
Everything is Connected: From Model
Learnability to Guessing Entropy

Lichao Wu1, Leo Weissbart1,2, Marina Krcek1, Huimin Li1, Guilherme
Perin1, Lejla Batina2 and Stjepan Picek1

1 Delft University of Technology, The Netherlands
2 Digital Security Group, Radboud University, The Netherlands

Abstract. Guessing entropy is a common choice for a side-channel analysis metric,
and it represents the average rank position of a key candidate among all possible key
guesses. In the profiled side-channel analysis, the guessing entropy behavior can be
very informative about the trained or profiled model. However, to achieve reliable
conclusions about the profiled model’s performance, guessing entropy behavior should
be stable to avoid misleading conclusions in the attack phase.
In this work, we investigate this problem of misleading conclusions from the entropy
behavior, and we define two new concepts, simple and generalized guessing entropy.
We demonstrate that the first one needs only a limited amount of attack traces
but can lead to wrong interpretations about leakage detection. The second concept
requires a large (sometimes unavailable) amount of attack traces, but it represents
the optimal way of calculating guessing entropy. To quantify the profiled model’s
learnability, we first define a leakage distribution metric to estimate the underlying
leakage model. This metric, together with the generalized guessing entropy results for
all key candidates, can estimate the leakage learning or detection when a necessary
amount of attack traces are available in the attack phase. By doing so, we provide a
tight estimation of profiled side-channel analysis model learnability. We confirm our
observations with a number of experimental results.
Keywords: Side-channel Analysis · Deep Learning · Guessing Entropy · Model Learn-
ability

1 Introduction
Side-channel attacks (SCAs) are recognized as powerful attacks on implementations of
cryptographic algorithms. Commonly, one divides side-channel attacks into direct attacks
like Simple Power Analysis (SPA) and Differential Power Analysis (DPA) [KJJ99] and
two-stage (profiled) attacks like template attack [CRR02], stochastic models [SLP05],
and machine learning-based attacks [LPB+15, MPP16, PHJ+17]. Direct attacks have an
advantage that they do not require access to an identical and open copy of the device under
attack, but to break an implementation, such attacks might require tens of thousands of
measurements (or more, depending on the level of protection deployed). On the other
hand, two-stage attacks assume an “open” device (or a copy of it), but the actual key
recovery stage requires only a few measurements or, in some cases, a single trace. In
recent years, machine learning-based attacks posed themselves as a strong alternative
for profiled SCA. Additionally, the rapid improvements in the deep learning domain also
advanced SCA as deep learning methods showed to be capable of breaking even protected
implementations [CDP17, KPH+19].

When evaluating the attack’s performance, we require reliable metrics, and guessing
entropy is commonly accepted as one of the most suitable ones for SCA. More precisely,

the level of convergence of guessing entropy for the correct key candidate indicates how
successful an attack is [SMY09]. For profiled attacks to be successful, the number of attack
traces in the test or attack phase to reach guessing entropy equal to 11 depends on the
ability of the profiling model (i.e., template for template attack or machine learning model)
to fit existing leakage and generalize to a separate attack set. Moreover, following the
assumption that the profiling model can fit the existing leakage, issues like noise (from
the environment of countermeasures) also affect the number of required attack traces.
Therefore, it appears as a natural choice for the attacker to maximize the amount of
processed attack traces, as the correct key guessing entropy convergence might only happen
after processing sufficiently many traces.

While guessing entropy is (commonly) a reliable metric to indicate an attack’s per-
formance, we also observe it could behave deceptively (see Sections 4 and 6 for details).
For instance, if all available attack traces are used for every key rank calculation, and
the attack traces are only shuffled for each key rank, the attack can indicate unreliable
generalization results resulting in the correct key candidate not converging (in a way
that it becomes easily distinguishable from other key candidates). This situation applies
especially to the case when the attack is unsuccessful. In this case, there will be several key
candidates that will converge (guessing entropy decreases toward 1) or diverge (guessing
entropy increases towards the maximum rank).

In this paper, we provide a comprehensive interpretation of guessing entropy in the
profiled side-channel analysis. To this end, we define simple guessing entropy and generalized
guessing entropy. The first obtains guessing entropy due to computing key rank multiple
times with all available attack traces, where the attack traces are simply shuffled in order
of processing for each key rank calculation. The generalized guessing entropy assumes
that for each key rank calculation, the attacker randomly selects a portion of the attack
traces to have a higher level of randomization and, consequently, an evident convergence
of the guessing entropy. We also propose Leakage Distribution Difference as a metric
to measure the ability of a profiled model to fit an existing leakage. This metric can
distinguish a model that shows a preference for key candidates (that are similar to correct
key) from a biased model that shows no, or limited, generalization. Finally, by evaluating
the correlation between the Leakage Distribution Difference metric and the ranked vector
or key guesses, we can properly estimate the profiling model learnability.

The main contributions of this paper are:
1. We discuss the types of behaviors of guessing entropy that we might get as attack

results. Consequently, we define two new notions of guessing entropy that estimate
better the attack performance in SCA. More specifically, we introduce simple guessing
entropy and generalized guessing entropy. There, the former one is easier to compute,
but it can also lead to misleading conclusions.

2. We propose a new metric, called Leakage Distribution Difference (LDD) that can be
used to better understand the relationship between the correct key and guessed keys.
This metric represents a fundamental step in building a new metric that enables
estimating the profiling model’s learnability.

3. We investigate the notion of profiling model learnability in SCA, and we propose a
novel way to assess the model learnability. More precisely, we show that the Pearson
correlation between LDD and key guessing vector can reliably indicate an attack’s
performance. This is a first result showing how to estimate the model’s learnability
in profiled SCA to the best of our knowledge.

We provide extensive experimental results to validate our claims, spanning different datasets,
leakage models, and profiling methods.

1Guessing entropy equals 1 means that the correct key is ranked as the best key candidate in the attack
phase

2

2 Background

2.1 Notation

Let b be the number of bits in the target cryptographic state, k is a key byte candidate
that takes its value from the key space K, and k∗ is the correct key byte. A dataset is
defined as a collection of a traceset T , where each trace ti is associated with a plaintext
byte pki and a key ki. The number of profiling traces equals N , and the number of attack
traces equals Q. When investigating the attack performance, we will use either the original
datasets or datasets with added noise. The notation N (µ, σ) is the level of Gaussian
noise added to the traces, where µ is mean, and σ is the standard deviation of the noise
distribution. Finally, θ denotes the parameters to be learned in a profiling model, while λ
denotes the set of hyperparameters defining the learning model. In this paper, bold letters
or bold acronyms, e.g., a and AB, define vectors of size equal to 2b.

2.2 Profiled Side-channel Analysis

A profiled side-channel attack is a category of side-channel analysis methods composed
mainly of template attacks, machine learning attacks, or deep learning attacks. These
techniques depend on sets of parameters θ. When correctly tuned, they produce a model
that can predict with a high probability the key associated with a leakage trace. Profiled
side-channel attacks consist of two phases:

1. Learning or profiling phase. The profiling phase consists of training the set
of parameters θ of a model with a dataset of N profiling traces labeled with the
leakage value of the keys used to compute the cipher texts of all traces with their
corresponding plain texts. The goal is to fit the parameters of a function that maps
the traces to the labels of the dataset in the best way. A model’s learnability is
the capacity of a model’s parameters θ to fit the leakage and predict the associated
labels of a trace correctly. In template attack and machine learning-based attacks,
the learnability is characterized by the points of interest (POIs) selection (as to
avoid the curse of dimensionality) and hyperparameters of the adopted algorithm
(SVM, random forest, Naive Bayes, etc.). In deep neural networks-based attacks,
the learnability depends on selecting the hyperparameters λ, as the neural network
implicitly performs the points of interest (or feature) selection.

