciphertext
c and outputs a message x or a special symbol ⊥ denoting failure to decrypt.
We denote x := Decsk(c). The decryption algorithm is deterministic.

Definition 14 (CPA Security). Let ΠPKE = (KeyGen,Enc,Dec) be a public
key encryption scheme and consider the following experiment:

Experiment CPACΠPKE
(κ, b) :

1. Run KeyGen(1κ) to obtain keys (pk, sk).
2. Adversary C receives pk and outputs a pair of same-length messages m0,m1.
3. Ciphertext c← Encpk(mb) is given c to C.
4. When C outputs a bit b′ the experiment returns b′

We say that ΠPKE has indistinguishable encryptions against a chosen plain-
text attack (CPA-security) if there is a function negl(·) negligible in κ such that
for all PPT adversaries C, we have∣∣∣Pr[CPACΠPKE

(κ, 1) = 1]− Pr[CPACΠPKE
(κ, 0) = 1]

∣∣∣ ≤ negl(κ).

Proof of Lemma 8. We describe a simulator S. To simulate an honest party
p the simulator first generates (skp, pkp) ← KeyGen(1κ) and sends pkp to all
parties. Then for each j ∈ n, the simulator samples some cj of size Λp as a
ciphertext with respect to pkj as follows. Let Mp be p’s input to Fprop. Then
cj is computed as Enc(pkj ,Lj), where each message in Mp is added to Lj with
probability m/n and then each list Lj is padded with dummy messages to reach
size Λp = 2m d|Mp|/ne. Note that due to Lemma 6, the size of Lj is always less
than Λp with overwhelming probability. Then the simulator sends cj to pj .
Static corruptions.When corrupted party p sends ciphertext c to honest party
pj , S attempts to decrypt c using skj . If this succeeds, store the resulting plain-
text. At the end of the protocol, S constructs a vector x of all so obtained plain-
texts and stores the intended recipients in J . Then, it inputs (SendDirect,x, J)
to Fprop on behalf of party pi (It inputs nothing if all decryptions fail.)
Adaptive corruptions. The first time a party can be corrupted is when it
sends its first message, in Line 14 (If it is corrupted before, there is no state to
simulate.) There are two subcases:

p is corrupted before the output step. Simulation of p’s internal state
apart from the received ciphertexts is trivial, as p keeps only its own honestly
generated ciphertexts as well as its secret key sk (which S knows) in the
protocol prior to sending; everything else, including the plaintext lists, is
erased at this point.
p is corrupted after the output step. In this case, S has to ensure that
the ciphertexts received by p over the course of the protocol match what it
has output (i.e., what it received from Fprop). This, however, follows from
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the CPA security of the public key encryption scheme, as we show in more
detail now.

We show that for any PPT distinguisherD, distributionsRealPropagate,A(1
κ,x, z)

and IdealFprop,S(1
κ,x, z) over x, z ∈ {0, 1}∗ are indistinguishable. Let D denote

a PPT distinguisher. We define the hybrid experiments H0, {Hi,j}i,j=1 ...,n,j 6=i
as follows:

• Let hybrid H0 correspond to the ideal world experiment where S simulates
the execution of Π, given access to the ideal functionality Fprop. Note that
by definition, the output distribution of H0 satisfies H0 = IdealFprop,S .

• Define hybrid H1,2 as a modified version of H0 as follows. The experiment
can observe exactly what message lists are being forwarded by Fprop to each
party on behalf of every other party. This information is ignored and the
experiment behaves identically asH0, except if party p1 is honest and is being
sent a ciphertext c12 by another honest party p2. In this case, the experiment
instead encrypts (using pk1) and forwards the list that Fprop forwards to p1
on behalf of p2. (Recall that in H0, this list is assembled at random and
padded from p2’s input to Fprop). If p1 is dishonest, then the experiment
forwards to the distinguisher either a ciphertext c if the dishonest party p2
provides c or nothing else. Denote Hyb(1κ,x, z)1,2 the output distribution
of the vector of honest outputs and set of corrupted parties in the hybrid
experiment H1,2.