2. Test or attack phase. The attack phase consists of obtaining label predictions for
the traces of a different dataset of Q attack traces to test the model. The trained
model processes each separate attack trace and predicts with a vector of individual
probabilities pi,j that a trace i is associated with the leakage value j linked to the
key. An attack’s output is the logarithmic sum of all Q probability vectors of single
model predictions, where each index is associated with one key hypothesis. Sorting
this probability vector by decreasing probabilities leads to a vector of key guesses
ranked by increasing prediction confidence of the model. The key rank denotes the
position of the correct key. Then, one can use notions of guessing entropy and success
rate to estimate the attacker’s performance [SMY09].

Definition 1. Key guessing vector. Let us assume that given Q amount of traces
in the attacking phase, an attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in
decreasing order of probability with |K| being the size of the key space.

Definition 2. Guessing entropy. The guessing entropy represents the average position
of k∗ in the key guessing vector (g).

3

2.3 Supervised Machine Learning
Supervised learning requires learning a mapping between a set of input variables X and
an output variable Y . This represents the learning phase. Once this mapping is learned,
it is necessary to apply it to predict unseen data outputs. This represents the testing
phase. Thus, it is clear that supervised learning can be directly connected with profiled
SCAs. Note that in this paper, we consider only the classification task as the goal of
the side-channel attack. To make this connection even more explicit, we require several
machine learning concepts we define next.

Definition 3. Model learnability. A model is learnable if there exists a polynomial-time
algorithm that achieves low error with high confidence for all examples.

Definition 4. Model generalization. It represents the model’s ability to adapt properly
to new, previously unseen data, drawn from the same distribution used to create the
model.

Definition 5. Overfitting. It represents the phenomenon when a model learns the detail
and noise in the training data to the extent that it negatively impacts the performance of
the model on test data.

Definition 6. Bias of a model. It represents the error from wrong assumptions in the
learning algorithm.

2.4 Classifiers
We investigate the performance of three common profiled attack methods: template attack,
multilayer perceptron, and convolutional neural networks.

Template Attack. Template attack (TA) uses Bayes theorem to obtain predictions,
dealing with multivariate probability distributions as the leakage over consecutive time
samples is not independent [CRR03]. In the state-of-the-art, template attack relies mostly
on a normal distribution. It consists of two phases: the offline phase during which the
templates are built, and the online phase where the matching between the templates and
unseen power leakage happens.

Multilayer Perceptron. The multilayer perceptron (MLP) is a feed-forward neural net-
work that maps sets of inputs onto sets of appropriate outputs [GD98]. MLP consists of
multiple layers of nodes in a directed graph, where each layer is fully connected to the
next one, and training of the network is done with the backpropagation algorithm. There
are at least three layers: one input layer, one output layer, and one hidden layer. If there
is more than one hidden layer, then such an architecture already represents deep learning.

Convolutional Neural Networks. Convolutional neural networks (CNNs) commonly con-
sist of three types of layers: convolutional layers, pooling layers, and fully-connected layers.
Convolution layer computes the output of neurons that are connected to local regions in
the input, each computing a dot product between their weights and a small region they are
connected to in the input volume. Pooling decreases the number of extracted features by
performing a down-sampling operation along the spatial dimensions. The fully-connected
layer (the same as in MLP) computes either the hidden activations or the class scores.
The batch normalization layer normalizes the input layer by adjusting and scaling the
activations.

4

2.5 ASCAD Dataset
The ASCAD dataset contains 200 000 traces for profiling, with random keys and random
plaintexts, and 100 000 for the attack phase, with fixed key and random plaintexts. Side-
channel traces in this dataset represent the AES encryption, where the attacked trace
interval represents the processing of byte 3 in the S-box operation presented in the first
round. A window of 1 400 points of interest is extracted around the leaking spot. The
operation is masked, and in our analysis, no knowledge about masks is assumed in the
profiling phase.

3 Related Works
When considering profiled side-channel attacks, we divide related works into three directions:
1) classical profiled attacks, 2) machine learning-based attacks, and 3) deep learning-based
attacks. The first two directions mainly oriented toward improving the attack performance
by selecting discriminating features or strong machine learning models. The third directions
extended this by considering topics like explainability, interpretability, data augmentation,
the difference between SCA and machine learning metrics, etc.

3.1 Classical Profiled Attacks
In the seminal work of Chari et al., the authors developed the template attack and showed
it could break implementations secure against other forms of side-channel attacks [CRR03].
This attack is the most powerful one from the information-theoretic point of view, but
to reach its full power, it requires an unbounded number of traces, and that the noise
follows the Gaussian distribution [LPB+15]. Instead of using one covariance matrix for
each label y, the authors of [CK14] proposed to use one pooled covariance matrix averaged
over all labels to cope with statistical difficulties. Finally, the third type of attack called
stochastic attack utilizes linear regression instead of probability density estimation (as
used in TA) [SLP05].

3.2 Machine Learning-based Attacks
While machine learning techniques are widely used for several decades, the SCA community
showed interest in such techniques one decade ago. First, the most interest sparked
techniques like random forest [LMBM13, HPGM16] and support vector machines [HZ12,
PHJ+17]. Besides those techniques, a multilayer perceptron also showed significant
potential [GHO15], but there, the boundary between machine learning and deep learning
is often not very clear as the first works do not report precisely the neural network sizes.

3.3 Deep Learning-based Attacks
Today, deep learning represents a common direction for profiled SCA, where several
research directions can be followed. Note that we do not aim to provide an extensive
overview, but rather, a brief discussion on selected works. For a detailed survey of machine
learning in profiled attacks, we refer interested readers to [HGG20a].

Finding Strong Machine Learning Models. The rapid development of deep learning-
based SCAs started in 2016 when Maghrebi et al. demonstrated the strong performance
of several neural network types, most notably, convolutional neural networks [MPP16].
Deep neural networks configurations are difficult to tune. The good performance of
multilayer perceptrons or convolutional neural networks relies on an efficient selection of
hyperparameters for specific datasets. In [ZBHV19], the authors proposed a methodology

5

to select hyperparameters that are related to the size (number of learnable parameters,
i.e., weights and biases) of layers in CNNs. This includes the number of filters, kernel
sizes, strides, and the number of neurons in fully-connected layers. In [BPS+20], an
empirical evaluation for different hyperparameters is conducted for CNNs on the ASCAD
database. Still, to the best of our knowledge, there are no publications providing solutions
for hyperparameters optimization algorithms for the context of side-channel analysis. Kim
et al. investigated how adding noise to the input (thus, serving as regularization) improves
the performance of profiled SCAs [KPH+19]. Depending on the number of profiling traces,
the number of features (or sample points), and the protection level of the target device
(including masking and hiding countermeasures), the number of the machine or deep
learning models that can be tested is easily limited by computation power or time budget.
In this case, the security evaluator or attacker has two options: 1) train the maximum
possible amount of models within the available resources, or 2) train a limited amount
of models by using optimization methods. Nevertheless, the best leakage model selection
also influences the performance of the deep learning model [PCP19].

Not Enough Measurements. It is intuitive that the number of measurements also limits
the performance of a profiled attack. Deep neural networks are known to provide top-level
performances in many domains when the amount of training data is sufficiently large.
However, it could also provide remarkable performance when the amount of training data is
reduced. In the context of profile side-channel attacks, Cagli et al. investigated how to create
measurements that improve the attack performance synthetically [CDP17]. Differing from
the previous work where the authors developed a specialized data augmentation technique,
Picek et al. showed that generic data augmentation techniques help in profiled SCA
also [PHJ+18]. Researchers also investigated whether limiting the number of measurements
can be beneficial, both from the experimental setup and performance sides [PHPG19].

Differences between SCA and Machine Learning Metrics. Commonly, in machine
learning, one estimates the behavior of a profiling model based on statistics of individual
observations like accuracy, loss, or recall. Unfortunately, such metrics can be misleading
in SCA, as one considers cumulative predictions. Picek et al. showed that common
machine learning metrics could suggest radically different performance than the SCA
metrics [PHJ+18]. Masure et al. connected the perceived information and negative log-
likelihood, which shows there can be common ground when using machine learning metrics
in SCA [MDP19b]. Finally, Perin et al. discussed how mutual information could be a
good metric to indicate when to stop the machine learning training process [PBP20].

Interpretability and Explainability. Interpretability is the degree to which a human can
consistently predict the model’s result [KKK16]. Explainability is the extent to which a
machine learning system’s internal mechanics can be explained in human terms. Several
works consider visualization techniques to find the relevant features and improve the
interpretability [HGG20b, MDP19a]. Van der Valk and Picek extended guessing entropy
to guessing entropy bias-variance decomposition to improve the interpretability of results
from machine learning-based attacks [vdVP19]. Van der Valk et al. considered the
activation functions in neural networks to interpret what neural networks learn while
training on different side-channel datasets [vdVPB19].

4 On Possible Guessing Entropy Behaviors
Recall, guessing entropy is the average rank of the correct key k∗ in a key guessing vector
g after processing Q attack traces. Commonly, guessing entropy is computed for every

6

byte of the key to make predictions.2 This resulting prediction can be used to determine
the remaining brute-force key enumeration effort after finishing the attack.

From a practical perspective, the number of attack traces Q is always limited and
defined according to side-channel measurements’ availability. When Q is not sufficiently
large, a natural choice for attackers or security evaluators is to maximize the amount of
attack traces in each key rank calculation used to obtain the guessing entropy for a certain
key guess k. This leads to what we define as simple guessing entropy. In this case, the
final key rank value obtained after the processing of Q attack traces, for all key candidates
k, is the same in each key rank calculation.

Definition 7. Simple Guessing Entropy (SGE). Given Q attack traces, the simple
guessing entropy results from the average computation of multiple attacks, where each
calculation considers the full set of available Q attack traces with shuffling.

Following Definition 1, gsge represents the key guessing vector obtained from the
guessing entropy computed according to Definition 7.

Simple guessing entropy is commonly found in open source codes released with recent
publications [ZBHV19, BPS+20] 3 4. Several behaviors can be observed from simple
guessing entropy results for a single key byte, including:
• GE can continuously decrease with increasing the number of attack traces. It is
valid to conclude that increasing the number of attack traces will lead to successful
key recovery with the trained model as the final guessing entropy value can be very
low, shown as the blue line in Figure 1.

• GE can continuously increase with increasing the number of attack traces. It is
valid to assume that adding more traces would only increase GE toward the worst
rank equal to 2b − 1, shown as the red line in Figure 1. The GE value can also
stabilize for some specific value, but it does not decrease with adding more attack
traces.

• GE can stay close to (2b− 1)/2, i.e., it behaves like random guessing, shown as the
green line in Figure 1. Then, we cannot determine GE’s behavior or evolution by
adding more attack traces, as the increase or decrease of GE could only be confirmed
by processing a very large amount of attack traces that may be unavailable.

We provide more examples of these behaviors in Appendix A.
Intuitively, such simple GE behaviors lead to commonly accepted interpretations about

the profiling model performance. When GE increases or stays random, the model is wrong
because it does not learn side-channel leakages related to the correct key. On the other
hand, when GE decreases, the model is trained correctly and can fit the existing leakage.
Adding more attack traces will lead to GE indicating a correct key candidate ranked
among the first ones. Such interpretations of the GE behavior (when computed according
to Definition 7) could lead to inaccurate estimation about the profiled attack performance.
To have consistent conclusions about GE and attack performance, we need to investigate
a generalized way to compute guessing entropy, and what is possible to conclude when this
generalized way cannot be done. Consequently, we present the definition of generalized
guessing entropy, as follows:

Definition 8. Generalized Guessing Entropy (GGE). Given Q attack traces, the
generalized guessing entropy results from the average computation of multiple attacks,
where each key rank calculation considers a randomly selected subset U of Q traces, defined
as U = Q(1− r) traces.

2If guessing entropy is calculated for only certain key bytes, it is partial guessing entropy. Nevertheless,
we use the two terms interchangeably.

3https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA
4https://github.com/ANSSI-FR/ASCAD

7

Figure 1: All defined GE behaviors are seen with the architecture from [KPH+19] and the
ID leakage model on the synchronized ASCAD dataset with the fixed key without any
change in the hyperparameters.

Additionally, we introduce the notion of the randomization factor r = 1 − U/Q, for
U ≤ Q and 0 ≤ r < 1, which defines the level of randomization of attack traces for each
separate key rank calculation. The higher the randomization factor r, the higher the
generalization level represented by generalized guessing entropy. Following Definition 1,
ggge represents the key guessing vector obtained from the guessing entropy computed
according to Definition 8.

Considering the full set of Q attack traces, the shuffling and averaging for SGE does not
bring any statistical improvement as one uses all the traces for every key rank calculation
for the guessing entropy evaluation. On the other hand, for GGE, the traces selected for
each key rank calculation always represent only a smaller subset of the attack trace set
(thus with different noise distribution), increasing the GE estimation’s reproducibility with
higher randomization factor r.

For GGE to provide an accurate estimation of the profiled model’s generalization to
different attack sets, the number of attack traces must be larger than for a simple analysis.
When the number of attack traces is too few to compute GGE, it is still possible to evaluate
if a model can be successful. Consequently, we propose in Section 5 a metric to measure
the model’s learnability of a side-channel leakage.

5 SCA Model Learnability and Estimation
After training a profiling model, it is essential to determine whether the model learned
to fit data, i.e., estimate the model learnability. Commonly, this is done by evaluating
the performance on the attack dataset. If the model fitted data (i.e., learned from the
actual leakage information), its bias is low, and we expect that, by adding more attack
traces, an SCA metric indicates improved attack performance. Even if the model makes
a wrong key guess, one will hope for some relationship between the guessed key and the
correct key. On the other hand, if the model fitted noise, it will either behave as random
guessing or point toward wrong key candidates. Then, one would assume there is little or
no relationship between the guessed and the correct key.

8

5.1 Leakage Distribution Difference Metric
We introduce a metric to quantify the relationship between the guessed key candidate
k and the correct key k∗. First, to better evaluate the profiling model’s preference (i.e.,
the mapping decision) for specific key candidates, we calculate a hypothetical leakage
distribution for every key candidate and all plain texts of a given dataset. We denote this
distribution as the leakage distribution of a dataset. The leakage distribution variation
between different key candidates represents the Leakage Distribution Difference metric,
denoted as LDD. LDD provides an estimation of the hypothetical label distribution
variation between the different key candidates. A specific key will then have a smaller
probability to be selected based on a (properly) trained model if LDD is large between
that key and the correct key.