• More generally, for i = 1, . . . , n, j = 1, . . . , i− 1, i+1, . . . , n we define hybrid
Hi,j as a further modified version of H0. Each hybrid in this sequence acts
exactly as H0 does, except that it encrypts the lists forwarded by Fprop for an
increasing set of pairs of honest receiver/sender under the honest receiver’s
public key, instead of the ciphertexts being sampled according to the strategy
of simulator S. Specifically, for hybrid Hi,j the experiment acts exactly as
the previous hybrid Hi,j−1 (or as Hi−1,n, in case j = 1), but makes the
following modification in case the party pi and pj are both honest. In this
case, the experiment observes what list Fprop forwards to pi on behalf of pj .
It encrypts this list under pki and forwards it to pi. (Recall that in Hi,j , this
list is assembled at random and padded from pj ’s input to Fprop).

• Notice that by construction, that the output distribution of Hn,n−1, denoted
Hyb(1κ,x, z)n,n−1, corresponds exactly to that of RealΠ,A(1

κ,x, z); every
ciphertext from an honest sender to an honest receiver is the encryption
under the receiver’s public key of the sender’s message towards the receiver.
We show that output distributions of the real and ideal world experiments are

computationally indistinguishable, assuming a CPA-secure PKE scheme (KeyGen,
Enc,Dec) and secure erasure. We do so in O(n2) steps; we argue how the output
distributions of any two consecutive hybrids are computationally indistingush-
able under those assumptions.
There are three cases of reductions:
1. from H0 to H1,2;
2. from Hi,j to Hi,j+1,i 6= j, j < n
3. from from Hi,n to Hi+1,1,i 6= j, i < n
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We will show the main idea of the reduction for the case of H0 to H1,2; the other
cases follow analogously.

Note that the output distributions of Hyb(1κ,x, z)0 and Hyb(1κ,x, z)1,2
differ at most w.r.t. the ciphertext that party p1 receives from p2 in case both of
these parties are honest; the rest of their execution is identical by construction
of the sequence of experiments. We describe a reduction C from the CPA secu-
rity of PKE that turns an efficient distinguisher D against Hyb(1κ,x, z)0 and
Hyb(1κ,x, z)1,2 into a distinguisher w.r.t. CPA security.

The Reduction C. C plays in either one of the CPA indistinguishability games
CPACΠPKE

(1κ, 0) or CPACΠPKE
(1κ, 1). Thus, it obtains initially a public key pk and

picks this to be the key of p1. It then simulates the experiment Hyb(1κ,x, z)0
or Hyb(1κ,x, z)1,2 in its head as follows:
1. It honestly samples all public keys of honest parties in known fashion.
2. It carries out the simulation exactly as S (except for p1 and p2, given they

are both honest), but internally also simulates the behaviour of Fprop.
3. When the honest p2 inputs to Fprop, C simulates the behaviour of Fprop as

specified by the functionality’s interface. Let L1,2 denote the (padded) list
that p1 receives via Fprop from party p2 . C samples a second list L′1,2 as
specified by S and hands the challenger in its own CPA experiment both
m0 := L1,2 and m1 := L′1,2. When it receives a challenge ciphertext c∗, it
uses this as the ciphertext sent between p1 and p2 in its simulation.

4. After the simulation completes, it outputs the resulting output vector as well
of honest parties as well as the view of the set of corrupted parties to the
distinguisher D and receives a guess b from D.