Eq. (1) calculates the sum of the squared difference between the leakage distribution
of all key hypotheses k ∈ K and the correct key candidate k∗ over Q attack traces. Since
all dimensions are comparable and we do not require high-dimensional spaces, we use the
Euclidean distance (L2 norm). The larger leakage difference between the two input values
will introduce more significant LDD variation. Note, LDD is a vector of dimension 2b,
one for each key candidate k that is computed as follows:

LDD(k∗, k) =
Q∑

i=0
‖f(di, k

∗)− f(di, k)‖2
, k ∈ K. (1)

In the above expression, f(di, k) is the leakage model function that returns the leakage
value according to a key candidate k and data value di ∈ Q, where Q denotes the number
of attack traces in the dataset. LDD is computed for every key candidate, and it gives a
unique distribution of all key candidates based on their difference to the correct key while
being equal to zero for the correct key.

For instance, if the leakage function relies on the Hamming weight of a target byte in
S-box output, we define the Hamming Weight Distribution Difference (HWDD) for the
correct key candidate k∗ and a key candidate k as:

HWDD(k∗, k) =
Q∑

i=0
‖HW (Sbox(pi ⊕ k∗))−HW (Sbox(pi ⊕ k))‖2

. (2)

As we can observe, the leakage function in Eq. (2) is set to HW (Sbox(pi ⊕ k)), where
⊕ is the exclusive OR operation. Similarly, we could also define the Identity Leakage
Distribution (IDD) where the target state is the S-box output. In this case, the leakage
function equals Sbox(pi ⊕ k) and the IDD value for the correct key candidate k∗ and a
key candidate k is:

IDD(k∗, k) =
Q∑

i=0
‖Sbox(pi ⊕ k∗)− Sbox(pi ⊕ k)‖2

. (3)

When clear from the context, we use the notations LDD(k∗, k) and LDD interchange-
ably. The LDD definition can be extended to any leakage model, e.g., MSB or LSB. This
paper restricts the analysis to the Hamming weight and identity leakage models for the
AES cipher. 5

Figure 2 illustrates HWDD and IDD for the correct key candidates k∗ = 34 (correct
key for the ASCAD dataset with random keys) and k∗ = 224 (correct key for the ASCAD

5The publicly available datasets consider AES and leak mostly in those leakage models. Actually, they
leak mostly in the Hamming weight leakage model, and that leakage model will produce the best results.
Still, the ASCAD dataset also leaks in the identity leakage model, enabling us to investigate the IDD
scenario.

9

0 50 100 150 200 250
Key Candidates

0

200

400

600

800

1000

1200
HW

DD
K=34
K=224

(a) HWDD.

0 50 100 150 200 250
Key Candidates

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

ID
D

K=34
K=224

(b) IDD.

Figure 2: Illustration for the HWDD and IDD for key candidates 34 and 224.

dataset with a fixed key). Note that the leakage distribution for each key candidate is
unique. The selection of the reference key, therefore, determines the LDD value for each
key candidate. For instance, the correct key candidate has a distribution difference equal
to zero. For the remaining key byte candidates, the lower the distribution difference, the
more similar are the key bytes to the correct key candidate.

5.2 Case Study: Attack on a “Noise-free” Dataset
Next, we discuss the most-likely key (ranked as the first in g) and least-likely key (ranked
as the last in g) guesses and their relationship to the correct key. We use a ChipWhisperer
dataset as the correct key can be retrieved within ten attack traces with a template attack
(TA) [OC14]. 6 Additionally, only two points of interest (we denote them as POI1 and
POI2) are required to attack this dataset successfully. Consequently, the probability
density function (PDF) for each cluster, which is equivalent to the templates built during
the profiling phase, can be represented by a 2D image. By visualizing the distribution of
different cluster’s PDFs, we can better understand the LDD metric.

Figures 3a and 3b show PDFs of 1 000 POIs’ distribution for most-likely and least-likely
key candidates for TA. Note that, in this case, the most-likely key is also the correct key.
Since we use the HW leakage model, nine PDFs representing nine HW clusters are built
during the profiling phase. Each PDF is represented by two contour lines that denote 0.5
(outer) and 0.9 (inner) of the maximum probabilities. The color of each point is attributed
based on their cluster label. The distribution of the POI pairs for the same label is denoted
as HW-POI distribution.

From the results, we observe 1) POI1 and POI2 are strongly correlated, 2) the HW-POI
distribution for the most-likely (correct) key matches better to its labeled cluster than
for the least-likely key, and 3) the distribution of each PDF is separable. Based on these
observations, we could conclude that the HW variation is strongly correlated with the
PDFs’ mean differences. In other words, the mean difference between PDFs and the
variation of the corresponding HW values are similar.

We extend the single HW difference to the HW distribution difference (HWDD).
Note that the only difference is that instead of using a single plain text, we use different
plain texts from the attack traces to calculate the HW differences for each key candidate.
Since the HW distribution of the most-likely key matches the PDFs distribution of the
most-likely key the best, calculating the HWDD between the most-likely key and another

6Note that this dataset is not perfectly noiseless, but without resorting to simulations, it is difficult to
obtain less noisy measurements.

10

0.320.300.280.260.24
POI 1

0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(a) PDFs and HW-POI distribution for the
most-likely key.

0.320.300.280.260.24
POI 1

0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(b) PDFs and HW-POI distribution for the
least-likely key

Figure 3: PDFs and HW-POI distribution with different keys without noise.

key candidate k gives a greater HWDD deviation, indicating that the HW distribution of
k is less fitted to the PDF (also see second observation as an extreme case). Consequently,
one could expect a low key rank for k.

Following this, the link between HWDD and key guessing vector (g) can be obtained.
Indeed, the Pearson’s correlation between HWDD rank and g based on the PDFs shown
in Figure 3 reaches 0.86, indicating that these two factors are highly correlated. Note that
the third observation implies that the PDFs tend to output high probability with certain
HW-POI distribution.

However, when noise is introduced, the PDF output is less determined by the leakage
but by the random fluctuation of the POIs value (i.e., from the noise), which eventually
obscures the output probability of different clusters. To demonstrate this, we introduce
Gaussian noise with zero mean and 0.3 variances to the original dataset. Since the deviation
between the most- and least-likely keys is discussed before, we present the PDFs and
HW-POI distribution for the correct key and most-likely (now, the most-likely key is
not the correct one, but simply the first ranked key in g) key. The results are shown in
Figures 4a and 4b.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
POI 1

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(a) PDFs and HW-POI distribution for the
correct key.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
POI 1

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(b) PDFs and HW-POI distribution for the
more-likely key

Figure 4: PDFs and HW-POI distribution with different keys with noise.

From the figures, the PDFs built with noisy data are similar to the noise distribution
added to the traces (thus, SNR becomes very low). Consequently, the overlapping area for

11

each PDF is increased, and the difference in the output probability for each PDF becomes
smaller. Similarly, when comparing the HW-POI distribution in Figures 4a and 4b, one
can hardly identify which key (correct or most-likely) fits the PDFs better. Indeed, from
the attack perspective, the correct key’s rank reaches 4 after applying more than 1 000
attack traces, indicating that the profiling model’s learnability is weaker than for the
original dataset (reaches 1 within ten attack traces). Moreover, the random addition of
the noise could lead to different most-likely keys, even with a fixed amount of attack
traces. Although there is always an HW-POI distribution key that fits the PDFs/templates
the best, the PDFs’ distribution variation manipulated by the random noise makes the
most-likely key unpredictable. Eventually, one could expect a reduced correlation between
HWDD and g, indicating the profiling model’s low learnability.