5. C returns b.
Clearly, if C played CPACΠPKE

(κ, 0), then c∗ corresponds to L′1,2 and C perfectly
simulates the output distribution ofHyb(1κ,x, z)0. Otherwise, it perfectly simu-
latesHyb(1κ,x, z)1,2. Thus, |Pr[D(Hyb(1κ,x, z)0) = 1]−Pr[D(Hyb(1κ,x, z)1,2) =

0]| = |Pr[CPACΠPKE
(κ, 0) = 1]− Pr[CPACΠPKE

(κ, 0) = 1]| ≤ negl(κ). By triangle in-
equality, it follows from a similar argument that |Pr[D(IdealFprop,S(1

κ,x, z)) =
1]− Pr[D(RealΠ,A(1

κ,x, z)) = 0]| ≤ n2 · negl(κ) = negl(κ).
Since κ = polylog(n), this concludes our proof.

Proof of Theorem 3. Security follows from Theorem 2. In M-DistinctCV
an honest party always uses the function distinctk before sending. The CC
can also follow from Theorem 2, where the use of distinctk for the input sets
means that each party at any point can input at most the set distinctk(M).
Thus, the number of bits sent by one party is, with probability 1− negl(κ):∑dlog εne
i=1 O

(
(n+ |distinctk(M)|)m · s

)
= Õ(n ·max{n, |distinctk(M)|}m · s)

Proof of Lemma 12. The trivial case κ ≥ εn is of no interest, since then R ≥
2 · n, so we focus on the case κ < εn and thus pmine < 1.
For each party i (honest or dishonest), we define indicator random variablesXi =
1 if Fmine has i in the respective committee. The r.v.s are pairwise independent,
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since Fmine throws an independent random coin for each choice, with Pr[Xi =
1] = κ

ε·n . We prove each case separately:

1. We bound the probability of the event that no honest party is elected to the
respective committee.
Define X1 =

∑
i honest

Xi, then:

Pr[X1 = 0] = Pr

[ ⋂
i honest

Xi = 0

]
=

∏
i honest

Pr [Xi = 0] (due to independence)

≤
ε·n∏
i=1

Pr [Xi = 0] (at least ε · n honest parties )

= (1− pmine)
ε·n

≤ e−ε·n·pmine (by use of 1 + x ≤ ex)

= e−κ (since pmine =
κ

ε · n
)

2. We bound the probability of the event that more than R dishonest parties
are elected to the respective committee. Define X2 =

∑
j dishonest

Xj , with E [X2] =∑
j dishonest

Pr[Xj = 1] = |S3| · pmine = |S3| · κ
ε·n ≤

1−ε
ε · κ.

Also, R = 2κ
ε ≥ (1+ δ)(1− ε) ·n · κε·n ≥ (1+ δ) ·E [X2], for any δ ∈

(
0, 1+ε1−ε

]
.

So, if we define as X∗2 the random variable X∗2 =
(1−ε)n∑
j=1

Xj , from applying a

Chernoff bound, we have
Pr [X2 > R] ≤ Pr [X∗2 > R]

≤ Pr [X∗2 ≥ (1 + δ)E [X∗2 ]]

≤
(

eδ

(1 + δ)(1+δ)

) 1−ε
ε ·κ

. (3)

We distinguish the cases:
ε < 1/2: Then, 1− ε > 1/2 and 1/ε > 2, thus (1− ε)/ε > 1. Pick δ = 1/2,
then Equation 3 becomes

Pr [X2 > R] ≤

[(
8 · e
27

)1/2
] 1−ε

ε ·κ

<

[(
8 · e
27

)1/2
]κ

.
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ε ≥ 1/2: Set δ = 1+ε
1−ε , thus 1 + δ = 1+ε+1−ε

1−ε = 2
1−ε . Then, Equation 3

becomes

Pr [X2 > R] ≤ e−(1−ε)κε ·
(

e

1 + δ

)(1+δ)(1−ε)κε

≤
(

e

1 + δ

)(1+δ)(1−ε)κε
, (since

1− ε
ε
· κ > 0)

=

(
e · (1− ε)

2

) 2κ
ε

, (since 1 + δ =
2

1− ε
)

≤
(e
4

)2κ
, (since ε ≥ 1/2⇒ e · (1− ε)

2
≤ e

4
and 1/ε > 1) .