5.3 Correlation between LDD and Key Guessing Vector g
In terms of guessing entropy for each key candidate, a larger LDD value indicates that
two related key candidates are less likely to have similar GE. In other words, the LDD
could estimate the GE distribution for each key candidate. One could expect a stronger
statistical relation between LDD and g if the model learns from the leakage. In case the
model fails to learn from the data, the outputted random GE for all key candidates would
lead to a low correlation between LDD and g.

Following this, the leakage distribution difference (given by any selected leakage model,
e.g., HWDD or IDD) can be used to define a learnability metric, Lm(LDD,g), as a
function of LDD and the key guessing vector g:

Lm(LDD,g) = corr(argsortLDD,g) (4)

Eq. (4) defines the learnability level of a profiled model with respect to a key candidate
k∗ for a chosen leakage model. The term corr refers to Pearson’s correlation. The
expression argsortX returns the rank position by order of magnitude of each element
xi in a vector X = [x0, x1, . . . , x2b−1]. As a result, the Lm(LDD,g) metric can sort the
key candidates according to their leakage difference from the correct key candidate k∗.
Consequently, we can use this metric to determine how correlated the guessed keys are to
the correct key. What is more, the LDD metric allows us to estimate the learnability of a
profiled SCA model.
Definition 9. SCA model perfect learnability. There exists a polynomial-time
algorithm that, in the attack phase, reaches Lm = 1 (i.e., perfect learnability) for all sets
of attack traces.

Figure 5 depicts the perfect learnability for the HW and ID leakage models. We use
simulated measurements with strong HW and ID leakages and a controlled Gaussian noise
level, normally distributed with a variance of 0.01 around a mean of zero. The simulated
trace set consist of traces of one hundred features where all features are equal but for
two features that hold the leakage, which is proportional to HW (Sbox(p, k)) or Sbox(p, k),
respectively, for the HW and ID leakages. The profiling set has plain texts p and keys k
chosen from a uniformly random distribution. The attack set’s plain texts are also selected
uniformly at random, and only the attack key is the same for the whole set.

We use the template attack to obtain the gsge. We consider an increasing number of
profiling traces N to reduce the noise in the templates. In both figures, the correlation
between LDD and the the key guessing vector gsge (i.e., learnability metric) increases
w.r.t. the number of profiling traces and reaches the Pearson’s correlation of 0.999 and
0.998 for the HW and ID leakage models using one million profiling traces.
Remark 1. Results in Figure 5 confirm the correctness of Definition 9 as the correlation
between LDD and gsge tends to increase with better models (as we use template attack,
better models are those that are trained with more traces).

12

0 50 100 150 200 250
gsge

0

50

100

150

200

250

HW
DD

 ra
nk

N=1e+03
N=1e+06

(a) HW leakage model.

0 50 100 150 200 250
gsge

0

50

100

150

200

250

ID
D

ra
nk

N=1e+04
N=1e+06

(b) ID leakage model.

Figure 5: Perfect learnability considering the HW and ID leakage models. Gaussian noise
N (0, 0.01) is applied on the training traces. Increasing the number of training traces (N)
reduces the templates noise.

6 Experimental Evaluation
We discussed how guessing entropy calculations could lead to wrong indications about the
model learnability. We also discussed how the correlation between the g and LDD metrics
could serve as a reliable indicator of model learnability. This section presents experimental
results on publicly available datasets that confirm the LDD metric performance. First,
we discuss how we can estimate the learnability from ggge or gsge. Finally, we show the
robustness of Lm(LDD,g) by evaluating it for different profiling models or levels of noise.

6.1 Estimating Learnability with Generalized Guessing Entropy (GGE)
We assume that GGE is the optimal way of computing guessing entropy as it considers a
sufficient (where sufficient means that the available number of traces is much larger than
the number of traces we require to break the target) number of attack traces. While GGE
can be infeasible to obtain (as only a limited amount of attack traces could be available in
the attack phase and, consequently, a randomization factor close to 1 would be difficult to
obtain), simple guessing entropy (SGE) calculation may point to the wrong conclusions
about the attack phase, mostly due to the lack of the SGE generalization ability.

To minimize this issue from an evaluator’s perspective, it is important to understand
the minimal necessary number of attack traces to properly estimate the model learnability.
Unfortunately, this is a difficult task as it depends on 1) selection of a good attack
method, 2) usage of the correct leakage model, and 3) characteristics of the dataset (noise,
countermeasures). An alternative is to calculate the Lm(LDD,ggge) metric for the chosen
leakage model. 7

As an example, let us consider the ASCAD dataset (details in Section 2.5, and quantities
U = 1 000 and Q = 100 000 (so that the randomization factor equals r = 0.99), that are
sufficient values for a proper GGE estimation. Figure 6a shows the relationship between
Lm(HWDD,ggge) (we consider the Hamming weight leakage model) and the number of
profiling trace. Figure 6b shows the values of GGE evolution, for the correct key candidate
k∗, and different number of profiling traces. These figures contain 200 profiling model
results, where we vary the profiling set size from 1 000 to 200 000 traces with a step of 1 000
traces. The profiling model is an MLP with six hidden layers, where each layer contains

7If we had sufficient amount of attack traces to compute GGE, we would not need to obtain the
Lm(LDD, ggge) value, as “enough” randomness in the GGE calculation would be sufficient to indicate
the profiled model’s performance and generalization.

13

600 neurons. For this neural network architecture, the learning rate is set to 0.00001 with
the Adam optimizer. The models are trained for 50 epochs with a mini-batch of 400 traces.

In Figure 6, observe that changing the value U (and, consequently, the randomization
factor r) changes the final guessing entropy obtained for a model trained on a certain
amount of profiling traces. The differences in the final guessing entropy results for different
U values are more significant when the number of profiling traces is lower. For example,
when MLP is trained with 20 000 traces, GGE when U = 1 000 is around 50, while GGE
for the same model after processing U = 10 000 is already 1. Note that this is expected, as,
for a low number of attack traces, the guessing entropy might not reach its lowest possible
value for a certain profiled model. Simultaneously, the Lm(HWDD,ggge) metric varies
marginally for different quantities of U , even for smaller amounts of profiling traces. This
analysis depicts that if Q is sufficiently large (100 000 in the current example), the behavior
of generalized guessing entropy with a small U can be considered as a reliable value. This
conclusion can be confirmed by observing Figure 6a, where the value Lm(HWDD,ggge)
is very similar for different amounts of U attack traces even when the number of profiling
traces is low.

(a) Lm(HWDD, ggge) vs number of profiling traces.

(b) GGE vs number of profiling traces.

Figure 6: Lm(HWDD,ggge) and GGE with respect to different amounts of attack traces.

Remark 2. Generalized guessing entropy is a reliable attack metric, but depending on the
setup, it may be prohibitively difficult to obtain enough attack traces.

6.2 Estimating Learnability from Simple Guessing Entropy (SGE)
Next, we demonstrate that computing guessing entropy using Definition 7 for a limited
amount of attack traces could lead to wrong conclusions about model learnability.Recall,
the trained model tends to demonstrate a preference for some key byte candidates, and
the reliability of such conclusions can also be estimated from the way SGE is calculated. If
the model learns the leakage (i.e., the model learned the correct mapping between X and
Y), then the preference happens for the correct key candidate in the attack set. On the
other hand, if the preference happens for the wrong key candidate, we can assume that
the trained model has no leakage learnability.

14

(a) SGE computed with U = Q = 1 000 (b) GGE computed with U = 1 000 and Q =
100 000

Figure 7: The effects of simple and generalized guessing entropy for the same profiled
model.

Simple guessing entropy may be insufficient to indicate model learnability when the
number of attack traces Q is not large enough. In this case, it is very likely that GE would
be computed for U = Q (with a randomization factor r = 0). More precisely, we calculate
simple guessing entropy, as the attacker would use the maximum amount of available
attack traces for the key rank calculation. Therefore, to avoid misleading conclusions
about model generalization, it is very important to identify whether SGE shows biased
results.

We train the same MLP architecture with six hidden layers, as described in Section 6.1
on 20 000 profiling traces. Next, we compute the simple guessing entropy (U = Q = 1 000)
and obtain the results shown in Figure 7a. This figure shows SGE evolution for all 256
key byte candidates. As this figure indicates, even if guessing entropy for the correct
key candidate slowly converges, other key candidates show better (faster) convergence.
As a result, we could conclude that this profiled attack is not successful. On the other
hand, if we compute the generalized guessing entropy with U = 1 000 and Q = 100 000 (cf.
Figure 7b), guessing entropy after processing 1 000 attack traces already indicates that this
profiled attack is actually successful. In the latter case, the guessing entropy convergence
is more pronounced for the correct key candidate than all wrong key candidates.

Increasing the amount of attack traces to U = Q = 10 000 provides more reliable results
in the simple guessing entropy calculation. However, the results for SGE still differ from
GGE results, as indicated in Figure 8. There are two basic conclusions stemming from
these results:

1. SGE for a small U = Q (e.g., 1 000 in case of the ASCAD dataset) is not a reliable
indication of model’s learnability.

2. SGE for a large U = Q (e.g., 10 000 traces in case of the ASCAD dataset) presents
more indicative results about profiling attack performance, but the SGE results are
still insufficient to describe model’s learnability.

To estimate more precisely the model’s learnability, we use the Lm(HWDD,gsge)
metric. This means that after obtaining SGE results, a proper choice is to calculate
Lm(HWDD,gsge) to confirm if the SGE value for the correct key candidate indicates
learnability or biased behavior. In case of results from Figure 8a, Lm(HWDD,gsge) =
0.5791 for 10 000 attack traces. If we look at Figure 6a, this correlation value is already

15

(a) SGE computed with Q = U = 10 000 (b) GGE computed with Q = 100 000 and U =
10 000

Figure 8: The effects of simple and generalized guessing entropy for the same profiled
model.

sufficient to indicate there is model learnability.
As GGE represents the reference result for profiled model’s performance, we compare

the Lm(HWDD,g) results for g = gsge and g = ggge, as we used the Hamming weight
leakage model in our attack. Figure 9 shows results for 500 trained MLP models (with
different hyperparameters and different amount of profiling traces) when SGE is computed
for U = Q = 1 000, U = Q = 5 000 and U = Q = 10 000 attack traces. The GGE
values are calculated for U = 1 000, U = 5 000 and U = 10 000 attack traces and for
Q = 100 000 to have a higher randomization factor. As Figure 9c indicates, the values
of Lm(HWDD,gsge) and Lm(HWDD,ggge) are highly correlated (correlation of 0.929)
when SGE is computed with U = Q = 10 000, which is not the case when U = Q = 1 000
for SGE (correlation of 0.645), as shown in Figure 9a.

(a) U = Q = 1 000 for SGE. (b) U = Q = 5 000 for SGE (c) U = Q = 10 000 for SGE.

Figure 9: SGE vs GGE for ASCAD dataset, with Hamming weight leakage model.

We conclude that Lm(HWDD,gsge), when Q (resp. U) is sufficiently large, is a reliable
metric to discern the profiled model learnability, mainly because Lm(HWDD,gsge) is
highly correlated to Lm(HWDD,ggge). This way, the attack phase in a profiled side-
channel analysis does not necessarily need to estimate generalized guessing entropy with a

16

large (and in many cases unavailable) amount of attack traces.
Remark 3. Simple guessing entropy should not be considered as a reliable attack metric in
the general case. Instead, one needs to evaluate the correlation between LDD and gsge.

Up to now, we showed that GGE is a proper metric to evaluate the model learnability.
When there are no sufficient attack traces available to calculate GGE, we must calculate
Lm(LDD,gsge). Next, the question is how reliable Lm is in the presence of common
difficulties one encounters in the profiled side-channel analysis. In the next sections, we
discuss the scenarios with different noise levels and profiling models.

6.3 Measuring Learnability for Different Noise Levels
Intuitively, the leakage becomes more challenging to learn with the traces become noisy.
One can expect lower model learnability with an increasing amount of noise. To simulate
the noise, we consider random values following Gaussian distribution with zero mean and
variance ranging from 0 to 10 in steps of 0.5. We add them to the ASCAD dataset with
random keys. In terms of attack settings, CNN and template attack use 50 000 traces
(randomly selected out of 200 000 profiling traces) for profiling and 5 000 traces (randomly
selected out of 100 000 attack traces) for the attack. In terms of attack settings, CNN_best
from the ASCAD paper is used for deep learning attack; for TA, 20 POIs are selected
from the traces according to the trace variation of the HW of the intermediate data (S-box
output). The guessing entropy is averaged on 100 attacks. Moreover, instead of only using
final GGE to calculate Lm(HWDD,ggge), we investigate the correlation changes for every
attack trace. The results are shown in Figure 10.

0 1000 2000 3000 4000 5000
Number of Traces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L m
(H

W
DD

, g
gg

e)

GGE = 0
GGE > 0

(a) CNN: Lm vs attack traces.

0 2 4 6 8 10
Variation of Gaussian noise

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

20

40

60

80

100

120

140

160

Ge
ne

ra
liz

ed
 G

ue
ss

in
g

En
tro

py

Lm_100trs
Lm_5000trs
GGE

(b) CNN: Lm vs noise variation.

0 1000 2000 3000 4000 5000
Number of Traces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L m
(H

W
DD

, g
gg

e)

GGE = 0
GGE > 0

(c) TA: Lm vs attack traces.

0 2 4 6 8 10
Variation of Gaussian noise

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

20

40

60

80

100

120

140

160

Ge
ne

ra
liz

ed
 G

ue
ss

in
g

En
tro

py

Lm_100trs
Lm_5000trs
GGE

(d) TA: Lm vs noise variation.

Figure 10: The relationship between the learnability metric and different level of noise.

17

As shown in Figures 10a and 10c, for the attacks where the GGE for the correct key
reaches zero (in blue), Lm increases quickly when the number of attacks traces increases;
the final correlation values are above 0.7 and 0.5 for CNN and template attack, respectively.
A detailed analysis is presented in Figures 10b and 10d. Here, Lm is calculated with
different numbers of attack traces (highlighted in blue). We see that Lm reduces with
the increased variation of noise, which is also reflected in the increasing value of guessing
entropy (highlighted in purple). Note that 100 attack traces is far from sufficient for GGE
of the correct key to reach zero. However, with these limited amounts of traces, Lm clearly
indicates the model’s ability to obtain the correct key.