Proof of Lemma 14. Suppose that for some slot s, an honest party p adds bit
b to Extractedsp at some round r. We prove that by the end of the protocol all
honest parties j add b to their Extractedsj sets with probability at least 1−negl(κ).
We distinguish the following cases according to the step in which p adds bit b
to Extractedsp (We sometimes omit “with probability 1−negl(κ)” when it is clear
from the context.)
1. r ≤ R and p adds b to Extractedsp in Line 6 of Votep(r). This means

that p sends a valid-(r+ 1) batch v′i for (b, s) to all parties via Send(v′i, [n])
in Line 8 of Votep(r) and therefore all parties j add b to their Extractedsj
sets during Distributej(r + 1).

2. r ≤ R and p adds b to Extractedsp in Line 4 of Distributep(r): For
this to happen, p has received, at round r, a valid r-batch v for (b, s) in
Line 2 of Distributep(r). Valid r-batch v belongs to the set V provided
as input to Mr-DistinctCV in Line 5 of Distributep(r). Since protocol
Mr-DistinctCV is t-secure (Theorem 3), all honest parties output a set
that contains v after Distributep(r) ends. By Lemma 12(i), there is at least
one honest voter ` in the (b, s)-committee. We distinguish two cases.
(a) ` has not voted before for (b, s), i.e., b /∈ Voteds` . This means that ` sends

a valid-(r+1) batch v′i for (b, s) to all parties via Send(v′i, [n]) in Line 8
of Votep(r) and therefore all parties j add b to their Extractedsj sets
during Distributej(r + 1);

(b) ` voted before for (b, s), i.e., b ∈ Voteds` . Let r′ < r be the round when `
voted for (b, s). This means that ` sent a valid-(r′+1) batch v′i for (b, s)
to all parties via Send(v′i, [n]) in Line 8 of Votep(r′) and therefore all
parties j added b to their Extractedsj sets during Distributej(r′ + 1).

3. p adds b to Extractedsp in Line 4 of Distributep(R+1): In this case, p
observes a valid (R+1)-batch for (b, s). By Lemma 12(ii), at least one of the
voters, say voter `, is honest. Let r′ < R+ 1 be the round when ` voted for
(b, s). This means that ` sent a valid-(r′+1) batch v′i for (b, s) to all parties
via Send(v′i, [n]) in Line 8 of Votep(r′) and therefore all parties j added b
to their Extractedsj sets during Distributej(r′ + 1).
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Proof of Lemma 15. Follows directly from TrustedPBC, Distribute and
the idealized signature scheme. Every honest sender s with input bit bs, executes
Line 5 of TrustedPBC and thus sends to all parties message a valid 1-batch
(their signature) for (bs, s) at the beginning of the protocol. So, all honest parties
h add bs to their Extractedsh sets at the beginning of Distribute(1). By the
idealized signature scheme, no other bit b′ could bare a valid signature from ps,
so no other bit b′ could be in an honest party’s Extracteds set.

Proof of Theorem 5. The communication of TrustedPBC is dominated by
M-DistinctCV. By Theorem 3 each such call invokes Õ(n·max{n, |distinctk∗
(Mr)|} ·ms) communication. From Lemma 13, each distinctk∗(Mr) is a set
containing at most 2 · n valid r-batches. Each r-batch is of size κ · r. Therefore,
Õ(n ·max{n, |distinctk∗(Mr)|} ·ms) = Õ(n2 ·m ·κr), for each round r. So, we
can count the overall CC during the protocol by counting the complexity over
all rounds, getting

CC(p) =
R∑
r=1

Õ(n2 ·m · κr) = Õ(R2 · n2 ·m · κ) = Õ(n2 · κ4) .
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