Moreover, by comparing Lm changes with 100 and 5 000 attack traces in these two
figures, some of the attacks with higher noise variation could reach similar Lm value by
increasing the number of attack traces. Indeed, the accumulating of the model’s output
class probabilities with more attack traces benefits the classification performance [PCP19].
However, if the model failed to learn from the leakage (e.g., due to the high noise variation),
adding more attack traces would not be helpful in retrieving the correct key.

In general, the addition of the noise degrades the model’s learnability. We note that
there is research showing that the addition of noise could enhance the robustness of the
model (as it serves as a regularization factor), eventually becoming beneficial in the process
of classification [KPH+19]. Based on our results, the level of “beneficial” noise has an
upper limit, and the noise we added is larger than the limitation.
Remark 4. Adding noise negatively influences the model’s learnability. Lm can estimate
model learnability correctly with a smaller number of traces than we require to reach a
GGE of 0.

6.4 Measuring Learnability for Different Number of Epochs and Model
Complexities

Model complexity and training epochs are two major contributing factors to the learnability
of a model. Specifically, by increasing the number of training epochs, one can expect that
the model’s learnability becomes better if overfitting does not occur. On the other hand,
adjusting the model size will directly influence the capacity of the model. Here, we test
different models by independently varying the number of training epochs and model size.

Aligned with the previous sections, CNN used for attacks is listed in Table 1. The
variable i determines the number of the filters and neurons in the fully-connected layer.
We use i to roughly estimate the complexity of a model. Note, for the CNN_best from
the ASCAD paper, i is set to 64.

Table 1: CNN architecture used for attacking.
Layer Filter size # of filters Pooling stride # of neurons
Conv block 11 i*1 2 -
Conv block 11 i*2 2 -
Conv block 11 i*4 2 -
Conv block 11 i*8 2 -
Flatten - - - -
Fully-connected * 2 - - - i*64

First, CNN_best (i=64) was trained with a different number of epochs ranging from
10 to 300 in steps of 10. For each step of training epochs, Lm is calculated with a different
number of attack traces (100 and 5 000) and two different leakage models: HW and identity.
The result is shown in Figure 11.

For the HW leakage model, as shown in Figure 11a, the required number of attack
traces for the correct key reduces significantly when training epochs increase from 0 to
80, indicating than model gradually learns from the dataset. After that, it becomes

18

0 50 100 150 200 250 300
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
L m

(H
W

DD
, g

gg
e)

0

1000

2000

3000

4000

5000

Re
qu

ire
d

at
ta

ck
 tr

ac
es

Lm_100trs
Lm_5000trs
Attack traces

(a) Lm(HWDD, ggge) vs training epochs with
HW leakage model.

0 50 100 150 200 250 300
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(ID

D,
 g

gg
e)

0

1000

2000

3000

4000

5000

Re
qu

ire
d

at
ta

ck
 tr

ac
es

Lm_100trs
Lm_5000trs
Attack traces

(b) Lm(IDD, ggge) vs training epochs with
identity leakage model.

Figure 11: The relationship between learnability metric and number of training epochs.

stable when the model is further trained. The same tendency could be identified with
the Lm(HWDD,ggge) metric with both 100 and 5 000 attack traces. The Lm metric can
properly estimate the model’s learnability with only 100 traces (at least ten times less than
GGE), suggesting the effectiveness of this metric in evaluating the model’s learnability.

For the ID leakage model (Figure 11b), we see both Lm(IDD,ggge) and number of
required attack traces behaves unexpectedly when training epoch increases: the number
of the required attack traces decreases quickly when training epochs go from 0 to 60,
then gradually increase with more training epochs. Indeed, by observing the training
accuracy and loss, the overfitting becomes dominant for more than 60 training epochs,
which means the model’s classification capability is degraded if the model is further trained.
Interestingly, this conclusion is perfectly aligned with the Lm tendency for the increase of
the epochs: the value reaches a maximum with 60 training epochs, decreases, and becomes
stable at around 0.22 when the number of epoch increases further. Therefore, we confirm
that Lm quantifies the learnability of the model. Again, 100 attack traces are sufficient for
this metric to evaluate the model’s learnability.
Remark 5. Adding more epochs improves the model learnability provided that it does not
start to overfit. Lm can correctly estimate the model learnability for a small number of
attack traces.

After evaluating the model’s learnability with different training epochs, we set the
number of epochs to 100, and we tune the profiling model. Here, i, the controlling factor
of the model’s complexity, varies from 1 to 64. We use the HW leakage model for the
attack. The results are shown in Figure 12a with GGE of the correct key as a reference.
Within the model size range where GGE reaches one, we present a zoom-in view using the
required number of attack traces to retrieve the key (instead of GGE) for the evaluation
of the attack performance (Figure 12b).

The Lm(HWDD,ggge) value increases significantly (from 0.1 to 0.68) when i increases
from 1 to 11, which is perfectly aligned with the decreasing tendency of GGE. Then,
when the Lm is above 0.7 (i>26), GGE reaches the value 1. From the zoom-in view in
Figure 12b, one could observe that the Lm is still slowly rising with the increment of i;
the required attack traces, on the other hand, decrease gradually and become stable at
around 1 100. Indeed, the model’s learnability to a certain dataset has its limitation; in
our case, it is “saturated” when i is greater than 26. Further increase of the model size
will not contribute to a better attack performance. Again, these observations are clearly
represented by the Lm. Attack set with 100 traces is sufficient for the evaluation of the
model, which is aligned with the previous experiment.

19

10 20 30 40 50 60
Model size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
L m

(H
W

DD
, g

gg
e)

0

20

40

60

80

100

120

Ge
ne

ra
liz

ed
 G

ue
ss

in
g

En
tro

py

Lm_100trs
Lm_5000trs
GGE

(a) Lm vs model size.

20 30 40 50 60
Model size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

1000

2000

3000

4000

5000

Re
qu

ire
d

at
ta

ck
 tr

ac
es

Lm_100trs
Lm_5000trs
Attack traces

(b) Zoom-in view: Lm vs model size.

Figure 12: The relationship between learnability metric and model complexity.

Remark 6. Increasing the model capacity improves the model learnability. Lm can correctly
estimate the model learnability for a small number of attack traces.

7 Conclusions and Future Work
In the profiled side-channel analysis, one commonly uses guessing entropy to estimate
the attack performance. Additionally, it is common to use all available attack traces in
the guessing entropy calculation to make the evaluation more precise. This paper shows
how such a practice can lead to misleading results, where one obtains wrong indication of
model learnability. First, we define two guessing entropy notions: simple guessing entropy
and generalized guessing entropy. We show that generalized guessing entropy is a more
powerful metric but could be difficult to apply in practice. Consequently, to evaluate the
attack performance (and implicitly, model learnability) we define the Leakage Distribution
Difference metric (LDD). Our results show that by observing the correlation between LDD
and key guessing vector, one can reliably and efficiently deduce the attack’s performance.
Indeed, we verified that this correlation approaches 1 when the model can perfectly learn
side-channel leakages for the correct chosen leakage model.

In future work, we plan to examine whether our conclusions hold for another commonly
used SCA metric: success rate. Additionally, we plan to investigate the newly proposed
correlation metric in the context of leakage assessment. Finally, we believe our results also
apply for the non-profiled SCA, representing an interesting research direction.

References
[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile

Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptographic Engineering, 10(2):163–188, 2020.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures.
In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems – CHES 2017, pages 45–68, Cham, 2017. Springer
International Publishing.

20

[CK14] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien
Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced
Applications, pages 253–270, Cham, 2014. Springer International Publishing.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, pages 13–28, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[GD98] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmospheric
environment, 32(14-15):2627–2636, 1998.

[GHO15] R. Gilmore, N. Hanley, and M. O’Neill. Neural network based attack on a
masked implementation of AES. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 106–111, May 2015.

[HGG20a] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Applications of ma-
chine learning techniques in side-channel attacks: a survey. J. Cryptographic
Engineering, 10(2):135–162, 2020.

[HGG20b] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network
attribution methods for leakage analysis and symmetric key recovery. In Ken-
neth G. Paterson and Douglas Stebila, editors, Selected Areas in Cryptography
– SAC 2019, pages 645–666, Cham, 2020. Springer International Publishing.

[HPGM16] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. Side-
channel analysis of lightweight ciphers: Does lightweight equal easy? In
Gerhard P. Hancke and Konstantinos Markantonakis, editors, Radio Frequency
Identification and IoT Security - 12th International Workshop, RFIDSec 2016,
Hong Kong, China, November 30 - December 2, 2016, Revised Selected Papers,
volume 10155 of Lecture Notes in Computer Science, pages 91–104. Springer,
2016.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent Machine Homicide - Breaking
Cryptographic Devices Using Support Vector Machines. In Werner Schindler
and Sorin A. Huss, editors, COSADE, volume 7275 of LNCS, pages 249–264.
Springer, 2012.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KKK16] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough,
learn to criticize! criticism for interpretability. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 2280–2288. Curran Associates, Inc., 2016.

21

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 148–179, 2019.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier
Markowitch. A Machine Learning Approach Against a Masked AES. In
CARDIS, Lecture Notes in Computer Science. Springer, November 2013. Berlin,
Germany.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited
(and the curse of dimensionality in side-channel analysis). In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
20–33. Springer, 2015.

[MDP19a] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization
for general characterization in profiling attacks. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April
3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer Science,
pages 145–167. Springer, 2019.

[MDP19b] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study of
deep learning for side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(1):348–375, Nov. 2019.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In International
Conference on Security, Privacy, and Applied Cryptography Engineering, pages
3–26. Springer, 2016.

[OC14] Colin O’Flynn and Zhizhang David Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 243–260.
Springer, 2014.

[PBP20] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when to stop:
a mutual information approach to fight overfitting in profiled side-channel
analysis. Cryptology ePrint Archive, Report 2020/058, 2020. https://eprint.
iacr.org/2020/058.

[PCP19] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in numbers:
Improving generalization with ensembles in profiled side-channel analysis.
Cryptology ePrint Archive, Report 2019/978, 2019. https://eprint.iacr.
org/2019/978.

[PHJ+17] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley,
Domagoj Jakobovic, and Nele Mentens. Side-channel analysis and machine
learning: A practical perspective. In 2017 International Joint Conference on
Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017, pages
4095–4102, 2017.

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(1):209–237, Nov. 2018.

22

https://eprint.iacr.org/2020/058
https://eprint.iacr.org/2020/058
https://eprint.iacr.org/2019/978
https://eprint.iacr.org/2019/978

[PHPG19] Stjepan Picek, Annelie Heuser, Guilherme Perin, and Sylvain Guilley. Profiling
side-channel analysis in the efficient attacker framework. Cryptology ePrint
Archive, Report 2019/168, 2019. https://eprint.iacr.org/2019/168.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, pages
30–46, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[vdVP19] Daan van der Valk and Stjepan Picek. Bias-variance decomposition in machine
learning-based side-channel analysis. Cryptology ePrint Archive, Report
2019/570, 2019. https://eprint.iacr.org/2019/570.

[vdVPB19] Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was here: The
first step towards explainability of neural networks in profiled side-channel
analysis. Cryptology ePrint Archive, Report 2019/1477, 2019. https://
eprint.iacr.org/2019/1477.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient cnn architectures in profiling attacks. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov. 2019.

A Additional Results for Different GE Behaviors
This section (Figures 13 to 16) depicts additional results showing how GE for the correct
key can decrease, increase, or stay random. Consequently, we display cases where the
model learns the correct leakage, wrong leakage, or no leakage whatsoever. We show this
for several publicly available datasets and architectures from related works.

(a) CNN from [ZBHV19] on the synchronized
ASCAD dataset with a fixed key with the ID
leakage model.

(b) CNN from [ZBHV19] on the synchronized
ASCAD dataset with a fixed key with the HW
leakage model.

Figure 13: CNN from [ZBHV19] on the synchronized ASCAD dataset with a fixed key
with the ID leakage model (Figure 13a) shows GE decreasing, but changing some settings
can result in GE that does not converge. Here, we changed the leakage model from ID to
HW (Figure 13b), and we noticed cases with GE decreasing and increasing.

23

https://eprint.iacr.org/2019/168
https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/1477
https://eprint.iacr.org/2019/1477

(a) MLP from [BPS+20] on the synchronized
ASCAD dataset with fixed key.

(b) MLP from [BPS+20] on the desynchronized
ASCAD dataset with fixed key.

Figure 14: Examples of GE cases with MLP from [BPS+20]. Figure 14a shows results for
the synchronized ASCAD dataset with a fixed key where GE is decreasing. Figure 14b
shows results for the desynchronized ASCAD (N [0] = 50) dataset with a fixed key, where
GE is increasing or staying random.

(a) CNN from [BPS+20] on the synchronized
ASCAD dataset with random keys.

(b) CNN from [ZBHV19] on the synchronized
ASCAD dataset with random keys.

Figure 15: Examples of GE cases with CNNs on a dataset with random keys. Figure 15a
shows results with CNN from paper [BPS+20] where GE decreases. Figure 15b shows
results on the same dataset but with the architecture from [ZBHV19] where GE stays
mostly random.

24

(a) DPA contest v4 dataset: MLP. (b) AES_HD dataset: MLP.

Figure 16: Examples of GE cases using MLP architecture for DPA contest v4 dataset 8

and the AES_HD dataset 9. Figure 16a shows results on DPA contest v4 dataset for MLP
with six hidden layers, he_uniform weight initializer, Tanh inner activation functions,
Softmax activation function in the last layer, ID leakage model, 50 epoches, 50 batch size,
1e-3 learning rate, 4 000 training traces, and 500 attacking traces. Figure 16b shows results
for the AES_HD dataset for MLP with six hidden layers, glorot_normal weight initializer,
ELU inner activation functions, Softmax activation function in the last layer, ID leakage
model, 50 epoches, 256 batch size, 1e-3 learning rate, 45 000 training traces, and 5 000
attacking traces.

25

	Introduction
	Background
	Notation
	Profiled Side-channel Analysis
	Supervised Machine Learning
	Classifiers
	ASCAD Dataset

	Related Works
	Classical Profiled Attacks
	Machine Learning-based Attacks
	Deep Learning-based Attacks

	On Possible Guessing Entropy Behaviors
	SCA Model Learnability and Estimation
	Leakage Distribution Difference Metric
	Case Study: Attack on a ``Noise-free'' Dataset
	Correlation between LDD and Key Guessing Vector g

	Experimental Evaluation
	Estimating Learnability with Generalized Guessing Entropy (GGE)
	Estimating Learnability from Simple Guessing Entropy (SGE)
	Measuring Learnability for Different Noise Levels
	Measuring Learnability for Different Number of Epochs and Model Complexities

	Conclusions and Future Work
	Additional Results for Different GE Behaviors

